kib-lap 0.5__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- Examples/Cross_Section_Thin.py +61 -0
- Examples/__init__.py +0 -0
- KIB_LAP/Betonbau/Bemessung_Polygon.py +667 -0
- KIB_LAP/Betonbau/Bemessung_Zust_II.py +648 -0
- KIB_LAP/Betonbau/Cross_Section_Kappa.py +925 -0
- KIB_LAP/Betonbau/Druckglied_KGV.py +179 -0
- KIB_LAP/Betonbau/Iterative_Design.py +723 -0
- KIB_LAP/Betonbau/Materialkennwerte_Beton.py +196 -0
- KIB_LAP/Betonbau/Querschnittsbreite.py +194 -0
- KIB_LAP/Betonbau/Querschnittsbreite_Kreis.py +63 -0
- KIB_LAP/Betonbau/__init__.py +2 -0
- KIB_LAP/Betonbau/beam_plate_T.py +921 -0
- KIB_LAP/Betonbau/beam_plate_T_reverse.py +915 -0
- KIB_LAP/Betonbau/beam_rectangular.py +635 -0
- KIB_LAP/Betonbau/beam_sub_section.py +9 -0
- KIB_LAP/Dynamik/Cross_Section_Properties.py +155 -0
- KIB_LAP/Dynamik/Deformation_Method.py +587 -0
- KIB_LAP/Dynamik/Duhamel_SDOF.py +221 -0
- KIB_LAP/Dynamik/FFT.py +87 -0
- KIB_LAP/Dynamik/Kontinuum_Eigenmodes.py +418 -0
- KIB_LAP/Dynamik/Kontinuum_Schwingung.py +757 -0
- KIB_LAP/Dynamik/Pendulum_Spring_Linearized.py +91 -0
- KIB_LAP/Dynamik/Pendulum_Spring_Problem.py +94 -0
- KIB_LAP/Dynamik/__init__.py +0 -0
- KIB_LAP/Examples/Cross_Section_Thin.py +61 -0
- KIB_LAP/Examples/Cross_Section_Thin_2.py +14 -0
- KIB_LAP/Examples/Plattentragwerke.py +39 -0
- KIB_LAP/Examples/Plattentragwerke_2.py +60 -0
- KIB_LAP/Examples/ShearDesign.py +28 -0
- KIB_LAP/Examples/__init__.py +0 -0
- KIB_LAP/Plattenbeulen/Plate_Design.py +276 -0
- KIB_LAP/Plattenbeulen/Ritz_Optimiert.py +658 -0
- KIB_LAP/Plattenbeulen/__init__.py +2 -0
- KIB_LAP/Plattenbeulen/dist/__init__.py +0 -0
- KIB_LAP/Plattenbeulen/plate_buckling.cpp +561 -0
- KIB_LAP/Plattenbeulen/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/Plattenbeulen/plate_buckling_cpp.cpp +561 -0
- KIB_LAP/Plattenbeulen/setup.py +35 -0
- KIB_LAP/Plattentragwerke/Functions.cpp +326 -0
- KIB_LAP/Plattentragwerke/Functions.h +41 -0
- KIB_LAP/Plattentragwerke/NumInte.cpp +23 -0
- KIB_LAP/Plattentragwerke/NumericalIntegration.cpp +23 -0
- KIB_LAP/Plattentragwerke/PlateBendingKirchhoff.py +843 -0
- KIB_LAP/Plattentragwerke/__init__.py +1 -0
- KIB_LAP/Plattentragwerke/plate_bending.cpp +341 -0
- KIB_LAP/Plattentragwerke/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/Plattentragwerke/setup.py +39 -0
- KIB_LAP/Querschnittswerte/Querschnitt_Duenn.py +526 -0
- KIB_LAP/Querschnittswerte/__init__.py +1 -0
- KIB_LAP/STABRAUM/InputData.py +92 -0
- KIB_LAP/STABRAUM/Programm.py +1403 -0
- KIB_LAP/STABRAUM/Steifigkeitsmatrix.py +275 -0
- KIB_LAP/STABRAUM/__init__.py +3 -0
- KIB_LAP/Stahlbau/__init__.py +0 -0
- KIB_LAP/Verbundbau/Verbundtraeger_Bemessung.py +766 -0
- KIB_LAP/Verbundbau/__init__.py +0 -0
- KIB_LAP/__init__.py +4 -0
- KIB_LAP/main.py +2 -0
- KIB_LAP/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
- kib_lap-0.5.dist-info/METADATA +25 -0
- kib_lap-0.5.dist-info/RECORD +64 -0
- kib_lap-0.5.dist-info/WHEEL +5 -0
- kib_lap-0.5.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,275 @@
|
|
|
1
|
+
import sympy as sp
|
|
2
|
+
import numpy as np
|
|
3
|
+
import math
|
|
4
|
+
|
|
5
|
+
class ElemStema:
|
|
6
|
+
def __init__(self):
|
|
7
|
+
|
|
8
|
+
# Initialisierung der Steifigkeitsmatrix
|
|
9
|
+
self.Ke = np.zeros((14, 14))
|
|
10
|
+
|
|
11
|
+
def TransformationMatrix(self, posI, posJ):
|
|
12
|
+
ix, iy, iz = posI
|
|
13
|
+
jx, jy, jz = posJ
|
|
14
|
+
|
|
15
|
+
dx = jx - ix
|
|
16
|
+
dy = jy - iy
|
|
17
|
+
dz = jz - iz
|
|
18
|
+
length = math.sqrt(dx**2 + dy**2 + dz**2)
|
|
19
|
+
|
|
20
|
+
T = np.zeros((14, 14))
|
|
21
|
+
T_i = np.zeros((6, 6))
|
|
22
|
+
|
|
23
|
+
# Falls die Knoten identisch sind
|
|
24
|
+
if length < 1e-12:
|
|
25
|
+
np.fill_diagonal(T, 1.0)
|
|
26
|
+
return T
|
|
27
|
+
|
|
28
|
+
# 1. Spezialfall: Balken nur in z-Richtung
|
|
29
|
+
# (dx, dy ~ 0, dz != 0)
|
|
30
|
+
tol = 1e-12
|
|
31
|
+
if abs(dx) < tol and abs(dy) < tol:
|
|
32
|
+
# -> lokales x' = globales z
|
|
33
|
+
# Rotationsmatrix R:
|
|
34
|
+
# x' -> z
|
|
35
|
+
# y' -> y
|
|
36
|
+
# z' -> -x (z.B. so gewählt,
|
|
37
|
+
# aber man kann auch x'->z, y'->x etc. nehmen)
|
|
38
|
+
if dz > 0:
|
|
39
|
+
# x' -> +z
|
|
40
|
+
R = np.array([
|
|
41
|
+
[0, 0, 1], # x'
|
|
42
|
+
[0, 1, 0], # y'
|
|
43
|
+
[-1, 0, 0], # z'
|
|
44
|
+
], dtype=float)
|
|
45
|
+
else:
|
|
46
|
+
# x' -> -z
|
|
47
|
+
R = np.array([
|
|
48
|
+
[0, 0, -1], # x'
|
|
49
|
+
[0, 1, 0], # y'
|
|
50
|
+
[1, 0, 0], # z'
|
|
51
|
+
], dtype=float)
|
|
52
|
+
|
|
53
|
+
else:
|
|
54
|
+
# 2. Allgemeiner Fall: Kreuzprodukt-Logik
|
|
55
|
+
ex_approx = np.array([dx, dy, dz]) / length
|
|
56
|
+
|
|
57
|
+
# Hilfsvektor für y'-Achse (wenn ex_approx zu parallel zu e_z, dann e_y)
|
|
58
|
+
ez_approx = np.array([0, 0, 1], dtype=float)
|
|
59
|
+
if abs(np.dot(ex_approx, ez_approx)) > 0.9999:
|
|
60
|
+
ez_approx = np.array([0, 1, 0], dtype=float)
|
|
61
|
+
|
|
62
|
+
ey = np.cross(ex_approx, ez_approx)
|
|
63
|
+
ey /= np.linalg.norm(ey)
|
|
64
|
+
ez = np.cross(ex_approx, ey)
|
|
65
|
+
|
|
66
|
+
R = np.column_stack((ex_approx, ey, ez))
|
|
67
|
+
|
|
68
|
+
cos_xX = R[0][0]
|
|
69
|
+
cos_xY = R[0][1]
|
|
70
|
+
cos_xZ = R[0][2]
|
|
71
|
+
|
|
72
|
+
cos_yX = R[1][0]
|
|
73
|
+
cos_yY = R[1][1]
|
|
74
|
+
cos_yZ = R[1][2]
|
|
75
|
+
|
|
76
|
+
cos_zX = R[2][0]
|
|
77
|
+
cos_zY = R[2][1]
|
|
78
|
+
cos_zZ = R[2][2]
|
|
79
|
+
|
|
80
|
+
# T_i: 6x6-Block
|
|
81
|
+
|
|
82
|
+
T_i[0,0] = cos_xX
|
|
83
|
+
T_i[0,1] = cos_xY
|
|
84
|
+
T_i[0,3] = cos_xZ
|
|
85
|
+
|
|
86
|
+
T_i[1,0] = cos_yX
|
|
87
|
+
T_i[1,1] = cos_yY
|
|
88
|
+
T_i[1,3] = cos_yZ
|
|
89
|
+
|
|
90
|
+
T_i[2,2] = cos_zZ
|
|
91
|
+
T_i[2,4] = cos_zY
|
|
92
|
+
T_i[2,5] = cos_zX
|
|
93
|
+
|
|
94
|
+
T_i[3,0] = cos_zX
|
|
95
|
+
T_i[3,1] = cos_zY
|
|
96
|
+
T_i[3,3] = cos_zZ
|
|
97
|
+
|
|
98
|
+
T_i[4,2] = cos_yZ
|
|
99
|
+
T_i[4,4] = cos_yY
|
|
100
|
+
T_i[4,5] = cos_yX
|
|
101
|
+
|
|
102
|
+
T_i[5,2] = cos_xZ
|
|
103
|
+
T_i[5,4] = cos_xY
|
|
104
|
+
T_i[5,5] = cos_xX
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
T[0:6,0:6] = T_i
|
|
109
|
+
T[7:13,7:13] = T_i
|
|
110
|
+
|
|
111
|
+
# Warping
|
|
112
|
+
|
|
113
|
+
T[6, 6] = 1.0
|
|
114
|
+
T[13, 13] = 1.0
|
|
115
|
+
|
|
116
|
+
return T
|
|
117
|
+
|
|
118
|
+
def insert_elements(self, S, E, G, A, I_y, I_z, I_omega, I_T, cv, z1, cw, z2, c_thet, l):
|
|
119
|
+
"""
|
|
120
|
+
Element-Stiffness-Matrix:
|
|
121
|
+
Na
|
|
122
|
+
Vya
|
|
123
|
+
Mza
|
|
124
|
+
Vza
|
|
125
|
+
Mya
|
|
126
|
+
Mxa
|
|
127
|
+
Mwa
|
|
128
|
+
Nb
|
|
129
|
+
Vyb
|
|
130
|
+
Mzb
|
|
131
|
+
Vzb
|
|
132
|
+
Myb
|
|
133
|
+
Mxb
|
|
134
|
+
Mwb
|
|
135
|
+
"""
|
|
136
|
+
self.S = S # Stiffness of shear field
|
|
137
|
+
|
|
138
|
+
self.E = E # Material stiffness of the beam
|
|
139
|
+
self.G = G
|
|
140
|
+
|
|
141
|
+
self.A = A
|
|
142
|
+
self.I_y = I_y
|
|
143
|
+
self.I_z = I_z
|
|
144
|
+
|
|
145
|
+
self.I_omega = I_omega
|
|
146
|
+
self.I_T = I_T
|
|
147
|
+
|
|
148
|
+
self.cv = cv
|
|
149
|
+
self.z1 = z1
|
|
150
|
+
self.cw = cw
|
|
151
|
+
self.z2 = z2
|
|
152
|
+
|
|
153
|
+
self.c_thet = c_thet
|
|
154
|
+
|
|
155
|
+
self.l = l
|
|
156
|
+
# Matrixeinträge gemäß Tabelle definieren
|
|
157
|
+
self.Ke[0, 0] = self.Ke[7, 7] = self.E * self.A / self.l
|
|
158
|
+
self.Ke[0, 7] = self.Ke[7, 0] = -self.E * self.A / self.l
|
|
159
|
+
|
|
160
|
+
self.Ke[1, 1] = self.Ke[8, 8] = (
|
|
161
|
+
12 * self.E * self.I_z / self.l**3 + 13 / 35 * self.cv * self.l + 1.2 * self.S / self.l
|
|
162
|
+
)
|
|
163
|
+
self.Ke[1, 2] = 6 * self.E * self.I_z / self.l**2 + 11 / 210 * self.cv * self.l**2 + 0.1 * self.S
|
|
164
|
+
|
|
165
|
+
self.Ke[1, 5] = 13 / 35 * self.cv * self.l * self.z1 - 1.2 * self.S / self.l * self.z2
|
|
166
|
+
self.Ke[1, 6] = -11 / 210 * self.cv * self.l**2 * self.z1 + 0.1 * self.S * self.z2
|
|
167
|
+
|
|
168
|
+
self.Ke[1, 8] = -12 * self.E * self.I_z / self.l**3 + 9 / 70 * self.cv * self.l - 1.2 * self.S / self.l
|
|
169
|
+
self.Ke[1, 9] = 6 * self.E * self.I_z / self.l**2 - 13 / 420 * self.cv * self.l**2 + 0.1 * self.S
|
|
170
|
+
|
|
171
|
+
self.Ke[1, 12] = 9 / 70 * self.cv * self.l * self.z1 + 1.2 * self.S / self.l * self.z2
|
|
172
|
+
self.Ke[1, 13] = 13 / 420 * self.cv * self.l**2 * z1 + 0.1 * self.S * self.z2
|
|
173
|
+
|
|
174
|
+
self.Ke[2, 2] = 4 * self.E * self.I_z / self.l + 1 / 105 * self.cv * self.l**3 + 2 / 15 * self.S * self.l
|
|
175
|
+
self.Ke[9, 9] = self.Ke[2, 2]
|
|
176
|
+
|
|
177
|
+
self.Ke[2, 5] = 11 / 210 * self.cv * l**2 * self.z1 - 0.1 * self.S * self.z2
|
|
178
|
+
self.Ke[2, 6] = -1 / 105 * self.cv * self.l**3 * self.z1 + 2 / 15 * self.S * self.l * self.z2
|
|
179
|
+
self.Ke[2, 8] = -6 * self.E * self.I_z / self.l**2 + 13 / 420 * self.cv * l**2 - 0.1 * self.S
|
|
180
|
+
|
|
181
|
+
self.Ke[2, 9] = 2 * self.E * self.I_z / self.l - 1 / 140 * self.cv * self.l**3 - 1 / 30 * self.S * self.l
|
|
182
|
+
self.Ke[2, 12] = 13 / 420 * self.cv * self.l**2 * self.z1 + 0.1 * self.S * self.z2
|
|
183
|
+
self.Ke[2, 13] = 1 / 140 * self.cv * self.l**3 * self.z1 - 1 / 30 * self.S * self.l * self.z2
|
|
184
|
+
|
|
185
|
+
self.Ke[3, 3] = 12 * self.E * self.I_y / self.l**3 + 13 / 35 * self.cw * self.l
|
|
186
|
+
self.Ke[10, 10] = self.Ke[3, 3]
|
|
187
|
+
|
|
188
|
+
self.Ke[3, 4] = -6 * self.E * self.I_y / self.l**2 - 11 / 210 * self.cw * self.l**2
|
|
189
|
+
self.Ke[3, 10] = -12 * self.E * self.I_y / self.l**3 + 9 / 70 * self.cw * self.l
|
|
190
|
+
self.Ke[3, 11] = -6 * self.E * self.I_y / self.l**2 + 13 / 420 * self.cw * self.l**2
|
|
191
|
+
|
|
192
|
+
self.Ke[4, 4] = 4 * self.E * self.I_y / self.l + 1 / 105 * self.cw * self.l**3
|
|
193
|
+
self.Ke[11, 11] = self.Ke[4, 4]
|
|
194
|
+
|
|
195
|
+
self.Ke[4, 10] = 6 * self.E * self.I_y / self.l**2 - 13 / 420 * self.cw * self.l**2
|
|
196
|
+
self.Ke[4, 11] = 2 * self.E * self.I_y / self.l - 1 / 140 * self.cw * self.l**3
|
|
197
|
+
|
|
198
|
+
self.Ke[5, 5] = self.Ke[12, 12] = (
|
|
199
|
+
12 * self.E * self.I_omega / self.l**3
|
|
200
|
+
+ 1.2 * self.G * self.I_T / self.l
|
|
201
|
+
+ 13 / 35 * self.c_thet * self.l
|
|
202
|
+
+ 13 / 35 * self.cv * self.l * self.z1**2
|
|
203
|
+
+ 1.2 * self.S / self.l * self.z2**2
|
|
204
|
+
)
|
|
205
|
+
self.Ke[5, 6] = (
|
|
206
|
+
-6 * self.E * self.I_omega / self.l**2
|
|
207
|
+
- 0.1 * self.G * self.I_T
|
|
208
|
+
- 11 / 210 * self.c_thet * self.l**2
|
|
209
|
+
- 11 / 210 * self.cv * self.l**2 * self.z1**2
|
|
210
|
+
- 0.1 * self.S * self.z2**2
|
|
211
|
+
)
|
|
212
|
+
self.Ke[5, 8] = 9 / 70 * self.cv * l * self.z1 + 1.2 * self.S / self.l * self.z2
|
|
213
|
+
self.Ke[5, 9] = -13 / 420 * self.cv * self.l * self.z1 - 0.1 * self.S * self.z2
|
|
214
|
+
self.Ke[5, 12] = (
|
|
215
|
+
-12 * self.E * self.I_omega / self.l**3
|
|
216
|
+
- 1.2 * self.G * self.I_T / self.l
|
|
217
|
+
+ 9 / 70 * self.c_thet * self.l
|
|
218
|
+
+ 9 / 70 * self.cv * self.l * self.z1**2
|
|
219
|
+
- 1.2 * self.S / self.l * self.z2**2
|
|
220
|
+
)
|
|
221
|
+
self.Ke[5, 13] = (
|
|
222
|
+
-6 * self.E * self.I_omega / self.l**2
|
|
223
|
+
- 0.1 * self.G * self.I_T
|
|
224
|
+
+ 13 / 420 * self.c_thet * self.l**2
|
|
225
|
+
+ 13 / 420 * self.cv * self.l**2 * self.z1**2
|
|
226
|
+
- 0.1 * self.S * self.z2**2
|
|
227
|
+
)
|
|
228
|
+
self.Ke[6, 6] = self.Ke[13, 13] = (
|
|
229
|
+
4 * self.E * self.I_omega / self.l
|
|
230
|
+
+ 2 / 15 * self.G * self.I_T * self.l
|
|
231
|
+
+ 1 / 105 * self.c_thet * self.l**3
|
|
232
|
+
+ 1 / 105 * self.cv * self.l**3 * self.z1
|
|
233
|
+
+ 2 / 15 * self.S * self.l * self.z2**2
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
self.Ke[6, 8] = -13 / 420 * self.cv * self.l**2 * self.z1 - 0.1 * self.S * self.z2
|
|
237
|
+
self.Ke[6, 9] = 1 / 140 * self.cv * self.l**3 * self.z1 - 1 / 30 * self.S * self.l * self.z2
|
|
238
|
+
self.Ke[6, 12] = (
|
|
239
|
+
6 * self.E * self.I_omega / self.l**2
|
|
240
|
+
+ 0.1 * self.G * self.I_T
|
|
241
|
+
- 13 / 420 * self.c_thet * self.l**2
|
|
242
|
+
- 13 / 420 * self.cv * self.l**2 * self.z1**2
|
|
243
|
+
+ 0.1 * self.S * self.z2**2
|
|
244
|
+
)
|
|
245
|
+
self.Ke[6, 13] = (
|
|
246
|
+
2 * self.E * self.I_omega / self.l
|
|
247
|
+
- 1 / 30 * self.G * self.I_T * self.l
|
|
248
|
+
- 1 / 140 * self.c_thet * self.l**3
|
|
249
|
+
- 1 / 140 * self.cv * l**3 * self.z1**2
|
|
250
|
+
- 1 / 30 * self.S * self.l * self.z2**2
|
|
251
|
+
)
|
|
252
|
+
self.Ke[8, 9] = -6 * self.E * self.I_z / self.l**2 - 11 / 210 * self.cv * self.l**2 - 0.1 * self.S
|
|
253
|
+
self.Ke[8, 12] = 13 / 35 * self.cv * self.l * self.z1 - 1.2 * self.S / self.l * self.z2
|
|
254
|
+
self.Ke[8, 13] = 11 / 210 * self.cv * self.l**2 * self.z1 - 0.1 * self.S * self.z2
|
|
255
|
+
self.Ke[9, 12] = -11 / 210 * self.cv * self.l**2 * self.z1 + 0.1 * self.S * self.z2
|
|
256
|
+
self.Ke[9, 13] = -1 / 105 * self.cv * self.l**3 * z1 + 2 / 15 * self.S * self.l * self.z2
|
|
257
|
+
self.Ke[10, 11] = 6 * E * I_y / l**2 + 11 / 210 * cw * l**2
|
|
258
|
+
self.Ke[12, 13] = (
|
|
259
|
+
6 * E * I_omega / l**2
|
|
260
|
+
+ 0.1 * G * I_T
|
|
261
|
+
+ 11 / 210 * c_thet * l**2
|
|
262
|
+
+ 11 / 210 * cv * l**2 * z1**2
|
|
263
|
+
+ 0.1 * S * z2**2
|
|
264
|
+
)
|
|
265
|
+
|
|
266
|
+
# Elem Matrix is symmetrical
|
|
267
|
+
|
|
268
|
+
for i in range(14):
|
|
269
|
+
for j in range(i):
|
|
270
|
+
self.Ke[i, j] = self.Ke[j, i]
|
|
271
|
+
|
|
272
|
+
return self.Ke
|
|
273
|
+
|
|
274
|
+
def print_elem_matrix(self):
|
|
275
|
+
sp.pprint(self.Ke)
|
|
File without changes
|