liger-kernel-nightly 0.5.10.dev20250611191801__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of liger-kernel-nightly might be problematic. Click here for more details.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
- liger_kernel/chunked_loss/dpo_loss.py +54 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
- liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
- liger_kernel/chunked_loss/grpo_loss.py +46 -9
- liger_kernel/chunked_loss/jsd_loss.py +44 -13
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
- liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
- liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
- liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
- liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
- liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
- liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +130 -64
- liger_kernel/ops/dyt.py +5 -4
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
- liger_kernel/ops/geglu.py +6 -4
- liger_kernel/ops/group_norm.py +7 -7
- liger_kernel/ops/grpo_loss.py +3 -1
- liger_kernel/ops/kl_div.py +8 -11
- liger_kernel/ops/layer_norm.py +135 -80
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +148 -71
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +14 -0
- liger_kernel/transformers/__init__.py +65 -0
- liger_kernel/transformers/auto_model.py +21 -0
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +1 -1
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/functional.py +56 -24
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +17 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +57 -2
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/exaone4.py +136 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +28 -8
- liger_kernel/transformers/model/gemma2.py +34 -11
- liger_kernel/transformers/model/gemma3.py +102 -112
- liger_kernel/transformers/model/glm4.py +18 -5
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +26 -7
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +18 -6
- liger_kernel/transformers/model/loss_utils.py +34 -3
- liger_kernel/transformers/model/mistral.py +17 -10
- liger_kernel/transformers/model/mixtral.py +24 -9
- liger_kernel/transformers/model/mllama.py +18 -7
- liger_kernel/transformers/model/olmo2.py +18 -5
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +42 -5
- liger_kernel/transformers/model/phi3.py +24 -159
- liger_kernel/transformers/model/qwen2.py +26 -4
- liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
- liger_kernel/transformers/model/qwen2_vl.py +24 -7
- liger_kernel/transformers/model/qwen3.py +22 -6
- liger_kernel/transformers/model/qwen3_moe.py +27 -7
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1423 -100
- liger_kernel/transformers/multi_token_attention.py +2 -2
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +15 -5
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +1 -1
- liger_kernel/transformers/sparsemax.py +1 -1
- liger_kernel/transformers/swiglu.py +18 -1
- liger_kernel/transformers/tiled_mlp.py +125 -0
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +52 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +37 -25
- liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
- liger_kernel_nightly-0.5.10.dev20250611191801.dist-info/RECORD +0 -95
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
|
@@ -5,17 +5,27 @@ from typing import TYPE_CHECKING
|
|
|
5
5
|
# Always-safe imports (independent of 'transformers')
|
|
6
6
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
|
|
7
7
|
from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
|
|
8
|
+
from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
|
|
8
9
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
|
|
9
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
10
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
11
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
13
|
+
from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
|
|
12
14
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
13
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
14
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
21
|
+
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
22
|
+
from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
|
|
15
23
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
16
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
17
25
|
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
18
26
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
19
29
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
20
30
|
|
|
21
31
|
# Static-only imports for IDEs and type checkers
|
|
@@ -23,18 +33,28 @@ if TYPE_CHECKING:
|
|
|
23
33
|
from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
|
|
24
34
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
25
35
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
36
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_exaone4 # noqa: F401
|
|
37
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
|
|
26
38
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
27
39
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
28
40
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
29
41
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
30
42
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
43
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
44
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gpt_oss # noqa: F401
|
|
31
46
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
48
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
49
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
32
50
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
51
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
33
52
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
34
53
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
35
54
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
36
55
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
37
56
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
57
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
38
58
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
39
59
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
40
60
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
@@ -42,6 +62,11 @@ if TYPE_CHECKING:
|
|
|
42
62
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
43
63
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
44
64
|
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
65
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
66
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
67
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
68
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
69
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
45
70
|
|
|
46
71
|
|
|
47
72
|
# Check if 'transformers' is installed
|
|
@@ -79,18 +104,25 @@ def __getattr__(name: str):
|
|
|
79
104
|
monkey_patch_symbols = {
|
|
80
105
|
"_apply_liger_kernel",
|
|
81
106
|
"_apply_liger_kernel_to_instance",
|
|
107
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
82
108
|
"apply_liger_kernel_to_gemma",
|
|
83
109
|
"apply_liger_kernel_to_gemma2",
|
|
84
110
|
"apply_liger_kernel_to_gemma3",
|
|
85
111
|
"apply_liger_kernel_to_gemma3_text",
|
|
86
112
|
"apply_liger_kernel_to_glm4",
|
|
113
|
+
"apply_liger_kernel_to_glm4v",
|
|
114
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
115
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
87
116
|
"apply_liger_kernel_to_granite",
|
|
117
|
+
"apply_liger_kernel_to_internvl",
|
|
88
118
|
"apply_liger_kernel_to_llama",
|
|
89
119
|
"apply_liger_kernel_to_llava",
|
|
120
|
+
"apply_liger_kernel_to_llama4",
|
|
90
121
|
"apply_liger_kernel_to_mistral",
|
|
91
122
|
"apply_liger_kernel_to_mixtral",
|
|
92
123
|
"apply_liger_kernel_to_mllama",
|
|
93
124
|
"apply_liger_kernel_to_olmo2",
|
|
125
|
+
"apply_liger_kernel_to_olmo3",
|
|
94
126
|
"apply_liger_kernel_to_paligemma",
|
|
95
127
|
"apply_liger_kernel_to_phi3",
|
|
96
128
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -98,6 +130,14 @@ def __getattr__(name: str):
|
|
|
98
130
|
"apply_liger_kernel_to_qwen2_vl",
|
|
99
131
|
"apply_liger_kernel_to_qwen3",
|
|
100
132
|
"apply_liger_kernel_to_qwen3_moe",
|
|
133
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
134
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
135
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
136
|
+
"apply_liger_kernel_to_smollm3",
|
|
137
|
+
"apply_liger_kernel_to_smolvlm",
|
|
138
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
139
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
140
|
+
"apply_liger_kernel_to_exaone4",
|
|
101
141
|
}
|
|
102
142
|
|
|
103
143
|
if name in monkey_patch_symbols:
|
|
@@ -117,13 +157,23 @@ __all__ = [
|
|
|
117
157
|
"LigerGEGLUMLP",
|
|
118
158
|
"LigerJSD",
|
|
119
159
|
"LigerLayerNorm",
|
|
160
|
+
"LigerFusedAddRMSNorm",
|
|
161
|
+
"LigerPolyNorm",
|
|
120
162
|
"LigerRMSNorm",
|
|
121
163
|
"liger_rotary_pos_emb",
|
|
164
|
+
"liger_llama4_text_rotary_pos_emb",
|
|
165
|
+
"liger_llama4_vision_rotary_pos_emb",
|
|
122
166
|
"LigerBlockSparseTop2MLP",
|
|
123
167
|
"LigerPhi3SwiGLUMLP",
|
|
124
168
|
"LigerQwen3MoeSwiGLUMLP",
|
|
125
169
|
"LigerSwiGLUMLP",
|
|
170
|
+
"LigerTiledGEGLUMLP",
|
|
171
|
+
"LigerTiledSwiGLUMLP",
|
|
126
172
|
"LigerTVDLoss",
|
|
173
|
+
"LigerKLDIVLoss",
|
|
174
|
+
"LigerMultiTokenAttention",
|
|
175
|
+
"LigerSoftmax",
|
|
176
|
+
"LigerSparsemax",
|
|
127
177
|
]
|
|
128
178
|
|
|
129
179
|
# Add transformer-dependent symbols only if available
|
|
@@ -133,18 +183,25 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
133
183
|
"AutoLigerKernelForCausalLM",
|
|
134
184
|
"_apply_liger_kernel",
|
|
135
185
|
"_apply_liger_kernel_to_instance",
|
|
186
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
136
187
|
"apply_liger_kernel_to_gemma",
|
|
137
188
|
"apply_liger_kernel_to_gemma2",
|
|
138
189
|
"apply_liger_kernel_to_gemma3",
|
|
139
190
|
"apply_liger_kernel_to_gemma3_text",
|
|
140
191
|
"apply_liger_kernel_to_glm4",
|
|
192
|
+
"apply_liger_kernel_to_glm4v",
|
|
193
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
194
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
141
195
|
"apply_liger_kernel_to_granite",
|
|
196
|
+
"apply_liger_kernel_to_internvl",
|
|
142
197
|
"apply_liger_kernel_to_llama",
|
|
143
198
|
"apply_liger_kernel_to_llava",
|
|
199
|
+
"apply_liger_kernel_to_llama4",
|
|
144
200
|
"apply_liger_kernel_to_mistral",
|
|
145
201
|
"apply_liger_kernel_to_mixtral",
|
|
146
202
|
"apply_liger_kernel_to_mllama",
|
|
147
203
|
"apply_liger_kernel_to_olmo2",
|
|
204
|
+
"apply_liger_kernel_to_olmo3",
|
|
148
205
|
"apply_liger_kernel_to_paligemma",
|
|
149
206
|
"apply_liger_kernel_to_phi3",
|
|
150
207
|
"apply_liger_kernel_to_qwen2",
|
|
@@ -152,5 +209,13 @@ if _TRANSFORMERS_AVAILABLE:
|
|
|
152
209
|
"apply_liger_kernel_to_qwen2_vl",
|
|
153
210
|
"apply_liger_kernel_to_qwen3",
|
|
154
211
|
"apply_liger_kernel_to_qwen3_moe",
|
|
212
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
213
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
214
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
215
|
+
"apply_liger_kernel_to_smollm3",
|
|
216
|
+
"apply_liger_kernel_to_smolvlm",
|
|
217
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
218
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
219
|
+
"apply_liger_kernel_to_exaone4",
|
|
155
220
|
]
|
|
156
221
|
)
|
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import inspect
|
|
2
|
+
import logging
|
|
2
3
|
|
|
3
4
|
from transformers import AutoConfig
|
|
4
5
|
from transformers import AutoModelForCausalLM
|
|
@@ -6,6 +7,8 @@ from transformers import AutoModelForCausalLM
|
|
|
6
7
|
from liger_kernel.transformers.monkey_patch import MODEL_TYPE_TO_APPLY_LIGER_FN
|
|
7
8
|
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel
|
|
8
9
|
|
|
10
|
+
logger = logging.getLogger(__name__)
|
|
11
|
+
|
|
9
12
|
|
|
10
13
|
def _get_model_config(model_dir, **model_init_kwargs):
|
|
11
14
|
config = AutoConfig.from_pretrained(model_dir, **model_init_kwargs)
|
|
@@ -36,3 +39,21 @@ class AutoLigerKernelForCausalLM(AutoModelForCausalLM):
|
|
|
36
39
|
applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
|
|
37
40
|
|
|
38
41
|
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **applicable_kwargs)
|
|
42
|
+
|
|
43
|
+
@classmethod
|
|
44
|
+
def from_config(cls, config, **kwargs):
|
|
45
|
+
model_type = getattr(config, "model_type", None)
|
|
46
|
+
if not model_type:
|
|
47
|
+
logger.info("Model type could not be determined from model config. No Liger kernels will be applied.")
|
|
48
|
+
return
|
|
49
|
+
model_type = config.model_type
|
|
50
|
+
|
|
51
|
+
_apply_liger_kernel(model_type, **kwargs)
|
|
52
|
+
|
|
53
|
+
# Filter out kwargs that were passed to the apply_liger_* function, which will cause
|
|
54
|
+
# model initialization errors otherwise
|
|
55
|
+
apply_fn = MODEL_TYPE_TO_APPLY_LIGER_FN[model_type]
|
|
56
|
+
apply_fn_signature = inspect.signature(apply_fn)
|
|
57
|
+
applicable_kwargs = {key: value for key, value in kwargs.items() if key not in apply_fn_signature.parameters}
|
|
58
|
+
|
|
59
|
+
return super().from_config(config, **applicable_kwargs)
|
|
@@ -2,7 +2,8 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
return_token_accuracy: bool = False,
|
|
18
20
|
):
|
|
19
21
|
super().__init__()
|
|
20
22
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
33
35
|
self.reduction = reduction
|
|
34
36
|
self.softcap = softcap
|
|
35
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.return_token_accuracy = return_token_accuracy
|
|
36
39
|
|
|
37
40
|
def forward(self, _input: torch.Tensor, target: torch.Tensor):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
41
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
42
|
_input,
|
|
40
43
|
target,
|
|
41
44
|
self.weight,
|
|
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
45
48
|
self.reduction,
|
|
46
49
|
self.softcap,
|
|
47
50
|
self.return_z_loss,
|
|
51
|
+
self.return_token_accuracy,
|
|
48
52
|
)
|
|
49
|
-
if not self.return_z_loss:
|
|
53
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
50
54
|
return loss
|
|
51
|
-
|
|
55
|
+
|
|
56
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
liger_kernel/transformers/dyt.py
CHANGED
|
@@ -1,23 +1,35 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
1
2
|
from typing import Optional
|
|
2
3
|
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
from liger_kernel.ops
|
|
6
|
-
from liger_kernel.ops
|
|
7
|
-
from liger_kernel.ops
|
|
8
|
-
from liger_kernel.ops
|
|
9
|
-
from liger_kernel.ops
|
|
10
|
-
from liger_kernel.ops
|
|
11
|
-
from liger_kernel.ops
|
|
12
|
-
from liger_kernel.ops
|
|
13
|
-
from liger_kernel.ops
|
|
14
|
-
from liger_kernel.ops
|
|
15
|
-
from liger_kernel.ops
|
|
16
|
-
from liger_kernel.ops
|
|
17
|
-
from liger_kernel.ops
|
|
18
|
-
from liger_kernel.ops
|
|
19
|
-
from liger_kernel.ops
|
|
20
|
-
from liger_kernel.ops
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
7
|
+
from liger_kernel.ops import LigerDyTFunction
|
|
8
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
9
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
10
|
+
from liger_kernel.ops import LigerFusedLinearJSDFunction
|
|
11
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
12
|
+
from liger_kernel.ops import LigerGELUMulFunction
|
|
13
|
+
from liger_kernel.ops import LigerGroupNormFunction
|
|
14
|
+
from liger_kernel.ops import LigerJSDFunction
|
|
15
|
+
from liger_kernel.ops import LigerKLDivLossFunction
|
|
16
|
+
from liger_kernel.ops import LigerLayerNormFunction
|
|
17
|
+
from liger_kernel.ops import LigerMultiTokenAttentionFunction
|
|
18
|
+
from liger_kernel.ops import LigerPolyNormFunction
|
|
19
|
+
from liger_kernel.ops import LigerQwen2VLMRopeFunction
|
|
20
|
+
from liger_kernel.ops import LigerRMSNormFunction
|
|
21
|
+
from liger_kernel.ops import LigerRopeFunction
|
|
22
|
+
from liger_kernel.ops import LigerSiLUMulFunction
|
|
23
|
+
from liger_kernel.ops import LigerSoftmaxFunction
|
|
24
|
+
from liger_kernel.ops import LigerSparsemaxFunction
|
|
25
|
+
from liger_kernel.ops import LigerTVDLossFunction
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@dataclass
|
|
29
|
+
class CrossEntropyOutput:
|
|
30
|
+
loss: torch.Tensor
|
|
31
|
+
z_loss: Optional[torch.Tensor] = None
|
|
32
|
+
token_accuracy: Optional[torch.Tensor] = None
|
|
21
33
|
|
|
22
34
|
|
|
23
35
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
@@ -34,8 +46,9 @@ def liger_cross_entropy(
|
|
|
34
46
|
lse_square_scale: float = 0.0,
|
|
35
47
|
softcap: Optional[float] = None,
|
|
36
48
|
return_z_loss: bool = False,
|
|
49
|
+
return_token_accuracy: bool = False,
|
|
37
50
|
):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
51
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
52
|
input,
|
|
40
53
|
target,
|
|
41
54
|
weight,
|
|
@@ -45,10 +58,13 @@ def liger_cross_entropy(
|
|
|
45
58
|
reduction,
|
|
46
59
|
softcap,
|
|
47
60
|
return_z_loss,
|
|
61
|
+
return_token_accuracy,
|
|
48
62
|
)
|
|
49
|
-
|
|
63
|
+
|
|
64
|
+
if not return_z_loss and not return_token_accuracy:
|
|
50
65
|
return loss
|
|
51
|
-
|
|
66
|
+
|
|
67
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
52
68
|
|
|
53
69
|
|
|
54
70
|
def liger_fused_linear_cross_entropy(
|
|
@@ -63,8 +79,11 @@ def liger_fused_linear_cross_entropy(
|
|
|
63
79
|
reduction: str = "mean",
|
|
64
80
|
softcap: Optional[float] = None,
|
|
65
81
|
return_z_loss: bool = False,
|
|
82
|
+
accum_dtype=None,
|
|
83
|
+
use_token_scaling: bool = False,
|
|
84
|
+
return_token_accuracy: bool = False,
|
|
66
85
|
):
|
|
67
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
86
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
68
87
|
input,
|
|
69
88
|
weight,
|
|
70
89
|
target,
|
|
@@ -76,10 +95,15 @@ def liger_fused_linear_cross_entropy(
|
|
|
76
95
|
reduction,
|
|
77
96
|
softcap,
|
|
78
97
|
return_z_loss,
|
|
98
|
+
accum_dtype,
|
|
99
|
+
use_token_scaling,
|
|
100
|
+
return_token_accuracy,
|
|
79
101
|
)
|
|
80
|
-
|
|
102
|
+
|
|
103
|
+
if not return_z_loss and not return_token_accuracy:
|
|
81
104
|
return loss
|
|
82
|
-
|
|
105
|
+
|
|
106
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
83
107
|
|
|
84
108
|
|
|
85
109
|
def liger_fused_linear_jsd(
|
|
@@ -253,6 +277,14 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
253
277
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
254
278
|
|
|
255
279
|
|
|
280
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
281
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
285
|
+
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
286
|
+
|
|
287
|
+
|
|
256
288
|
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
257
289
|
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
|
258
290
|
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerFusedAddRMSNorm(nn.Module):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
hidden_size,
|
|
11
|
+
eps=1e-6,
|
|
12
|
+
offset=0.0,
|
|
13
|
+
casting_mode="llama",
|
|
14
|
+
init_fn="ones",
|
|
15
|
+
in_place=False,
|
|
16
|
+
):
|
|
17
|
+
super().__init__()
|
|
18
|
+
assert init_fn in [
|
|
19
|
+
"ones",
|
|
20
|
+
"zeros",
|
|
21
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
22
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
|
23
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
|
|
24
|
+
|
|
25
|
+
def forward(self, hidden_states, residual):
|
|
26
|
+
return LigerFusedAddRMSNormFunction.apply(
|
|
27
|
+
hidden_states,
|
|
28
|
+
residual,
|
|
29
|
+
self.weight,
|
|
30
|
+
self.variance_epsilon,
|
|
31
|
+
self.offset,
|
|
32
|
+
self.casting_mode,
|
|
33
|
+
self.in_place,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
def extra_repr(self):
|
|
37
|
+
return (
|
|
38
|
+
f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
|
39
|
+
)
|
|
@@ -2,7 +2,8 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
20
|
+
use_token_scaling: bool = False,
|
|
21
|
+
return_token_accuracy: bool = False,
|
|
18
22
|
):
|
|
19
23
|
super().__init__()
|
|
20
24
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -23,7 +27,8 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
23
27
|
assert reduction in {
|
|
24
28
|
"mean",
|
|
25
29
|
"sum",
|
|
26
|
-
|
|
30
|
+
"none",
|
|
31
|
+
}, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
|
|
27
32
|
assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
|
|
28
33
|
self.ce_weight = ce_weight
|
|
29
34
|
self.ignore_index = ignore_index
|
|
@@ -32,9 +37,12 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
32
37
|
self.reduction = reduction
|
|
33
38
|
self.softcap = softcap
|
|
34
39
|
self.return_z_loss = return_z_loss
|
|
40
|
+
self.accum_dtype = accum_dtype
|
|
41
|
+
self.use_token_scaling = use_token_scaling
|
|
42
|
+
self.return_token_accuracy = return_token_accuracy
|
|
35
43
|
|
|
36
44
|
def forward(self, lin_weight, _input, target, bias=None):
|
|
37
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
45
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
38
46
|
_input,
|
|
39
47
|
lin_weight,
|
|
40
48
|
target,
|
|
@@ -46,7 +54,11 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
46
54
|
self.reduction,
|
|
47
55
|
self.softcap,
|
|
48
56
|
self.return_z_loss,
|
|
57
|
+
self.accum_dtype,
|
|
58
|
+
self.use_token_scaling,
|
|
59
|
+
self.return_token_accuracy,
|
|
49
60
|
)
|
|
50
|
-
if not self.return_z_loss:
|
|
61
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
51
62
|
return loss
|
|
52
|
-
|
|
63
|
+
|
|
64
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -5,7 +5,7 @@ from typing import Optional
|
|
|
5
5
|
import torch
|
|
6
6
|
import torch.nn as nn
|
|
7
7
|
|
|
8
|
-
from liger_kernel.ops
|
|
8
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
9
9
|
|
|
10
10
|
|
|
11
11
|
class LigerFusedNeighborhoodAttention(nn.Module):
|
|
@@ -1,4 +1,7 @@
|
|
|
1
|
-
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
from liger_kernel.chunked_loss.fused_linear_ppo import LigerFusedLinearPPOBase
|
|
4
|
+
from liger_kernel.ops import GrpoLossFunction
|
|
2
5
|
|
|
3
6
|
|
|
4
7
|
def triton_grpo_loss(
|
|
@@ -13,12 +16,20 @@ def triton_grpo_loss(
|
|
|
13
16
|
eps_low=0.2,
|
|
14
17
|
eps_high=0.4,
|
|
15
18
|
inplace=True,
|
|
19
|
+
loss_type="dapo",
|
|
20
|
+
max_completion_length=None,
|
|
21
|
+
importance_sampling_level="token",
|
|
22
|
+
reduce=False,
|
|
16
23
|
):
|
|
17
24
|
assert logits is not None and completion_ids is not None and advantages is not None, (
|
|
18
25
|
"must provide logits、completion_ids and advantages"
|
|
19
26
|
)
|
|
27
|
+
if importance_sampling_level != "token":
|
|
28
|
+
raise ValueError(
|
|
29
|
+
f"Triton GRPO loss only supports token-level importance sampling. Got {importance_sampling_level}."
|
|
30
|
+
)
|
|
20
31
|
|
|
21
|
-
|
|
32
|
+
per_token_loss, per_token_kl, is_clipped = GrpoLossFunction.apply(
|
|
22
33
|
logits,
|
|
23
34
|
old_logp,
|
|
24
35
|
ref_logp,
|
|
@@ -31,6 +42,50 @@ def triton_grpo_loss(
|
|
|
31
42
|
eps_high,
|
|
32
43
|
inplace,
|
|
33
44
|
)
|
|
45
|
+
if not reduce:
|
|
46
|
+
return per_token_loss, per_token_kl, is_clipped
|
|
47
|
+
|
|
48
|
+
loss = _reduce_grpo_loss(
|
|
49
|
+
per_token_loss,
|
|
50
|
+
completion_mask,
|
|
51
|
+
loss_type=loss_type,
|
|
52
|
+
max_completion_length=max_completion_length,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
metrics = []
|
|
56
|
+
if beta != 0.0 and per_token_kl is not None:
|
|
57
|
+
metrics.append(_masked_mean(per_token_kl, completion_mask))
|
|
58
|
+
metrics.append(_masked_mean(is_clipped.float(), completion_mask))
|
|
59
|
+
return loss, metrics
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _reduce_grpo_loss(per_token_loss, completion_mask, loss_type, max_completion_length):
|
|
63
|
+
mask = completion_mask
|
|
64
|
+
if mask is None:
|
|
65
|
+
mask = torch.ones_like(per_token_loss, dtype=per_token_loss.dtype, device=per_token_loss.device)
|
|
66
|
+
mask = mask.to(per_token_loss.dtype)
|
|
67
|
+
|
|
68
|
+
if loss_type == "grpo":
|
|
69
|
+
per_seq = (per_token_loss * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)
|
|
70
|
+
return per_seq.mean()
|
|
71
|
+
if loss_type == "bnpo":
|
|
72
|
+
return (per_token_loss * mask).sum() / mask.sum().clamp(min=1.0)
|
|
73
|
+
if loss_type == "dr_grpo":
|
|
74
|
+
if max_completion_length is None:
|
|
75
|
+
raise ValueError("max_completion_length must be provided when using loss_type='dr_grpo'")
|
|
76
|
+
batch = per_token_loss.shape[0]
|
|
77
|
+
return (per_token_loss * mask).sum() / (batch * max_completion_length)
|
|
78
|
+
if loss_type == "dapo":
|
|
79
|
+
normalizer = LigerFusedLinearPPOBase._compute_dapo_normalizer(mask)
|
|
80
|
+
return (per_token_loss * mask).sum() / normalizer
|
|
81
|
+
raise ValueError(f"Unsupported loss_type '{loss_type}' for Triton GRPO loss.")
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def _masked_mean(values, mask):
|
|
85
|
+
if mask is None:
|
|
86
|
+
mask = torch.ones_like(values, dtype=values.dtype, device=values.device)
|
|
87
|
+
mask = mask.to(values.dtype)
|
|
88
|
+
return (values * mask).sum() / mask.sum().clamp(min=1.0)
|
|
34
89
|
|
|
35
90
|
|
|
36
91
|
# This is a demo how to use grpo_loss in GRPOTrainer. The Trl version must be 0.16
|
liger_kernel/transformers/jsd.py
CHANGED