liger-kernel-nightly 0.5.10.dev20250611191801__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
- liger_kernel/chunked_loss/grpo_loss.py +46 -9
- liger_kernel/chunked_loss/jsd_loss.py +44 -13
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +130 -64
- liger_kernel/ops/dyt.py +5 -4
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
- liger_kernel/ops/geglu.py +6 -4
- liger_kernel/ops/group_norm.py +7 -7
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/kl_div.py +8 -11
- liger_kernel/ops/layer_norm.py +135 -80
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +148 -71
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +14 -0
- liger_kernel/transformers/__init__.py +65 -0
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +1 -1
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/functional.py +56 -24
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +17 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +57 -2
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/exaone4.py +136 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +28 -8
- liger_kernel/transformers/model/gemma2.py +34 -11
- liger_kernel/transformers/model/gemma3.py +102 -112
- liger_kernel/transformers/model/glm4.py +18 -5
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +26 -7
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +18 -6
- liger_kernel/transformers/model/loss_utils.py +34 -3
- liger_kernel/transformers/model/mistral.py +17 -10
- liger_kernel/transformers/model/mixtral.py +24 -9
- liger_kernel/transformers/model/mllama.py +18 -7
- liger_kernel/transformers/model/olmo2.py +18 -5
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +42 -5
- liger_kernel/transformers/model/phi3.py +24 -159
- liger_kernel/transformers/model/qwen2.py +26 -4
- liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
- liger_kernel/transformers/model/qwen2_vl.py +24 -7
- liger_kernel/transformers/model/qwen3.py +22 -6
- liger_kernel/transformers/model/qwen3_moe.py +27 -7
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1423 -100
- liger_kernel/transformers/multi_token_attention.py +2 -2
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +15 -5
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +1 -1
- liger_kernel/transformers/sparsemax.py +1 -1
- liger_kernel/transformers/swiglu.py +18 -1
- liger_kernel/transformers/tiled_mlp.py +125 -0
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +52 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +37 -25
- liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
- liger_kernel_nightly-0.5.10.dev20250611191801.dist-info/RECORD +0 -95
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
|
@@ -5,123 +5,13 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from
|
|
9
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
10
|
-
from transformers.utils.deprecation import deprecate_kwarg
|
|
8
|
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
11
9
|
|
|
12
|
-
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
13
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
14
13
|
|
|
15
14
|
|
|
16
|
-
def lce_forward_deprecated(
|
|
17
|
-
self,
|
|
18
|
-
input_ids: torch.LongTensor = None,
|
|
19
|
-
attention_mask: Optional[torch.Tensor] = None,
|
|
20
|
-
position_ids: Optional[torch.LongTensor] = None,
|
|
21
|
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
22
|
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
23
|
-
labels: Optional[torch.LongTensor] = None,
|
|
24
|
-
use_cache: Optional[bool] = None,
|
|
25
|
-
output_attentions: Optional[bool] = None,
|
|
26
|
-
output_hidden_states: Optional[bool] = None,
|
|
27
|
-
return_dict: Optional[bool] = None,
|
|
28
|
-
cache_position: Optional[torch.LongTensor] = None,
|
|
29
|
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
30
|
-
r"""
|
|
31
|
-
Copy paste phi3 forward from transfomers v4.44.2 but replace torch cross entropy with liger fused linear cross entropy
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
Args:
|
|
35
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
36
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
37
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
38
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
39
|
-
|
|
40
|
-
Returns:
|
|
41
|
-
|
|
42
|
-
Example:
|
|
43
|
-
|
|
44
|
-
```python
|
|
45
|
-
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
46
|
-
|
|
47
|
-
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
48
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
49
|
-
|
|
50
|
-
>>> prompt = "This is an example script ."
|
|
51
|
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
52
|
-
|
|
53
|
-
>>> # Generate
|
|
54
|
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
55
|
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
56
|
-
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
|
57
|
-
```"""
|
|
58
|
-
|
|
59
|
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
60
|
-
output_hidden_states = (
|
|
61
|
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
62
|
-
)
|
|
63
|
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
64
|
-
|
|
65
|
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
66
|
-
outputs = self.model(
|
|
67
|
-
input_ids=input_ids,
|
|
68
|
-
attention_mask=attention_mask,
|
|
69
|
-
position_ids=position_ids,
|
|
70
|
-
past_key_values=past_key_values,
|
|
71
|
-
inputs_embeds=inputs_embeds,
|
|
72
|
-
use_cache=use_cache,
|
|
73
|
-
output_attentions=output_attentions,
|
|
74
|
-
output_hidden_states=output_hidden_states,
|
|
75
|
-
return_dict=return_dict,
|
|
76
|
-
)
|
|
77
|
-
|
|
78
|
-
hidden_states = outputs[0]
|
|
79
|
-
|
|
80
|
-
loss = None
|
|
81
|
-
logits = None
|
|
82
|
-
|
|
83
|
-
if self.training and labels is not None:
|
|
84
|
-
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
85
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
86
|
-
|
|
87
|
-
# flatten tokens
|
|
88
|
-
shift_hidden_states = shift_hidden_states.view(-1, self.config.hidden_size)
|
|
89
|
-
shift_labels = shift_labels.view(-1)
|
|
90
|
-
|
|
91
|
-
lce = LigerFusedLinearCrossEntropyLoss()
|
|
92
|
-
loss = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
|
|
93
|
-
else:
|
|
94
|
-
logits = self.lm_head(hidden_states)
|
|
95
|
-
|
|
96
|
-
loss = None
|
|
97
|
-
if labels is not None:
|
|
98
|
-
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
|
99
|
-
logits = logits.float()
|
|
100
|
-
# Shift so that tokens < n predict n
|
|
101
|
-
shift_logits = logits[..., :-1, :].contiguous()
|
|
102
|
-
shift_labels = labels[..., 1:].contiguous()
|
|
103
|
-
# Flatten the tokens
|
|
104
|
-
loss_fct = CrossEntropyLoss()
|
|
105
|
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
106
|
-
shift_labels = shift_labels.view(-1)
|
|
107
|
-
# Enable model parallelism
|
|
108
|
-
shift_labels = shift_labels.to(shift_logits.device)
|
|
109
|
-
loss = loss_fct(shift_logits, shift_labels)
|
|
110
|
-
|
|
111
|
-
if not return_dict:
|
|
112
|
-
output = (logits,) + outputs[1:]
|
|
113
|
-
return (loss,) + output if loss is not None else output
|
|
114
|
-
|
|
115
|
-
return CausalLMOutputWithPast(
|
|
116
|
-
loss=loss,
|
|
117
|
-
logits=logits,
|
|
118
|
-
past_key_values=outputs.past_key_values,
|
|
119
|
-
hidden_states=outputs.hidden_states,
|
|
120
|
-
attentions=outputs.attentions,
|
|
121
|
-
)
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
125
15
|
def lce_forward(
|
|
126
16
|
self,
|
|
127
17
|
input_ids: torch.LongTensor = None,
|
|
@@ -138,75 +28,43 @@ def lce_forward(
|
|
|
138
28
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
139
29
|
skip_logits: Optional[bool] = None,
|
|
140
30
|
**kwargs,
|
|
141
|
-
) -> Union[Tuple,
|
|
31
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
142
32
|
r"""
|
|
143
|
-
Args:
|
|
144
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
145
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
146
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
147
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
148
|
-
|
|
149
|
-
logits_to_keep (`int` or `torch.Tensor`, *optional*):
|
|
150
|
-
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
|
|
151
|
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
152
|
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
153
|
-
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
|
|
154
|
-
This is useful when using packed tensor format (single dimension for batch and sequence length).
|
|
155
|
-
|
|
156
|
-
Returns:
|
|
157
|
-
|
|
158
33
|
Example:
|
|
159
34
|
|
|
160
35
|
```python
|
|
161
36
|
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
162
37
|
|
|
163
|
-
>>> model = Phi3ForCausalLM.from_pretrained("
|
|
164
|
-
>>> tokenizer = AutoTokenizer.from_pretrained("
|
|
38
|
+
>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
|
39
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
|
|
165
40
|
|
|
166
|
-
>>> prompt = "
|
|
41
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
167
42
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
168
43
|
|
|
169
44
|
>>> # Generate
|
|
170
45
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
171
46
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
172
|
-
|
|
47
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
173
48
|
```"""
|
|
174
49
|
|
|
175
|
-
from transformers.models.phi3.modeling_phi3 import logging
|
|
176
|
-
|
|
177
|
-
logger = logging.get_logger(__name__)
|
|
178
|
-
|
|
179
|
-
if (
|
|
180
|
-
use_cache
|
|
181
|
-
and self.config.rope_scaling
|
|
182
|
-
and cache_position is not None
|
|
183
|
-
and cache_position[0] == self.config.original_max_position_embeddings
|
|
184
|
-
):
|
|
185
|
-
logger.warning(
|
|
186
|
-
f"If you are not using the generate method, you may encounter nonsensical outputs after the {self.config.original_max_position_embeddings}th token, as the KV cache needs to be recomputed."
|
|
187
|
-
)
|
|
188
|
-
|
|
189
50
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
190
51
|
output_hidden_states = (
|
|
191
52
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
192
53
|
)
|
|
193
54
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
194
55
|
|
|
195
|
-
|
|
196
|
-
outputs = self.model(
|
|
56
|
+
outputs: BaseModelOutputWithPast = self.model(
|
|
197
57
|
input_ids=input_ids,
|
|
198
58
|
attention_mask=attention_mask,
|
|
199
59
|
position_ids=position_ids,
|
|
200
60
|
past_key_values=past_key_values,
|
|
201
61
|
inputs_embeds=inputs_embeds,
|
|
202
62
|
use_cache=use_cache,
|
|
203
|
-
|
|
204
|
-
output_hidden_states=output_hidden_states,
|
|
205
|
-
return_dict=return_dict,
|
|
63
|
+
cache_position=cache_position,
|
|
206
64
|
**kwargs,
|
|
207
65
|
)
|
|
208
66
|
|
|
209
|
-
hidden_states = outputs
|
|
67
|
+
hidden_states = outputs.last_hidden_state
|
|
210
68
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
211
69
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
212
70
|
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
@@ -214,6 +72,7 @@ def lce_forward(
|
|
|
214
72
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
215
73
|
logits = None
|
|
216
74
|
loss = None
|
|
75
|
+
token_accuracy = None
|
|
217
76
|
|
|
218
77
|
if skip_logits and labels is None and shift_labels is None:
|
|
219
78
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -222,8 +81,9 @@ def lce_forward(
|
|
|
222
81
|
# By default, if in training mode, don't materialize logits
|
|
223
82
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
224
83
|
|
|
84
|
+
# Compute loss
|
|
225
85
|
if skip_logits:
|
|
226
|
-
|
|
86
|
+
result = LigerForCausalLMLoss(
|
|
227
87
|
hidden_states=kept_hidden_states,
|
|
228
88
|
lm_head_weight=self.lm_head.weight,
|
|
229
89
|
labels=labels,
|
|
@@ -231,25 +91,30 @@ def lce_forward(
|
|
|
231
91
|
hidden_size=self.config.hidden_size,
|
|
232
92
|
**kwargs,
|
|
233
93
|
)
|
|
234
|
-
|
|
94
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
235
95
|
else:
|
|
236
96
|
logits = self.lm_head(kept_hidden_states)
|
|
237
|
-
if labels is not None:
|
|
97
|
+
if labels is not None or shift_labels is not None:
|
|
238
98
|
loss = self.loss_function(
|
|
239
99
|
logits=logits,
|
|
240
100
|
labels=labels,
|
|
101
|
+
shift_labels=shift_labels,
|
|
241
102
|
vocab_size=self.config.vocab_size,
|
|
242
103
|
**kwargs,
|
|
243
104
|
)
|
|
244
105
|
|
|
245
106
|
if not return_dict:
|
|
246
|
-
|
|
247
|
-
|
|
107
|
+
output_tuple = (logits,) + outputs[1:]
|
|
108
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
109
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
110
|
+
return output
|
|
248
111
|
|
|
249
|
-
|
|
112
|
+
# Return custom output class with token_accuracy field
|
|
113
|
+
return LigerCausalLMOutputWithPast(
|
|
250
114
|
loss=loss,
|
|
251
115
|
logits=logits,
|
|
252
116
|
past_key_values=outputs.past_key_values,
|
|
253
117
|
hidden_states=outputs.hidden_states,
|
|
254
118
|
attentions=outputs.attentions,
|
|
119
|
+
token_accuracy=token_accuracy,
|
|
255
120
|
)
|
|
@@ -11,6 +11,8 @@ from transformers.utils.deprecation import deprecate_kwarg
|
|
|
11
11
|
|
|
12
12
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
13
13
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
14
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
15
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
14
16
|
|
|
15
17
|
|
|
16
18
|
def lce_forward_deprecated(
|
|
@@ -26,6 +28,7 @@ def lce_forward_deprecated(
|
|
|
26
28
|
output_hidden_states: Optional[bool] = None,
|
|
27
29
|
return_dict: Optional[bool] = None,
|
|
28
30
|
cache_position: Optional[torch.LongTensor] = None,
|
|
31
|
+
skip_logits: Optional[bool] = None,
|
|
29
32
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
30
33
|
r"""
|
|
31
34
|
Copy paste Qwen2's forward but replace torch cross entropy with liger fused linear cross entropy
|
|
@@ -80,6 +83,13 @@ def lce_forward_deprecated(
|
|
|
80
83
|
loss = None
|
|
81
84
|
logits = None
|
|
82
85
|
|
|
86
|
+
if skip_logits and labels is None:
|
|
87
|
+
raise ValueError("skip_logits is True, but labels is None")
|
|
88
|
+
|
|
89
|
+
if skip_logits is None:
|
|
90
|
+
# By default, if in training mode, don't materialize logits
|
|
91
|
+
skip_logits = self.training and labels is not None
|
|
92
|
+
|
|
83
93
|
if self.training and (labels is not None):
|
|
84
94
|
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
85
95
|
shift_labels = labels[..., 1:].contiguous()
|
|
@@ -137,7 +147,7 @@ def lce_forward(
|
|
|
137
147
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
138
148
|
skip_logits: Optional[bool] = None,
|
|
139
149
|
**kwargs,
|
|
140
|
-
) -> Union[Tuple,
|
|
150
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
141
151
|
r"""
|
|
142
152
|
Args:
|
|
143
153
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -200,6 +210,7 @@ def lce_forward(
|
|
|
200
210
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
201
211
|
logits = None
|
|
202
212
|
loss = None
|
|
213
|
+
token_accuracy = None
|
|
203
214
|
|
|
204
215
|
if skip_logits and labels is None and shift_labels is None:
|
|
205
216
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -208,8 +219,9 @@ def lce_forward(
|
|
|
208
219
|
# By default, if in training mode, don't materialize logits
|
|
209
220
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
210
221
|
|
|
222
|
+
# Compute loss
|
|
211
223
|
if skip_logits:
|
|
212
|
-
|
|
224
|
+
result = LigerForCausalLMLoss(
|
|
213
225
|
hidden_states=kept_hidden_states,
|
|
214
226
|
lm_head_weight=self.lm_head.weight,
|
|
215
227
|
labels=labels,
|
|
@@ -217,21 +229,31 @@ def lce_forward(
|
|
|
217
229
|
hidden_size=self.config.hidden_size,
|
|
218
230
|
**kwargs,
|
|
219
231
|
)
|
|
232
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
220
233
|
|
|
221
234
|
else:
|
|
222
235
|
logits = self.lm_head(kept_hidden_states)
|
|
223
|
-
if labels is not None:
|
|
236
|
+
if labels is not None or shift_labels is not None:
|
|
224
237
|
loss = self.loss_function(
|
|
225
238
|
logits=logits,
|
|
226
239
|
labels=labels,
|
|
240
|
+
shift_labels=shift_labels,
|
|
227
241
|
vocab_size=self.config.vocab_size,
|
|
228
242
|
**kwargs,
|
|
229
243
|
)
|
|
230
244
|
|
|
231
|
-
|
|
245
|
+
if not return_dict:
|
|
246
|
+
output_tuple = (logits,) + outputs[1:]
|
|
247
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
248
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
249
|
+
return output
|
|
250
|
+
|
|
251
|
+
# Return custom output class with token accuracy field
|
|
252
|
+
return LigerCausalLMOutputWithPast(
|
|
232
253
|
loss=loss,
|
|
233
254
|
logits=logits,
|
|
234
255
|
past_key_values=outputs.past_key_values,
|
|
235
256
|
hidden_states=outputs.hidden_states,
|
|
236
257
|
attentions=outputs.attentions,
|
|
258
|
+
token_accuracy=token_accuracy,
|
|
237
259
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLCausalLMOutputWithPast
|
|
9
8
|
from transformers.utils import can_return_tuple
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerQwen2_5_VLCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@can_return_tuple
|
|
@@ -33,7 +34,7 @@ def lce_forward(
|
|
|
33
34
|
second_per_grid_ts: Optional[torch.Tensor] = None,
|
|
34
35
|
skip_logits: Optional[bool] = None,
|
|
35
36
|
**kwargs,
|
|
36
|
-
) -> Union[Tuple,
|
|
37
|
+
) -> Union[Tuple, LigerQwen2_5_VLCausalLMOutputWithPast]:
|
|
37
38
|
r"""
|
|
38
39
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
39
40
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -113,6 +114,7 @@ def lce_forward(
|
|
|
113
114
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
114
115
|
loss = None
|
|
115
116
|
logits = None
|
|
117
|
+
token_accuracy = None
|
|
116
118
|
|
|
117
119
|
if skip_logits and labels is None and shift_labels is None:
|
|
118
120
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -120,8 +122,9 @@ def lce_forward(
|
|
|
120
122
|
if skip_logits is None:
|
|
121
123
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
122
124
|
|
|
125
|
+
# Compute loss
|
|
123
126
|
if skip_logits:
|
|
124
|
-
|
|
127
|
+
result = LigerForCausalLMLoss(
|
|
125
128
|
hidden_states=hidden_states,
|
|
126
129
|
lm_head_weight=self.lm_head.weight,
|
|
127
130
|
labels=labels,
|
|
@@ -129,22 +132,32 @@ def lce_forward(
|
|
|
129
132
|
hidden_size=self.config.hidden_size,
|
|
130
133
|
**kwargs,
|
|
131
134
|
)
|
|
135
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
132
136
|
else:
|
|
133
137
|
logits = self.lm_head(hidden_states)
|
|
134
138
|
|
|
135
139
|
loss = None
|
|
136
|
-
if labels is not None:
|
|
137
|
-
loss = self.loss_function(
|
|
140
|
+
if labels is not None or shift_labels is not None:
|
|
141
|
+
loss = self.loss_function(
|
|
142
|
+
logits=logits,
|
|
143
|
+
labels=labels,
|
|
144
|
+
shift_labels=shift_labels,
|
|
145
|
+
vocab_size=self.config.vocab_size,
|
|
146
|
+
)
|
|
138
147
|
|
|
139
148
|
if not return_dict:
|
|
140
|
-
|
|
141
|
-
|
|
149
|
+
output_tuple = (logits,) + outputs[1:]
|
|
150
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
151
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
152
|
+
return output
|
|
142
153
|
|
|
143
|
-
|
|
154
|
+
# Return Qwen2.5-VL output with token accuracy
|
|
155
|
+
return LigerQwen2_5_VLCausalLMOutputWithPast(
|
|
144
156
|
loss=loss,
|
|
145
157
|
logits=logits,
|
|
146
158
|
past_key_values=outputs.past_key_values,
|
|
147
159
|
hidden_states=outputs.hidden_states,
|
|
148
160
|
attentions=outputs.attentions,
|
|
149
161
|
rope_deltas=outputs.rope_deltas,
|
|
162
|
+
token_accuracy=token_accuracy,
|
|
150
163
|
)
|
|
@@ -5,10 +5,11 @@ from typing import Union
|
|
|
5
5
|
|
|
6
6
|
import torch
|
|
7
7
|
|
|
8
|
-
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast
|
|
9
8
|
from transformers.utils import can_return_tuple
|
|
10
9
|
|
|
11
10
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerQwen2VLCausalLMOutputWithPast
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
@can_return_tuple
|
|
@@ -32,7 +33,7 @@ def lce_forward(
|
|
|
32
33
|
cache_position: Optional[torch.LongTensor] = None,
|
|
33
34
|
skip_logits: Optional[bool] = None,
|
|
34
35
|
**kwargs,
|
|
35
|
-
) -> Union[Tuple,
|
|
36
|
+
) -> Union[Tuple, LigerQwen2VLCausalLMOutputWithPast]:
|
|
36
37
|
r"""
|
|
37
38
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
38
39
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -109,6 +110,7 @@ def lce_forward(
|
|
|
109
110
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
110
111
|
loss = None
|
|
111
112
|
logits = None
|
|
113
|
+
token_accuracy = None
|
|
112
114
|
|
|
113
115
|
if skip_logits and labels is None and shift_labels is None:
|
|
114
116
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -116,8 +118,9 @@ def lce_forward(
|
|
|
116
118
|
if skip_logits is None:
|
|
117
119
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
118
120
|
|
|
121
|
+
# Compute loss
|
|
119
122
|
if skip_logits:
|
|
120
|
-
|
|
123
|
+
result = LigerForCausalLMLoss(
|
|
121
124
|
hidden_states=hidden_states,
|
|
122
125
|
lm_head_weight=self.lm_head.weight,
|
|
123
126
|
labels=labels,
|
|
@@ -125,18 +128,32 @@ def lce_forward(
|
|
|
125
128
|
hidden_size=self.config.hidden_size,
|
|
126
129
|
**kwargs,
|
|
127
130
|
)
|
|
131
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
128
132
|
else:
|
|
129
133
|
logits = self.lm_head(hidden_states)
|
|
130
134
|
|
|
131
135
|
loss = None
|
|
132
|
-
if labels is not None:
|
|
133
|
-
loss = self.loss_function(
|
|
134
|
-
|
|
135
|
-
|
|
136
|
+
if labels is not None or shift_labels is not None:
|
|
137
|
+
loss = self.loss_function(
|
|
138
|
+
logits=logits,
|
|
139
|
+
labels=labels,
|
|
140
|
+
shift_labels=shift_labels,
|
|
141
|
+
vocab_size=self.config.vocab_size,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
if not return_dict:
|
|
145
|
+
output_tuple = (logits,) + outputs[1:]
|
|
146
|
+
output = (loss,) + output_tuple if loss is not None else output_tuple
|
|
147
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
148
|
+
return output
|
|
149
|
+
|
|
150
|
+
# Return Qwen2VL output with token accuracy
|
|
151
|
+
return LigerQwen2VLCausalLMOutputWithPast(
|
|
136
152
|
loss=loss,
|
|
137
153
|
logits=logits,
|
|
138
154
|
past_key_values=outputs.past_key_values,
|
|
139
155
|
hidden_states=outputs.hidden_states,
|
|
140
156
|
attentions=outputs.attentions,
|
|
141
157
|
rope_deltas=outputs.rope_deltas,
|
|
158
|
+
token_accuracy=token_accuracy,
|
|
142
159
|
)
|
|
@@ -4,9 +4,9 @@ from typing import Union
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
|
|
7
|
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
8
|
-
|
|
9
7
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
8
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
9
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
10
10
|
|
|
11
11
|
|
|
12
12
|
def lce_forward(
|
|
@@ -23,8 +23,9 @@ def lce_forward(
|
|
|
23
23
|
cache_position: Optional[torch.LongTensor] = None,
|
|
24
24
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
25
25
|
skip_logits: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
26
27
|
**kwargs,
|
|
27
|
-
) ->
|
|
28
|
+
) -> LigerCausalLMOutputWithPast:
|
|
28
29
|
r"""
|
|
29
30
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
30
31
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
@@ -60,6 +61,7 @@ def lce_forward(
|
|
|
60
61
|
output_hidden_states = (
|
|
61
62
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
62
63
|
)
|
|
64
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
63
65
|
|
|
64
66
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
65
67
|
outputs = self.model(
|
|
@@ -81,8 +83,11 @@ def lce_forward(
|
|
|
81
83
|
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
82
84
|
|
|
83
85
|
shift_labels = kwargs.pop("shift_labels", None)
|
|
86
|
+
# Remove output-control parameters that shouldn't be passed to loss functions
|
|
87
|
+
kwargs.pop("return_dict", None)
|
|
84
88
|
logits = None
|
|
85
89
|
loss = None
|
|
90
|
+
token_accuracy = None
|
|
86
91
|
|
|
87
92
|
if skip_logits and labels is None and shift_labels is None:
|
|
88
93
|
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
@@ -91,8 +96,9 @@ def lce_forward(
|
|
|
91
96
|
# By default, if in training mode, don't materialize logits
|
|
92
97
|
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
93
98
|
|
|
99
|
+
# Compute loss
|
|
94
100
|
if skip_logits:
|
|
95
|
-
|
|
101
|
+
result = LigerForCausalLMLoss(
|
|
96
102
|
hidden_states=kept_hidden_states,
|
|
97
103
|
lm_head_weight=self.lm_head.weight,
|
|
98
104
|
labels=labels,
|
|
@@ -100,21 +106,31 @@ def lce_forward(
|
|
|
100
106
|
hidden_size=self.config.hidden_size,
|
|
101
107
|
**kwargs,
|
|
102
108
|
)
|
|
109
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
103
110
|
|
|
104
111
|
else:
|
|
105
112
|
logits = self.lm_head(kept_hidden_states)
|
|
106
|
-
if labels is not None:
|
|
113
|
+
if labels is not None or shift_labels is not None:
|
|
107
114
|
loss = self.loss_function(
|
|
108
115
|
logits=logits,
|
|
109
116
|
labels=labels,
|
|
117
|
+
shift_labels=shift_labels,
|
|
110
118
|
vocab_size=self.config.vocab_size,
|
|
111
119
|
**kwargs,
|
|
112
120
|
)
|
|
113
121
|
|
|
114
|
-
|
|
122
|
+
if not return_dict:
|
|
123
|
+
output = (logits,) + outputs[1:]
|
|
124
|
+
output = ((loss,) + output) if loss is not None else output
|
|
125
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
126
|
+
return output
|
|
127
|
+
|
|
128
|
+
# Return custom output class with accuracy field
|
|
129
|
+
return LigerCausalLMOutputWithPast(
|
|
115
130
|
loss=loss,
|
|
116
131
|
logits=logits,
|
|
117
132
|
past_key_values=outputs.past_key_values,
|
|
118
133
|
hidden_states=outputs.hidden_states,
|
|
119
134
|
attentions=outputs.attentions,
|
|
135
|
+
token_accuracy=token_accuracy,
|
|
120
136
|
)
|