liger-kernel-nightly 0.5.10.dev20250624183504__py3-none-any.whl → 0.6.4.dev20251121224847__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
- liger_kernel/chunked_loss/grpo_loss.py +46 -9
- liger_kernel/chunked_loss/jsd_loss.py +23 -7
- liger_kernel/ops/cross_entropy.py +118 -62
- liger_kernel/ops/fused_add_rms_norm.py +412 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +113 -21
- liger_kernel/ops/geglu.py +1 -1
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/layer_norm.py +133 -79
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/poly_norm.py +386 -0
- liger_kernel/ops/rms_norm.py +2 -2
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/transformers/__init__.py +59 -0
- liger_kernel/transformers/cross_entropy.py +8 -3
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/functional.py +38 -6
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -4
- liger_kernel/transformers/grpo_loss.py +56 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +28 -8
- liger_kernel/transformers/model/gemma2.py +31 -8
- liger_kernel/transformers/model/gemma3.py +100 -110
- liger_kernel/transformers/model/glm4.py +18 -5
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +26 -7
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +18 -6
- liger_kernel/transformers/model/loss_utils.py +34 -3
- liger_kernel/transformers/model/mistral.py +17 -10
- liger_kernel/transformers/model/mixtral.py +24 -9
- liger_kernel/transformers/model/mllama.py +18 -7
- liger_kernel/transformers/model/olmo2.py +18 -5
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +41 -5
- liger_kernel/transformers/model/phi3.py +24 -159
- liger_kernel/transformers/model/qwen2.py +26 -4
- liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
- liger_kernel/transformers/model/qwen2_vl.py +24 -7
- liger_kernel/transformers/model/qwen3.py +22 -6
- liger_kernel/transformers/model/qwen3_moe.py +27 -7
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1278 -116
- liger_kernel/transformers/multi_token_attention.py +1 -1
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/rms_norm.py +7 -0
- liger_kernel/transformers/rope.py +43 -0
- liger_kernel/transformers/swiglu.py +17 -0
- liger_kernel/transformers/tiled_mlp.py +133 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/METADATA +29 -24
- liger_kernel_nightly-0.6.4.dev20251121224847.dist-info/RECORD +118 -0
- liger_kernel_nightly-0.5.10.dev20250624183504.dist-info/RECORD +0 -95
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.10.dev20250624183504.dist-info → liger_kernel_nightly-0.6.4.dev20251121224847.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,386 @@
|
|
|
1
|
+
import operator
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
import triton.language as tl
|
|
6
|
+
|
|
7
|
+
from liger_kernel.ops.utils import calculate_settings
|
|
8
|
+
from liger_kernel.ops.utils import compare_version
|
|
9
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
|
+
|
|
11
|
+
if compare_version("triton", operator.ge, "3.0.0"):
|
|
12
|
+
try:
|
|
13
|
+
from triton.language.extra.libdevice import rsqrt
|
|
14
|
+
except ModuleNotFoundError:
|
|
15
|
+
from triton.language.extra.cuda.libdevice import rsqrt
|
|
16
|
+
else:
|
|
17
|
+
from triton.language.math import rsqrt
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@triton.jit
|
|
21
|
+
def _poly_norm_forward_kernel(
|
|
22
|
+
Y_ptr,
|
|
23
|
+
Y_row_stride,
|
|
24
|
+
X_ptr,
|
|
25
|
+
X_row_stride,
|
|
26
|
+
W_ptr, # weight: [3] for [w0, w1, w2]
|
|
27
|
+
B_ptr, # bias: scalar
|
|
28
|
+
RSTD_ptr, # cache rstd for backward: shape (n_rows, 3)
|
|
29
|
+
RSTD_row_stride,
|
|
30
|
+
n_cols,
|
|
31
|
+
eps,
|
|
32
|
+
BLOCK_SIZE: tl.constexpr,
|
|
33
|
+
):
|
|
34
|
+
"""
|
|
35
|
+
PolyNorm formula:
|
|
36
|
+
y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
|
|
37
|
+
where norm(u) = u / sqrt(mean(u²) + ε)
|
|
38
|
+
|
|
39
|
+
Reference:
|
|
40
|
+
1. https://github.com/BryceZhuo/PolyCom/
|
|
41
|
+
2. https://arxiv.org/pdf/2411.03884
|
|
42
|
+
|
|
43
|
+
Cache rstd values for backward pass
|
|
44
|
+
"""
|
|
45
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
|
46
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
47
|
+
mask = col_offsets < n_cols
|
|
48
|
+
|
|
49
|
+
# Load pointers
|
|
50
|
+
Y_ptr += row_idx * Y_row_stride
|
|
51
|
+
X_ptr += row_idx * X_row_stride
|
|
52
|
+
RSTD_ptr += row_idx * RSTD_row_stride
|
|
53
|
+
|
|
54
|
+
# Load input row
|
|
55
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0)
|
|
56
|
+
|
|
57
|
+
# Load weights and bias
|
|
58
|
+
w0 = tl.load(W_ptr + 0)
|
|
59
|
+
w1 = tl.load(W_ptr + 1)
|
|
60
|
+
w2 = tl.load(W_ptr + 2)
|
|
61
|
+
b = tl.load(B_ptr)
|
|
62
|
+
|
|
63
|
+
# Compute x³, x², x
|
|
64
|
+
X_pow3 = X_row * X_row * X_row
|
|
65
|
+
X_pow2 = X_row * X_row
|
|
66
|
+
X_pow1 = X_row
|
|
67
|
+
|
|
68
|
+
# Compute norm(x³): norm(u) = u * rsqrt(mean(u²) + eps)
|
|
69
|
+
mean_square_3 = tl.sum(X_pow3 * X_pow3, axis=0) / n_cols
|
|
70
|
+
rstd_3 = rsqrt(mean_square_3 + eps)
|
|
71
|
+
norm_x3 = X_pow3 * rstd_3
|
|
72
|
+
|
|
73
|
+
# Compute norm(x²)
|
|
74
|
+
mean_square_2 = tl.sum(X_pow2 * X_pow2, axis=0) / n_cols
|
|
75
|
+
rstd_2 = rsqrt(mean_square_2 + eps)
|
|
76
|
+
norm_x2 = X_pow2 * rstd_2
|
|
77
|
+
|
|
78
|
+
# Compute norm(x)
|
|
79
|
+
mean_square_1 = tl.sum(X_pow1 * X_pow1, axis=0) / n_cols
|
|
80
|
+
rstd_1 = rsqrt(mean_square_1 + eps)
|
|
81
|
+
norm_x1 = X_pow1 * rstd_1
|
|
82
|
+
|
|
83
|
+
# Cache rstd values for backward
|
|
84
|
+
tl.store(RSTD_ptr + 0, rstd_3)
|
|
85
|
+
tl.store(RSTD_ptr + 1, rstd_2)
|
|
86
|
+
tl.store(RSTD_ptr + 2, rstd_1)
|
|
87
|
+
|
|
88
|
+
# Compute output: y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
|
|
89
|
+
Y_row = w0 * norm_x3 + w1 * norm_x2 + w2 * norm_x1 + b
|
|
90
|
+
|
|
91
|
+
# Store output
|
|
92
|
+
tl.store(Y_ptr + col_offsets, Y_row, mask=mask)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
@triton.jit
|
|
96
|
+
def _poly_norm_backward_kernel(
|
|
97
|
+
dY_ptr,
|
|
98
|
+
dY_row_stride,
|
|
99
|
+
dX_ptr,
|
|
100
|
+
dX_row_stride,
|
|
101
|
+
X_ptr,
|
|
102
|
+
X_row_stride,
|
|
103
|
+
W_ptr,
|
|
104
|
+
RSTD_ptr,
|
|
105
|
+
RSTD_row_stride,
|
|
106
|
+
dW_ptr, # shape: (n_programs, 3)
|
|
107
|
+
dW_row_stride,
|
|
108
|
+
dB_ptr, # shape: (n_programs,)
|
|
109
|
+
n_rows,
|
|
110
|
+
n_cols,
|
|
111
|
+
rows_per_program: tl.constexpr,
|
|
112
|
+
BLOCK_SIZE: tl.constexpr,
|
|
113
|
+
):
|
|
114
|
+
"""
|
|
115
|
+
PolyNorm Backward Kernel Gradient:
|
|
116
|
+
∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
|
|
117
|
+
|
|
118
|
+
where:
|
|
119
|
+
- D_p = RMS(x^p) = 1/rstd_p
|
|
120
|
+
- S_p = sum(grad * x^p) over the row
|
|
121
|
+
- d = n_cols
|
|
122
|
+
- p ∈ {3, 2, 1}
|
|
123
|
+
"""
|
|
124
|
+
row_block_id = tl.program_id(0).to(tl.int64)
|
|
125
|
+
row_start = row_block_id * rows_per_program
|
|
126
|
+
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
127
|
+
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
128
|
+
mask = col_offsets < n_cols
|
|
129
|
+
|
|
130
|
+
# Initialize accumulators for weight and bias gradients (scalars)
|
|
131
|
+
dW0_acc = 0.0
|
|
132
|
+
dW1_acc = 0.0
|
|
133
|
+
dW2_acc = 0.0
|
|
134
|
+
dB_acc = 0.0
|
|
135
|
+
|
|
136
|
+
# Load weights
|
|
137
|
+
w0 = tl.load(W_ptr + 0).to(tl.float32)
|
|
138
|
+
w1 = tl.load(W_ptr + 1).to(tl.float32)
|
|
139
|
+
w2 = tl.load(W_ptr + 2).to(tl.float32)
|
|
140
|
+
|
|
141
|
+
dY_ptr += row_start * dY_row_stride
|
|
142
|
+
dX_ptr += row_start * dX_row_stride
|
|
143
|
+
X_ptr += row_start * X_row_stride
|
|
144
|
+
RSTD_ptr += row_start * RSTD_row_stride
|
|
145
|
+
|
|
146
|
+
for _ in range(row_start, row_end):
|
|
147
|
+
# Load input and gradient
|
|
148
|
+
dY_row = tl.load(dY_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
|
|
149
|
+
X_row = tl.load(X_ptr + col_offsets, mask=mask, other=0.0).to(tl.float32)
|
|
150
|
+
|
|
151
|
+
# Load cached rstd values
|
|
152
|
+
rstd_3 = tl.load(RSTD_ptr + 0).to(tl.float32)
|
|
153
|
+
rstd_2 = tl.load(RSTD_ptr + 1).to(tl.float32)
|
|
154
|
+
rstd_1 = tl.load(RSTD_ptr + 2).to(tl.float32)
|
|
155
|
+
|
|
156
|
+
# Compute powers
|
|
157
|
+
X_pow3 = X_row * X_row * X_row
|
|
158
|
+
X_pow2 = X_row * X_row
|
|
159
|
+
X_pow1 = X_row
|
|
160
|
+
|
|
161
|
+
# Accumulate bias gradient: dB = sum(dY)
|
|
162
|
+
dB_acc += tl.sum(dY_row, axis=0)
|
|
163
|
+
|
|
164
|
+
# Compute gradient w.r.t. input using closed-form formula
|
|
165
|
+
# For p=3: ∂L/∂x from w0 * norm(x³)
|
|
166
|
+
S_3 = tl.sum(dY_row * X_pow3, axis=0) # scalar
|
|
167
|
+
grad_x_3 = w0 * (
|
|
168
|
+
3.0 * X_pow2 * rstd_3 * dY_row
|
|
169
|
+
- (3.0 / n_cols) * X_row * X_row * X_row * X_row * X_row * (rstd_3 * rstd_3 * rstd_3) * S_3
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
# For p=2: ∂L/∂x from w1 * norm(x²)
|
|
173
|
+
S_2 = tl.sum(dY_row * X_pow2, axis=0) # scalar
|
|
174
|
+
grad_x_2 = w1 * (
|
|
175
|
+
2.0 * X_row * rstd_2 * dY_row - (2.0 / n_cols) * X_row * X_row * X_row * (rstd_2 * rstd_2 * rstd_2) * S_2
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
# For p=1: ∂L/∂x from w2 * norm(x)
|
|
179
|
+
S_1 = tl.sum(dY_row * X_pow1, axis=0) # scalar
|
|
180
|
+
grad_x_1 = w2 * (1.0 * rstd_1 * dY_row - (1.0 / n_cols) * X_row * (rstd_1 * rstd_1 * rstd_1) * S_1)
|
|
181
|
+
|
|
182
|
+
# Accumulate weight gradients using closed-form: dW_p = rstd_p * S_p
|
|
183
|
+
dW0_acc += rstd_3 * S_3
|
|
184
|
+
dW1_acc += rstd_2 * S_2
|
|
185
|
+
dW2_acc += rstd_1 * S_1
|
|
186
|
+
|
|
187
|
+
# Total gradient
|
|
188
|
+
dX_row = grad_x_3 + grad_x_2 + grad_x_1
|
|
189
|
+
|
|
190
|
+
# Store gradient
|
|
191
|
+
tl.store(dX_ptr + col_offsets, dX_row, mask=mask)
|
|
192
|
+
|
|
193
|
+
# Update pointers
|
|
194
|
+
dY_ptr += dY_row_stride
|
|
195
|
+
dX_ptr += dX_row_stride
|
|
196
|
+
X_ptr += X_row_stride
|
|
197
|
+
RSTD_ptr += RSTD_row_stride
|
|
198
|
+
|
|
199
|
+
# Store accumulated gradients (scalars)
|
|
200
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + 0, dW0_acc)
|
|
201
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + 1, dW1_acc)
|
|
202
|
+
tl.store(dW_ptr + row_block_id * dW_row_stride + 2, dW2_acc)
|
|
203
|
+
tl.store(dB_ptr + row_block_id, dB_acc)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
def poly_norm_forward(X, W, B, eps=1e-6):
|
|
207
|
+
"""
|
|
208
|
+
PolyNorm Forward Pass
|
|
209
|
+
|
|
210
|
+
Args:
|
|
211
|
+
X: input tensor of shape (*, H) where H is hidden dimension
|
|
212
|
+
W: weight tensor of shape (3,) for [w0, w1, w2]
|
|
213
|
+
B: bias scalar tensor
|
|
214
|
+
eps: epsilon for numerical stability
|
|
215
|
+
|
|
216
|
+
Returns:
|
|
217
|
+
Y: output tensor of same shape as X
|
|
218
|
+
X: reshaped input (for backward)
|
|
219
|
+
RSTD: cached rstd values (for backward)
|
|
220
|
+
BLOCK_SIZE: block size used
|
|
221
|
+
num_warps: number of warps used
|
|
222
|
+
"""
|
|
223
|
+
shape = X.shape
|
|
224
|
+
dim = shape[-1]
|
|
225
|
+
X = X.view(-1, dim)
|
|
226
|
+
n_rows, n_cols = X.shape
|
|
227
|
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
228
|
+
|
|
229
|
+
# RSTD is to cache rstd for each row
|
|
230
|
+
Y = torch.empty((n_rows, n_cols), dtype=X.dtype, device=X.device)
|
|
231
|
+
RSTD = torch.empty((n_rows, 3), dtype=torch.float32, device=X.device)
|
|
232
|
+
|
|
233
|
+
# Check constraints
|
|
234
|
+
assert W.shape[0] == 3, "Weight tensor must have shape (3,)"
|
|
235
|
+
assert B.numel() == 1, "Bias must be a scalar"
|
|
236
|
+
|
|
237
|
+
# XPU-specific optimization
|
|
238
|
+
kernel_args = {}
|
|
239
|
+
if X.device.type == "xpu":
|
|
240
|
+
kernel_args["grf_mode"] = "large"
|
|
241
|
+
|
|
242
|
+
# Launch kernel
|
|
243
|
+
_poly_norm_forward_kernel[(n_rows,)](
|
|
244
|
+
Y,
|
|
245
|
+
Y.stride(0),
|
|
246
|
+
X,
|
|
247
|
+
X.stride(0),
|
|
248
|
+
W,
|
|
249
|
+
B,
|
|
250
|
+
RSTD,
|
|
251
|
+
RSTD.stride(0),
|
|
252
|
+
n_cols,
|
|
253
|
+
eps,
|
|
254
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
255
|
+
num_warps=num_warps,
|
|
256
|
+
**kernel_args,
|
|
257
|
+
)
|
|
258
|
+
|
|
259
|
+
return Y.view(*shape), X, RSTD, BLOCK_SIZE, num_warps
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
def poly_norm_backward(dY, X, W, RSTD, BLOCK_SIZE, num_warps, in_place):
|
|
263
|
+
"""
|
|
264
|
+
PolyNorm Backward Pass
|
|
265
|
+
|
|
266
|
+
Args:
|
|
267
|
+
dY: gradient of output
|
|
268
|
+
X: input tensor (already reshaped to 2D)
|
|
269
|
+
W: weight tensor
|
|
270
|
+
RSTD: cached rstd values from forward
|
|
271
|
+
BLOCK_SIZE: block size from forward
|
|
272
|
+
num_warps: number of warps from forward
|
|
273
|
+
in_place: whether to in-place modify dY to store dX (saves memory)
|
|
274
|
+
|
|
275
|
+
Returns:
|
|
276
|
+
dX: gradient w.r.t. input
|
|
277
|
+
dW: gradient w.r.t. weight
|
|
278
|
+
dB: gradient w.r.t. bias
|
|
279
|
+
"""
|
|
280
|
+
shape = dY.shape
|
|
281
|
+
dim = shape[-1]
|
|
282
|
+
dY = dY.view(-1, dim)
|
|
283
|
+
n_rows, n_cols = dY.shape
|
|
284
|
+
|
|
285
|
+
# Get number of SMs for parallelization
|
|
286
|
+
import math
|
|
287
|
+
|
|
288
|
+
sm_count = 1
|
|
289
|
+
if X.device.type == "cuda":
|
|
290
|
+
sm_count = torch.cuda.get_device_properties(X.device).multi_processor_count
|
|
291
|
+
elif X.device.type == "xpu":
|
|
292
|
+
sm_count = torch.xpu.get_device_properties(X.device).gpu_eu_count
|
|
293
|
+
|
|
294
|
+
# Allocate or reuse gradients
|
|
295
|
+
if in_place is True:
|
|
296
|
+
dX = dY
|
|
297
|
+
else:
|
|
298
|
+
dX = torch.zeros_like(dY)
|
|
299
|
+
|
|
300
|
+
_dW = torch.empty((sm_count, 3), dtype=torch.float32, device=W.device)
|
|
301
|
+
_dB = torch.empty((sm_count,), dtype=torch.float32, device=W.device)
|
|
302
|
+
|
|
303
|
+
rows_per_program = math.ceil(n_rows / sm_count)
|
|
304
|
+
grid = (sm_count,)
|
|
305
|
+
|
|
306
|
+
# XPU-specific optimization
|
|
307
|
+
kernel_args = {}
|
|
308
|
+
if X.device.type == "xpu":
|
|
309
|
+
kernel_args["grf_mode"] = "large"
|
|
310
|
+
|
|
311
|
+
# Launch backward kernel
|
|
312
|
+
_poly_norm_backward_kernel[grid](
|
|
313
|
+
dY,
|
|
314
|
+
dY.stride(0),
|
|
315
|
+
dX,
|
|
316
|
+
dX.stride(0),
|
|
317
|
+
X,
|
|
318
|
+
X.stride(0),
|
|
319
|
+
W,
|
|
320
|
+
RSTD,
|
|
321
|
+
RSTD.stride(0),
|
|
322
|
+
_dW,
|
|
323
|
+
_dW.stride(0),
|
|
324
|
+
_dB,
|
|
325
|
+
n_rows,
|
|
326
|
+
n_cols,
|
|
327
|
+
rows_per_program,
|
|
328
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
329
|
+
num_warps=num_warps,
|
|
330
|
+
**kernel_args,
|
|
331
|
+
)
|
|
332
|
+
|
|
333
|
+
# Reduce gradients across SMs
|
|
334
|
+
dX = dX.view(*shape)
|
|
335
|
+
dW = _dW.sum(dim=0).to(W.dtype)
|
|
336
|
+
dB = _dB.sum().to(W.dtype)
|
|
337
|
+
|
|
338
|
+
return dX, dW, dB
|
|
339
|
+
|
|
340
|
+
|
|
341
|
+
class LigerPolyNormFunction(torch.autograd.Function):
|
|
342
|
+
"""
|
|
343
|
+
PolyNorm Function with forward and backward pass
|
|
344
|
+
|
|
345
|
+
PolyNorm formula:
|
|
346
|
+
y = w₀·norm(x³) + w₁·norm(x²) + w₂·norm(x) + b
|
|
347
|
+
where norm(u) = u / sqrt(mean(u²) + ε)
|
|
348
|
+
|
|
349
|
+
Backward uses closed-form gradient:
|
|
350
|
+
∂L/∂x_i = Σ_p w_p * [p*x_i^(p-1) * grad_i/D_p - (p/d)*x_i^(2p-1) * S_p/(D_p³)]
|
|
351
|
+
"""
|
|
352
|
+
|
|
353
|
+
@staticmethod
|
|
354
|
+
@ensure_contiguous
|
|
355
|
+
def forward(ctx, X, W, B, eps=1e-6, in_place=True):
|
|
356
|
+
"""
|
|
357
|
+
Args:
|
|
358
|
+
X: input tensor of shape (B, T, H) or (BxT, H)
|
|
359
|
+
W: weight tensor of shape (3,) for [w0, w1, w2]
|
|
360
|
+
B: bias scalar
|
|
361
|
+
eps: epsilon for numerical stability
|
|
362
|
+
in_place: whether to in-place modify grad_output in backward (saves memory)
|
|
363
|
+
|
|
364
|
+
Returns:
|
|
365
|
+
Y: output tensor of same shape as X
|
|
366
|
+
"""
|
|
367
|
+
Y, X, RSTD, BLOCK_SIZE, num_warps = poly_norm_forward(X, W, B, eps)
|
|
368
|
+
ctx.BLOCK_SIZE = BLOCK_SIZE
|
|
369
|
+
ctx.num_warps = num_warps
|
|
370
|
+
ctx.in_place = in_place
|
|
371
|
+
ctx.save_for_backward(X, W, RSTD)
|
|
372
|
+
return Y
|
|
373
|
+
|
|
374
|
+
@staticmethod
|
|
375
|
+
@ensure_contiguous
|
|
376
|
+
def backward(ctx, grad_output):
|
|
377
|
+
"""
|
|
378
|
+
Args:
|
|
379
|
+
grad_output: gradient of output
|
|
380
|
+
|
|
381
|
+
Returns:
|
|
382
|
+
dX, dW, dB: gradients w.r.t. X, W, B
|
|
383
|
+
"""
|
|
384
|
+
X, W, RSTD = ctx.saved_tensors
|
|
385
|
+
dX, dW, dB = poly_norm_backward(grad_output, X, W, RSTD, ctx.BLOCK_SIZE, ctx.num_warps, ctx.in_place)
|
|
386
|
+
return dX, dW, dB, None, None
|
liger_kernel/ops/rms_norm.py
CHANGED
|
@@ -63,7 +63,7 @@ def _rms_norm_forward_kernel(
|
|
|
63
63
|
3. https://arxiv.org/pdf/1910.07467
|
|
64
64
|
"""
|
|
65
65
|
|
|
66
|
-
row_idx = tl.program_id(0)
|
|
66
|
+
row_idx = tl.program_id(0).to(tl.int64)
|
|
67
67
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
|
68
68
|
mask = col_offsets < n_cols
|
|
69
69
|
|
|
@@ -137,7 +137,7 @@ def _rms_norm_backward_kernel(
|
|
|
137
137
|
dw = sum(dy * (x / RMS)). summation over BxT dimension
|
|
138
138
|
"""
|
|
139
139
|
|
|
140
|
-
row_block_id = tl.program_id(0)
|
|
140
|
+
row_block_id = tl.program_id(0).to(tl.int64)
|
|
141
141
|
row_start = row_block_id * rows_per_program
|
|
142
142
|
row_end = min((row_block_id + 1) * rows_per_program, n_rows)
|
|
143
143
|
col_offsets = tl.arange(0, BLOCK_SIZE)
|
liger_kernel/ops/rope.py
CHANGED
|
@@ -32,7 +32,7 @@ def _triton_rope(
|
|
|
32
32
|
|
|
33
33
|
# cos size: (1, seq_len, head_dim) or (bsz, seq_len, head_dim)
|
|
34
34
|
# stride: (seq_len * head_dim, head_dim, 1)
|
|
35
|
-
pid = tl.program_id(0)
|
|
35
|
+
pid = tl.program_id(0).to(tl.int64)
|
|
36
36
|
|
|
37
37
|
# locate start address
|
|
38
38
|
q_ptr = q_ptr + pid * q_row_stride
|
liger_kernel/ops/swiglu.py
CHANGED
|
@@ -26,7 +26,7 @@ def _swiglu_forward_kernel(a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BL
|
|
|
26
26
|
# sigmoid requires type float32
|
|
27
27
|
a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
|
|
28
28
|
b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
|
|
29
|
-
c_row = silu(a_row) * b_row
|
|
29
|
+
c_row = silu(a_row).cast(b_row.dtype) * b_row
|
|
30
30
|
tl.store(c_ptr + col_offsets, c_row, mask=mask)
|
|
31
31
|
|
|
32
32
|
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
from typing import Callable
|
|
4
|
+
from typing import List
|
|
5
|
+
from typing import Optional
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class LigerTiledMLPFunction(torch.autograd.Function):
|
|
13
|
+
"""
|
|
14
|
+
Based on DeepSpeed's TiledMLP:
|
|
15
|
+
https://github.com/deepspeedai/DeepSpeed/blob/v0.18.2/deepspeed/runtime/sequence_parallel/ulysses_sp.py#L838
|
|
16
|
+
|
|
17
|
+
Perform a tiled MLP computation to massively reduce memory usage needed to compute MLP
|
|
18
|
+
when using very long sequence lengths.
|
|
19
|
+
|
|
20
|
+
This module re-computes `forward` in the `backward`. So the `forward` occurs twice each iteration.
|
|
21
|
+
And if you're using activation checkpointing it then occurs thrice.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
fn: the function to call on sharded inputs (e.g., mlp.forward)
|
|
25
|
+
mlp_module: the MLP nn.Module object
|
|
26
|
+
x: the input to MLP.forward (hidden_states)
|
|
27
|
+
shards: how many shards to use
|
|
28
|
+
compute_params: a list of weights engaged in the compute
|
|
29
|
+
|
|
30
|
+
Returns:
|
|
31
|
+
the computed hidden_states
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
@staticmethod
|
|
35
|
+
@ensure_contiguous
|
|
36
|
+
def forward(
|
|
37
|
+
ctx,
|
|
38
|
+
fn: Callable,
|
|
39
|
+
mlp_module: torch.nn.Module,
|
|
40
|
+
x: torch.Tensor,
|
|
41
|
+
shards: int,
|
|
42
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
43
|
+
) -> torch.Tensor:
|
|
44
|
+
ctx.fn = fn
|
|
45
|
+
ctx.mlp_module = mlp_module
|
|
46
|
+
ctx.shards = shards
|
|
47
|
+
ctx.save_for_backward(x)
|
|
48
|
+
|
|
49
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
50
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=-2))
|
|
51
|
+
with torch.no_grad():
|
|
52
|
+
output_shards = [fn(mlp_module, x_shard) for x_shard in x_shards]
|
|
53
|
+
output_unsharded = torch.cat(output_shards, dim=-2)
|
|
54
|
+
|
|
55
|
+
return output_unsharded
|
|
56
|
+
|
|
57
|
+
@staticmethod
|
|
58
|
+
@ensure_contiguous
|
|
59
|
+
def backward(ctx, *grads) -> tuple:
|
|
60
|
+
fn = ctx.fn
|
|
61
|
+
(x,) = ctx.saved_tensors
|
|
62
|
+
mlp_module = ctx.mlp_module
|
|
63
|
+
shards = ctx.shards
|
|
64
|
+
|
|
65
|
+
x_requires_grad = x.requires_grad
|
|
66
|
+
x = x.detach()
|
|
67
|
+
# detach() unsets x.requires_grad, so restore it
|
|
68
|
+
x.requires_grad_(x_requires_grad)
|
|
69
|
+
|
|
70
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
71
|
+
hidden_size = x.shape[-1]
|
|
72
|
+
x_shape_orig = x.shape
|
|
73
|
+
|
|
74
|
+
# flatten bs+seqlen to avoid having stride issues when narrowing into seqlen w/ bs>1
|
|
75
|
+
x = x.view(-1, hidden_size)
|
|
76
|
+
incoming_grad = grads[0].view(-1, hidden_size)
|
|
77
|
+
x_grad = torch.zeros_like(x)
|
|
78
|
+
|
|
79
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=0))
|
|
80
|
+
|
|
81
|
+
for i, x_shard in enumerate(x_shards):
|
|
82
|
+
x_shard.requires_grad_(x_requires_grad)
|
|
83
|
+
|
|
84
|
+
# if seqlen is not exactly divisible by shards the last step will be shorter than shard_step
|
|
85
|
+
shard_step = x_shards[i].shape[0]
|
|
86
|
+
shard_offset = i * x_shards[0].shape[0]
|
|
87
|
+
|
|
88
|
+
x_shard.grad = x_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
89
|
+
incoming_grad_shard = incoming_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
90
|
+
|
|
91
|
+
with torch.enable_grad():
|
|
92
|
+
output = fn(mlp_module, x_shard)
|
|
93
|
+
torch.autograd.backward(output, incoming_grad_shard)
|
|
94
|
+
|
|
95
|
+
# unflatten
|
|
96
|
+
x_grad = x_grad.view(x_shape_orig)
|
|
97
|
+
|
|
98
|
+
return (None, None, x_grad, None, None)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def apply_tiled_mlp(
|
|
102
|
+
fn: Callable,
|
|
103
|
+
mlp_module: torch.nn.Module,
|
|
104
|
+
x: torch.Tensor,
|
|
105
|
+
num_shards: Optional[int] = None,
|
|
106
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
107
|
+
) -> torch.Tensor:
|
|
108
|
+
"""
|
|
109
|
+
Apply tiled MLP computation for memory efficiency.
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
fn: the function to call on sharded inputs (e.g., lambda module, x: module(x))
|
|
113
|
+
mlp_module: the MLP nn.Module object
|
|
114
|
+
x: the input tensor with shape [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
115
|
+
num_shards: number of shards to use. If None, automatically calculated as ceil(seqlen / hidden_size)
|
|
116
|
+
compute_params: list of parameters for DeepSpeed ZeRO optimization
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
output tensor with the same shape as input
|
|
120
|
+
"""
|
|
121
|
+
if num_shards is None:
|
|
122
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
123
|
+
hidden_size = x.shape[-1]
|
|
124
|
+
seqlen = x.shape[-2]
|
|
125
|
+
num_shards = math.ceil(seqlen / hidden_size)
|
|
126
|
+
|
|
127
|
+
# Ensure num_shards is at least 1
|
|
128
|
+
num_shards = max(1, num_shards)
|
|
129
|
+
|
|
130
|
+
return LigerTiledMLPFunction.apply(
|
|
131
|
+
fn,
|
|
132
|
+
mlp_module,
|
|
133
|
+
x,
|
|
134
|
+
num_shards,
|
|
135
|
+
compute_params,
|
|
136
|
+
)
|