kib-lap 0.5__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- Examples/Cross_Section_Thin.py +61 -0
- Examples/__init__.py +0 -0
- KIB_LAP/Betonbau/Bemessung_Polygon.py +667 -0
- KIB_LAP/Betonbau/Bemessung_Zust_II.py +648 -0
- KIB_LAP/Betonbau/Cross_Section_Kappa.py +925 -0
- KIB_LAP/Betonbau/Druckglied_KGV.py +179 -0
- KIB_LAP/Betonbau/Iterative_Design.py +723 -0
- KIB_LAP/Betonbau/Materialkennwerte_Beton.py +196 -0
- KIB_LAP/Betonbau/Querschnittsbreite.py +194 -0
- KIB_LAP/Betonbau/Querschnittsbreite_Kreis.py +63 -0
- KIB_LAP/Betonbau/__init__.py +2 -0
- KIB_LAP/Betonbau/beam_plate_T.py +921 -0
- KIB_LAP/Betonbau/beam_plate_T_reverse.py +915 -0
- KIB_LAP/Betonbau/beam_rectangular.py +635 -0
- KIB_LAP/Betonbau/beam_sub_section.py +9 -0
- KIB_LAP/Dynamik/Cross_Section_Properties.py +155 -0
- KIB_LAP/Dynamik/Deformation_Method.py +587 -0
- KIB_LAP/Dynamik/Duhamel_SDOF.py +221 -0
- KIB_LAP/Dynamik/FFT.py +87 -0
- KIB_LAP/Dynamik/Kontinuum_Eigenmodes.py +418 -0
- KIB_LAP/Dynamik/Kontinuum_Schwingung.py +757 -0
- KIB_LAP/Dynamik/Pendulum_Spring_Linearized.py +91 -0
- KIB_LAP/Dynamik/Pendulum_Spring_Problem.py +94 -0
- KIB_LAP/Dynamik/__init__.py +0 -0
- KIB_LAP/Examples/Cross_Section_Thin.py +61 -0
- KIB_LAP/Examples/Cross_Section_Thin_2.py +14 -0
- KIB_LAP/Examples/Plattentragwerke.py +39 -0
- KIB_LAP/Examples/Plattentragwerke_2.py +60 -0
- KIB_LAP/Examples/ShearDesign.py +28 -0
- KIB_LAP/Examples/__init__.py +0 -0
- KIB_LAP/Plattenbeulen/Plate_Design.py +276 -0
- KIB_LAP/Plattenbeulen/Ritz_Optimiert.py +658 -0
- KIB_LAP/Plattenbeulen/__init__.py +2 -0
- KIB_LAP/Plattenbeulen/dist/__init__.py +0 -0
- KIB_LAP/Plattenbeulen/plate_buckling.cpp +561 -0
- KIB_LAP/Plattenbeulen/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/Plattenbeulen/plate_buckling_cpp.cpp +561 -0
- KIB_LAP/Plattenbeulen/setup.py +35 -0
- KIB_LAP/Plattentragwerke/Functions.cpp +326 -0
- KIB_LAP/Plattentragwerke/Functions.h +41 -0
- KIB_LAP/Plattentragwerke/NumInte.cpp +23 -0
- KIB_LAP/Plattentragwerke/NumericalIntegration.cpp +23 -0
- KIB_LAP/Plattentragwerke/PlateBendingKirchhoff.py +843 -0
- KIB_LAP/Plattentragwerke/__init__.py +1 -0
- KIB_LAP/Plattentragwerke/plate_bending.cpp +341 -0
- KIB_LAP/Plattentragwerke/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/Plattentragwerke/setup.py +39 -0
- KIB_LAP/Querschnittswerte/Querschnitt_Duenn.py +526 -0
- KIB_LAP/Querschnittswerte/__init__.py +1 -0
- KIB_LAP/STABRAUM/InputData.py +92 -0
- KIB_LAP/STABRAUM/Programm.py +1403 -0
- KIB_LAP/STABRAUM/Steifigkeitsmatrix.py +275 -0
- KIB_LAP/STABRAUM/__init__.py +3 -0
- KIB_LAP/Stahlbau/__init__.py +0 -0
- KIB_LAP/Verbundbau/Verbundtraeger_Bemessung.py +766 -0
- KIB_LAP/Verbundbau/__init__.py +0 -0
- KIB_LAP/__init__.py +4 -0
- KIB_LAP/main.py +2 -0
- KIB_LAP/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
- kib_lap-0.5.dist-info/METADATA +25 -0
- kib_lap-0.5.dist-info/RECORD +64 -0
- kib_lap-0.5.dist-info/WHEEL +5 -0
- kib_lap-0.5.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,326 @@
|
|
|
1
|
+
// Functions.cpp
|
|
2
|
+
|
|
3
|
+
#include "Functions.h"
|
|
4
|
+
#include <cmath>
|
|
5
|
+
#include <iostream>
|
|
6
|
+
|
|
7
|
+
#ifndef M_PI
|
|
8
|
+
#define M_PI 3.14159265358979323846
|
|
9
|
+
#endif
|
|
10
|
+
|
|
11
|
+
NumericFunctions::NumericFunctions(double a, double b, const std::string &support)
|
|
12
|
+
: a_(a), b_(b), support_(support)
|
|
13
|
+
{
|
|
14
|
+
}
|
|
15
|
+
|
|
16
|
+
double NumericFunctions::function_1(double x, int m)
|
|
17
|
+
{
|
|
18
|
+
if (support_ == "hhhh")
|
|
19
|
+
{
|
|
20
|
+
return std::sin(x * M_PI / a_ * m);
|
|
21
|
+
}
|
|
22
|
+
else if (support_ == "cccc")
|
|
23
|
+
{
|
|
24
|
+
return 1 - std::cos(2 * m * M_PI * x / a_);
|
|
25
|
+
}
|
|
26
|
+
else if (support_ == "hhff")
|
|
27
|
+
{
|
|
28
|
+
double lambda_m = (0.50 + static_cast<double>(m) - 1) * M_PI;
|
|
29
|
+
|
|
30
|
+
if (m == 2)
|
|
31
|
+
{
|
|
32
|
+
lambda_m = 4.730041;
|
|
33
|
+
}
|
|
34
|
+
else if (m == 3)
|
|
35
|
+
{
|
|
36
|
+
lambda_m = 7.853205;
|
|
37
|
+
}
|
|
38
|
+
else if (m == 4)
|
|
39
|
+
{
|
|
40
|
+
lambda_m = 10.99561;
|
|
41
|
+
}
|
|
42
|
+
double alpha = lambda_m / a_;
|
|
43
|
+
|
|
44
|
+
double a_j = (std::sinh(lambda_m) - std::sin(lambda_m)) / (std::cosh(lambda_m) - std::cos(lambda_m));
|
|
45
|
+
if (m > 1)
|
|
46
|
+
{
|
|
47
|
+
return (std::sin(alpha * x) + std::sinh(alpha * x)) / (std::sin(lambda_m) - std::sinh(lambda_m))
|
|
48
|
+
- a_j * (std::cosh(alpha * x) + std::cos(alpha * x)) / (std::cos(lambda_m) - std::cosh(lambda_m));
|
|
49
|
+
}
|
|
50
|
+
else
|
|
51
|
+
{
|
|
52
|
+
return 1;
|
|
53
|
+
}
|
|
54
|
+
}
|
|
55
|
+
else if (support_ == "hhhf")
|
|
56
|
+
{
|
|
57
|
+
double lambda_m = (0.25 + static_cast<double>(m) - 1) * M_PI;
|
|
58
|
+
|
|
59
|
+
if (m == 2)
|
|
60
|
+
{
|
|
61
|
+
lambda_m = 3.926602;
|
|
62
|
+
}
|
|
63
|
+
else if (m == 3)
|
|
64
|
+
{
|
|
65
|
+
lambda_m = 7.068582;
|
|
66
|
+
}
|
|
67
|
+
else if (m == 4)
|
|
68
|
+
{
|
|
69
|
+
lambda_m = 10.21018;
|
|
70
|
+
}
|
|
71
|
+
double alpha = lambda_m / a_;
|
|
72
|
+
|
|
73
|
+
if (m > 1)
|
|
74
|
+
{
|
|
75
|
+
return std::sin(alpha * x) + std::sinh(alpha * x) * std::sin(lambda_m) / std::sinh(lambda_m);
|
|
76
|
+
}
|
|
77
|
+
else
|
|
78
|
+
{
|
|
79
|
+
return x / a_;
|
|
80
|
+
}
|
|
81
|
+
}
|
|
82
|
+
else
|
|
83
|
+
{
|
|
84
|
+
return 0.0;
|
|
85
|
+
}
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
double NumericFunctions::function_1x(double x, int m)
|
|
89
|
+
{
|
|
90
|
+
if (support_ == "hhhh")
|
|
91
|
+
{
|
|
92
|
+
return std::cos(x * M_PI / a_ * m) * M_PI / a_ * m;
|
|
93
|
+
}
|
|
94
|
+
else if (support_ == "cccc")
|
|
95
|
+
{
|
|
96
|
+
return 2 * M_PI * m * std::sin(2 * M_PI * m * x / a_) / a_;
|
|
97
|
+
}
|
|
98
|
+
else if (support_ == "hhff")
|
|
99
|
+
{
|
|
100
|
+
double lambda_m = (0.50 + static_cast<double>(m) - 1) * M_PI;
|
|
101
|
+
if (m == 2)
|
|
102
|
+
{
|
|
103
|
+
lambda_m = 4.730041;
|
|
104
|
+
}
|
|
105
|
+
else if (m == 3)
|
|
106
|
+
{
|
|
107
|
+
lambda_m = 7.853205;
|
|
108
|
+
}
|
|
109
|
+
else if (m == 4)
|
|
110
|
+
{
|
|
111
|
+
lambda_m = 10.99561;
|
|
112
|
+
}
|
|
113
|
+
|
|
114
|
+
double alpha = lambda_m / a_;
|
|
115
|
+
|
|
116
|
+
double a_j = (std::sinh(lambda_m) - std::sin(lambda_m)) / (std::cosh(lambda_m) - std::cos(lambda_m));
|
|
117
|
+
|
|
118
|
+
if (m > 1)
|
|
119
|
+
{
|
|
120
|
+
return alpha * ((std::cos(alpha * x) + std::cosh(alpha * x))
|
|
121
|
+
/ (std::sin(lambda_m) - std::sinh(lambda_m)) - a_j * (std::sinh(alpha * x) - std::sin(alpha * x)))
|
|
122
|
+
/ (std::cos(lambda_m) - std::cosh(lambda_m));
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
else
|
|
126
|
+
{
|
|
127
|
+
return 0;
|
|
128
|
+
}
|
|
129
|
+
}
|
|
130
|
+
else if (support_ == "hhhf")
|
|
131
|
+
{
|
|
132
|
+
double lambda_m = (0.25 + static_cast<double>(m) - 1) * M_PI;
|
|
133
|
+
|
|
134
|
+
if (m == 2)
|
|
135
|
+
{
|
|
136
|
+
lambda_m = 3.926602;
|
|
137
|
+
}
|
|
138
|
+
else if (m == 3)
|
|
139
|
+
{
|
|
140
|
+
lambda_m = 7.068582;
|
|
141
|
+
}
|
|
142
|
+
else if (m == 4)
|
|
143
|
+
{
|
|
144
|
+
lambda_m = 10.21018;
|
|
145
|
+
}
|
|
146
|
+
double alpha = lambda_m / a_;
|
|
147
|
+
if (m > 1)
|
|
148
|
+
{
|
|
149
|
+
return alpha * (std::cos(alpha * x) + std::cosh(alpha * x) * std::sin(lambda_m) / std::sinh(lambda_m));
|
|
150
|
+
}
|
|
151
|
+
else
|
|
152
|
+
{
|
|
153
|
+
return 1 / a_;
|
|
154
|
+
}
|
|
155
|
+
}
|
|
156
|
+
else
|
|
157
|
+
{
|
|
158
|
+
return 0.0;
|
|
159
|
+
}
|
|
160
|
+
}
|
|
161
|
+
|
|
162
|
+
double NumericFunctions::function_1xx(double x, int m)
|
|
163
|
+
{
|
|
164
|
+
if (support_ == "hhhh")
|
|
165
|
+
{
|
|
166
|
+
return -std::sin(x * M_PI / a_ * m) * std::pow(M_PI / a_ * m, 2);
|
|
167
|
+
}
|
|
168
|
+
else if (support_ == "cccc")
|
|
169
|
+
{
|
|
170
|
+
return 4 * std::pow(M_PI, 2) * std::pow(m, 2) * std::cos(2 * M_PI * m * x / a_) / std::pow(a_, 2);
|
|
171
|
+
}
|
|
172
|
+
else if (support_ == "hhff")
|
|
173
|
+
{
|
|
174
|
+
double lambda_m = (0.50 + static_cast<double>(m) - 1) * M_PI;
|
|
175
|
+
if (m == 2)
|
|
176
|
+
{
|
|
177
|
+
lambda_m = 4.730041;
|
|
178
|
+
}
|
|
179
|
+
else if (m == 3)
|
|
180
|
+
{
|
|
181
|
+
lambda_m = 7.853205;
|
|
182
|
+
}
|
|
183
|
+
else if (m == 4)
|
|
184
|
+
{
|
|
185
|
+
lambda_m = 10.99561;
|
|
186
|
+
}
|
|
187
|
+
|
|
188
|
+
double alpha = lambda_m / a_;
|
|
189
|
+
|
|
190
|
+
double a_j = (std::sinh(lambda_m) - std::sin(lambda_m)) / (std::cosh(lambda_m) - std::cos(lambda_m));
|
|
191
|
+
|
|
192
|
+
if (m > 1)
|
|
193
|
+
{
|
|
194
|
+
return (alpha * alpha) * ((-std::sin(alpha * x) + std::sinh(alpha * x)
|
|
195
|
+
/ (std::sin(lambda_m) - std::sinh(lambda_m))) - a_j * (- std::cos(alpha * x)+ std::cosh(alpha * x)
|
|
196
|
+
) / ((std::cos(lambda_m) - std::cosh(lambda_m))));
|
|
197
|
+
}
|
|
198
|
+
else
|
|
199
|
+
{
|
|
200
|
+
return 0;
|
|
201
|
+
}
|
|
202
|
+
}
|
|
203
|
+
else if (support_ == "hhhf")
|
|
204
|
+
{
|
|
205
|
+
double lambda_m = (0.25 + static_cast<double>(m) - 1) * M_PI;
|
|
206
|
+
|
|
207
|
+
if (m == 2)
|
|
208
|
+
{
|
|
209
|
+
lambda_m = 3.926602;
|
|
210
|
+
}
|
|
211
|
+
else if (m == 3)
|
|
212
|
+
{
|
|
213
|
+
lambda_m = 7.068582;
|
|
214
|
+
}
|
|
215
|
+
else if (m == 4)
|
|
216
|
+
{
|
|
217
|
+
lambda_m = 10.21018;
|
|
218
|
+
}
|
|
219
|
+
double alpha = lambda_m / a_;
|
|
220
|
+
if (m > 1)
|
|
221
|
+
{
|
|
222
|
+
return alpha * alpha * (-1 * std::sin(alpha * x) + std::sinh(alpha * x) * std::sin(lambda_m) / std::sinh(lambda_m));
|
|
223
|
+
}
|
|
224
|
+
|
|
225
|
+
else
|
|
226
|
+
{
|
|
227
|
+
return 0;
|
|
228
|
+
}
|
|
229
|
+
}
|
|
230
|
+
else
|
|
231
|
+
{
|
|
232
|
+
return 0.0;
|
|
233
|
+
}
|
|
234
|
+
}
|
|
235
|
+
|
|
236
|
+
double NumericFunctions::function_2(double y, int n)
|
|
237
|
+
{
|
|
238
|
+
if (support_ == "hhhh")
|
|
239
|
+
{
|
|
240
|
+
return std::sin(y * M_PI / b_ * n);
|
|
241
|
+
}
|
|
242
|
+
else if (support_ == "cccc")
|
|
243
|
+
{
|
|
244
|
+
return 1 - std::cos(2 * n * M_PI * y / b_);
|
|
245
|
+
}
|
|
246
|
+
else if (support_ == "hhff")
|
|
247
|
+
{
|
|
248
|
+
return std::sin(y * M_PI / b_ * n);
|
|
249
|
+
}
|
|
250
|
+
else if (support_ == "hhhf")
|
|
251
|
+
{
|
|
252
|
+
return std::sin(y * M_PI / b_ * n);
|
|
253
|
+
}
|
|
254
|
+
else
|
|
255
|
+
{
|
|
256
|
+
return 0.0;
|
|
257
|
+
}
|
|
258
|
+
}
|
|
259
|
+
|
|
260
|
+
double NumericFunctions::function_2y(double y, int n)
|
|
261
|
+
{
|
|
262
|
+
if (support_ == "hhhh")
|
|
263
|
+
{
|
|
264
|
+
return std::cos(y * M_PI / b_ * n) * M_PI / b_ * n;
|
|
265
|
+
}
|
|
266
|
+
else if (support_ == "cccc")
|
|
267
|
+
{
|
|
268
|
+
return 2 * M_PI * n * std::sin(2 * M_PI * n * y / b_) / b_;
|
|
269
|
+
}
|
|
270
|
+
else if (support_ == "hhff")
|
|
271
|
+
{
|
|
272
|
+
return std::cos(y * M_PI / b_ * n) * M_PI / b_ * n;
|
|
273
|
+
}
|
|
274
|
+
else if (support_ == "hhhf")
|
|
275
|
+
{
|
|
276
|
+
return std::cos(y * M_PI / b_ * n) * M_PI / b_ * n;
|
|
277
|
+
}
|
|
278
|
+
else
|
|
279
|
+
{
|
|
280
|
+
return 0.0;
|
|
281
|
+
}
|
|
282
|
+
}
|
|
283
|
+
|
|
284
|
+
double NumericFunctions::function_2yy(double y, int n)
|
|
285
|
+
{
|
|
286
|
+
if (support_ == "hhhh")
|
|
287
|
+
{
|
|
288
|
+
return -std::sin(y * M_PI / b_ * n) * std::pow(M_PI / b_ * n, 2);
|
|
289
|
+
}
|
|
290
|
+
else if (support_ == "cccc")
|
|
291
|
+
{
|
|
292
|
+
return 4 * std::pow(M_PI, 2) * std::pow(n, 2) * std::cos(2 * M_PI * n * y / b_) / std::pow(b_, 2);
|
|
293
|
+
}
|
|
294
|
+
else if (support_ == "hhff")
|
|
295
|
+
{
|
|
296
|
+
return -std::sin(y * M_PI / b_ * n) * std::pow(M_PI / b_ * n, 2);
|
|
297
|
+
}
|
|
298
|
+
else if (support_ == "hhhf")
|
|
299
|
+
{
|
|
300
|
+
return -std::sin(y * M_PI / b_ * n) * std::pow(M_PI / b_ * n, 2);
|
|
301
|
+
}
|
|
302
|
+
else
|
|
303
|
+
{
|
|
304
|
+
return 0.0;
|
|
305
|
+
}
|
|
306
|
+
}
|
|
307
|
+
|
|
308
|
+
double NumericalIntegration::integrate_product(
|
|
309
|
+
const std::function<double(double, int)> &func1,
|
|
310
|
+
const std::function<double(double, int)> &func2,
|
|
311
|
+
const std::vector<double> &points,
|
|
312
|
+
int index1,
|
|
313
|
+
int index2)
|
|
314
|
+
{
|
|
315
|
+
// Trapezregel für die numerische Integration
|
|
316
|
+
double sum = 0.0;
|
|
317
|
+
for (size_t i = 0; i < points.size() - 1; ++i)
|
|
318
|
+
{
|
|
319
|
+
double x0 = points[i];
|
|
320
|
+
double x1 = points[i + 1];
|
|
321
|
+
double f0 = func1(x0, index1) * func2(x0, index2);
|
|
322
|
+
double f1 = func1(x1, index1) * func2(x1, index2);
|
|
323
|
+
sum += 0.5 * (f0 + f1) * (x1 - x0);
|
|
324
|
+
}
|
|
325
|
+
return sum;
|
|
326
|
+
}
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
// Functions.h
|
|
2
|
+
|
|
3
|
+
#ifndef FUNCTIONS_H
|
|
4
|
+
#define FUNCTIONS_H
|
|
5
|
+
|
|
6
|
+
#include <string>
|
|
7
|
+
|
|
8
|
+
class NumericFunctions
|
|
9
|
+
{
|
|
10
|
+
public:
|
|
11
|
+
NumericFunctions(double a, double b, const std::string &support);
|
|
12
|
+
NumericFunctions() {};
|
|
13
|
+
|
|
14
|
+
double function_1(double x, int m);
|
|
15
|
+
double function_1x(double x, int m);
|
|
16
|
+
double function_1xx(double x, int m);
|
|
17
|
+
double function_2(double y, int n);
|
|
18
|
+
double function_2y(double y, int n);
|
|
19
|
+
double function_2yy(double y, int n);
|
|
20
|
+
|
|
21
|
+
private:
|
|
22
|
+
double a_;
|
|
23
|
+
double b_;
|
|
24
|
+
std::string support_;
|
|
25
|
+
};
|
|
26
|
+
|
|
27
|
+
#include <vector>
|
|
28
|
+
#include <functional>
|
|
29
|
+
|
|
30
|
+
class NumericalIntegration
|
|
31
|
+
{
|
|
32
|
+
public:
|
|
33
|
+
static double integrate_product(
|
|
34
|
+
const std::function<double(double, int)> &func1,
|
|
35
|
+
const std::function<double(double, int)> &func2,
|
|
36
|
+
const std::vector<double> &points,
|
|
37
|
+
int index1,
|
|
38
|
+
int index2);
|
|
39
|
+
};
|
|
40
|
+
|
|
41
|
+
#endif // FUNCTIONS_H
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
// NumericalIntegration.cpp
|
|
2
|
+
|
|
3
|
+
#include "NumInte.h"
|
|
4
|
+
|
|
5
|
+
double NumericalIntegration::integrate_product(
|
|
6
|
+
const std::function<double(double, int)> &func1,
|
|
7
|
+
const std::function<double(double, int)> &func2,
|
|
8
|
+
const std::vector<double> &points,
|
|
9
|
+
int index1,
|
|
10
|
+
int index2)
|
|
11
|
+
{
|
|
12
|
+
// Trapezregel für die numerische Integration
|
|
13
|
+
double sum = 0.0;
|
|
14
|
+
for (size_t i = 0; i < points.size() - 1; ++i)
|
|
15
|
+
{
|
|
16
|
+
double x0 = points[i];
|
|
17
|
+
double x1 = points[i + 1];
|
|
18
|
+
double f0 = func1(x0, index1) * func2(x0, index2);
|
|
19
|
+
double f1 = func1(x1, index1) * func2(x1, index2);
|
|
20
|
+
sum += 0.5 * (f0 + f1) * (x1 - x0);
|
|
21
|
+
}
|
|
22
|
+
return sum;
|
|
23
|
+
}
|
|
@@ -0,0 +1,23 @@
|
|
|
1
|
+
// NumericalIntegration.cpp
|
|
2
|
+
|
|
3
|
+
#include "NumericalIntegration.h"
|
|
4
|
+
|
|
5
|
+
double NumericalIntegration::integrate_product(
|
|
6
|
+
const std::function<double(double, int)> &func1,
|
|
7
|
+
const std::function<double(double, int)> &func2,
|
|
8
|
+
const std::vector<double> &points,
|
|
9
|
+
int index1,
|
|
10
|
+
int index2)
|
|
11
|
+
{
|
|
12
|
+
// Trapezregel für die numerische Integration
|
|
13
|
+
double sum = 0.0;
|
|
14
|
+
for (size_t i = 0; i < points.size() - 1; ++i)
|
|
15
|
+
{
|
|
16
|
+
double x0 = points[i];
|
|
17
|
+
double x1 = points[i + 1];
|
|
18
|
+
double f0 = func1(x0, index1) * func2(x0, index2);
|
|
19
|
+
double f1 = func1(x1, index1) * func2(x1, index2);
|
|
20
|
+
sum += 0.5 * (f0 + f1) * (x1 - x0);
|
|
21
|
+
}
|
|
22
|
+
return sum;
|
|
23
|
+
}
|