liger-kernel-nightly 0.5.10.dev20250624183504__py3-none-any.whl → 0.6.4.dev20251121224847__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
- liger_kernel/chunked_loss/grpo_loss.py +46 -9
- liger_kernel/chunked_loss/jsd_loss.py +23 -7
- liger_kernel/ops/cross_entropy.py +118 -62
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +113 -21
- liger_kernel/ops/geglu.py +1 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +133 -79
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/ops/rms_norm.py +2 -2
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/transformers/__init__.py +59 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +38 -6
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -4
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +28 -8
- liger_kernel/transformers/model/gemma2.py +31 -8
- liger_kernel/transformers/model/gemma3.py +100 -110
- liger_kernel/transformers/model/glm4.py +18 -5
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +26 -7
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +18 -6
- liger_kernel/transformers/model/loss_utils.py +34 -3
- liger_kernel/transformers/model/mistral.py +17 -10
- liger_kernel/transformers/model/mixtral.py +24 -9
- liger_kernel/transformers/model/mllama.py +18 -7
- liger_kernel/transformers/model/olmo2.py +18 -5
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +41 -5
- liger_kernel/transformers/model/phi3.py +24 -159
- liger_kernel/transformers/model/qwen2.py +26 -4
- liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
- liger_kernel/transformers/model/qwen2_vl.py +24 -7
- liger_kernel/transformers/model/qwen3.py +22 -6
- liger_kernel/transformers/model/qwen3_moe.py +27 -7
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1278 -116
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/METADATA +29 -24
- liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/RECORD +118 -0
- liger_kernel_nightly-0.5.10.dev20250624183504.dist-info/RECORD +0 -95
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.utils import can_return_tuple
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerInternVLCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
# Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
|
|
16
|
+
@can_return_tuple
|
|
17
|
+
def lce_forward(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: torch.LongTensor = None,
|
|
20
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
21
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
22
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
23
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
24
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
25
|
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
|
26
|
+
vision_feature_select_strategy: Optional[str] = None,
|
|
27
|
+
labels: Optional[torch.LongTensor] = None,
|
|
28
|
+
use_cache: Optional[bool] = None,
|
|
29
|
+
output_attentions: Optional[bool] = None,
|
|
30
|
+
output_hidden_states: Optional[bool] = None,
|
|
31
|
+
return_dict: Optional[bool] = None,
|
|
32
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
33
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
34
|
+
image_sizes: Optional[torch.Tensor] = None,
|
|
35
|
+
skip_logits: Optional[bool] = None, # Added argument for liger-kernel
|
|
36
|
+
**lm_kwargs, # renamed from kwargs
|
|
37
|
+
) -> Union[Tuple, LigerInternVLCausalLMOutputWithPast]:
|
|
38
|
+
r"""
|
|
39
|
+
Example:
|
|
40
|
+
|
|
41
|
+
```python
|
|
42
|
+
>>> import torch
|
|
43
|
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
44
|
+
|
|
45
|
+
>>> torch_device = "cuda"
|
|
46
|
+
>>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
|
|
47
|
+
>>> model = AutoModelForImageTextToText.from_pretrained(
|
|
48
|
+
... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
|
|
49
|
+
... )
|
|
50
|
+
|
|
51
|
+
>>> messages = [
|
|
52
|
+
... {
|
|
53
|
+
... "role": "user",
|
|
54
|
+
... "content": [
|
|
55
|
+
... {
|
|
56
|
+
... "type": "image",
|
|
57
|
+
... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
|
|
58
|
+
... },
|
|
59
|
+
... {
|
|
60
|
+
... "type": "image",
|
|
61
|
+
... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
|
|
62
|
+
... },
|
|
63
|
+
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
|
|
64
|
+
... ],
|
|
65
|
+
... },
|
|
66
|
+
... ]
|
|
67
|
+
|
|
68
|
+
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
|
|
69
|
+
>>> generate_ids = model.generate(**inputs, max_new_tokens=200)
|
|
70
|
+
>>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
|
|
71
|
+
The images depict the Statue of Liberty and the Golden Gate Bridge.
|
|
72
|
+
```"""
|
|
73
|
+
|
|
74
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
75
|
+
output_hidden_states = (
|
|
76
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
77
|
+
)
|
|
78
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
79
|
+
vision_feature_layer = (
|
|
80
|
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
|
81
|
+
)
|
|
82
|
+
vision_feature_select_strategy = (
|
|
83
|
+
vision_feature_select_strategy
|
|
84
|
+
if vision_feature_select_strategy is not None
|
|
85
|
+
else self.config.vision_feature_select_strategy
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
outputs = self.model(
|
|
89
|
+
input_ids=input_ids,
|
|
90
|
+
pixel_values=pixel_values,
|
|
91
|
+
attention_mask=attention_mask,
|
|
92
|
+
position_ids=position_ids,
|
|
93
|
+
past_key_values=past_key_values,
|
|
94
|
+
inputs_embeds=inputs_embeds,
|
|
95
|
+
vision_feature_layer=vision_feature_layer,
|
|
96
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
97
|
+
use_cache=use_cache,
|
|
98
|
+
output_attentions=output_attentions,
|
|
99
|
+
output_hidden_states=output_hidden_states,
|
|
100
|
+
return_dict=return_dict,
|
|
101
|
+
cache_position=cache_position,
|
|
102
|
+
image_sizes=image_sizes,
|
|
103
|
+
**lm_kwargs,
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
# Copied from llava.py
|
|
107
|
+
hidden_states = outputs[0]
|
|
108
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
109
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
110
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
111
|
+
|
|
112
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
113
|
+
logits = None
|
|
114
|
+
loss = None
|
|
115
|
+
token_accuracy = None
|
|
116
|
+
|
|
117
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
118
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
119
|
+
|
|
120
|
+
if skip_logits is None:
|
|
121
|
+
# By default, if in training mode, don't materialize logits
|
|
122
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
123
|
+
|
|
124
|
+
if skip_logits:
|
|
125
|
+
result = LigerForCausalLMLoss(
|
|
126
|
+
hidden_states=kept_hidden_states,
|
|
127
|
+
lm_head_weight=self.lm_head.weight,
|
|
128
|
+
labels=labels,
|
|
129
|
+
shift_labels=shift_labels,
|
|
130
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
131
|
+
**lm_kwargs,
|
|
132
|
+
)
|
|
133
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
134
|
+
|
|
135
|
+
else:
|
|
136
|
+
logits = self.lm_head(kept_hidden_states)
|
|
137
|
+
if labels is not None:
|
|
138
|
+
loss = self.loss_function(
|
|
139
|
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
if not return_dict:
|
|
143
|
+
output = (logits,) + outputs[1:]
|
|
144
|
+
output = (loss,) + output if loss is not None else output
|
|
145
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
146
|
+
return output
|
|
147
|
+
|
|
148
|
+
# Return custom output class with token_accuracy field
|
|
149
|
+
return LigerInternVLCausalLMOutputWithPast(
|
|
150
|
+
loss=loss,
|
|
151
|
+
logits=logits,
|
|
152
|
+
past_key_values=outputs.past_key_values,
|
|
153
|
+
hidden_states=outputs.hidden_states,
|
|
154
|
+
attentions=outputs.attentions,
|
|
155
|
+
image_hidden_states=outputs.image_hidden_states,
|
|
156
|
+
token_accuracy=token_accuracy,
|
|
157
|
+
)
|
|
@@ -15,6 +15,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
15
15
|
from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
|
|
16
16
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
17
17
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
18
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
19
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
18
20
|
from liger_kernel.utils import PEFT_AVAILABLE
|
|
19
21
|
|
|
20
22
|
if TYPE_CHECKING:
|
|
@@ -37,6 +39,7 @@ def lce_forward_deprecated(
|
|
|
37
39
|
output_hidden_states: Optional[bool] = None,
|
|
38
40
|
return_dict: Optional[bool] = None,
|
|
39
41
|
cache_position: Optional[torch.LongTensor] = None,
|
|
42
|
+
skip_logits: Optional[bool] = None,
|
|
40
43
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
41
44
|
r"""
|
|
42
45
|
Copy paste llama forward but replace torch cross entropy with liger fused linear cross entropy
|
|
@@ -91,7 +94,15 @@ def lce_forward_deprecated(
|
|
|
91
94
|
loss = None
|
|
92
95
|
logits = None
|
|
93
96
|
|
|
94
|
-
if
|
|
97
|
+
# if in training mode, don't materialize logits
|
|
98
|
+
if skip_logits and labels is None:
|
|
99
|
+
raise ValueError("skip_logits is True, but labels is None")
|
|
100
|
+
|
|
101
|
+
if skip_logits is None:
|
|
102
|
+
# By default, if in training mode, don't materialize logits
|
|
103
|
+
skip_logits = self.training and labels is not None
|
|
104
|
+
|
|
105
|
+
if skip_logits:
|
|
95
106
|
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
96
107
|
shift_labels = labels[..., 1:].contiguous()
|
|
97
108
|
|
|
@@ -153,7 +164,7 @@ def lce_forward(
|
|
|
153
164
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
154
165
|
skip_logits: Optional[bool] = None,
|
|
155
166
|
**kwargs,
|
|
156
|
-
) -> Union[Tuple,
|
|
167
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
157
168
|
r"""
|
|
158
169
|
Args:
|
|
159
170
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -219,6 +230,8 @@ def lce_forward(
|
|
|
219
230
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
220
231
|
logits = None
|
|
221
232
|
loss = None
|
|
233
|
+
token_accuracy = None
|
|
234
|
+
|
|
222
235
|
# if in training mode, don't materialize logits
|
|
223
236
|
if skip_logits and labels is None and shift_labels is None:
|
|
224
237
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -227,8 +240,9 @@ def lce_forward(
|
|
|
227
240
|
# By default, if in training mode, don't materialize logits
|
|
228
241
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
229
242
|
|
|
243
|
+
# Compute loss
|
|
230
244
|
if skip_logits:
|
|
231
|
-
|
|
245
|
+
result = lce_maybe_trainable_lm_head(
|
|
232
246
|
self,
|
|
233
247
|
hidden_states=kept_hidden_states,
|
|
234
248
|
hidden_size=self.config.hidden_size,
|
|
@@ -236,27 +250,32 @@ def lce_forward(
|
|
|
236
250
|
shift_labels=shift_labels,
|
|
237
251
|
**kwargs,
|
|
238
252
|
)
|
|
239
|
-
|
|
253
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
240
254
|
else:
|
|
241
255
|
logits = self.lm_head(kept_hidden_states)
|
|
242
|
-
if labels is not None:
|
|
256
|
+
if labels is not None or shift_labels is not None:
|
|
243
257
|
loss = self.loss_function(
|
|
244
258
|
logits=logits,
|
|
245
259
|
labels=labels,
|
|
260
|
+
shift_labels=shift_labels,
|
|
246
261
|
vocab_size=self.config.vocab_size,
|
|
247
262
|
**kwargs,
|
|
248
263
|
)
|
|
249
264
|
|
|
250
265
|
if not return_dict:
|
|
251
266
|
output = (logits,) + outputs[1:]
|
|
252
|
-
|
|
267
|
+
output = ((loss,) + output) if loss is not None else output
|
|
268
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
269
|
+
return output
|
|
253
270
|
|
|
254
|
-
|
|
271
|
+
# Return custom output class with token_accuracy field
|
|
272
|
+
return LigerCausalLMOutputWithPast(
|
|
255
273
|
loss=loss,
|
|
256
274
|
logits=logits,
|
|
257
275
|
past_key_values=outputs.past_key_values,
|
|
258
276
|
hidden_states=outputs.hidden_states,
|
|
259
277
|
attentions=outputs.attentions,
|
|
278
|
+
token_accuracy=token_accuracy,
|
|
260
279
|
)
|
|
261
280
|
|
|
262
281
|
|
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.cache_utils import Cache
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: torch.LongTensor = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
28
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
|
+
**kwargs,
|
|
30
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
31
|
+
r"""
|
|
32
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
34
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
35
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
36
|
+
|
|
37
|
+
Example:
|
|
38
|
+
|
|
39
|
+
```python
|
|
40
|
+
>>> from transformers import AutoTokenizer, Llama4ForCausalLM
|
|
41
|
+
|
|
42
|
+
>>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
43
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
44
|
+
|
|
45
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
46
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
47
|
+
|
|
48
|
+
>>> # Generate
|
|
49
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
50
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
51
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
52
|
+
```"""
|
|
53
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
54
|
+
output_hidden_states = (
|
|
55
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
56
|
+
)
|
|
57
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
58
|
+
|
|
59
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
60
|
+
outputs = self.model(
|
|
61
|
+
input_ids=input_ids,
|
|
62
|
+
attention_mask=attention_mask,
|
|
63
|
+
position_ids=position_ids,
|
|
64
|
+
past_key_values=past_key_values,
|
|
65
|
+
inputs_embeds=inputs_embeds,
|
|
66
|
+
use_cache=use_cache,
|
|
67
|
+
output_attentions=output_attentions,
|
|
68
|
+
output_hidden_states=output_hidden_states,
|
|
69
|
+
return_dict=True,
|
|
70
|
+
cache_position=cache_position,
|
|
71
|
+
**kwargs,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
hidden_states = outputs[0]
|
|
75
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
76
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
77
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
78
|
+
|
|
79
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
80
|
+
logits = None
|
|
81
|
+
loss = None
|
|
82
|
+
token_accuracy = None
|
|
83
|
+
|
|
84
|
+
# Compute loss
|
|
85
|
+
if self.training and (labels is not None or shift_labels is not None):
|
|
86
|
+
result = LigerForCausalLMLoss(
|
|
87
|
+
hidden_states=kept_hidden_states,
|
|
88
|
+
lm_head_weight=self.lm_head.weight,
|
|
89
|
+
labels=labels,
|
|
90
|
+
shift_labels=shift_labels,
|
|
91
|
+
hidden_size=self.config.hidden_size,
|
|
92
|
+
**kwargs,
|
|
93
|
+
)
|
|
94
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
95
|
+
|
|
96
|
+
else: # if in inference mode materialize logits
|
|
97
|
+
logits = self.lm_head(kept_hidden_states)
|
|
98
|
+
if labels is not None or shift_labels is not None:
|
|
99
|
+
loss = self.loss_function(
|
|
100
|
+
logits=logits,
|
|
101
|
+
labels=labels,
|
|
102
|
+
shift_labels=shift_labels,
|
|
103
|
+
vocab_size=self.config.vocab_size,
|
|
104
|
+
**kwargs,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
if not return_dict:
|
|
108
|
+
output = (logits,) + outputs[1:]
|
|
109
|
+
output = ((loss,) + output) if loss is not None else output
|
|
110
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
111
|
+
return output
|
|
112
|
+
|
|
113
|
+
# Return custom output class with token_accuracy field
|
|
114
|
+
return LigerCausalLMOutputWithPast(
|
|
115
|
+
loss=loss,
|
|
116
|
+
logits=logits,
|
|
117
|
+
past_key_values=outputs.past_key_values,
|
|
118
|
+
hidden_states=outputs.hidden_states,
|
|
119
|
+
attentions=outputs.attentions,
|
|
120
|
+
token_accuracy=token_accuracy,
|
|
121
|
+
)
|
|
@@ -11,6 +11,8 @@ from transformers.utils import is_torchdynamo_compiling
|
|
|
11
11
|
|
|
12
12
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
13
13
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
|
+
from liger_kernel.transformers.model.output_classes import LigerLlavaCausalLMOutputWithPast
|
|
14
16
|
|
|
15
17
|
|
|
16
18
|
def lce_forward_deprecated(
|
|
@@ -215,7 +217,7 @@ def lce_forward(
|
|
|
215
217
|
image_sizes: torch.Tensor = None,
|
|
216
218
|
skip_logits: Optional[bool] = None,
|
|
217
219
|
**lm_kwargs,
|
|
218
|
-
) -> Union[Tuple,
|
|
220
|
+
) -> Union[Tuple, LigerLlavaCausalLMOutputWithPast]:
|
|
219
221
|
r"""
|
|
220
222
|
Args:
|
|
221
223
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -293,6 +295,7 @@ def lce_forward(
|
|
|
293
295
|
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
294
296
|
logits = None
|
|
295
297
|
loss = None
|
|
298
|
+
token_accuracy = None
|
|
296
299
|
|
|
297
300
|
if skip_logits and labels is None and shift_labels is None:
|
|
298
301
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -302,7 +305,7 @@ def lce_forward(
|
|
|
302
305
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
303
306
|
|
|
304
307
|
if skip_logits:
|
|
305
|
-
|
|
308
|
+
result = LigerForCausalLMLoss(
|
|
306
309
|
hidden_states=kept_hidden_states,
|
|
307
310
|
lm_head_weight=self.lm_head.weight,
|
|
308
311
|
labels=labels,
|
|
@@ -310,23 +313,32 @@ def lce_forward(
|
|
|
310
313
|
hidden_size=self.config.text_config.hidden_size,
|
|
311
314
|
**lm_kwargs,
|
|
312
315
|
)
|
|
316
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
313
317
|
|
|
314
318
|
else:
|
|
315
319
|
logits = self.lm_head(kept_hidden_states)
|
|
316
|
-
if labels is not None:
|
|
320
|
+
if labels is not None or shift_labels is not None:
|
|
317
321
|
loss = self.loss_function(
|
|
318
|
-
logits=logits,
|
|
322
|
+
logits=logits,
|
|
323
|
+
labels=labels,
|
|
324
|
+
shift_labels=shift_labels,
|
|
325
|
+
vocab_size=self.config.text_config.vocab_size,
|
|
326
|
+
**lm_kwargs,
|
|
319
327
|
)
|
|
320
328
|
|
|
321
329
|
if not return_dict:
|
|
322
330
|
output = (logits,) + outputs[1:]
|
|
323
|
-
|
|
331
|
+
output = (loss,) + output if loss is not None else output
|
|
332
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
333
|
+
return output
|
|
324
334
|
|
|
325
|
-
|
|
335
|
+
# Return custom output class with token_accuracy field
|
|
336
|
+
return LigerLlavaCausalLMOutputWithPast(
|
|
326
337
|
loss=loss,
|
|
327
338
|
logits=logits,
|
|
328
339
|
past_key_values=outputs.past_key_values,
|
|
329
340
|
hidden_states=outputs.hidden_states,
|
|
330
341
|
attentions=outputs.attentions,
|
|
331
342
|
image_hidden_states=outputs.image_hidden_states,
|
|
343
|
+
token_accuracy=token_accuracy,
|
|
332
344
|
)
|
|
@@ -1,10 +1,28 @@
|
|
|
1
1
|
from typing import Optional
|
|
2
|
+
from typing import Tuple
|
|
2
3
|
|
|
3
4
|
import torch
|
|
4
5
|
import torch.nn as nn
|
|
5
6
|
|
|
6
7
|
import liger_kernel.transformers.functional as F
|
|
7
8
|
|
|
9
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def unpack_cross_entropy_result(
|
|
13
|
+
result,
|
|
14
|
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
|
|
15
|
+
if isinstance(result, CrossEntropyOutput):
|
|
16
|
+
return result.loss, result.z_loss, result.token_accuracy
|
|
17
|
+
|
|
18
|
+
if isinstance(result, tuple):
|
|
19
|
+
loss = result[0]
|
|
20
|
+
z_loss = result[1] if len(result) > 1 else None
|
|
21
|
+
token_accuracy = result[2] if len(result) > 2 else None
|
|
22
|
+
return loss, z_loss, token_accuracy
|
|
23
|
+
|
|
24
|
+
return result, None, None
|
|
25
|
+
|
|
8
26
|
|
|
9
27
|
def fixed_fused_linear_cross_entropy(
|
|
10
28
|
hidden_states: torch.Tensor,
|
|
@@ -13,20 +31,31 @@ def fixed_fused_linear_cross_entropy(
|
|
|
13
31
|
num_items_in_batch: Optional[int] = None,
|
|
14
32
|
ignore_index: int = -100,
|
|
15
33
|
final_logit_softcapping: Optional[float] = None,
|
|
34
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
35
|
+
return_token_accuracy: bool = False,
|
|
16
36
|
**kwargs,
|
|
17
37
|
):
|
|
18
38
|
reduction = "sum" if num_items_in_batch is not None else "mean"
|
|
19
|
-
|
|
39
|
+
result = F.liger_fused_linear_cross_entropy(
|
|
20
40
|
hidden_states,
|
|
21
41
|
lm_head_weight,
|
|
22
42
|
target,
|
|
23
43
|
reduction=reduction,
|
|
24
44
|
ignore_index=ignore_index,
|
|
25
45
|
softcap=final_logit_softcapping,
|
|
46
|
+
accum_dtype=accum_dtype,
|
|
47
|
+
return_token_accuracy=return_token_accuracy,
|
|
48
|
+
**kwargs,
|
|
26
49
|
)
|
|
50
|
+
|
|
51
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
52
|
+
|
|
27
53
|
if reduction == "sum":
|
|
28
54
|
loss = loss / num_items_in_batch
|
|
29
55
|
|
|
56
|
+
if return_token_accuracy:
|
|
57
|
+
return CrossEntropyOutput(loss=loss, token_accuracy=token_accuracy)
|
|
58
|
+
|
|
30
59
|
return loss
|
|
31
60
|
|
|
32
61
|
|
|
@@ -39,6 +68,7 @@ def LigerForCausalLMLoss(
|
|
|
39
68
|
ignore_index: int = -100,
|
|
40
69
|
shift_labels: Optional[torch.Tensor] = None,
|
|
41
70
|
final_logit_softcapping: Optional[float] = None,
|
|
71
|
+
return_token_accuracy: bool = False,
|
|
42
72
|
**kwargs,
|
|
43
73
|
):
|
|
44
74
|
# Skip upcast since intermediate values for the loss are all fp32 in kernel
|
|
@@ -52,13 +82,14 @@ def LigerForCausalLMLoss(
|
|
|
52
82
|
shift_labels = shift_labels.view(-1)
|
|
53
83
|
# Enable model parallelism
|
|
54
84
|
shift_labels = shift_labels.to(hidden_states.device)
|
|
55
|
-
|
|
85
|
+
result = fixed_fused_linear_cross_entropy(
|
|
56
86
|
hidden_states,
|
|
57
87
|
lm_head_weight,
|
|
58
88
|
shift_labels,
|
|
59
89
|
num_items_in_batch,
|
|
60
90
|
ignore_index,
|
|
61
91
|
final_logit_softcapping,
|
|
92
|
+
return_token_accuracy=return_token_accuracy,
|
|
62
93
|
**kwargs,
|
|
63
94
|
)
|
|
64
|
-
return
|
|
95
|
+
return result
|
|
@@ -6,10 +6,11 @@ from typing import Union
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
8
|
from transformers.cache_utils import Cache
|
|
9
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
10
9
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
11
10
|
|
|
12
11
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
13
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
14
|
|
|
14
15
|
|
|
15
16
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
@@ -29,7 +30,7 @@ def lce_forward(
|
|
|
29
30
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
30
31
|
skip_logits: Optional[bool] = None,
|
|
31
32
|
**kwargs,
|
|
32
|
-
) -> Union[Tuple,
|
|
33
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
33
34
|
r"""
|
|
34
35
|
Copy paste Mistral's forward but replace torch cross entropy with liger fused linear cross entropy
|
|
35
36
|
|
|
@@ -94,6 +95,7 @@ def lce_forward(
|
|
|
94
95
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
95
96
|
loss = None
|
|
96
97
|
logits = None
|
|
98
|
+
token_accuracy = None
|
|
97
99
|
|
|
98
100
|
if skip_logits and labels is None and shift_labels is None:
|
|
99
101
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -101,8 +103,9 @@ def lce_forward(
|
|
|
101
103
|
if skip_logits is None:
|
|
102
104
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
103
105
|
|
|
106
|
+
# Compute loss
|
|
104
107
|
if skip_logits:
|
|
105
|
-
|
|
108
|
+
result = LigerForCausalLMLoss(
|
|
106
109
|
hidden_states=kept_hidden_states,
|
|
107
110
|
lm_head_weight=self.lm_head.weight,
|
|
108
111
|
labels=labels,
|
|
@@ -110,29 +113,33 @@ def lce_forward(
|
|
|
110
113
|
hidden_size=self.config.hidden_size,
|
|
111
114
|
**kwargs,
|
|
112
115
|
)
|
|
116
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
113
117
|
|
|
114
118
|
else:
|
|
115
119
|
logits = self.lm_head(kept_hidden_states)
|
|
116
120
|
|
|
117
121
|
loss = None
|
|
118
|
-
if labels is not None:
|
|
122
|
+
if labels is not None or shift_labels is not None:
|
|
119
123
|
loss = self.loss_function(
|
|
120
124
|
logits=logits,
|
|
121
125
|
labels=labels,
|
|
126
|
+
shift_labels=shift_labels,
|
|
122
127
|
vocab_size=self.config.vocab_size,
|
|
123
128
|
**kwargs,
|
|
124
129
|
)
|
|
130
|
+
|
|
125
131
|
if not return_dict:
|
|
126
|
-
|
|
127
|
-
|
|
132
|
+
output_tuple = (logits,) + outputs[1:]
|
|
133
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
134
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
135
|
+
return output
|
|
128
136
|
|
|
129
|
-
|
|
137
|
+
# Return custom output class with token_accuracy field
|
|
138
|
+
return LigerCausalLMOutputWithPast(
|
|
130
139
|
loss=loss,
|
|
131
140
|
logits=logits,
|
|
132
141
|
past_key_values=outputs.past_key_values,
|
|
133
142
|
hidden_states=outputs.hidden_states,
|
|
134
143
|
attentions=outputs.attentions,
|
|
144
|
+
token_accuracy=token_accuracy,
|
|
135
145
|
)
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
# Note: Grad Acc is not fixed in mistral at transformer 4.46.1
|