liger-kernel-nightly 0.5.10.dev20250624183504__py3-none-any.whl → 0.6.4.dev20251121224847__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
- liger_kernel/chunked_loss/grpo_loss.py +46 -9
- liger_kernel/chunked_loss/jsd_loss.py +23 -7
- liger_kernel/ops/cross_entropy.py +118 -62
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +113 -21
- liger_kernel/ops/geglu.py +1 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +133 -79
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/ops/rms_norm.py +2 -2
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/transformers/__init__.py +59 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +38 -6
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -4
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +28 -8
- liger_kernel/transformers/model/gemma2.py +31 -8
- liger_kernel/transformers/model/gemma3.py +100 -110
- liger_kernel/transformers/model/glm4.py +18 -5
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +26 -7
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +18 -6
- liger_kernel/transformers/model/loss_utils.py +34 -3
- liger_kernel/transformers/model/mistral.py +17 -10
- liger_kernel/transformers/model/mixtral.py +24 -9
- liger_kernel/transformers/model/mllama.py +18 -7
- liger_kernel/transformers/model/olmo2.py +18 -5
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +41 -5
- liger_kernel/transformers/model/phi3.py +24 -159
- liger_kernel/transformers/model/qwen2.py +26 -4
- liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
- liger_kernel/transformers/model/qwen2_vl.py +24 -7
- liger_kernel/transformers/model/qwen3.py +22 -6
- liger_kernel/transformers/model/qwen3_moe.py +27 -7
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1278 -116
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/METADATA +29 -24
- liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/RECORD +118 -0
- liger_kernel_nightly-0.5.10.dev20250624183504.dist-info/RECORD +0 -95
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/top_level.txt +0 -0
|
@@ -5,17 +5,27 @@ from typing import TYPE_CHECKING
|
|
|
5
5
|
# Always-safe imports (independent of 'transformers')
|
|
6
6
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
|
|
7
7
|
from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
|
|
8
|
+
from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
|
|
8
9
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
|
|
9
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
10
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
11
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
13
|
+
from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
|
|
12
14
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
13
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
14
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
21
|
+
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
22
|
+
from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
|
|
15
23
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
16
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
17
25
|
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
18
26
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
19
29
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
20
30
|
|
|
21
31
|
# Static-only imports for IDEs and type checkers
|
|
@@ -23,18 +33,26 @@ if TYPE_CHECKING:
|
|
|
23
33
|
from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
|
|
24
34
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
25
35
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
36
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
|
|
26
37
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
27
38
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
28
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
29
40
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
30
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
42
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
43
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
31
44
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
32
48
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
49
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
33
50
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
34
51
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
35
52
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
36
53
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
37
54
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
55
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
38
56
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
39
57
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
40
58
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
@@ -42,6 +60,11 @@ if TYPE_CHECKING:
|
|
|
42
60
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
43
61
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
44
62
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
63
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
64
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
65
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
66
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
67
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
45
68
|
|
|
46
69
|
|
|
47
70
|
# Check if 'transformers' is installed
|
|
@@ -79,18 +102,24 @@ def __getattr__(name: str):
|
|
|
79
102
|
monkey_patch_symbols = {
|
|
80
103
|
"_apply_liger_kernel",
|
|
81
104
|
"_apply_liger_kernel_to_instance",
|
|
105
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
82
106
|
"apply_liger_kernel_to_gemma",
|
|
83
107
|
"apply_liger_kernel_to_gemma2",
|
|
84
108
|
"apply_liger_kernel_to_gemma3",
|
|
85
109
|
"apply_liger_kernel_to_gemma3_text",
|
|
86
110
|
"apply_liger_kernel_to_glm4",
|
|
111
|
+
"apply_liger_kernel_to_glm4v",
|
|
112
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
87
113
|
"apply_liger_kernel_to_granite",
|
|
114
|
+
"apply_liger_kernel_to_internvl",
|
|
88
115
|
"apply_liger_kernel_to_llama",
|
|
89
116
|
"apply_liger_kernel_to_llava",
|
|
117
|
+
"apply_liger_kernel_to_llama4",
|
|
90
118
|
"apply_liger_kernel_to_mistral",
|
|
91
119
|
"apply_liger_kernel_to_mixtral",
|
|
92
120
|
"apply_liger_kernel_to_mllama",
|
|
93
121
|
"apply_liger_kernel_to_olmo2",
|
|
122
|
+
"apply_liger_kernel_to_olmo3",
|
|
94
123
|
"apply_liger_kernel_to_paligemma",
|
|
95
124
|
"apply_liger_kernel_to_phi3",
|
|
96
125
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -98,6 +127,13 @@ def __getattr__(name: str):
|
|
|
98
127
|
"apply_liger_kernel_to_qwen2_vl",
|
|
99
128
|
"apply_liger_kernel_to_qwen3",
|
|
100
129
|
"apply_liger_kernel_to_qwen3_moe",
|
|
130
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
131
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
132
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
133
|
+
"apply_liger_kernel_to_smollm3",
|
|
134
|
+
"apply_liger_kernel_to_smolvlm",
|
|
135
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
136
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
101
137
|
}
|
|
102
138
|
|
|
103
139
|
if name in monkey_patch_symbols:
|
|
@@ -117,13 +153,23 @@ __all__ = [
|
|
|
117
153
|
"LigerGEGLUMLP",
|
|
118
154
|
"LigerJSD",
|
|
119
155
|
"LigerLayerNorm",
|
|
156
|
+
"LigerFusedAddRMSNorm",
|
|
157
|
+
"LigerPolyNorm",
|
|
120
158
|
"LigerRMSNorm",
|
|
121
159
|
"liger_rotary_pos_emb",
|
|
160
|
+
"liger_llama4_text_rotary_pos_emb",
|
|
161
|
+
"liger_llama4_vision_rotary_pos_emb",
|
|
122
162
|
"LigerBlockSparseTop2MLP",
|
|
123
163
|
"LigerPhi3SwiGLUMLP",
|
|
124
164
|
"LigerQwen3MoeSwiGLUMLP",
|
|
125
165
|
"LigerSwiGLUMLP",
|
|
166
|
+
"LigerTiledGEGLUMLP",
|
|
167
|
+
"LigerTiledSwiGLUMLP",
|
|
126
168
|
"LigerTVDLoss",
|
|
169
|
+
"LigerKLDIVLoss",
|
|
170
|
+
"LigerMultiTokenAttention",
|
|
171
|
+
"LigerSoftmax",
|
|
172
|
+
"LigerSparsemax",
|
|
127
173
|
]
|
|
128
174
|
|
|
129
175
|
# Add transformer-dependent symbols only if available
|
|
@@ -133,18 +179,24 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
133
179
|
"AutoLigerKernelForCausalLM",
|
|
134
180
|
"_apply_liger_kernel",
|
|
135
181
|
"_apply_liger_kernel_to_instance",
|
|
182
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
136
183
|
"apply_liger_kernel_to_gemma",
|
|
137
184
|
"apply_liger_kernel_to_gemma2",
|
|
138
185
|
"apply_liger_kernel_to_gemma3",
|
|
139
186
|
"apply_liger_kernel_to_gemma3_text",
|
|
140
187
|
"apply_liger_kernel_to_glm4",
|
|
188
|
+
"apply_liger_kernel_to_glm4v",
|
|
189
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
141
190
|
"apply_liger_kernel_to_granite",
|
|
191
|
+
"apply_liger_kernel_to_internvl",
|
|
142
192
|
"apply_liger_kernel_to_llama",
|
|
143
193
|
"apply_liger_kernel_to_llava",
|
|
194
|
+
"apply_liger_kernel_to_llama4",
|
|
144
195
|
"apply_liger_kernel_to_mistral",
|
|
145
196
|
"apply_liger_kernel_to_mixtral",
|
|
146
197
|
"apply_liger_kernel_to_mllama",
|
|
147
198
|
"apply_liger_kernel_to_olmo2",
|
|
199
|
+
"apply_liger_kernel_to_olmo3",
|
|
148
200
|
"apply_liger_kernel_to_paligemma",
|
|
149
201
|
"apply_liger_kernel_to_phi3",
|
|
150
202
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -152,5 +204,12 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
152
204
|
"apply_liger_kernel_to_qwen2_vl",
|
|
153
205
|
"apply_liger_kernel_to_qwen3",
|
|
154
206
|
"apply_liger_kernel_to_qwen3_moe",
|
|
207
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
208
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
209
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
210
|
+
"apply_liger_kernel_to_smollm3",
|
|
211
|
+
"apply_liger_kernel_to_smolvlm",
|
|
212
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
213
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
155
214
|
]
|
|
156
215
|
)
|
|
@@ -3,6 +3,7 @@ from typing import Optional
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
5
|
from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
return_token_accuracy: bool = False,
|
|
18
20
|
):
|
|
19
21
|
super().__init__()
|
|
20
22
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
33
35
|
self.reduction = reduction
|
|
34
36
|
self.softcap = softcap
|
|
35
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.return_token_accuracy = return_token_accuracy
|
|
36
39
|
|
|
37
40
|
def forward(self, _input: torch.Tensor, target: torch.Tensor):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
41
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
42
|
_input,
|
|
40
43
|
target,
|
|
41
44
|
self.weight,
|
|
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
45
48
|
self.reduction,
|
|
46
49
|
self.softcap,
|
|
47
50
|
self.return_z_loss,
|
|
51
|
+
self.return_token_accuracy,
|
|
48
52
|
)
|
|
49
|
-
if not self.return_z_loss:
|
|
53
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
50
54
|
return loss
|
|
51
|
-
|
|
55
|
+
|
|
56
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -1,7 +1,11 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
1
2
|
from typing import Optional
|
|
2
3
|
|
|
4
|
+
import torch
|
|
5
|
+
|
|
3
6
|
from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
|
|
4
7
|
from liger_kernel.ops.dyt import LigerDyTFunction
|
|
8
|
+
from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
|
|
5
9
|
from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
|
|
6
10
|
from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
|
|
7
11
|
from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
|
|
@@ -11,6 +15,7 @@ from liger_kernel.ops.jsd import LigerJSDFunction
|
|
|
11
15
|
from liger_kernel.ops.kl_div import LigerKLDivLossFunction
|
|
12
16
|
from liger_kernel.ops.layer_norm import LigerLayerNormFunction
|
|
13
17
|
from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
|
|
18
|
+
from liger_kernel.ops.poly_norm import LigerPolyNormFunction
|
|
14
19
|
from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
|
|
15
20
|
from liger_kernel.ops.rms_norm import LigerRMSNormFunction
|
|
16
21
|
from liger_kernel.ops.rope import LigerRopeFunction
|
|
@@ -20,6 +25,13 @@ from liger_kernel.ops.swiglu import LigerSiLUMulFunction
|
|
|
20
25
|
from liger_kernel.ops.tvd import LigerTVDLossFunction
|
|
21
26
|
|
|
22
27
|
|
|
28
|
+
@dataclass
|
|
29
|
+
class CrossEntropyOutput:
|
|
30
|
+
loss: torch.Tensor
|
|
31
|
+
z_loss: Optional[torch.Tensor] = None
|
|
32
|
+
token_accuracy: Optional[torch.Tensor] = None
|
|
33
|
+
|
|
34
|
+
|
|
23
35
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
24
36
|
# `weight` and `size_average` are placeholders and not implemented yet
|
|
25
37
|
def liger_cross_entropy(
|
|
@@ -34,8 +46,9 @@ def liger_cross_entropy(
|
|
|
34
46
|
lse_square_scale: float = 0.0,
|
|
35
47
|
softcap: Optional[float] = None,
|
|
36
48
|
return_z_loss: bool = False,
|
|
49
|
+
return_token_accuracy: bool = False,
|
|
37
50
|
):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
51
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
52
|
input,
|
|
40
53
|
target,
|
|
41
54
|
weight,
|
|
@@ -45,10 +58,13 @@ def liger_cross_entropy(
|
|
|
45
58
|
reduction,
|
|
46
59
|
softcap,
|
|
47
60
|
return_z_loss,
|
|
61
|
+
return_token_accuracy,
|
|
48
62
|
)
|
|
49
|
-
|
|
63
|
+
|
|
64
|
+
if not return_z_loss and not return_token_accuracy:
|
|
50
65
|
return loss
|
|
51
|
-
|
|
66
|
+
|
|
67
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
52
68
|
|
|
53
69
|
|
|
54
70
|
def liger_fused_linear_cross_entropy(
|
|
@@ -63,8 +79,11 @@ def liger_fused_linear_cross_entropy(
|
|
|
63
79
|
reduction: str = "mean",
|
|
64
80
|
softcap: Optional[float] = None,
|
|
65
81
|
return_z_loss: bool = False,
|
|
82
|
+
accum_dtype=None,
|
|
83
|
+
use_token_scaling: bool = False,
|
|
84
|
+
return_token_accuracy: bool = False,
|
|
66
85
|
):
|
|
67
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
86
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
68
87
|
input,
|
|
69
88
|
weight,
|
|
70
89
|
target,
|
|
@@ -76,10 +95,15 @@ def liger_fused_linear_cross_entropy(
|
|
|
76
95
|
reduction,
|
|
77
96
|
softcap,
|
|
78
97
|
return_z_loss,
|
|
98
|
+
accum_dtype,
|
|
99
|
+
use_token_scaling,
|
|
100
|
+
return_token_accuracy,
|
|
79
101
|
)
|
|
80
|
-
|
|
102
|
+
|
|
103
|
+
if not return_z_loss and not return_token_accuracy:
|
|
81
104
|
return loss
|
|
82
|
-
|
|
105
|
+
|
|
106
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
83
107
|
|
|
84
108
|
|
|
85
109
|
def liger_fused_linear_jsd(
|
|
@@ -253,6 +277,14 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
253
277
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
254
278
|
|
|
255
279
|
|
|
280
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
281
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
285
|
+
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
286
|
+
|
|
287
|
+
|
|
256
288
|
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
257
289
|
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
|
258
290
|
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerFusedAddRMSNorm(nn.Module):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
hidden_size,
|
|
11
|
+
eps=1e-6,
|
|
12
|
+
offset=0.0,
|
|
13
|
+
casting_mode="llama",
|
|
14
|
+
init_fn="ones",
|
|
15
|
+
in_place=False,
|
|
16
|
+
):
|
|
17
|
+
super().__init__()
|
|
18
|
+
assert init_fn in [
|
|
19
|
+
"ones",
|
|
20
|
+
"zeros",
|
|
21
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
22
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
|
23
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
|
|
24
|
+
|
|
25
|
+
def forward(self, hidden_states, residual):
|
|
26
|
+
return LigerFusedAddRMSNormFunction.apply(
|
|
27
|
+
hidden_states,
|
|
28
|
+
residual,
|
|
29
|
+
self.weight,
|
|
30
|
+
self.variance_epsilon,
|
|
31
|
+
self.offset,
|
|
32
|
+
self.casting_mode,
|
|
33
|
+
self.in_place,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
def extra_repr(self):
|
|
37
|
+
return (
|
|
38
|
+
f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
|
39
|
+
)
|
|
@@ -3,6 +3,7 @@ from typing import Optional
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
5
|
from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
20
|
+
use_token_scaling: bool = False,
|
|
21
|
+
return_token_accuracy: bool = False,
|
|
18
22
|
):
|
|
19
23
|
super().__init__()
|
|
20
24
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -23,7 +27,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
23
27
|
assert reduction in {
|
|
24
28
|
"mean",
|
|
25
29
|
"sum",
|
|
26
|
-
|
|
30
|
+
"none",
|
|
31
|
+
}, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
|
|
27
32
|
assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
|
|
28
33
|
self.ce_weight = ce_weight
|
|
29
34
|
self.ignore_index = ignore_index
|
|
@@ -32,9 +37,12 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
32
37
|
self.reduction = reduction
|
|
33
38
|
self.softcap = softcap
|
|
34
39
|
self.return_z_loss = return_z_loss
|
|
40
|
+
self.accum_dtype = accum_dtype
|
|
41
|
+
self.use_token_scaling = use_token_scaling
|
|
42
|
+
self.return_token_accuracy = return_token_accuracy
|
|
35
43
|
|
|
36
44
|
def forward(self, lin_weight, _input, target, bias=None):
|
|
37
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
45
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
38
46
|
_input,
|
|
39
47
|
lin_weight,
|
|
40
48
|
target,
|
|
@@ -46,7 +54,11 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
46
54
|
self.reduction,
|
|
47
55
|
self.softcap,
|
|
48
56
|
self.return_z_loss,
|
|
57
|
+
self.accum_dtype,
|
|
58
|
+
self.use_token_scaling,
|
|
59
|
+
self.return_token_accuracy,
|
|
49
60
|
)
|
|
50
|
-
if not self.return_z_loss:
|
|
61
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
51
62
|
return loss
|
|
52
|
-
|
|
63
|
+
|
|
64
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -1,3 +1,6 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
|
|
1
4
|
from liger_kernel.ops.grpo_loss import GrpoLossFunction
|
|
2
5
|
|
|
3
6
|
|
|
@@ -13,12 +16,20 @@ def triton_grpo_loss(
|
|
|
13
16
|
eps_low=0.2,
|
|
14
17
|
eps_high=0.4,
|
|
15
18
|
inplace=True,
|
|
19
|
+
loss_type="dapo",
|
|
20
|
+
max_completion_length=None,
|
|
21
|
+
importance_sampling_level="token",
|
|
22
|
+
reduce=False,
|
|
16
23
|
):
|
|
17
24
|
assert logits is not None and completion_ids is not None and advantages is not None, (
|
|
18
25
|
"must provide logits、completion_ids and advantages"
|
|
19
26
|
)
|
|
27
|
+
if importance_sampling_level != "token":
|
|
28
|
+
raise ValueError(
|
|
29
|
+
f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
|
|
30
|
+
)
|
|
20
31
|
|
|
21
|
-
|
|
32
|
+
per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
|
|
22
33
|
logits,
|
|
23
34
|
old_logp,
|
|
24
35
|
ref_logp,
|
|
@@ -31,6 +42,50 @@ def triton_grpo_loss(
|
|
|
31
42
|
eps_high,
|
|
32
43
|
inplace,
|
|
33
44
|
)
|
|
45
|
+
if not reduce:
|
|
46
|
+
return per_token_loss, per_token_kl, is_clipped
|
|
47
|
+
|
|
48
|
+
loss = _reduce_grpo_loss(
|
|
49
|
+
per_token_loss,
|
|
50
|
+
completion_mask,
|
|
51
|
+
loss_type=loss_type,
|
|
52
|
+
max_completion_length=max_completion_length,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
metrics = []
|
|
56
|
+
if beta != 0.0 and per_token_kl is not None:
|
|
57
|
+
metrics.append(_masked_mean(per_token_kl, completion_mask))
|
|
58
|
+
metrics.append(_masked_mean(is_clipped.float(), completion_mask))
|
|
59
|
+
return loss, metrics
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
|
|
63
|
+
mask = completion_mask
|
|
64
|
+
if mask is None:
|
|
65
|
+
mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
|
|
66
|
+
mask = mask.to(per_token_loss.dtype)
|
|
67
|
+
|
|
68
|
+
if loss_type == "grpo":
|
|
69
|
+
per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
70
|
+
return per_seq.mean()
|
|
71
|
+
if loss_type == "bnpo":
|
|
72
|
+
return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
|
|
73
|
+
if loss_type == "dr_grpo":
|
|
74
|
+
if max_completion_length is None:
|
|
75
|
+
raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
|
|
76
|
+
batch = per_token_loss.shape[0]
|
|
77
|
+
return (per_token_loss * mask).sum() / (batch * max_completion_length)
|
|
78
|
+
if loss_type == "dapo":
|
|
79
|
+
normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
|
|
80
|
+
return (per_token_loss * mask).sum() / normalizer
|
|
81
|
+
raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def _masked_mean(values, mask):
|
|
85
|
+
if mask is None:
|
|
86
|
+
mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
|
|
87
|
+
mask = mask.to(values.dtype)
|
|
88
|
+
return (values * mask).sum() / mask.sum().clamp(min=1.0)
|
|
34
89
|
|
|
35
90
|
|
|
36
91
|
# This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
|
|
@@ -0,0 +1,93 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
|
|
3
|
+
Supports both text and vision RoPE variants with fused operations for optimal performance.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops.llama4_rope import LigerLlama4RopeFunction
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def liger_llama4_text_rotary_pos_emb(
|
|
12
|
+
xq: torch.Tensor,
|
|
13
|
+
xk: torch.Tensor,
|
|
14
|
+
freqs_cis: torch.Tensor,
|
|
15
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
16
|
+
"""
|
|
17
|
+
Liger-optimized implementation of Llama4 text rotary position embedding.
|
|
18
|
+
|
|
19
|
+
This implementation uses a fused Triton kernel for complex multiplication,
|
|
20
|
+
providing significant performance improvements over the original PyTorch implementation.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
24
|
+
xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
25
|
+
freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
|
|
26
|
+
|
|
27
|
+
Returns:
|
|
28
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
29
|
+
"""
|
|
30
|
+
# Use fused Triton kernel for complex RoPE
|
|
31
|
+
return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def liger_llama4_vision_rotary_pos_emb(
|
|
35
|
+
query: torch.Tensor,
|
|
36
|
+
key: torch.Tensor,
|
|
37
|
+
freqs_ci: torch.Tensor,
|
|
38
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
39
|
+
"""
|
|
40
|
+
Liger-optimized implementation of Llama4 vision rotary position embedding.
|
|
41
|
+
|
|
42
|
+
This implementation uses the same fused Triton kernel as text RoPE,
|
|
43
|
+
providing performance improvements for vision transformer attention.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
47
|
+
key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
|
|
48
|
+
freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
|
|
49
|
+
|
|
50
|
+
Returns:
|
|
51
|
+
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
|
|
52
|
+
"""
|
|
53
|
+
# Handle broadcasting for vision RoPE
|
|
54
|
+
if freqs_ci.dim() == 3:
|
|
55
|
+
try:
|
|
56
|
+
# Try the regular 3D expansion
|
|
57
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
58
|
+
except RuntimeError as e:
|
|
59
|
+
if "expand" in str(e) and "4" in str(e):
|
|
60
|
+
# The tensor is actually 4D internally, handle it differently
|
|
61
|
+
freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
|
|
62
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
63
|
+
else:
|
|
64
|
+
raise e
|
|
65
|
+
elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
|
|
66
|
+
# Squeeze the middle dimension to get (1, seq_len, head_dim//2)
|
|
67
|
+
freqs_ci = freqs_ci.squeeze(2)
|
|
68
|
+
elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
|
|
69
|
+
freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
|
|
70
|
+
else:
|
|
71
|
+
raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
|
|
72
|
+
|
|
73
|
+
# Use the same fused kernel as text RoPE
|
|
74
|
+
return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
# Note: We only patch the functions, not the classes
|
|
78
|
+
# The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
# Convenience functions for monkey patching
|
|
82
|
+
def apply_liger_llama4_rope_full(modeling_module):
|
|
83
|
+
"""
|
|
84
|
+
Apply Liger optimizations to Llama4 RoPE functions.
|
|
85
|
+
|
|
86
|
+
Args:
|
|
87
|
+
modeling_module: The transformers modeling module to patch
|
|
88
|
+
"""
|
|
89
|
+
# Replace the text RoPE function
|
|
90
|
+
modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
|
|
91
|
+
|
|
92
|
+
# Replace the vision RoPE function
|
|
93
|
+
modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb
|