liger-kernel-nightly 0.5.10.dev20250611191801__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (107) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +54 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
  7. liger_kernel/chunked_loss/grpo_loss.py +46 -9
  8. liger_kernel/chunked_loss/jsd_loss.py +44 -13
  9. liger_kernel/ops/__init__.py +141 -0
  10. liger_kernel/ops/backends/README.md +151 -0
  11. liger_kernel/ops/backends/__init__.py +13 -0
  12. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  13. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  14. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  15. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  16. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  17. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  18. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  19. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  20. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  21. liger_kernel/ops/backends/registry.py +61 -0
  22. liger_kernel/ops/cross_entropy.py +130 -64
  23. liger_kernel/ops/dyt.py +5 -4
  24. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  25. liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
  26. liger_kernel/ops/geglu.py +6 -4
  27. liger_kernel/ops/group_norm.py +7 -7
  28. liger_kernel/ops/grpo_loss.py +3 -1
  29. liger_kernel/ops/kl_div.py +8 -11
  30. liger_kernel/ops/layer_norm.py +135 -80
  31. liger_kernel/ops/llama4_rope.py +225 -0
  32. liger_kernel/ops/poly_norm.py +390 -0
  33. liger_kernel/ops/rms_norm.py +148 -71
  34. liger_kernel/ops/rope.py +1 -1
  35. liger_kernel/ops/swiglu.py +1 -1
  36. liger_kernel/ops/tiled_mlp.py +136 -0
  37. liger_kernel/ops/utils.py +14 -0
  38. liger_kernel/transformers/__init__.py +65 -0
  39. liger_kernel/transformers/auto_model.py +21 -0
  40. liger_kernel/transformers/cross_entropy.py +9 -4
  41. liger_kernel/transformers/dyt.py +1 -1
  42. liger_kernel/transformers/experimental/__init__.py +5 -0
  43. liger_kernel/transformers/experimental/embedding.py +1 -1
  44. liger_kernel/transformers/functional.py +56 -24
  45. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  46. liger_kernel/transformers/fused_linear_cross_entropy.py +17 -5
  47. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  48. liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
  49. liger_kernel/transformers/geglu.py +1 -1
  50. liger_kernel/transformers/group_norm.py +1 -1
  51. liger_kernel/transformers/grpo_loss.py +57 -2
  52. liger_kernel/transformers/jsd.py +1 -1
  53. liger_kernel/transformers/kl_div.py +1 -1
  54. liger_kernel/transformers/layer_norm.py +1 -1
  55. liger_kernel/transformers/llama4_rope.py +93 -0
  56. liger_kernel/transformers/model/exaone4.py +136 -0
  57. liger_kernel/transformers/model/falcon_h1.py +122 -0
  58. liger_kernel/transformers/model/gemma.py +28 -8
  59. liger_kernel/transformers/model/gemma2.py +34 -11
  60. liger_kernel/transformers/model/gemma3.py +102 -112
  61. liger_kernel/transformers/model/glm4.py +18 -5
  62. liger_kernel/transformers/model/glm4v.py +163 -0
  63. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  64. liger_kernel/transformers/model/gpt_oss.py +211 -0
  65. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  66. liger_kernel/transformers/model/internvl.py +157 -0
  67. liger_kernel/transformers/model/llama.py +26 -7
  68. liger_kernel/transformers/model/llama4.py +121 -0
  69. liger_kernel/transformers/model/llava.py +18 -6
  70. liger_kernel/transformers/model/loss_utils.py +34 -3
  71. liger_kernel/transformers/model/mistral.py +17 -10
  72. liger_kernel/transformers/model/mixtral.py +24 -9
  73. liger_kernel/transformers/model/mllama.py +18 -7
  74. liger_kernel/transformers/model/olmo2.py +18 -5
  75. liger_kernel/transformers/model/olmo3.py +142 -0
  76. liger_kernel/transformers/model/output_classes.py +147 -0
  77. liger_kernel/transformers/model/paligemma.py +42 -5
  78. liger_kernel/transformers/model/phi3.py +24 -159
  79. liger_kernel/transformers/model/qwen2.py +26 -4
  80. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  81. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  82. liger_kernel/transformers/model/qwen3.py +22 -6
  83. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  84. liger_kernel/transformers/model/qwen3_next.py +146 -0
  85. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  86. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  87. liger_kernel/transformers/model/smollm3.py +199 -0
  88. liger_kernel/transformers/model/smolvlm.py +158 -0
  89. liger_kernel/transformers/monkey_patch.py +1423 -100
  90. liger_kernel/transformers/multi_token_attention.py +2 -2
  91. liger_kernel/transformers/poly_norm.py +42 -0
  92. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  93. liger_kernel/transformers/rms_norm.py +15 -5
  94. liger_kernel/transformers/rope.py +45 -1
  95. liger_kernel/transformers/softmax.py +1 -1
  96. liger_kernel/transformers/sparsemax.py +1 -1
  97. liger_kernel/transformers/swiglu.py +18 -1
  98. liger_kernel/transformers/tiled_mlp.py +125 -0
  99. liger_kernel/transformers/tvd.py +1 -1
  100. liger_kernel/utils.py +52 -0
  101. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +37 -25
  102. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  103. liger_kernel_nightly-0.5.10.dev20250611191801.dist-info/RECORD +0 -95
  104. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  105. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  106. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  107. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -5,17 +5,27 @@ from typing import TYPE_CHECKING
5
5
  # Always-safe imports (independent of 'transformers')
6
6
  from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
7
7
  from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
8
+ from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
8
9
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
9
10
  from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
10
11
  from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
11
12
  from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
13
+ from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
12
14
  from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
15
+ from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
16
+ from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
17
+ from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
18
+ from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
13
19
  from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
14
20
  from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
21
+ from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
22
+ from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
15
23
  from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
16
24
  from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
17
25
  from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
18
26
  from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
27
+ from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
28
+ from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
19
29
  from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
20
30
 
21
31
  # Static-only imports for IDEs and type checkers
@@ -23,18 +33,28 @@ if TYPE_CHECKING:
23
33
  from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
24
34
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
25
35
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
36
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_exaone4 # noqa: F401
37
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
26
38
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
27
39
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
28
40
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
29
41
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
30
42
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
43
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
44
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
45
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gpt_oss # noqa: F401
31
46
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
47
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
48
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
49
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
32
50
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
51
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
33
52
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
34
53
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
35
54
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
36
55
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
37
56
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
57
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
38
58
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
39
59
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
40
60
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
@@ -42,6 +62,11 @@ if TYPE_CHECKING:
42
62
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
43
63
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
44
64
  from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
65
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
66
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
67
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
68
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
69
+ from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
45
70
 
46
71
 
47
72
  # Check if 'transformers' is installed
@@ -79,18 +104,25 @@ def __getattr__(name: str):
79
104
  monkey_patch_symbols = {
80
105
  "_apply_liger_kernel",
81
106
  "_apply_liger_kernel_to_instance",
107
+ "apply_liger_kernel_to_falcon_h1",
82
108
  "apply_liger_kernel_to_gemma",
83
109
  "apply_liger_kernel_to_gemma2",
84
110
  "apply_liger_kernel_to_gemma3",
85
111
  "apply_liger_kernel_to_gemma3_text",
86
112
  "apply_liger_kernel_to_glm4",
113
+ "apply_liger_kernel_to_glm4v",
114
+ "apply_liger_kernel_to_glm4v_moe",
115
+ "apply_liger_kernel_to_gpt_oss",
87
116
  "apply_liger_kernel_to_granite",
117
+ "apply_liger_kernel_to_internvl",
88
118
  "apply_liger_kernel_to_llama",
89
119
  "apply_liger_kernel_to_llava",
120
+ "apply_liger_kernel_to_llama4",
90
121
  "apply_liger_kernel_to_mistral",
91
122
  "apply_liger_kernel_to_mixtral",
92
123
  "apply_liger_kernel_to_mllama",
93
124
  "apply_liger_kernel_to_olmo2",
125
+ "apply_liger_kernel_to_olmo3",
94
126
  "apply_liger_kernel_to_paligemma",
95
127
  "apply_liger_kernel_to_phi3",
96
128
  "apply_liger_kernel_to_qwen2",
@@ -98,6 +130,14 @@ def __getattr__(name: str):
98
130
  "apply_liger_kernel_to_qwen2_vl",
99
131
  "apply_liger_kernel_to_qwen3",
100
132
  "apply_liger_kernel_to_qwen3_moe",
133
+ "apply_liger_kernel_to_qwen3_next",
134
+ "apply_liger_kernel_to_qwen3_vl",
135
+ "apply_liger_kernel_to_qwen3_vl_moe",
136
+ "apply_liger_kernel_to_smollm3",
137
+ "apply_liger_kernel_to_smolvlm",
138
+ "apply_liger_kernel_to_hunyuan_v1_dense",
139
+ "apply_liger_kernel_to_hunyuan_v1_moe",
140
+ "apply_liger_kernel_to_exaone4",
101
141
  }
102
142
 
103
143
  if name in monkey_patch_symbols:
@@ -117,13 +157,23 @@ __all__ = [
117
157
  "LigerGEGLUMLP",
118
158
  "LigerJSD",
119
159
  "LigerLayerNorm",
160
+ "LigerFusedAddRMSNorm",
161
+ "LigerPolyNorm",
120
162
  "LigerRMSNorm",
121
163
  "liger_rotary_pos_emb",
164
+ "liger_llama4_text_rotary_pos_emb",
165
+ "liger_llama4_vision_rotary_pos_emb",
122
166
  "LigerBlockSparseTop2MLP",
123
167
  "LigerPhi3SwiGLUMLP",
124
168
  "LigerQwen3MoeSwiGLUMLP",
125
169
  "LigerSwiGLUMLP",
170
+ "LigerTiledGEGLUMLP",
171
+ "LigerTiledSwiGLUMLP",
126
172
  "LigerTVDLoss",
173
+ "LigerKLDIVLoss",
174
+ "LigerMultiTokenAttention",
175
+ "LigerSoftmax",
176
+ "LigerSparsemax",
127
177
  ]
128
178
 
129
179
  # Add transformer-dependent symbols only if available
@@ -133,18 +183,25 @@ if _TRANSFORMERS_AVAILABLE:
133
183
  "AutoLigerKernelForCausalLM",
134
184
  "_apply_liger_kernel",
135
185
  "_apply_liger_kernel_to_instance",
186
+ "apply_liger_kernel_to_falcon_h1",
136
187
  "apply_liger_kernel_to_gemma",
137
188
  "apply_liger_kernel_to_gemma2",
138
189
  "apply_liger_kernel_to_gemma3",
139
190
  "apply_liger_kernel_to_gemma3_text",
140
191
  "apply_liger_kernel_to_glm4",
192
+ "apply_liger_kernel_to_glm4v",
193
+ "apply_liger_kernel_to_glm4v_moe",
194
+ "apply_liger_kernel_to_gpt_oss",
141
195
  "apply_liger_kernel_to_granite",
196
+ "apply_liger_kernel_to_internvl",
142
197
  "apply_liger_kernel_to_llama",
143
198
  "apply_liger_kernel_to_llava",
199
+ "apply_liger_kernel_to_llama4",
144
200
  "apply_liger_kernel_to_mistral",
145
201
  "apply_liger_kernel_to_mixtral",
146
202
  "apply_liger_kernel_to_mllama",
147
203
  "apply_liger_kernel_to_olmo2",
204
+ "apply_liger_kernel_to_olmo3",
148
205
  "apply_liger_kernel_to_paligemma",
149
206
  "apply_liger_kernel_to_phi3",
150
207
  "apply_liger_kernel_to_qwen2",
@@ -152,5 +209,13 @@ if _TRANSFORMERS_AVAILABLE:
152
209
  "apply_liger_kernel_to_qwen2_vl",
153
210
  "apply_liger_kernel_to_qwen3",
154
211
  "apply_liger_kernel_to_qwen3_moe",
212
+ "apply_liger_kernel_to_qwen3_next",
213
+ "apply_liger_kernel_to_qwen3_vl",
214
+ "apply_liger_kernel_to_qwen3_vl_moe",
215
+ "apply_liger_kernel_to_smollm3",
216
+ "apply_liger_kernel_to_smolvlm",
217
+ "apply_liger_kernel_to_hunyuan_v1_dense",
218
+ "apply_liger_kernel_to_hunyuan_v1_moe",
219
+ "apply_liger_kernel_to_exaone4",
155
220
  ]
156
221
  )
@@ -1,4 +1,5 @@
1
1
  import inspect
2
+ import logging
2
3
 
3
4
  from transformers import AutoConfig
4
5
  from transformers import AutoModelForCausalLM
@@ -6,6 +7,8 @@ from transformers import AutoModelForCausalLM
6
7
  from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
7
8
  from liger_kernel.transformers.monkey_patch import _apply_liger_kernel
8
9
 
10
+ logger = logging.getLogger(__name__)
11
+
9
12
 
10
13
  def _get_model_config(model_dir, **model_init_kwargs):
11
14
  config = AutoConfig.from_pretrained(model_dir, **model_init_kwargs)
@@ -36,3 +39,21 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
36
39
  applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
37
40
 
38
41
  return super().from_pretrained(pretrained_model_name_or_path, *model_args, **applicable_kwargs)
42
+
43
+ @classmethod
44
+ def from_config(cls, config, **kwargs):
45
+ model_type = getattr(config, "model_type", None)
46
+ if not model_type:
47
+ logger.info("Model type could not be determined from model config. No Liger kernels will be applied.")
48
+ return
49
+ model_type = config.model_type
50
+
51
+ _apply_liger_kernel(model_type, **kwargs)
52
+
53
+ # Filter out kwargs that were passed to the apply_liger_* function, which will cause
54
+ # model initialization errors otherwise
55
+ apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
56
+ apply_fn_signature = inspect.signature(apply_fn)
57
+ applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
58
+
59
+ return super().from_config(config, **applicable_kwargs)
@@ -2,7 +2,8 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
5
+ from liger_kernel.ops import LigerCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ return_token_accuracy: bool = False,
18
20
  ):
19
21
  super().__init__()
20
22
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
33
35
  self.reduction = reduction
34
36
  self.softcap = softcap
35
37
  self.return_z_loss = return_z_loss
38
+ self.return_token_accuracy = return_token_accuracy
36
39
 
37
40
  def forward(self, _input: torch.Tensor, target: torch.Tensor):
38
- loss, z_loss = LigerCrossEntropyFunction.apply(
41
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
39
42
  _input,
40
43
  target,
41
44
  self.weight,
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
45
48
  self.reduction,
46
49
  self.softcap,
47
50
  self.return_z_loss,
51
+ self.return_token_accuracy,
48
52
  )
49
- if not self.return_z_loss:
53
+ if not self.return_z_loss and not self.return_token_accuracy:
50
54
  return loss
51
- return loss, z_loss
55
+
56
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.dyt import LigerDyTFunction
4
+ from liger_kernel.ops import LigerDyTFunction
5
5
 
6
6
 
7
7
  class LigerDyT(nn.Module):
@@ -0,0 +1,5 @@
1
+ from liger_kernel.transformers.experimental.embedding import LigerEmbedding # noqa: F401
2
+
3
+ __all__ = [
4
+ "LigerEmbedding",
5
+ ]
@@ -3,7 +3,7 @@ from typing import Optional
3
3
  import torch
4
4
  import torch.nn as nn
5
5
 
6
- from liger_kernel.ops.experimental.embedding import LigerEmbeddingFunction
6
+ from liger_kernel.ops import LigerEmbeddingFunction
7
7
 
8
8
 
9
9
  class LigerEmbedding(nn.Module):
@@ -1,23 +1,35 @@
1
+ from dataclasses import dataclass
1
2
  from typing import Optional
2
3
 
3
- from liger_kernel.ops.cross_entropy import LigerCrossEntropyFunction
4
- from liger_kernel.ops.dyt import LigerDyTFunction
5
- from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
6
- from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
7
- from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
8
- from liger_kernel.ops.geglu import LigerGELUMulFunction
9
- from liger_kernel.ops.group_norm import LigerGroupNormFunction
10
- from liger_kernel.ops.jsd import LigerJSDFunction
11
- from liger_kernel.ops.kl_div import LigerKLDivLossFunction
12
- from liger_kernel.ops.layer_norm import LigerLayerNormFunction
13
- from liger_kernel.ops.multi_token_attention import LigerMultiTokenAttentionFunction
14
- from liger_kernel.ops.qwen2vl_mrope import LigerQwen2VLMRopeFunction
15
- from liger_kernel.ops.rms_norm import LigerRMSNormFunction
16
- from liger_kernel.ops.rope import LigerRopeFunction
17
- from liger_kernel.ops.softmax import LigerSoftmaxFunction
18
- from liger_kernel.ops.sparsemax import LigerSparsemaxFunction
19
- from liger_kernel.ops.swiglu import LigerSiLUMulFunction
20
- from liger_kernel.ops.tvd import LigerTVDLossFunction
4
+ import torch
5
+
6
+ from liger_kernel.ops import LigerCrossEntropyFunction
7
+ from liger_kernel.ops import LigerDyTFunction
8
+ from liger_kernel.ops import LigerFusedAddRMSNormFunction
9
+ from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
10
+ from liger_kernel.ops import LigerFusedLinearJSDFunction
11
+ from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
12
+ from liger_kernel.ops import LigerGELUMulFunction
13
+ from liger_kernel.ops import LigerGroupNormFunction
14
+ from liger_kernel.ops import LigerJSDFunction
15
+ from liger_kernel.ops import LigerKLDivLossFunction
16
+ from liger_kernel.ops import LigerLayerNormFunction
17
+ from liger_kernel.ops import LigerMultiTokenAttentionFunction
18
+ from liger_kernel.ops import LigerPolyNormFunction
19
+ from liger_kernel.ops import LigerQwen2VLMRopeFunction
20
+ from liger_kernel.ops import LigerRMSNormFunction
21
+ from liger_kernel.ops import LigerRopeFunction
22
+ from liger_kernel.ops import LigerSiLUMulFunction
23
+ from liger_kernel.ops import LigerSoftmaxFunction
24
+ from liger_kernel.ops import LigerSparsemaxFunction
25
+ from liger_kernel.ops import LigerTVDLossFunction
26
+
27
+
28
+ @dataclass
29
+ class CrossEntropyOutput:
30
+ loss: torch.Tensor
31
+ z_loss: Optional[torch.Tensor] = None
32
+ token_accuracy: Optional[torch.Tensor] = None
21
33
 
22
34
 
23
35
  # conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
@@ -34,8 +46,9 @@ def liger_cross_entropy(
34
46
  lse_square_scale: float = 0.0,
35
47
  softcap: Optional[float] = None,
36
48
  return_z_loss: bool = False,
49
+ return_token_accuracy: bool = False,
37
50
  ):
38
- loss, z_loss = LigerCrossEntropyFunction.apply(
51
+ loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
39
52
  input,
40
53
  target,
41
54
  weight,
@@ -45,10 +58,13 @@ def liger_cross_entropy(
45
58
  reduction,
46
59
  softcap,
47
60
  return_z_loss,
61
+ return_token_accuracy,
48
62
  )
49
- if not return_z_loss:
63
+
64
+ if not return_z_loss and not return_token_accuracy:
50
65
  return loss
51
- return loss, z_loss
66
+
67
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
52
68
 
53
69
 
54
70
  def liger_fused_linear_cross_entropy(
@@ -63,8 +79,11 @@ def liger_fused_linear_cross_entropy(
63
79
  reduction: str = "mean",
64
80
  softcap: Optional[float] = None,
65
81
  return_z_loss: bool = False,
82
+ accum_dtype=None,
83
+ use_token_scaling: bool = False,
84
+ return_token_accuracy: bool = False,
66
85
  ):
67
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
86
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
68
87
  input,
69
88
  weight,
70
89
  target,
@@ -76,10 +95,15 @@ def liger_fused_linear_cross_entropy(
76
95
  reduction,
77
96
  softcap,
78
97
  return_z_loss,
98
+ accum_dtype,
99
+ use_token_scaling,
100
+ return_token_accuracy,
79
101
  )
80
- if not return_z_loss:
102
+
103
+ if not return_z_loss and not return_token_accuracy:
81
104
  return loss
82
- return loss, z_loss
105
+
106
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
83
107
 
84
108
 
85
109
  def liger_fused_linear_jsd(
@@ -253,6 +277,14 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
253
277
  return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
254
278
 
255
279
 
280
+ def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
281
+ return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
282
+
283
+
284
+ def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
285
+ return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
286
+
287
+
256
288
  def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
257
289
  return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
258
290
 
@@ -0,0 +1,39 @@
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from liger_kernel.ops import LigerFusedAddRMSNormFunction
5
+
6
+
7
+ class LigerFusedAddRMSNorm(nn.Module):
8
+ def __init__(
9
+ self,
10
+ hidden_size,
11
+ eps=1e-6,
12
+ offset=0.0,
13
+ casting_mode="llama",
14
+ init_fn="ones",
15
+ in_place=False,
16
+ ):
17
+ super().__init__()
18
+ assert init_fn in [
19
+ "ones",
20
+ "zeros",
21
+ ], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
22
+ self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
23
+ self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
24
+
25
+ def forward(self, hidden_states, residual):
26
+ return LigerFusedAddRMSNormFunction.apply(
27
+ hidden_states,
28
+ residual,
29
+ self.weight,
30
+ self.variance_epsilon,
31
+ self.offset,
32
+ self.casting_mode,
33
+ self.in_place,
34
+ )
35
+
36
+ def extra_repr(self):
37
+ return (
38
+ f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
39
+ )
@@ -2,7 +2,8 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyFunction
5
+ from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
6
+ from liger_kernel.transformers.functional import CrossEntropyOutput
6
7
 
7
8
 
8
9
  class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
@@ -15,6 +16,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
15
16
  reduction: str = "mean",
16
17
  softcap: Optional[float] = None,
17
18
  return_z_loss: bool = False,
19
+ accum_dtype: Optional[torch.dtype] = None,
20
+ use_token_scaling: bool = False,
21
+ return_token_accuracy: bool = False,
18
22
  ):
19
23
  super().__init__()
20
24
  assert (label_smoothing >= 0) and (label_smoothing <= 1), (
@@ -23,7 +27,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
23
27
  assert reduction in {
24
28
  "mean",
25
29
  "sum",
26
- }, f"reduction must be 'mean' or 'sum'. Got: {reduction}"
30
+ "none",
31
+ }, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
27
32
  assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
28
33
  self.ce_weight = ce_weight
29
34
  self.ignore_index = ignore_index
@@ -32,9 +37,12 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
32
37
  self.reduction = reduction
33
38
  self.softcap = softcap
34
39
  self.return_z_loss = return_z_loss
40
+ self.accum_dtype = accum_dtype
41
+ self.use_token_scaling = use_token_scaling
42
+ self.return_token_accuracy = return_token_accuracy
35
43
 
36
44
  def forward(self, lin_weight, _input, target, bias=None):
37
- loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
45
+ loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
38
46
  _input,
39
47
  lin_weight,
40
48
  target,
@@ -46,7 +54,11 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
46
54
  self.reduction,
47
55
  self.softcap,
48
56
  self.return_z_loss,
57
+ self.accum_dtype,
58
+ self.use_token_scaling,
59
+ self.return_token_accuracy,
49
60
  )
50
- if not self.return_z_loss:
61
+ if not self.return_z_loss and not self.return_token_accuracy:
51
62
  return loss
52
- return loss, z_loss
63
+
64
+ return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
@@ -2,7 +2,7 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.fused_linear_jsd import LigerFusedLinearJSDFunction
5
+ from liger_kernel.ops import LigerFusedLinearJSDFunction
6
6
 
7
7
 
8
8
  class LigerFusedLinearJSD(torch.nn.Module):
@@ -5,7 +5,7 @@ from typing import Optional
5
5
  import torch
6
6
  import torch.nn as nn
7
7
 
8
- from liger_kernel.ops.fused_neighborhood_attention import LigerFusedNeighborhoodAttentionFunction
8
+ from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
9
9
 
10
10
 
11
11
  class LigerFusedNeighborhoodAttention(nn.Module):
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.geglu import LigerGELUMulFunction
3
+ from liger_kernel.ops import LigerGELUMulFunction
4
4
 
5
5
 
6
6
  class LigerGEGLUMLP(nn.Module):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.group_norm import LigerGroupNormFunction
4
+ from liger_kernel.ops import LigerGroupNormFunction
5
5
 
6
6
 
7
7
  class LigerGroupNorm(nn.Module):
@@ -1,4 +1,7 @@
1
- from liger_kernel.ops.grpo_loss import GrpoLossFunction
1
+ import torch
2
+
3
+ from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
4
+ from liger_kernel.ops import GrpoLossFunction
2
5
 
3
6
 
4
7
  def triton_grpo_loss(
@@ -13,12 +16,20 @@ def triton_grpo_loss(
13
16
  eps_low=0.2,
14
17
  eps_high=0.4,
15
18
  inplace=True,
19
+ loss_type="dapo",
20
+ max_completion_length=None,
21
+ importance_sampling_level="token",
22
+ reduce=False,
16
23
  ):
17
24
  assert logits is not None and completion_ids is not None and advantages is not None, (
18
25
  "must provide logits、completion_ids and advantages"
19
26
  )
27
+ if importance_sampling_level != "token":
28
+ raise ValueError(
29
+ f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
30
+ )
20
31
 
21
- return GrpoLossFunction.apply(
32
+ per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
22
33
  logits,
23
34
  old_logp,
24
35
  ref_logp,
@@ -31,6 +42,50 @@ def triton_grpo_loss(
31
42
  eps_high,
32
43
  inplace,
33
44
  )
45
+ if not reduce:
46
+ return per_token_loss, per_token_kl, is_clipped
47
+
48
+ loss = _reduce_grpo_loss(
49
+ per_token_loss,
50
+ completion_mask,
51
+ loss_type=loss_type,
52
+ max_completion_length=max_completion_length,
53
+ )
54
+
55
+ metrics = []
56
+ if beta != 0.0 and per_token_kl is not None:
57
+ metrics.append(_masked_mean(per_token_kl, completion_mask))
58
+ metrics.append(_masked_mean(is_clipped.float(), completion_mask))
59
+ return loss, metrics
60
+
61
+
62
+ def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
63
+ mask = completion_mask
64
+ if mask is None:
65
+ mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
66
+ mask = mask.to(per_token_loss.dtype)
67
+
68
+ if loss_type == "grpo":
69
+ per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
70
+ return per_seq.mean()
71
+ if loss_type == "bnpo":
72
+ return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
73
+ if loss_type == "dr_grpo":
74
+ if max_completion_length is None:
75
+ raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
76
+ batch = per_token_loss.shape[0]
77
+ return (per_token_loss * mask).sum() / (batch * max_completion_length)
78
+ if loss_type == "dapo":
79
+ normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
80
+ return (per_token_loss * mask).sum() / normalizer
81
+ raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
82
+
83
+
84
+ def _masked_mean(values, mask):
85
+ if mask is None:
86
+ mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
87
+ mask = mask.to(values.dtype)
88
+ return (values * mask).sum() / mask.sum().clamp(min=1.0)
34
89
 
35
90
 
36
91
  # This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
@@ -2,7 +2,7 @@ from typing import Optional
2
2
 
3
3
  import torch
4
4
 
5
- from liger_kernel.ops.jsd import LigerJSDFunction
5
+ from liger_kernel.ops import LigerJSDFunction
6
6
 
7
7
 
8
8
  class LigerJSD(torch.nn.Module):
@@ -1,6 +1,6 @@
1
1
  import torch.nn as nn
2
2
 
3
- from liger_kernel.ops.kl_div import LigerKLDivLossFunction
3
+ from liger_kernel.ops import LigerKLDivLossFunction
4
4
 
5
5
 
6
6
  class LigerKLDIVLoss(nn.KLDivLoss):
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.nn as nn
3
3
 
4
- from liger_kernel.ops.layer_norm import LigerLayerNormFunction
4
+ from liger_kernel.ops import LigerLayerNormFunction
5
5
 
6
6
 
7
7
  class LigerLayerNorm(nn.Module):