liger-kernel-nightly 0.5.10.dev20250611191801__py3-none-any.whl → 0.6.4.dev20260112233432__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of liger-kernel-nightly might be problematic. Click here for more details.

Files changed (107) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +142 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +54 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +23 -5
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +25 -5
  7. liger_kernel/chunked_loss/grpo_loss.py +46 -9
  8. liger_kernel/chunked_loss/jsd_loss.py +44 -13
  9. liger_kernel/ops/__init__.py +141 -0
  10. liger_kernel/ops/backends/README.md +151 -0
  11. liger_kernel/ops/backends/__init__.py +13 -0
  12. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  13. liger_kernel/ops/backends/_ascend/ascend-ub-manager-design.md +485 -0
  14. liger_kernel/ops/backends/_ascend/ops/__init__.py +49 -0
  15. liger_kernel/ops/backends/_ascend/ops/geglu.py +266 -0
  16. liger_kernel/ops/backends/_ascend/ops/qwen2vl_mrope.py +285 -0
  17. liger_kernel/ops/backends/_ascend/ops/rope.py +290 -0
  18. liger_kernel/ops/backends/_ascend/ops/swiglu.py +142 -0
  19. liger_kernel/ops/backends/_ascend/ops/tvd.py +221 -0
  20. liger_kernel/ops/backends/_ascend/ub_manager.py +349 -0
  21. liger_kernel/ops/backends/registry.py +61 -0
  22. liger_kernel/ops/cross_entropy.py +130 -64
  23. liger_kernel/ops/dyt.py +5 -4
  24. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  25. liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
  26. liger_kernel/ops/geglu.py +6 -4
  27. liger_kernel/ops/group_norm.py +7 -7
  28. liger_kernel/ops/grpo_loss.py +3 -1
  29. liger_kernel/ops/kl_div.py +8 -11
  30. liger_kernel/ops/layer_norm.py +135 -80
  31. liger_kernel/ops/llama4_rope.py +225 -0
  32. liger_kernel/ops/poly_norm.py +390 -0
  33. liger_kernel/ops/rms_norm.py +148 -71
  34. liger_kernel/ops/rope.py +1 -1
  35. liger_kernel/ops/swiglu.py +1 -1
  36. liger_kernel/ops/tiled_mlp.py +136 -0
  37. liger_kernel/ops/utils.py +14 -0
  38. liger_kernel/transformers/__init__.py +65 -0
  39. liger_kernel/transformers/auto_model.py +21 -0
  40. liger_kernel/transformers/cross_entropy.py +9 -4
  41. liger_kernel/transformers/dyt.py +1 -1
  42. liger_kernel/transformers/experimental/__init__.py +5 -0
  43. liger_kernel/transformers/experimental/embedding.py +1 -1
  44. liger_kernel/transformers/functional.py +56 -24
  45. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  46. liger_kernel/transformers/fused_linear_cross_entropy.py +17 -5
  47. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  48. liger_kernel/transformers/fused_neighborhood_attention.py +1 -1
  49. liger_kernel/transformers/geglu.py +1 -1
  50. liger_kernel/transformers/group_norm.py +1 -1
  51. liger_kernel/transformers/grpo_loss.py +57 -2
  52. liger_kernel/transformers/jsd.py +1 -1
  53. liger_kernel/transformers/kl_div.py +1 -1
  54. liger_kernel/transformers/layer_norm.py +1 -1
  55. liger_kernel/transformers/llama4_rope.py +93 -0
  56. liger_kernel/transformers/model/exaone4.py +136 -0
  57. liger_kernel/transformers/model/falcon_h1.py +122 -0
  58. liger_kernel/transformers/model/gemma.py +28 -8
  59. liger_kernel/transformers/model/gemma2.py +34 -11
  60. liger_kernel/transformers/model/gemma3.py +102 -112
  61. liger_kernel/transformers/model/glm4.py +18 -5
  62. liger_kernel/transformers/model/glm4v.py +163 -0
  63. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  64. liger_kernel/transformers/model/gpt_oss.py +211 -0
  65. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  66. liger_kernel/transformers/model/internvl.py +157 -0
  67. liger_kernel/transformers/model/llama.py +26 -7
  68. liger_kernel/transformers/model/llama4.py +121 -0
  69. liger_kernel/transformers/model/llava.py +18 -6
  70. liger_kernel/transformers/model/loss_utils.py +34 -3
  71. liger_kernel/transformers/model/mistral.py +17 -10
  72. liger_kernel/transformers/model/mixtral.py +24 -9
  73. liger_kernel/transformers/model/mllama.py +18 -7
  74. liger_kernel/transformers/model/olmo2.py +18 -5
  75. liger_kernel/transformers/model/olmo3.py +142 -0
  76. liger_kernel/transformers/model/output_classes.py +147 -0
  77. liger_kernel/transformers/model/paligemma.py +42 -5
  78. liger_kernel/transformers/model/phi3.py +24 -159
  79. liger_kernel/transformers/model/qwen2.py +26 -4
  80. liger_kernel/transformers/model/qwen2_5_vl.py +21 -8
  81. liger_kernel/transformers/model/qwen2_vl.py +24 -7
  82. liger_kernel/transformers/model/qwen3.py +22 -6
  83. liger_kernel/transformers/model/qwen3_moe.py +27 -7
  84. liger_kernel/transformers/model/qwen3_next.py +146 -0
  85. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  86. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  87. liger_kernel/transformers/model/smollm3.py +199 -0
  88. liger_kernel/transformers/model/smolvlm.py +158 -0
  89. liger_kernel/transformers/monkey_patch.py +1423 -100
  90. liger_kernel/transformers/multi_token_attention.py +2 -2
  91. liger_kernel/transformers/poly_norm.py +42 -0
  92. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  93. liger_kernel/transformers/rms_norm.py +15 -5
  94. liger_kernel/transformers/rope.py +45 -1
  95. liger_kernel/transformers/softmax.py +1 -1
  96. liger_kernel/transformers/sparsemax.py +1 -1
  97. liger_kernel/transformers/swiglu.py +18 -1
  98. liger_kernel/transformers/tiled_mlp.py +125 -0
  99. liger_kernel/transformers/tvd.py +1 -1
  100. liger_kernel/utils.py +52 -0
  101. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/METADATA +37 -25
  102. liger_kernel_nightly-0.6.4.dev20260112233432.dist-info/RECORD +132 -0
  103. liger_kernel_nightly-0.5.10.dev20250611191801.dist-info/RECORD +0 -95
  104. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/LICENSE +0 -0
  105. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/NOTICE +0 -0
  106. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/WHEEL +0 -0
  107. {liger_kernel_nightly-0.5.10.dev20250611191801.dist-info → liger_kernel_nightly-0.6.4.dev20260112233432.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,172 @@
1
+ from typing import Optional
2
+ from typing import Tuple
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.utils.deprecation import deprecate_kwarg
8
+
9
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
10
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
11
+ from liger_kernel.transformers.model.output_classes import LigerGlm4vMoeCausalLMOutputWithPast
12
+
13
+
14
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
15
+ def lce_forward(
16
+ self,
17
+ input_ids: torch.LongTensor = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[list[torch.FloatTensor]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ pixel_values: Optional[torch.Tensor] = None,
24
+ pixel_values_videos: Optional[torch.FloatTensor] = None,
25
+ image_grid_thw: Optional[torch.LongTensor] = None,
26
+ video_grid_thw: Optional[torch.LongTensor] = None,
27
+ rope_deltas: Optional[torch.LongTensor] = None,
28
+ cache_position: Optional[torch.LongTensor] = None,
29
+ logits_to_keep: Union[int, torch.Tensor] = 0,
30
+ skip_logits: Optional[bool] = None,
31
+ return_dict: Optional[bool] = None,
32
+ **kwargs,
33
+ ) -> Union[Tuple, LigerGlm4vMoeCausalLMOutputWithPast]:
34
+ r"""
35
+ Args:
36
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
37
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
38
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
39
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
40
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
41
+ The temporal, height and width of feature shape of each image in LLM.
42
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
43
+ The temporal, height and width of feature shape of each video in LLM.
44
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
45
+ The rope index difference between sequence length and multimodal rope.
46
+
47
+
48
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
49
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
50
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
51
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
52
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
53
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
54
+
55
+ Example:
56
+
57
+ ```python
58
+ >>> from transformers import AutoProcessor, Glm4vMoeForConditionalGeneration
59
+ >>> import torch
60
+
61
+ >>> MODEL_PATH = "zai-org/GLM-4.5V"
62
+ >>> messages = [
63
+ {
64
+ "role": "user",
65
+ "content": [
66
+ {
67
+ "type": "image",
68
+ "url": "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png"
69
+ },
70
+ {
71
+ "type": "text",
72
+ "text": "describe this image"
73
+ }
74
+ ],
75
+ }
76
+ ]
77
+ >>> processor = AutoProcessor.from_pretrained(MODEL_PATH)
78
+ >>> model = Glm4vMoeForConditionalGeneration.from_pretrained(
79
+ pretrained_model_name_or_path=MODEL_PATH,
80
+ dtype="auto",
81
+ device_map="auto",
82
+ )
83
+ >>> inputs = processor.apply_chat_template(
84
+ messages,
85
+ tokenize=True,
86
+ add_generation_prompt=True,
87
+ return_dict=True,
88
+ return_tensors="pt"
89
+ ).to(model.device)
90
+ >>> inputs.pop("token_type_ids", None)
91
+ >>> generated_ids = model.generate(**inputs, max_new_tokens=8192)
92
+ >>> output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
93
+ ```
94
+ """
95
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
96
+
97
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
98
+ outputs = self.model(
99
+ input_ids=input_ids,
100
+ pixel_values=pixel_values,
101
+ pixel_values_videos=pixel_values_videos,
102
+ image_grid_thw=image_grid_thw,
103
+ video_grid_thw=video_grid_thw,
104
+ position_ids=position_ids,
105
+ attention_mask=attention_mask,
106
+ past_key_values=past_key_values,
107
+ inputs_embeds=inputs_embeds,
108
+ cache_position=cache_position,
109
+ **kwargs,
110
+ )
111
+
112
+ hidden_states = outputs[0]
113
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
114
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
115
+ kept_hidden_states = hidden_states[:, slice_indices, :]
116
+
117
+ shift_labels = kwargs.pop("shift_labels", None)
118
+ logits = None
119
+ loss = None
120
+ token_accuracy = None
121
+
122
+ if skip_logits and labels is None and shift_labels is None:
123
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
124
+
125
+ if skip_logits is None:
126
+ # By default, if in training mode, don't materialize logits
127
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
128
+
129
+ # Compute loss
130
+ if skip_logits:
131
+ result = LigerForCausalLMLoss(
132
+ hidden_states=kept_hidden_states,
133
+ lm_head_weight=self.lm_head.weight,
134
+ labels=labels,
135
+ shift_labels=shift_labels,
136
+ hidden_size=self.config.hidden_size,
137
+ **kwargs,
138
+ )
139
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
140
+
141
+ else:
142
+ logits = self.lm_head(kept_hidden_states)
143
+ if labels is not None or shift_labels is not None:
144
+ loss = self.loss_function(
145
+ logits=logits,
146
+ labels=labels,
147
+ shift_labels=shift_labels,
148
+ vocab_size=self.config.vocab_size,
149
+ **kwargs,
150
+ )
151
+
152
+ if not return_dict:
153
+ output = (logits,) + outputs[1:]
154
+ output = ((loss,) + output) if loss is not None else output
155
+ output = output + (token_accuracy,) if token_accuracy is not None else output
156
+ return output
157
+
158
+ # Build output kwargs and include aux_loss only if present (depends on transformers version)
159
+ output_kwargs = dict(
160
+ loss=loss,
161
+ logits=logits,
162
+ past_key_values=outputs.past_key_values,
163
+ hidden_states=outputs.hidden_states,
164
+ attentions=outputs.attentions,
165
+ rope_deltas=outputs.rope_deltas,
166
+ token_accuracy=token_accuracy,
167
+ )
168
+ if hasattr(outputs, "aux_loss"):
169
+ output_kwargs["aux_loss"] = outputs.aux_loss
170
+
171
+ # Return GLM4V MoE output with accuracy
172
+ return LigerGlm4vMoeCausalLMOutputWithPast(**output_kwargs)
@@ -0,0 +1,211 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from transformers.modeling_outputs import MoeModelOutputWithPast
8
+ from transformers.models.mixtral.modeling_mixtral import load_balancing_loss_func
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerMoeCausalLMOutputWithPast
13
+
14
+
15
+ def lce_forward(
16
+ self,
17
+ input_ids: Optional[torch.LongTensor] = None,
18
+ attention_mask: Optional[torch.Tensor] = None,
19
+ position_ids: Optional[torch.LongTensor] = None,
20
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
21
+ inputs_embeds: Optional[torch.FloatTensor] = None,
22
+ labels: Optional[torch.LongTensor] = None,
23
+ use_cache: Optional[bool] = None,
24
+ output_attentions: Optional[bool] = None,
25
+ output_hidden_states: Optional[bool] = None,
26
+ output_router_logits: Optional[bool] = None,
27
+ cache_position: Optional[torch.LongTensor] = None,
28
+ logits_to_keep: Union[int, torch.Tensor] = 0,
29
+ skip_logits: Optional[bool] = None,
30
+ **kwargs,
31
+ ) -> LigerMoeCausalLMOutputWithPast:
32
+ r"""
33
+ Forward pass for causal language modeling with Mixture of Experts (MoE) architecture using Liger Kernel optimizations.
34
+
35
+ Args:
36
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
37
+ Indices of input sequence tokens in the vocabulary. Indices can be obtained using tokenizers.
38
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
39
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
40
+ - 1 for tokens that are **not masked**,
41
+ - 0 for tokens that are **masked**.
42
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
43
+ Indices of positions of each input sequence tokens in the position embeddings.
44
+ past_key_values (`List[torch.FloatTensor]` or `Cache`, *optional*):
45
+ Pre-computed hidden-states (key and values in the self-attention blocks) that can be used to speed up
46
+ sequential decoding. See `past_key_values` input for more details.
47
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
48
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
49
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
50
+ than the model's internal embedding lookup matrix.
51
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
52
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
53
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
54
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
55
+ use_cache (`bool`, *optional*):
56
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
57
+ (see `past_key_values`).
58
+ output_attentions (`bool`, *optional*):
59
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
60
+ tensors for more detail.
61
+ output_hidden_states (`bool`, *optional*):
62
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
63
+ more detail.
64
+ output_router_logits (`bool`, *optional*):
65
+ Whether or not to return the router logits of all MoE layers. See `router_logits` under returned tensors
66
+ for more detail.
67
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
68
+ Indices depicting the position of the input sequence tokens in the sequence.
69
+ logits_to_keep (`int` or `torch.Tensor`, *optional*, defaults to 0):
70
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
71
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
72
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
73
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
74
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
75
+ skip_logits (`bool`, *optional*):
76
+ Whether to skip logit computation and directly compute loss. If `None`, defaults to `True` during training
77
+ when labels are provided (to save memory), and `False` during inference.
78
+
79
+ Returns:
80
+ `LigerMoeCausalLMOutputWithPast`: An output object containing:
81
+ - loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
82
+ Language modeling loss (for next-token prediction), including the auxiliary load balancing loss.
83
+ - aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
84
+ Auxiliary load balancing loss for the sparse MoE modules.
85
+ - logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
86
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
87
+ Note: logits are `None` during training when `skip_logits=True` to save memory.
88
+ - past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed):
89
+ Cached key and value projection states for faster sequential decoding.
90
+ - hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
91
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for each layer) of shape
92
+ `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer.
93
+ - attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`):
94
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
95
+ sequence_length)`. Attentions weights after the attention softmax.
96
+ - router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True`):
97
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
98
+ Router logits of the MoE layers, useful to compute the auxiliary loss and z_loss.
99
+ - token_accuracy (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
100
+ Token-level prediction accuracy.
101
+
102
+ Example:
103
+
104
+ ```python
105
+ >>> from transformers import AutoTokenizer, GptOssForCausalLM
106
+ >>> from liger_kernel.transformers import apply_liger_kernel_to_gpt_oss
107
+
108
+ >>> # Apply Liger Kernel patches for optimized performance
109
+ >>> apply_liger_kernel_to_gpt_oss()
110
+
111
+ >>> model = GptOssForCausalLM.from_pretrained("openai/gpt-oss-20b")
112
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b")
113
+
114
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
115
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
116
+
117
+ >>> # Inference: Forward pass returns logits
118
+ >>> outputs = model(**inputs)
119
+ >>> outputs.logits.shape
120
+ torch.Size([1, 12, 201088])
121
+
122
+ >>> # Get next token prediction
123
+ >>> next_token_logits = outputs.logits[:, -1, :]
124
+ >>> predicted_token_id = next_token_logits.argmax(dim=-1)
125
+
126
+ >>> # Training: Forward pass with labels returns loss
127
+ >>> labels = inputs.input_ids.clone()
128
+ >>> outputs = model(**inputs, labels=labels)
129
+ >>> outputs.loss
130
+ tensor(2.6454)
131
+ ```"""
132
+
133
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
134
+ output_router_logits = (
135
+ output_router_logits if output_router_logits is not None else self.config.output_router_logits
136
+ )
137
+
138
+ output_hidden_states = (
139
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
140
+ )
141
+
142
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
143
+ outputs: MoeModelOutputWithPast = self.model(
144
+ input_ids=input_ids,
145
+ attention_mask=attention_mask,
146
+ position_ids=position_ids,
147
+ past_key_values=past_key_values,
148
+ inputs_embeds=inputs_embeds,
149
+ use_cache=use_cache,
150
+ output_attentions=output_attentions,
151
+ output_hidden_states=output_hidden_states,
152
+ output_router_logits=output_router_logits,
153
+ cache_position=cache_position,
154
+ **kwargs,
155
+ )
156
+
157
+ hidden_states = outputs.last_hidden_state
158
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
159
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
160
+ kept_hidden_states = hidden_states[:, slice_indices, :]
161
+
162
+ shift_labels = kwargs.pop("shift_labels", None)
163
+ logits = None
164
+ loss = None
165
+ token_accuracy = None
166
+
167
+ if skip_logits is None:
168
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
169
+
170
+ if skip_logits:
171
+ result = LigerForCausalLMLoss(
172
+ hidden_states=kept_hidden_states,
173
+ lm_head_weight=self.lm_head.weight,
174
+ labels=labels,
175
+ shift_labels=shift_labels,
176
+ hidden_size=self.config.hidden_size,
177
+ **kwargs,
178
+ )
179
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
180
+ else: # if in inference model materialize logits
181
+ logits = self.lm_head(kept_hidden_states)
182
+ if labels is not None or shift_labels is not None:
183
+ loss = self.loss_function(
184
+ logits=logits,
185
+ labels=labels,
186
+ shift_labels=shift_labels,
187
+ vocab_size=self.vocab_size,
188
+ **kwargs,
189
+ )
190
+
191
+ aux_loss = None
192
+ if output_router_logits:
193
+ aux_loss = load_balancing_loss_func(
194
+ outputs.router_logits,
195
+ self.num_experts,
196
+ self.num_experts_per_tok,
197
+ attention_mask,
198
+ )
199
+ if labels is not None:
200
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
201
+
202
+ return LigerMoeCausalLMOutputWithPast(
203
+ loss=loss,
204
+ aux_loss=aux_loss,
205
+ logits=logits,
206
+ past_key_values=outputs.past_key_values,
207
+ hidden_states=outputs.hidden_states,
208
+ attentions=outputs.attentions,
209
+ router_logits=outputs.router_logits,
210
+ token_accuracy=token_accuracy,
211
+ )
@@ -0,0 +1,134 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Union
4
+
5
+ import torch
6
+
7
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
8
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
9
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
10
+
11
+
12
+ def lce_forward(
13
+ self,
14
+ input_ids: Optional[torch.LongTensor] = None,
15
+ attention_mask: Optional[torch.Tensor] = None,
16
+ position_ids: Optional[torch.LongTensor] = None,
17
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
18
+ inputs_embeds: Optional[torch.FloatTensor] = None,
19
+ labels: Optional[torch.LongTensor] = None,
20
+ use_cache: Optional[bool] = None,
21
+ output_attentions: Optional[bool] = None,
22
+ output_hidden_states: Optional[bool] = None,
23
+ cache_position: Optional[torch.LongTensor] = None,
24
+ logits_to_keep: Union[int, torch.Tensor] = 0,
25
+ skip_logits: Optional[bool] = None,
26
+ return_dict: Optional[bool] = None,
27
+ **kwargs,
28
+ ) -> LigerCausalLMOutputWithPast:
29
+ r"""
30
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
31
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
32
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
33
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
34
+
35
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
36
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
37
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
38
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
39
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
40
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
41
+
42
+ Returns:
43
+
44
+ Example:
45
+
46
+ ```python
47
+ >>> from transformers import AutoTokenizer, HunYuanDenseV1ForCausalLM
48
+
49
+ >>> model = HunYuanDenseV1ForCausalLM.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
50
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-hunyuan_v1_dense/HunYuanDenseV1-2-7b-hf")
51
+
52
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
53
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
54
+
55
+ >>> # Generate
56
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
57
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
58
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
59
+ ```"""
60
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
61
+ output_hidden_states = (
62
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
63
+ )
64
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
65
+
66
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
67
+ outputs = self.model(
68
+ input_ids=input_ids,
69
+ attention_mask=attention_mask,
70
+ position_ids=position_ids,
71
+ past_key_values=past_key_values,
72
+ inputs_embeds=inputs_embeds,
73
+ use_cache=use_cache,
74
+ output_attentions=output_attentions,
75
+ output_hidden_states=output_hidden_states,
76
+ cache_position=cache_position,
77
+ **kwargs,
78
+ )
79
+
80
+ hidden_states = outputs[0]
81
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
82
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
83
+ kept_hidden_states = hidden_states[:, slice_indices, :]
84
+
85
+ shift_labels = kwargs.pop("shift_labels", None)
86
+ logits = None
87
+ loss = None
88
+ token_accuracy = None
89
+
90
+ if skip_logits and labels is None and shift_labels is None:
91
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
92
+
93
+ if skip_logits is None:
94
+ # By default, if in training mode, don't materialize logits
95
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
96
+
97
+ # Compute loss
98
+ if skip_logits:
99
+ result = LigerForCausalLMLoss(
100
+ hidden_states=kept_hidden_states,
101
+ lm_head_weight=self.lm_head.weight,
102
+ labels=labels,
103
+ shift_labels=shift_labels,
104
+ hidden_size=self.config.hidden_size,
105
+ **kwargs,
106
+ )
107
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
108
+
109
+ else:
110
+ logits = self.lm_head(kept_hidden_states)
111
+ if labels is not None or shift_labels is not None:
112
+ loss = self.loss_function(
113
+ logits=logits,
114
+ labels=labels,
115
+ shift_labels=shift_labels,
116
+ vocab_size=self.config.vocab_size,
117
+ **kwargs,
118
+ )
119
+
120
+ if not return_dict:
121
+ output = (logits,) + outputs[1:]
122
+ output = ((loss,) + output) if loss is not None else output
123
+ output = output + (token_accuracy,) if token_accuracy is not None else output
124
+ return output
125
+
126
+ # Return custom output class with accuracy field
127
+ return LigerCausalLMOutputWithPast(
128
+ loss=loss,
129
+ logits=logits,
130
+ past_key_values=outputs.past_key_values,
131
+ hidden_states=outputs.hidden_states,
132
+ attentions=outputs.attentions,
133
+ token_accuracy=token_accuracy,
134
+ )
@@ -0,0 +1,157 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils import can_return_tuple
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerInternVLCausalLMOutputWithPast
13
+
14
+
15
+ # Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
16
+ @can_return_tuple
17
+ def lce_forward(
18
+ self,
19
+ input_ids: torch.LongTensor = None,
20
+ pixel_values: Optional[torch.FloatTensor] = None,
21
+ attention_mask: Optional[torch.Tensor] = None,
22
+ position_ids: Optional[torch.LongTensor] = None,
23
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
24
+ inputs_embeds: Optional[torch.FloatTensor] = None,
25
+ vision_feature_layer: Optional[Union[int, List[int]]] = None,
26
+ vision_feature_select_strategy: Optional[str] = None,
27
+ labels: Optional[torch.LongTensor] = None,
28
+ use_cache: Optional[bool] = None,
29
+ output_attentions: Optional[bool] = None,
30
+ output_hidden_states: Optional[bool] = None,
31
+ return_dict: Optional[bool] = None,
32
+ cache_position: Optional[torch.LongTensor] = None,
33
+ logits_to_keep: Union[int, torch.Tensor] = 0,
34
+ image_sizes: Optional[torch.Tensor] = None,
35
+ skip_logits: Optional[bool] = None, # Added argument for liger-kernel
36
+ **lm_kwargs, # renamed from kwargs
37
+ ) -> Union[Tuple, LigerInternVLCausalLMOutputWithPast]:
38
+ r"""
39
+ Example:
40
+
41
+ ```python
42
+ >>> import torch
43
+ >>> from transformers import AutoProcessor, AutoModelForImageTextToText
44
+
45
+ >>> torch_device = "cuda"
46
+ >>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
47
+ >>> model = AutoModelForImageTextToText.from_pretrained(
48
+ ... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
49
+ ... )
50
+
51
+ >>> messages = [
52
+ ... {
53
+ ... "role": "user",
54
+ ... "content": [
55
+ ... {
56
+ ... "type": "image",
57
+ ... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
58
+ ... },
59
+ ... {
60
+ ... "type": "image",
61
+ ... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
62
+ ... },
63
+ ... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
64
+ ... ],
65
+ ... },
66
+ ... ]
67
+
68
+ >>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
69
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=200)
70
+ >>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
71
+ The images depict the Statue of Liberty and the Golden Gate Bridge.
72
+ ```"""
73
+
74
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
75
+ output_hidden_states = (
76
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
77
+ )
78
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
79
+ vision_feature_layer = (
80
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
81
+ )
82
+ vision_feature_select_strategy = (
83
+ vision_feature_select_strategy
84
+ if vision_feature_select_strategy is not None
85
+ else self.config.vision_feature_select_strategy
86
+ )
87
+
88
+ outputs = self.model(
89
+ input_ids=input_ids,
90
+ pixel_values=pixel_values,
91
+ attention_mask=attention_mask,
92
+ position_ids=position_ids,
93
+ past_key_values=past_key_values,
94
+ inputs_embeds=inputs_embeds,
95
+ vision_feature_layer=vision_feature_layer,
96
+ vision_feature_select_strategy=vision_feature_select_strategy,
97
+ use_cache=use_cache,
98
+ output_attentions=output_attentions,
99
+ output_hidden_states=output_hidden_states,
100
+ return_dict=return_dict,
101
+ cache_position=cache_position,
102
+ image_sizes=image_sizes,
103
+ **lm_kwargs,
104
+ )
105
+
106
+ # Copied from llava.py
107
+ hidden_states = outputs[0]
108
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
109
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
110
+ kept_hidden_states = hidden_states[:, slice_indices, :]
111
+
112
+ shift_labels = lm_kwargs.pop("shift_labels", None)
113
+ logits = None
114
+ loss = None
115
+ token_accuracy = None
116
+
117
+ if skip_logits and labels is None and shift_labels is None:
118
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
119
+
120
+ if skip_logits is None:
121
+ # By default, if in training mode, don't materialize logits
122
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
123
+
124
+ if skip_logits:
125
+ result = LigerForCausalLMLoss(
126
+ hidden_states=kept_hidden_states,
127
+ lm_head_weight=self.lm_head.weight,
128
+ labels=labels,
129
+ shift_labels=shift_labels,
130
+ hidden_size=self.config.text_config.hidden_size,
131
+ **lm_kwargs,
132
+ )
133
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
134
+
135
+ else:
136
+ logits = self.lm_head(kept_hidden_states)
137
+ if labels is not None:
138
+ loss = self.loss_function(
139
+ logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
140
+ )
141
+
142
+ if not return_dict:
143
+ output = (logits,) + outputs[1:]
144
+ output = (loss,) + output if loss is not None else output
145
+ output = output + (token_accuracy,) if token_accuracy is not None else output
146
+ return output
147
+
148
+ # Return custom output class with token_accuracy field
149
+ return LigerInternVLCausalLMOutputWithPast(
150
+ loss=loss,
151
+ logits=logits,
152
+ past_key_values=outputs.past_key_values,
153
+ hidden_states=outputs.hidden_states,
154
+ attentions=outputs.attentions,
155
+ image_hidden_states=outputs.image_hidden_states,
156
+ token_accuracy=token_accuracy,
157
+ )