liger-kernel-nightly 0.5.10.dev20250624183504__py3-none-any.whl → 0.6.4.dev20251121224847__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (73) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +54 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
  7. liger_kernel/chunked_loss/grpo_loss.py +46 -9
  8. liger_kernel/chunked_loss/jsd_loss.py +23 -7
  9. liger_kernel/ops/cross_entropy.py +118 -62
  10. liger_kernel/ops/fused_add_rms_norm.py +412 -0
  11. liger_kernel/ops/fused_linear_cross_entropy.py +113 -21
  12. liger_kernel/ops/geglu.py +1 -1
  13. liger_kernel/ops/grpo_loss.py +3 -1
  14. liger_kernel/ops/layer_norm.py +133 -79
  15. liger_kernel/ops/llama4_rope.py +225 -0
  16. liger_kernel/ops/poly_norm.py +386 -0
  17. liger_kernel/ops/rms_norm.py +2 -2
  18. liger_kernel/ops/rope.py +1 -1
  19. liger_kernel/ops/swiglu.py +1 -1
  20. liger_kernel/ops/tiled_mlp.py +136 -0
  21. liger_kernel/transformers/__init__.py +59 -0
  22. liger_kernel/transformers/cross_entropy.py +8 -3
  23. liger_kernel/transformers/experimental/__init__.py +5 -0
  24. liger_kernel/transformers/functional.py +38 -6
  25. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  26. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -4
  27. liger_kernel/transformers/grpo_loss.py +56 -1
  28. liger_kernel/transformers/llama4_rope.py +93 -0
  29. liger_kernel/transformers/model/falcon_h1.py +122 -0
  30. liger_kernel/transformers/model/gemma.py +28 -8
  31. liger_kernel/transformers/model/gemma2.py +31 -8
  32. liger_kernel/transformers/model/gemma3.py +100 -110
  33. liger_kernel/transformers/model/glm4.py +18 -5
  34. liger_kernel/transformers/model/glm4v.py +163 -0
  35. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  36. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  37. liger_kernel/transformers/model/internvl.py +157 -0
  38. liger_kernel/transformers/model/llama.py +26 -7
  39. liger_kernel/transformers/model/llama4.py +121 -0
  40. liger_kernel/transformers/model/llava.py +18 -6
  41. liger_kernel/transformers/model/loss_utils.py +34 -3
  42. liger_kernel/transformers/model/mistral.py +17 -10
  43. liger_kernel/transformers/model/mixtral.py +24 -9
  44. liger_kernel/transformers/model/mllama.py +18 -7
  45. liger_kernel/transformers/model/olmo2.py +18 -5
  46. liger_kernel/transformers/model/olmo3.py +142 -0
  47. liger_kernel/transformers/model/output_classes.py +147 -0
  48. liger_kernel/transformers/model/paligemma.py +41 -5
  49. liger_kernel/transformers/model/phi3.py +24 -159
  50. liger_kernel/transformers/model/qwen2.py +26 -4
  51. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  52. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  53. liger_kernel/transformers/model/qwen3.py +22 -6
  54. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  55. liger_kernel/transformers/model/qwen3_next.py +146 -0
  56. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  57. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  58. liger_kernel/transformers/model/smollm3.py +199 -0
  59. liger_kernel/transformers/model/smolvlm.py +158 -0
  60. liger_kernel/transformers/monkey_patch.py +1278 -116
  61. liger_kernel/transformers/multi_token_attention.py +1 -1
  62. liger_kernel/transformers/poly_norm.py +42 -0
  63. liger_kernel/transformers/rms_norm.py +7 -0
  64. liger_kernel/transformers/rope.py +43 -0
  65. liger_kernel/transformers/swiglu.py +17 -0
  66. liger_kernel/transformers/tiled_mlp.py +133 -0
  67. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/METADATA +29 -24
  68. liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/RECORD +118 -0
  69. liger_kernel_nightly-0.5.10.dev20250624183504.dist-info/RECORD +0 -95
  70. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/LICENSE +0 -0
  71. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/NOTICE +0 -0
  72. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/WHEEL +0 -0
  73. {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/top_level.txt +0 -0
@@ -5,17 +5,27 @@ from typing import TYPE_CHECKING
5
5
  # Always-safe imports (independent of 'transformers')
6
6
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
7
7
  from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
8
+ from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
8
9
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
9
10
  from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
10
11
  from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
11
12
  from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
13
+ from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
12
14
  from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
15
+ from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
16
+ from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
17
+ from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
18
+ from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
13
19
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
14
20
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
21
+ from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
22
+ from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
15
23
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
16
24
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
17
25
  from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
18
26
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
27
+ from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
28
+ from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
19
29
  from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
20
30
 
21
31
  # Static-only imports for IDEs and type checkers
@@ -23,18 +33,26 @@ if TYPE_CHECKING:
23
33
  from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
24
34
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
25
35
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
36
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
26
37
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
27
38
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
28
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
29
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
30
41
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
42
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
43
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
31
44
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
45
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
46
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
47
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
32
48
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
49
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
33
50
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
34
51
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
35
52
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
36
53
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
37
54
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
55
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
38
56
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
39
57
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
40
58
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
@@ -42,6 +60,11 @@ if TYPE_CHECKING:
42
60
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
43
61
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
44
62
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
63
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
64
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
65
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
66
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
67
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
45
68
 
46
69
 
47
70
  # Check if 'transformers' is installed
@@ -79,18 +102,24 @@ def __getattr__(name: str):
79
102
  monkey_patch_symbols = {
80
103
  "_apply_liger_kernel",
81
104
  "_apply_liger_kernel_to_instance",
105
+ "apply_liger_kernel_to_falcon_h1",
82
106
  "apply_liger_kernel_to_gemma",
83
107
  "apply_liger_kernel_to_gemma2",
84
108
  "apply_liger_kernel_to_gemma3",
85
109
  "apply_liger_kernel_to_gemma3_text",
86
110
  "apply_liger_kernel_to_glm4",
111
+ "apply_liger_kernel_to_glm4v",
112
+ "apply_liger_kernel_to_glm4v_moe",
87
113
  "apply_liger_kernel_to_granite",
114
+ "apply_liger_kernel_to_internvl",
88
115
  "apply_liger_kernel_to_llama",
89
116
  "apply_liger_kernel_to_llava",
117
+ "apply_liger_kernel_to_llama4",
90
118
  "apply_liger_kernel_to_mistral",
91
119
  "apply_liger_kernel_to_mixtral",
92
120
  "apply_liger_kernel_to_mllama",
93
121
  "apply_liger_kernel_to_olmo2",
122
+ "apply_liger_kernel_to_olmo3",
94
123
  "apply_liger_kernel_to_paligemma",
95
124
  "apply_liger_kernel_to_phi3",
96
125
  "apply_liger_kernel_to_qwen2",
@@ -98,6 +127,13 @@ def __getattr__(name: str):
98
127
  "apply_liger_kernel_to_qwen2_vl",
99
128
  "apply_liger_kernel_to_qwen3",
100
129
  "apply_liger_kernel_to_qwen3_moe",
130
+ "apply_liger_kernel_to_qwen3_next",
131
+ "apply_liger_kernel_to_qwen3_vl",
132
+ "apply_liger_kernel_to_qwen3_vl_moe",
133
+ "apply_liger_kernel_to_smollm3",
134
+ "apply_liger_kernel_to_smolvlm",
135
+ "apply_liger_kernel_to_hunyuan_v1_dense",
136
+ "apply_liger_kernel_to_hunyuan_v1_moe",
101
137
  }
102
138
 
103
139
  if name in monkey_patch_symbols:
@@ -117,13 +153,23 @@ __all__ = [
117
153
  "LigerGEGLUMLP",
118
154
  "LigerJSD",
119
155
  "LigerLayerNorm",
156
+ "LigerFusedAddRMSNorm",
157
+ "LigerPolyNorm",
120
158
  "LigerRMSNorm",
121
159
  "liger_rotary_pos_emb",
160
+ "liger_llama4_text_rotary_pos_emb",
161
+ "liger_llama4_vision_rotary_pos_emb",
122
162
  "LigerBlockSparseTop2MLP",
123
163
  "LigerPhi3SwiGLUMLP",
124
164
  "LigerQwen3MoeSwiGLUMLP",
125
165
  "LigerSwiGLUMLP",
166
+ "LigerTiledGEGLUMLP",
167
+ "LigerTiledSwiGLUMLP",
126
168
  "LigerTVDLoss",
169
+ "LigerKLDIVLoss",
170
+ "LigerMultiTokenAttention",
171
+ "LigerSoftmax",
172
+ "LigerSparsemax",
127
173
  ]
128
174
 
129
175
  # Add transformer-dependent symbols only if available
@@ -133,18 +179,24 @@ if _TRANSFORMERS_AVAILABLE:
133
179
  "AutoLigerKernelForCausalLM",
134
180
  "_apply_liger_kernel",
135
181
  "_apply_liger_kernel_to_instance",
182
+ "apply_liger_kernel_to_falcon_h1",
136
183
  "apply_liger_kernel_to_gemma",
137
184
  "apply_liger_kernel_to_gemma2",
138
185
  "apply_liger_kernel_to_gemma3",
139
186
  "apply_liger_kernel_to_gemma3_text",
140
187
  "apply_liger_kernel_to_glm4",
188
+ "apply_liger_kernel_to_glm4v",
189
+ "apply_liger_kernel_to_glm4v_moe",
141
190
  "apply_liger_kernel_to_granite",
191
+ "apply_liger_kernel_to_internvl",
142
192
  "apply_liger_kernel_to_llama",
143
193
  "apply_liger_kernel_to_llava",
194
+ "apply_liger_kernel_to_llama4",
144
195
  "apply_liger_kernel_to_mistral",
145
196
  "apply_liger_kernel_to_mixtral",
146
197
  "apply_liger_kernel_to_mllama",
147
198
  "apply_liger_kernel_to_olmo2",
199
+ "apply_liger_kernel_to_olmo3",
148
200
  "apply_liger_kernel_to_paligemma",
149
201
  "apply_liger_kernel_to_phi3",
150
202
  "apply_liger_kernel_to_qwen2",
@@ -152,5 +204,12 @@ if _TRANSFORMERS_AVAILABLE:
152
204
  "apply_liger_kernel_to_qwen2_vl",
153
205
  "apply_liger_kernel_to_qwen3",
154
206
  "apply_liger_kernel_to_qwen3_moe",
207
+ "apply_liger_kernel_to_qwen3_next",
208
+ "apply_liger_kernel_to_qwen3_vl",
209
+ "apply_liger_kernel_to_qwen3_vl_moe",
210
+ "apply_liger_kernel_to_smollm3",
211
+ "apply_liger_kernel_to_smolvlm",
212
+ "apply_liger_kernel_to_hunyuan_v1_dense",
213
+ "apply_liger_kernel_to_hunyuan_v1_moe",
155
214
  ]
156
215
  )
@@ -3,6 +3,7 @@ from typing import Optional
3
3
  import torch
4
4
 
5
5
  from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ return_token_accuracy: bool = False,
18
20
  ):
19
21
  super().__init__()
20
22
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
33
35
  self.reduction = reduction
34
36
  self.softcap = softcap
35
37
  self.return_z_loss = return_z_loss
38
+ self.return_token_accuracy = return_token_accuracy
36
39
 
37
40
  def forward(self, _input: torch.Tensor, target: torch.Tensor):
38
- loss, z_loss = LigerCrossEntropyFunction.apply(
41
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
39
42
  _input,
40
43
  target,
41
44
  self.weight,
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
45
48
  self.reduction,
46
49
  self.softcap,
47
50
  self.return_z_loss,
51
+ self.return_token_accuracy,
48
52
  )
49
- if not self.return_z_loss:
53
+ if not self.return_z_loss and not self.return_token_accuracy:
50
54
  return loss
51
- return loss, z_loss
55
+
56
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -0,0 +1,5 @@
1
+ from liger_kernel.transformers.experimental.embedding import LigerEmbedding # noqa: F401
2
+
3
+ __all__ = [
4
+ "LigerEmbedding",
5
+ ]
@@ -1,7 +1,11 @@
1
+ from dataclasses import dataclass
1
2
  from typing import Optional
2
3
 
4
+ import torch
5
+
3
6
  from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
4
7
  from liger_kernel.ops.dyt import LigerDyTFunction
8
+ from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
5
9
  from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
6
10
  from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
7
11
  from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
@@ -11,6 +15,7 @@ from liger_kernel.ops.jsd import LigerJSDFunction
11
15
  from liger_kernel.ops.kl_div import LigerKLDivLossFunction
12
16
  from liger_kernel.ops.layer_norm import LigerLayerNormFunction
13
17
  from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
18
+ from liger_kernel.ops.poly_norm import LigerPolyNormFunction
14
19
  from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
15
20
  from liger_kernel.ops.rms_norm import LigerRMSNormFunction
16
21
  from liger_kernel.ops.rope import LigerRopeFunction
@@ -20,6 +25,13 @@ from liger_kernel.ops.swiglu import LigerSiLUMulFunction
20
25
  from liger_kernel.ops.tvd import LigerTVDLossFunction
21
26
 
22
27
 
28
+ @dataclass
29
+ class CrossEntropyOutput:
30
+ loss: torch.Tensor
31
+ z_loss: Optional[torch.Tensor] = None
32
+ token_accuracy: Optional[torch.Tensor] = None
33
+
34
+
23
35
  # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
24
36
  # `weight` and `size_average` are placeholders and not implemented yet
25
37
  def liger_cross_entropy(
@@ -34,8 +46,9 @@ def liger_cross_entropy(
34
46
  lse_square_scale: float = 0.0,
35
47
  softcap: Optional[float] = None,
36
48
  return_z_loss: bool = False,
49
+ return_token_accuracy: bool = False,
37
50
  ):
38
- loss, z_loss = LigerCrossEntropyFunction.apply(
51
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
39
52
  input,
40
53
  target,
41
54
  weight,
@@ -45,10 +58,13 @@ def liger_cross_entropy(
45
58
  reduction,
46
59
  softcap,
47
60
  return_z_loss,
61
+ return_token_accuracy,
48
62
  )
49
- if not return_z_loss:
63
+
64
+ if not return_z_loss and not return_token_accuracy:
50
65
  return loss
51
- return loss, z_loss
66
+
67
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
52
68
 
53
69
 
54
70
  def liger_fused_linear_cross_entropy(
@@ -63,8 +79,11 @@ def liger_fused_linear_cross_entropy(
63
79
  reduction: str = "mean",
64
80
  softcap: Optional[float] = None,
65
81
  return_z_loss: bool = False,
82
+ accum_dtype=None,
83
+ use_token_scaling: bool = False,
84
+ return_token_accuracy: bool = False,
66
85
  ):
67
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
86
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
68
87
  input,
69
88
  weight,
70
89
  target,
@@ -76,10 +95,15 @@ def liger_fused_linear_cross_entropy(
76
95
  reduction,
77
96
  softcap,
78
97
  return_z_loss,
98
+ accum_dtype,
99
+ use_token_scaling,
100
+ return_token_accuracy,
79
101
  )
80
- if not return_z_loss:
102
+
103
+ if not return_z_loss and not return_token_accuracy:
81
104
  return loss
82
- return loss, z_loss
105
+
106
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
83
107
 
84
108
 
85
109
  def liger_fused_linear_jsd(
@@ -253,6 +277,14 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
253
277
  return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
254
278
 
255
279
 
280
+ def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
281
+ return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
282
+
283
+
284
+ def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
285
+ return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
286
+
287
+
256
288
  def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
257
289
  return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
258
290
 
@@ -0,0 +1,39 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops.fused_add_rms_norm import LigerFusedAddRMSNormFunction
5
+
6
+
7
+ class LigerFusedAddRMSNorm(nn.Module):
8
+ def __init__(
9
+ self,
10
+ hidden_size,
11
+ eps=1e-6,
12
+ offset=0.0,
13
+ casting_mode="llama",
14
+ init_fn="ones",
15
+ in_place=False,
16
+ ):
17
+ super().__init__()
18
+ assert init_fn in [
19
+ "ones",
20
+ "zeros",
21
+ ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
22
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
23
+ self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
24
+
25
+ def forward(self, hidden_states, residual):
26
+ return LigerFusedAddRMSNormFunction.apply(
27
+ hidden_states,
28
+ residual,
29
+ self.weight,
30
+ self.variance_epsilon,
31
+ self.offset,
32
+ self.casting_mode,
33
+ self.in_place,
34
+ )
35
+
36
+ def extra_repr(self):
37
+ return (
38
+ f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
39
+ )
@@ -3,6 +3,7 @@ from typing import Optional
3
3
  import torch
4
4
 
5
5
  from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ accum_dtype: Optional[torch.dtype] = None,
20
+ use_token_scaling: bool = False,
21
+ return_token_accuracy: bool = False,
18
22
  ):
19
23
  super().__init__()
20
24
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -23,7 +27,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
23
27
  assert reduction in {
24
28
  "mean",
25
29
  "sum",
26
- }, f"reduction must be 'mean' or 'sum'. Got: {reduction}"
30
+ "none",
31
+ }, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
27
32
  assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
28
33
  self.ce_weight = ce_weight
29
34
  self.ignore_index = ignore_index
@@ -32,9 +37,12 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
32
37
  self.reduction = reduction
33
38
  self.softcap = softcap
34
39
  self.return_z_loss = return_z_loss
40
+ self.accum_dtype = accum_dtype
41
+ self.use_token_scaling = use_token_scaling
42
+ self.return_token_accuracy = return_token_accuracy
35
43
 
36
44
  def forward(self, lin_weight, _input, target, bias=None):
37
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
45
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
38
46
  _input,
39
47
  lin_weight,
40
48
  target,
@@ -46,7 +54,11 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
46
54
  self.reduction,
47
55
  self.softcap,
48
56
  self.return_z_loss,
57
+ self.accum_dtype,
58
+ self.use_token_scaling,
59
+ self.return_token_accuracy,
49
60
  )
50
- if not self.return_z_loss:
61
+ if not self.return_z_loss and not self.return_token_accuracy:
51
62
  return loss
52
- return loss, z_loss
63
+
64
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -1,3 +1,6 @@
1
+ import torch
2
+
3
+ from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
1
4
  from liger_kernel.ops.grpo_loss import GrpoLossFunction
2
5
 
3
6
 
@@ -13,12 +16,20 @@ def triton_grpo_loss(
13
16
  eps_low=0.2,
14
17
  eps_high=0.4,
15
18
  inplace=True,
19
+ loss_type="dapo",
20
+ max_completion_length=None,
21
+ importance_sampling_level="token",
22
+ reduce=False,
16
23
  ):
17
24
  assert logits is not None and completion_ids is not None and advantages is not None, (
18
25
  "must provide logits、completion_ids and advantages"
19
26
  )
27
+ if importance_sampling_level != "token":
28
+ raise ValueError(
29
+ f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
30
+ )
20
31
 
21
- return GrpoLossFunction.apply(
32
+ per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
22
33
  logits,
23
34
  old_logp,
24
35
  ref_logp,
@@ -31,6 +42,50 @@ def triton_grpo_loss(
31
42
  eps_high,
32
43
  inplace,
33
44
  )
45
+ if not reduce:
46
+ return per_token_loss, per_token_kl, is_clipped
47
+
48
+ loss = _reduce_grpo_loss(
49
+ per_token_loss,
50
+ completion_mask,
51
+ loss_type=loss_type,
52
+ max_completion_length=max_completion_length,
53
+ )
54
+
55
+ metrics = []
56
+ if beta != 0.0 and per_token_kl is not None:
57
+ metrics.append(_masked_mean(per_token_kl, completion_mask))
58
+ metrics.append(_masked_mean(is_clipped.float(), completion_mask))
59
+ return loss, metrics
60
+
61
+
62
+ def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
63
+ mask = completion_mask
64
+ if mask is None:
65
+ mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
66
+ mask = mask.to(per_token_loss.dtype)
67
+
68
+ if loss_type == "grpo":
69
+ per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
70
+ return per_seq.mean()
71
+ if loss_type == "bnpo":
72
+ return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
73
+ if loss_type == "dr_grpo":
74
+ if max_completion_length is None:
75
+ raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
76
+ batch = per_token_loss.shape[0]
77
+ return (per_token_loss * mask).sum() / (batch * max_completion_length)
78
+ if loss_type == "dapo":
79
+ normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
80
+ return (per_token_loss * mask).sum() / normalizer
81
+ raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
82
+
83
+
84
+ def _masked_mean(values, mask):
85
+ if mask is None:
86
+ mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
87
+ mask = mask.to(values.dtype)
88
+ return (values * mask).sum() / mask.sum().clamp(min=1.0)
34
89
 
35
90
 
36
91
  # This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
@@ -0,0 +1,93 @@
1
+ """
2
+ Liger Kernel implementation of Llama4 Rotary Position Embedding (RoPE).
3
+ Supports both text and vision RoPE variants with fused operations for optimal performance.
4
+ """
5
+
6
+ import torch
7
+
8
+ from liger_kernel.ops.llama4_rope import LigerLlama4RopeFunction
9
+
10
+
11
+ def liger_llama4_text_rotary_pos_emb(
12
+ xq: torch.Tensor,
13
+ xk: torch.Tensor,
14
+ freqs_cis: torch.Tensor,
15
+ ) -> tuple[torch.Tensor, torch.Tensor]:
16
+ """
17
+ Liger-optimized implementation of Llama4 text rotary position embedding.
18
+
19
+ This implementation uses a fused Triton kernel for complex multiplication,
20
+ providing significant performance improvements over the original PyTorch implementation.
21
+
22
+ Args:
23
+ xq (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
24
+ xk (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
25
+ freqs_cis (torch.Tensor): Complex frequency tensor from Llama4TextRotaryEmbedding
26
+
27
+ Returns:
28
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
29
+ """
30
+ # Use fused Triton kernel for complex RoPE
31
+ return LigerLlama4RopeFunction.apply(xq, xk, freqs_cis)
32
+
33
+
34
+ def liger_llama4_vision_rotary_pos_emb(
35
+ query: torch.Tensor,
36
+ key: torch.Tensor,
37
+ freqs_ci: torch.Tensor,
38
+ ) -> tuple[torch.Tensor, torch.Tensor]:
39
+ """
40
+ Liger-optimized implementation of Llama4 vision rotary position embedding.
41
+
42
+ This implementation uses the same fused Triton kernel as text RoPE,
43
+ providing performance improvements for vision transformer attention.
44
+
45
+ Args:
46
+ query (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim)
47
+ key (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim)
48
+ freqs_ci (torch.Tensor): Complex frequency tensor for 2D positions
49
+
50
+ Returns:
51
+ Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors
52
+ """
53
+ # Handle broadcasting for vision RoPE
54
+ if freqs_ci.dim() == 3:
55
+ try:
56
+ # Try the regular 3D expansion
57
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
58
+ except RuntimeError as e:
59
+ if "expand" in str(e) and "4" in str(e):
60
+ # The tensor is actually 4D internally, handle it differently
61
+ freqs_ci = freqs_ci.squeeze(1) # Remove the middle dimension
62
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
63
+ else:
64
+ raise e
65
+ elif freqs_ci.dim() == 4: # (1, seq_len, 1, head_dim//2) - already properly shaped
66
+ # Squeeze the middle dimension to get (1, seq_len, head_dim//2)
67
+ freqs_ci = freqs_ci.squeeze(2)
68
+ elif freqs_ci.dim() == 2: # (seq_len, head_dim//2) - needs expansion
69
+ freqs_ci = freqs_ci.unsqueeze(0).expand(query.shape[0], -1, -1)
70
+ else:
71
+ raise ValueError(f"Unexpected freqs_ci shape: {freqs_ci.shape}")
72
+
73
+ # Use the same fused kernel as text RoPE
74
+ return LigerLlama4RopeFunction.apply(query, key, freqs_ci)
75
+
76
+
77
+ # Note: We only patch the functions, not the classes
78
+ # The original Llama4TextRotaryEmbedding and Llama4VisionRotaryEmbedding classes remain unchanged
79
+
80
+
81
+ # Convenience functions for monkey patching
82
+ def apply_liger_llama4_rope_full(modeling_module):
83
+ """
84
+ Apply Liger optimizations to Llama4 RoPE functions.
85
+
86
+ Args:
87
+ modeling_module: The transformers modeling module to patch
88
+ """
89
+ # Replace the text RoPE function
90
+ modeling_module.apply_rotary_emb = liger_llama4_text_rotary_pos_emb
91
+
92
+ # Replace the vision RoPE function
93
+ modeling_module.vision_apply_rotary_emb = liger_llama4_vision_rotary_pos_emb