liger-kernel-nightly 0.5.10.dev20250624183504__py3-none-any.whl → 0.6.4.dev20251121224847__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
- liger_kernel/chunked_loss/grpo_loss.py +46 -9
- liger_kernel/chunked_loss/jsd_loss.py +23 -7
- liger_kernel/ops/cross_entropy.py +118 -62
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +113 -21
- liger_kernel/ops/geglu.py +1 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +133 -79
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/ops/rms_norm.py +2 -2
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/transformers/__init__.py +59 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +38 -6
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -4
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +28 -8
- liger_kernel/transformers/model/gemma2.py +31 -8
- liger_kernel/transformers/model/gemma3.py +100 -110
- liger_kernel/transformers/model/glm4.py +18 -5
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +26 -7
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +18 -6
- liger_kernel/transformers/model/loss_utils.py +34 -3
- liger_kernel/transformers/model/mistral.py +17 -10
- liger_kernel/transformers/model/mixtral.py +24 -9
- liger_kernel/transformers/model/mllama.py +18 -7
- liger_kernel/transformers/model/olmo2.py +18 -5
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +41 -5
- liger_kernel/transformers/model/phi3.py +24 -159
- liger_kernel/transformers/model/qwen2.py +26 -4
- liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
- liger_kernel/transformers/model/qwen2_vl.py +24 -7
- liger_kernel/transformers/model/qwen3.py +22 -6
- liger_kernel/transformers/model/qwen3_moe.py +27 -7
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1278 -116
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/METADATA +29 -24
- liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/RECORD +118 -0
- liger_kernel_nightly-0.5.10.dev20250624183504.dist-info/RECORD +0 -95
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,199 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import List
|
|
3
|
+
from typing import Optional
|
|
4
|
+
from typing import Tuple
|
|
5
|
+
from typing import Union
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
|
10
|
+
from transformers.utils.deprecation import deprecate_kwarg
|
|
11
|
+
|
|
12
|
+
from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
|
|
13
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
16
|
+
from liger_kernel.utils import PEFT_AVAILABLE
|
|
17
|
+
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from transformers.cache_utils import Cache
|
|
20
|
+
|
|
21
|
+
if PEFT_AVAILABLE:
|
|
22
|
+
from peft.utils.other import ModulesToSaveWrapper
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
26
|
+
def lce_forward(
|
|
27
|
+
self,
|
|
28
|
+
input_ids: torch.LongTensor = None,
|
|
29
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
30
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
31
|
+
past_key_values: Optional[Union["Cache", List[torch.FloatTensor]]] = None,
|
|
32
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
33
|
+
labels: Optional[torch.LongTensor] = None,
|
|
34
|
+
use_cache: Optional[bool] = None,
|
|
35
|
+
output_attentions: Optional[bool] = None,
|
|
36
|
+
output_hidden_states: Optional[bool] = None,
|
|
37
|
+
return_dict: Optional[bool] = None,
|
|
38
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
39
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
40
|
+
skip_logits: Optional[bool] = None,
|
|
41
|
+
**kwargs,
|
|
42
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
43
|
+
r"""
|
|
44
|
+
Args:
|
|
45
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
46
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
47
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
48
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
49
|
+
|
|
50
|
+
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
51
|
+
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
52
|
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
53
|
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
54
|
+
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
55
|
+
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
56
|
+
|
|
57
|
+
Returns:
|
|
58
|
+
|
|
59
|
+
Example:
|
|
60
|
+
|
|
61
|
+
```python
|
|
62
|
+
>>> from transformers import AutoTokenizer, Smollm3ForCausalLM
|
|
63
|
+
|
|
64
|
+
>>> model = Smollm3ForCausalLM.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
|
65
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM3-3B")
|
|
66
|
+
|
|
67
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
68
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
69
|
+
|
|
70
|
+
>>> # Generate
|
|
71
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
72
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
73
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
74
|
+
```"""
|
|
75
|
+
|
|
76
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
77
|
+
output_hidden_states = (
|
|
78
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
79
|
+
)
|
|
80
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
81
|
+
|
|
82
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
83
|
+
outputs = self.model(
|
|
84
|
+
input_ids=input_ids,
|
|
85
|
+
attention_mask=attention_mask,
|
|
86
|
+
position_ids=position_ids,
|
|
87
|
+
past_key_values=past_key_values,
|
|
88
|
+
inputs_embeds=inputs_embeds,
|
|
89
|
+
use_cache=use_cache,
|
|
90
|
+
output_attentions=output_attentions,
|
|
91
|
+
output_hidden_states=output_hidden_states,
|
|
92
|
+
return_dict=return_dict,
|
|
93
|
+
cache_position=cache_position,
|
|
94
|
+
**kwargs,
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
hidden_states = outputs[0]
|
|
98
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
99
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
100
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
101
|
+
|
|
102
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
103
|
+
logits = None
|
|
104
|
+
loss = None
|
|
105
|
+
token_accuracy = None
|
|
106
|
+
|
|
107
|
+
# if in training mode, don't materialize logits
|
|
108
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
109
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
110
|
+
|
|
111
|
+
if skip_logits is None:
|
|
112
|
+
# By default, if in training mode, don't materialize logits
|
|
113
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
114
|
+
|
|
115
|
+
# Compute loss
|
|
116
|
+
if skip_logits:
|
|
117
|
+
result = lce_maybe_trainable_lm_head(
|
|
118
|
+
self,
|
|
119
|
+
hidden_states=kept_hidden_states,
|
|
120
|
+
hidden_size=self.config.hidden_size,
|
|
121
|
+
labels=labels,
|
|
122
|
+
shift_labels=shift_labels,
|
|
123
|
+
**kwargs,
|
|
124
|
+
)
|
|
125
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
126
|
+
|
|
127
|
+
else:
|
|
128
|
+
logits = self.lm_head(kept_hidden_states)
|
|
129
|
+
if labels is not None or shift_labels is not None:
|
|
130
|
+
loss = self.loss_function(
|
|
131
|
+
logits=logits,
|
|
132
|
+
labels=labels,
|
|
133
|
+
shift_labels=shift_labels,
|
|
134
|
+
vocab_size=self.config.vocab_size,
|
|
135
|
+
**kwargs,
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
if not return_dict:
|
|
139
|
+
output_tuple = (logits,) + outputs[1:]
|
|
140
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
141
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
142
|
+
return output
|
|
143
|
+
|
|
144
|
+
# Return custom output class with token_accuracy field
|
|
145
|
+
return LigerCausalLMOutputWithPast(
|
|
146
|
+
loss=loss,
|
|
147
|
+
logits=logits,
|
|
148
|
+
past_key_values=outputs.past_key_values,
|
|
149
|
+
hidden_states=outputs.hidden_states,
|
|
150
|
+
attentions=outputs.attentions,
|
|
151
|
+
token_accuracy=token_accuracy,
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
|
156
|
+
lm_head = self.lm_head
|
|
157
|
+
|
|
158
|
+
# Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
|
|
159
|
+
# i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
|
|
160
|
+
# from the unwrapped module.
|
|
161
|
+
# See https://huggingface.co/docs/peft/package_reference/lora for reference.
|
|
162
|
+
if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
|
|
163
|
+
lm_head = lm_head.modules_to_save.default
|
|
164
|
+
|
|
165
|
+
# If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
|
|
166
|
+
# reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
|
|
167
|
+
# so the module entire parameters are summoned and kept in memory during the kernel execution.
|
|
168
|
+
if isinstance(lm_head, FullyShardedDataParallel):
|
|
169
|
+
return _FSDPForwardRedirection()(
|
|
170
|
+
lm_head,
|
|
171
|
+
_liger_for_causal_lm_loss,
|
|
172
|
+
lm_head.module,
|
|
173
|
+
hidden_states,
|
|
174
|
+
hidden_size,
|
|
175
|
+
labels,
|
|
176
|
+
shift_labels,
|
|
177
|
+
**loss_kwargs,
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
# FSDP is not used so we can read the lm_head weights and call the kernel directly
|
|
181
|
+
return _liger_for_causal_lm_loss(
|
|
182
|
+
lm_head=self.lm_head,
|
|
183
|
+
hidden_states=hidden_states,
|
|
184
|
+
hidden_size=hidden_size,
|
|
185
|
+
labels=labels,
|
|
186
|
+
shift_labels=shift_labels,
|
|
187
|
+
**loss_kwargs,
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
|
192
|
+
return LigerForCausalLMLoss(
|
|
193
|
+
hidden_states=hidden_states,
|
|
194
|
+
lm_head_weight=lm_head.weight,
|
|
195
|
+
labels=labels,
|
|
196
|
+
hidden_size=hidden_size,
|
|
197
|
+
shift_labels=shift_labels,
|
|
198
|
+
**loss_kwargs,
|
|
199
|
+
)
|
|
@@ -0,0 +1,158 @@
|
|
|
1
|
+
from typing import TYPE_CHECKING
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Union
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
|
|
7
|
+
from transformers.models.smolvlm.modeling_smolvlm import SmolVLMCausalLMOutputWithPast
|
|
8
|
+
from transformers.processing_utils import Unpack
|
|
9
|
+
from transformers.utils.generic import can_return_tuple
|
|
10
|
+
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
12
|
+
|
|
13
|
+
if TYPE_CHECKING:
|
|
14
|
+
from transformers.cache_utils import Cache
|
|
15
|
+
from transformers.utils.generic import TransformersKwargs
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
# Forward adapted to enable fused Linear + CE without materializing logits.
|
|
19
|
+
# Mirrors the pattern used for other multimodal models (e.g., InternVL, LLaVA).
|
|
20
|
+
@can_return_tuple
|
|
21
|
+
def lce_forward(
|
|
22
|
+
self,
|
|
23
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
24
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
25
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
26
|
+
past_key_values: Optional["Cache"] = None,
|
|
27
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
28
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
29
|
+
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
|
30
|
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
|
31
|
+
labels: Optional[torch.LongTensor] = None,
|
|
32
|
+
use_cache: Optional[bool] = None,
|
|
33
|
+
output_attentions: Optional[bool] = None,
|
|
34
|
+
output_hidden_states: Optional[bool] = None,
|
|
35
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
36
|
+
return_dict: Optional[bool] = None,
|
|
37
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
38
|
+
skip_logits: Optional[bool] = None, # Added argument for liger-kernel
|
|
39
|
+
**lm_kwargs: Unpack["TransformersKwargs"], # renamed from kwargs
|
|
40
|
+
) -> Union[tuple, SmolVLMCausalLMOutputWithPast]:
|
|
41
|
+
r"""
|
|
42
|
+
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
|
|
43
|
+
Mask to avoid performing attention on padding pixel indices.
|
|
44
|
+
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
45
|
+
The hidden states of the image encoder after modality projection.
|
|
46
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
47
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
48
|
+
config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are
|
|
49
|
+
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
50
|
+
|
|
51
|
+
Example:
|
|
52
|
+
|
|
53
|
+
```python
|
|
54
|
+
>>> import requests
|
|
55
|
+
>>> import torch
|
|
56
|
+
>>> from PIL import Image
|
|
57
|
+
>>> from io import BytesIO
|
|
58
|
+
|
|
59
|
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
60
|
+
>>> from transformers.image_utils import load_image
|
|
61
|
+
|
|
62
|
+
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible
|
|
63
|
+
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
|
|
64
|
+
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg")
|
|
65
|
+
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg")
|
|
66
|
+
|
|
67
|
+
>>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
|
68
|
+
>>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", dtype=torch.bfloat16, device_map="auto")
|
|
69
|
+
|
|
70
|
+
>>> # Create inputs
|
|
71
|
+
>>> messages = [
|
|
72
|
+
... {
|
|
73
|
+
... "role": "user",
|
|
74
|
+
... "content": [
|
|
75
|
+
... {"type": "video", "path": path/to/video},
|
|
76
|
+
... {"type": "text", "text": "What is happening in this video?"},
|
|
77
|
+
... ]
|
|
78
|
+
... }
|
|
79
|
+
... ]
|
|
80
|
+
|
|
81
|
+
>>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True)
|
|
82
|
+
|
|
83
|
+
>>> # Generate
|
|
84
|
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=256)
|
|
85
|
+
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
86
|
+
|
|
87
|
+
>>> print(generated_texts)
|
|
88
|
+
```"""
|
|
89
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
90
|
+
output_hidden_states = (
|
|
91
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
92
|
+
)
|
|
93
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
94
|
+
|
|
95
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
96
|
+
outputs = self.model(
|
|
97
|
+
input_ids=input_ids,
|
|
98
|
+
attention_mask=attention_mask,
|
|
99
|
+
position_ids=position_ids,
|
|
100
|
+
past_key_values=past_key_values,
|
|
101
|
+
inputs_embeds=inputs_embeds,
|
|
102
|
+
pixel_values=pixel_values,
|
|
103
|
+
pixel_attention_mask=pixel_attention_mask,
|
|
104
|
+
image_hidden_states=image_hidden_states,
|
|
105
|
+
use_cache=use_cache,
|
|
106
|
+
output_attentions=output_attentions,
|
|
107
|
+
output_hidden_states=output_hidden_states,
|
|
108
|
+
cache_position=cache_position,
|
|
109
|
+
return_dict=True,
|
|
110
|
+
**lm_kwargs,
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
# Copied from llava.py
|
|
114
|
+
hidden_states = outputs[0]
|
|
115
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
116
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
117
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
118
|
+
|
|
119
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
120
|
+
logits = None
|
|
121
|
+
loss = None
|
|
122
|
+
|
|
123
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
124
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
125
|
+
|
|
126
|
+
if skip_logits is None:
|
|
127
|
+
# By default, if in training mode, don't materialize logits
|
|
128
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
129
|
+
|
|
130
|
+
if skip_logits:
|
|
131
|
+
loss = LigerForCausalLMLoss(
|
|
132
|
+
hidden_states=kept_hidden_states,
|
|
133
|
+
lm_head_weight=self.lm_head.weight,
|
|
134
|
+
labels=labels,
|
|
135
|
+
shift_labels=shift_labels,
|
|
136
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
137
|
+
**lm_kwargs,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
else:
|
|
141
|
+
logits = self.lm_head(kept_hidden_states)
|
|
142
|
+
if labels is not None or shift_labels is not None:
|
|
143
|
+
loss = self.loss_function(
|
|
144
|
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
if not return_dict:
|
|
148
|
+
output = (logits,) + outputs[1:]
|
|
149
|
+
return (loss,) + output if loss is not None else output
|
|
150
|
+
|
|
151
|
+
return SmolVLMCausalLMOutputWithPast(
|
|
152
|
+
loss=loss,
|
|
153
|
+
logits=logits,
|
|
154
|
+
past_key_values=outputs.past_key_values,
|
|
155
|
+
hidden_states=outputs.hidden_states,
|
|
156
|
+
attentions=outputs.attentions,
|
|
157
|
+
image_hidden_states=outputs.image_hidden_states,
|
|
158
|
+
)
|