liger-kernel-nightly 0.5.10.dev20250611191801__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (107) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +54 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
  7. liger_kernel/chunked_loss/grpo_loss.py +46 -9
  8. liger_kernel/chunked_loss/jsd_loss.py +44 -13
  9. liger_kernel/ops/__init__.py +141 -0
  10. liger_kernel/ops/backends/README.md +151 -0
  11. liger_kernel/ops/backends/__init__.py +13 -0
  12. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  13. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  14. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  15. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  16. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  17. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  18. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  19. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  20. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  21. liger_kernel/ops/backends/registry.py +61 -0
  22. liger_kernel/ops/cross_entropy.py +130 -64
  23. liger_kernel/ops/dyt.py +5 -4
  24. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  25. liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
  26. liger_kernel/ops/geglu.py +6 -4
  27. liger_kernel/ops/group_norm.py +7 -7
  28. liger_kernel/ops/grpo_loss.py +3 -1
  29. liger_kernel/ops/kl_div.py +8 -11
  30. liger_kernel/ops/layer_norm.py +135 -80
  31. liger_kernel/ops/llama4_rope.py +225 -0
  32. liger_kernel/ops/poly_norm.py +390 -0
  33. liger_kernel/ops/rms_norm.py +148 -71
  34. liger_kernel/ops/rope.py +1 -1
  35. liger_kernel/ops/swiglu.py +1 -1
  36. liger_kernel/ops/tiled_mlp.py +136 -0
  37. liger_kernel/ops/utils.py +14 -0
  38. liger_kernel/transformers/__init__.py +65 -0
  39. liger_kernel/transformers/auto_model.py +21 -0
  40. liger_kernel/transformers/cross_entropy.py +9 -4
  41. liger_kernel/transformers/dyt.py +1 -1
  42. liger_kernel/transformers/experimental/__init__.py +5 -0
  43. liger_kernel/transformers/experimental/embedding.py +1 -1
  44. liger_kernel/transformers/functional.py +56 -24
  45. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  46. liger_kernel/transformers/fused_linear_cross_entropy.py +17 -5
  47. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  48. liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
  49. liger_kernel/transformers/geglu.py +1 -1
  50. liger_kernel/transformers/group_norm.py +1 -1
  51. liger_kernel/transformers/grpo_loss.py +57 -2
  52. liger_kernel/transformers/jsd.py +1 -1
  53. liger_kernel/transformers/kl_div.py +1 -1
  54. liger_kernel/transformers/layer_norm.py +1 -1
  55. liger_kernel/transformers/llama4_rope.py +93 -0
  56. liger_kernel/transformers/model/exaone4.py +136 -0
  57. liger_kernel/transformers/model/falcon_h1.py +122 -0
  58. liger_kernel/transformers/model/gemma.py +28 -8
  59. liger_kernel/transformers/model/gemma2.py +34 -11
  60. liger_kernel/transformers/model/gemma3.py +102 -112
  61. liger_kernel/transformers/model/glm4.py +18 -5
  62. liger_kernel/transformers/model/glm4v.py +163 -0
  63. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  64. liger_kernel/transformers/model/gpt_oss.py +211 -0
  65. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  66. liger_kernel/transformers/model/internvl.py +157 -0
  67. liger_kernel/transformers/model/llama.py +26 -7
  68. liger_kernel/transformers/model/llama4.py +121 -0
  69. liger_kernel/transformers/model/llava.py +18 -6
  70. liger_kernel/transformers/model/loss_utils.py +34 -3
  71. liger_kernel/transformers/model/mistral.py +17 -10
  72. liger_kernel/transformers/model/mixtral.py +24 -9
  73. liger_kernel/transformers/model/mllama.py +18 -7
  74. liger_kernel/transformers/model/olmo2.py +18 -5
  75. liger_kernel/transformers/model/olmo3.py +142 -0
  76. liger_kernel/transformers/model/output_classes.py +147 -0
  77. liger_kernel/transformers/model/paligemma.py +42 -5
  78. liger_kernel/transformers/model/phi3.py +24 -159
  79. liger_kernel/transformers/model/qwen2.py +26 -4
  80. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  81. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  82. liger_kernel/transformers/model/qwen3.py +22 -6
  83. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  84. liger_kernel/transformers/model/qwen3_next.py +146 -0
  85. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  86. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  87. liger_kernel/transformers/model/smollm3.py +199 -0
  88. liger_kernel/transformers/model/smolvlm.py +158 -0
  89. liger_kernel/transformers/monkey_patch.py +1423 -100
  90. liger_kernel/transformers/multi_token_attention.py +2 -2
  91. liger_kernel/transformers/poly_norm.py +42 -0
  92. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  93. liger_kernel/transformers/rms_norm.py +15 -5
  94. liger_kernel/transformers/rope.py +45 -1
  95. liger_kernel/transformers/softmax.py +1 -1
  96. liger_kernel/transformers/sparsemax.py +1 -1
  97. liger_kernel/transformers/swiglu.py +18 -1
  98. liger_kernel/transformers/tiled_mlp.py +125 -0
  99. liger_kernel/transformers/tvd.py +1 -1
  100. liger_kernel/utils.py +52 -0
  101. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +37 -25
  102. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  103. liger_kernel_nightly-0.5.10.dev20250611191801.dist-info/RECORD +0 -95
  104. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  105. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  106. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  107. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -5,10 +5,11 @@ from typing import Union
5
5
 
6
6
  import torch
7
7
 
8
- from transformers.modeling_outputs import CausalLMOutputWithPast
9
8
  from transformers.utils.deprecation import deprecate_kwarg
10
9
 
11
10
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
12
13
 
13
14
 
14
15
  @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@@ -28,7 +29,7 @@ def lce_forward(
28
29
  logits_to_keep: Union[int, torch.Tensor] = 0,
29
30
  skip_logits: Optional[bool] = None,
30
31
  **kwargs,
31
- ) -> Union[Tuple, CausalLMOutputWithPast]:
32
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
32
33
  r"""
33
34
  Args:
34
35
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -91,6 +92,7 @@ def lce_forward(
91
92
  shift_labels = kwargs.pop("shift_labels", None)
92
93
  logits = None
93
94
  loss = None
95
+ token_accuracy = None
94
96
 
95
97
  if skip_logits and labels is None and shift_labels is None:
96
98
  raise ValueError("skip_logits is True, but labels and shift_labels are None")
@@ -99,8 +101,9 @@ def lce_forward(
99
101
  # By default, if in training mode, don't materialize logits
100
102
  skip_logits = self.training and (labels is not None or shift_labels is not None)
101
103
 
104
+ # Compute loss
102
105
  if skip_logits:
103
- loss = LigerForCausalLMLoss(
106
+ result = LigerForCausalLMLoss(
104
107
  hidden_states=kept_hidden_states,
105
108
  lm_head_weight=self.lm_head.weight,
106
109
  labels=labels,
@@ -108,21 +111,31 @@ def lce_forward(
108
111
  hidden_size=self.config.hidden_size,
109
112
  **kwargs,
110
113
  )
114
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
111
115
 
112
116
  else:
113
117
  logits = self.lm_head(kept_hidden_states)
114
- if labels is not None:
118
+ if labels is not None or shift_labels is not None:
115
119
  loss = self.loss_function(
116
120
  logits=logits,
117
121
  labels=labels,
122
+ shift_labels=shift_labels,
118
123
  vocab_size=self.config.vocab_size,
119
124
  **kwargs,
120
125
  )
121
126
 
122
- return CausalLMOutputWithPast(
127
+ if not return_dict:
128
+ output = (logits,) + outputs[1:]
129
+ output = ((loss,) + output) if loss is not None else output
130
+ output = output + (token_accuracy,) if token_accuracy is not None else output
131
+ return output
132
+
133
+ # Return custom output class with token_accuracy field
134
+ return LigerCausalLMOutputWithPast(
123
135
  loss=loss,
124
136
  logits=logits,
125
137
  past_key_values=outputs.past_key_values,
126
138
  hidden_states=outputs.hidden_states,
127
139
  attentions=outputs.attentions,
140
+ token_accuracy=token_accuracy,
128
141
  )
@@ -0,0 +1,142 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.modeling_outputs import BaseModelOutputWithPast
9
+ from transformers.utils.deprecation import deprecate_kwarg
10
+
11
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
12
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
13
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
14
+
15
+
16
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
17
+ def lce_forward(
18
+ self,
19
+ input_ids: torch.LongTensor = None,
20
+ attention_mask: Optional[torch.Tensor] = None,
21
+ position_ids: Optional[torch.LongTensor] = None,
22
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
23
+ inputs_embeds: Optional[torch.FloatTensor] = None,
24
+ labels: Optional[torch.LongTensor] = None,
25
+ use_cache: Optional[bool] = None,
26
+ output_attentions: Optional[bool] = None,
27
+ output_hidden_states: Optional[bool] = None,
28
+ return_dict: Optional[bool] = None,
29
+ cache_position: Optional[torch.LongTensor] = None,
30
+ logits_to_keep: Union[int, torch.Tensor] = 0,
31
+ skip_logits: Optional[bool] = None,
32
+ **kwargs,
33
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
34
+ r"""
35
+ Args:
36
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
37
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
38
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
39
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
40
+
41
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
42
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
43
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
44
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
45
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
46
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
47
+
48
+ Returns:
49
+
50
+ Example:
51
+
52
+ ```python
53
+ >>> from transformers import AutoTokenizer, Olmo3ForCausalLM
54
+
55
+ >>> model = Olmo3ForCausalLM.from_pretrained("allenai/Olmo-3-7B-Instruct")
56
+ >>> tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-7B-Instruct")
57
+
58
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
59
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
60
+
61
+ >>> # Generate
62
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
63
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
64
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
65
+ ```
66
+ """
67
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
68
+ output_hidden_states = (
69
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
70
+ )
71
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
72
+
73
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
74
+ outputs: BaseModelOutputWithPast = self.model(
75
+ input_ids=input_ids,
76
+ attention_mask=attention_mask,
77
+ position_ids=position_ids,
78
+ past_key_values=past_key_values,
79
+ inputs_embeds=inputs_embeds,
80
+ use_cache=use_cache,
81
+ output_attentions=output_attentions,
82
+ output_hidden_states=output_hidden_states,
83
+ return_dict=return_dict,
84
+ cache_position=cache_position,
85
+ **kwargs,
86
+ )
87
+
88
+ hidden_states = outputs[0]
89
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
90
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
91
+ kept_hidden_states = hidden_states[:, slice_indices, :]
92
+
93
+ shift_labels = kwargs.pop("shift_labels", None)
94
+ logits = None
95
+ loss = None
96
+ token_accuracy = None
97
+
98
+ if skip_logits and labels is None and shift_labels is None:
99
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
100
+
101
+ if skip_logits is None:
102
+ # By default, if in training mode, don't materialize logits
103
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
104
+
105
+ # Compute loss
106
+ if skip_logits:
107
+ result = LigerForCausalLMLoss(
108
+ hidden_states=kept_hidden_states,
109
+ lm_head_weight=self.lm_head.weight,
110
+ labels=labels,
111
+ shift_labels=shift_labels,
112
+ hidden_size=self.config.hidden_size,
113
+ **kwargs,
114
+ )
115
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
116
+
117
+ else:
118
+ logits = self.lm_head(kept_hidden_states)
119
+ if labels is not None or shift_labels is not None:
120
+ loss = self.loss_function(
121
+ logits=logits,
122
+ labels=labels,
123
+ shift_labels=shift_labels,
124
+ vocab_size=self.config.vocab_size,
125
+ **kwargs,
126
+ )
127
+
128
+ if not return_dict:
129
+ output = (logits,) + outputs[1:]
130
+ output = ((loss,) + output) if loss is not None else output
131
+ output = output + (token_accuracy,) if token_accuracy is not None else output
132
+ return output
133
+
134
+ # Return custom output class with token_accuracy field
135
+ return LigerCausalLMOutputWithPast(
136
+ loss=loss,
137
+ logits=logits,
138
+ past_key_values=outputs.past_key_values,
139
+ hidden_states=outputs.hidden_states,
140
+ attentions=outputs.attentions,
141
+ token_accuracy=token_accuracy,
142
+ )
@@ -0,0 +1,147 @@
1
+ """
2
+ Custom output classes for Liger-Kernel that extend transformers' ModelOutput classes
3
+ with optional token accuracy field.
4
+ """
5
+
6
+ from dataclasses import dataclass
7
+ from typing import Optional
8
+
9
+ import torch
10
+
11
+ from transformers.modeling_outputs import CausalLMOutputWithPast
12
+ from transformers.modeling_outputs import MoeCausalLMOutputWithPast
13
+
14
+ # The following model-specific outputs are optional and depend on the installed
15
+ # transformers version. Guard their imports so our module remains importable
16
+ # even when those models are not available in the environment.
17
+ try:
18
+ from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast as _Gemma3CausalLMOutputWithPast
19
+ except Exception:
20
+ _Gemma3CausalLMOutputWithPast = None
21
+
22
+ try:
23
+ from transformers.models.glm4v_moe.modeling_glm4v_moe import (
24
+ Glm4vMoeCausalLMOutputWithPast as _Glm4vMoeCausalLMOutputWithPast,
25
+ )
26
+ except Exception:
27
+ _Glm4vMoeCausalLMOutputWithPast = None
28
+
29
+ try:
30
+ from transformers.models.internvl.modeling_internvl import (
31
+ InternVLCausalLMOutputWithPast as _InternVLCausalLMOutputWithPast,
32
+ )
33
+ except Exception:
34
+ _InternVLCausalLMOutputWithPast = None
35
+
36
+ try:
37
+ from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast as _LlavaCausalLMOutputWithPast
38
+ except Exception:
39
+ _LlavaCausalLMOutputWithPast = None
40
+
41
+ try:
42
+ from transformers.models.paligemma.modeling_paligemma import (
43
+ PaliGemmaCausalLMOutputWithPast as _PaliGemmaCausalLMOutputWithPast,
44
+ )
45
+ except Exception:
46
+ _PaliGemmaCausalLMOutputWithPast = None
47
+
48
+ try:
49
+ from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
50
+ Qwen2_5_VLCausalLMOutputWithPast as _Qwen2_5_VLCausalLMOutputWithPast,
51
+ )
52
+ except Exception:
53
+ _Qwen2_5_VLCausalLMOutputWithPast = None
54
+
55
+ try:
56
+ from transformers.models.qwen2_vl.modeling_qwen2_vl import (
57
+ Qwen2VLCausalLMOutputWithPast as _Qwen2VLCausalLMOutputWithPast,
58
+ )
59
+ except Exception:
60
+ _Qwen2VLCausalLMOutputWithPast = None
61
+
62
+ try:
63
+ from transformers.models.qwen3_vl.modeling_qwen3_vl import (
64
+ Qwen3VLCausalLMOutputWithPast as _Qwen3VLCausalLMOutputWithPast,
65
+ )
66
+ except Exception:
67
+ _Qwen3VLCausalLMOutputWithPast = None
68
+
69
+ try:
70
+ from transformers.models.qwen3_vl_moe.modeling_qwen3_vl_moe import (
71
+ Qwen3VLMoeCausalLMOutputWithPast as _Qwen3VLMoeCausalLMOutputWithPast,
72
+ )
73
+ except Exception:
74
+ _Qwen3VLMoeCausalLMOutputWithPast = None
75
+
76
+
77
+ @dataclass
78
+ class LigerCausalLMOutputWithPast(CausalLMOutputWithPast):
79
+ token_accuracy: Optional[torch.FloatTensor] = None
80
+
81
+
82
+ @dataclass
83
+ class LigerMoeCausalLMOutputWithPast(MoeCausalLMOutputWithPast):
84
+ token_accuracy: Optional[torch.FloatTensor] = None
85
+
86
+
87
+ if _Gemma3CausalLMOutputWithPast is not None:
88
+
89
+ @dataclass
90
+ class LigerGemma3CausalLMOutputWithPast(_Gemma3CausalLMOutputWithPast):
91
+ token_accuracy: Optional[torch.FloatTensor] = None
92
+
93
+
94
+ if _Glm4vMoeCausalLMOutputWithPast is not None:
95
+
96
+ @dataclass
97
+ class LigerGlm4vMoeCausalLMOutputWithPast(_Glm4vMoeCausalLMOutputWithPast):
98
+ token_accuracy: Optional[torch.FloatTensor] = None
99
+
100
+
101
+ if _LlavaCausalLMOutputWithPast is not None:
102
+
103
+ @dataclass
104
+ class LigerLlavaCausalLMOutputWithPast(_LlavaCausalLMOutputWithPast):
105
+ token_accuracy: Optional[torch.FloatTensor] = None
106
+
107
+
108
+ if _InternVLCausalLMOutputWithPast is not None:
109
+
110
+ @dataclass
111
+ class LigerInternVLCausalLMOutputWithPast(_InternVLCausalLMOutputWithPast):
112
+ token_accuracy: Optional[torch.FloatTensor] = None
113
+
114
+
115
+ if _PaliGemmaCausalLMOutputWithPast is not None:
116
+
117
+ @dataclass
118
+ class LigerPaliGemmaCausalLMOutputWithPast(_PaliGemmaCausalLMOutputWithPast):
119
+ token_accuracy: Optional[torch.FloatTensor] = None
120
+
121
+
122
+ if _Qwen2_5_VLCausalLMOutputWithPast is not None:
123
+
124
+ @dataclass
125
+ class LigerQwen2_5_VLCausalLMOutputWithPast(_Qwen2_5_VLCausalLMOutputWithPast):
126
+ token_accuracy: Optional[torch.FloatTensor] = None
127
+
128
+
129
+ if _Qwen2VLCausalLMOutputWithPast is not None:
130
+
131
+ @dataclass
132
+ class LigerQwen2VLCausalLMOutputWithPast(_Qwen2VLCausalLMOutputWithPast):
133
+ token_accuracy: Optional[torch.FloatTensor] = None
134
+
135
+
136
+ if _Qwen3VLCausalLMOutputWithPast is not None:
137
+
138
+ @dataclass
139
+ class LigerQwen3VLCausalLMOutputWithPast(_Qwen3VLCausalLMOutputWithPast):
140
+ token_accuracy: Optional[torch.FloatTensor] = None
141
+
142
+
143
+ if _Qwen3VLMoeCausalLMOutputWithPast is not None:
144
+
145
+ @dataclass
146
+ class LigerQwen3VLMoeCausalLMOutputWithPast(_Qwen3VLMoeCausalLMOutputWithPast):
147
+ token_accuracy: Optional[torch.FloatTensor] = None
@@ -13,6 +13,9 @@ from transformers.utils import logging
13
13
  from transformers.utils.deprecation import deprecate_kwarg
14
14
 
15
15
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
16
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
17
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
18
+ from liger_kernel.transformers.model.output_classes import LigerPaliGemmaCausalLMOutputWithPast
16
19
 
17
20
  logger = logging.get_logger(__name__)
18
21
 
@@ -218,7 +221,7 @@ def lce_forward(
218
221
  logits_to_keep: Union[int, torch.Tensor] = 0,
219
222
  skip_logits: Optional[bool] = None,
220
223
  **lm_kwargs,
221
- ) -> Union[Tuple, PaliGemmaCausalLMOutputWithPast]:
224
+ ) -> Union[Tuple, LigerPaliGemmaCausalLMOutputWithPast]:
222
225
  r"""
223
226
  Args:
224
227
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -327,10 +330,12 @@ def lce_forward(
327
330
  **lm_kwargs,
328
331
  )
329
332
 
333
+ shift_labels = lm_kwargs.pop("shift_labels", None)
330
334
  hidden_states = outputs[0]
331
335
 
332
336
  loss = None
333
337
  logits = None
338
+ token_accuracy = None
334
339
 
335
340
  if skip_logits and labels is None:
336
341
  raise ValueError("skip_logits is True, but labels is None")
@@ -358,8 +363,16 @@ def lce_forward(
358
363
  shift_hidden_states = shift_hidden_states.view(-1, self.config.text_config.hidden_size)
359
364
  shift_labels = shift_labels.view(-1).to(hidden_device)
360
365
 
361
- lce = LigerFusedLinearCrossEntropyLoss()
362
- loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
366
+ # Use LigerForCausalLMLoss with accuracy support and pass already shifted labels
367
+ result = LigerForCausalLMLoss(
368
+ hidden_states=shift_hidden_states,
369
+ lm_head_weight=self.language_model.lm_head.weight,
370
+ labels=None,
371
+ shift_labels=shift_labels,
372
+ hidden_size=self.config.text_config.hidden_size,
373
+ **lm_kwargs,
374
+ )
375
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
363
376
  else:
364
377
  logits = self.language_model.lm_head(hidden_states)
365
378
  if labels is not None:
@@ -382,15 +395,39 @@ def lce_forward(
382
395
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
383
396
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
384
397
  loss = loss_fct(flat_logits, flat_labels)
398
+ elif shift_labels is not None:
399
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
400
+ logits = logits.float()
401
+ shift_logits = logits[..., :-1, :]
402
+ if attention_mask is not None:
403
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
404
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
405
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
406
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
407
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
408
+ else:
409
+ shift_logits = shift_logits.contiguous()
410
+ shift_labels = shift_labels.contiguous()
411
+ # Flatten the tokens
412
+ loss_fct = CrossEntropyLoss()
413
+
414
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
415
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
416
+ loss = loss_fct(flat_logits, flat_labels)
417
+
385
418
  if not return_dict:
386
419
  output = (logits,) + outputs[1:]
387
- return (loss,) + output if loss is not None else output
420
+ output = (loss,) + output if loss is not None else output
421
+ output = output + (token_accuracy,) if token_accuracy is not None else output
422
+ return output
388
423
 
389
- return PaliGemmaCausalLMOutputWithPast(
424
+ # Return PaliGemma output with token_accuracy field
425
+ return LigerPaliGemmaCausalLMOutputWithPast(
390
426
  loss=loss,
391
427
  logits=logits,
392
428
  past_key_values=outputs.past_key_values,
393
429
  hidden_states=outputs.hidden_states,
394
430
  attentions=outputs.attentions,
395
431
  image_hidden_states=image_features if pixel_values is not None else None,
432
+ token_accuracy=token_accuracy,
396
433
  )