kib-lap 0.5__cp313-cp313-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. Examples/Cross_Section_Thin.py +61 -0
  2. Examples/__init__.py +0 -0
  3. KIB_LAP/Betonbau/Bemessung_Polygon.py +667 -0
  4. KIB_LAP/Betonbau/Bemessung_Zust_II.py +648 -0
  5. KIB_LAP/Betonbau/Cross_Section_Kappa.py +925 -0
  6. KIB_LAP/Betonbau/Druckglied_KGV.py +179 -0
  7. KIB_LAP/Betonbau/Iterative_Design.py +723 -0
  8. KIB_LAP/Betonbau/Materialkennwerte_Beton.py +196 -0
  9. KIB_LAP/Betonbau/Querschnittsbreite.py +194 -0
  10. KIB_LAP/Betonbau/Querschnittsbreite_Kreis.py +63 -0
  11. KIB_LAP/Betonbau/__init__.py +2 -0
  12. KIB_LAP/Betonbau/beam_plate_T.py +921 -0
  13. KIB_LAP/Betonbau/beam_plate_T_reverse.py +915 -0
  14. KIB_LAP/Betonbau/beam_rectangular.py +635 -0
  15. KIB_LAP/Betonbau/beam_sub_section.py +9 -0
  16. KIB_LAP/Dynamik/Cross_Section_Properties.py +155 -0
  17. KIB_LAP/Dynamik/Deformation_Method.py +587 -0
  18. KIB_LAP/Dynamik/Duhamel_SDOF.py +221 -0
  19. KIB_LAP/Dynamik/FFT.py +87 -0
  20. KIB_LAP/Dynamik/Kontinuum_Eigenmodes.py +418 -0
  21. KIB_LAP/Dynamik/Kontinuum_Schwingung.py +757 -0
  22. KIB_LAP/Dynamik/Pendulum_Spring_Linearized.py +91 -0
  23. KIB_LAP/Dynamik/Pendulum_Spring_Problem.py +94 -0
  24. KIB_LAP/Dynamik/__init__.py +0 -0
  25. KIB_LAP/Examples/Cross_Section_Thin.py +61 -0
  26. KIB_LAP/Examples/Cross_Section_Thin_2.py +14 -0
  27. KIB_LAP/Examples/Plattentragwerke.py +39 -0
  28. KIB_LAP/Examples/Plattentragwerke_2.py +60 -0
  29. KIB_LAP/Examples/ShearDesign.py +28 -0
  30. KIB_LAP/Examples/__init__.py +0 -0
  31. KIB_LAP/Plattenbeulen/Plate_Design.py +276 -0
  32. KIB_LAP/Plattenbeulen/Ritz_Optimiert.py +658 -0
  33. KIB_LAP/Plattenbeulen/__init__.py +2 -0
  34. KIB_LAP/Plattenbeulen/dist/__init__.py +0 -0
  35. KIB_LAP/Plattenbeulen/plate_buckling.cpp +561 -0
  36. KIB_LAP/Plattenbeulen/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
  37. KIB_LAP/Plattenbeulen/plate_buckling_cpp.cpp +561 -0
  38. KIB_LAP/Plattenbeulen/setup.py +35 -0
  39. KIB_LAP/Plattentragwerke/Functions.cpp +326 -0
  40. KIB_LAP/Plattentragwerke/Functions.h +41 -0
  41. KIB_LAP/Plattentragwerke/NumInte.cpp +23 -0
  42. KIB_LAP/Plattentragwerke/NumericalIntegration.cpp +23 -0
  43. KIB_LAP/Plattentragwerke/PlateBendingKirchhoff.py +843 -0
  44. KIB_LAP/Plattentragwerke/__init__.py +1 -0
  45. KIB_LAP/Plattentragwerke/plate_bending.cpp +341 -0
  46. KIB_LAP/Plattentragwerke/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
  47. KIB_LAP/Plattentragwerke/setup.py +39 -0
  48. KIB_LAP/Querschnittswerte/Querschnitt_Duenn.py +526 -0
  49. KIB_LAP/Querschnittswerte/__init__.py +1 -0
  50. KIB_LAP/STABRAUM/InputData.py +92 -0
  51. KIB_LAP/STABRAUM/Programm.py +1403 -0
  52. KIB_LAP/STABRAUM/Steifigkeitsmatrix.py +275 -0
  53. KIB_LAP/STABRAUM/__init__.py +3 -0
  54. KIB_LAP/Stahlbau/__init__.py +0 -0
  55. KIB_LAP/Verbundbau/Verbundtraeger_Bemessung.py +766 -0
  56. KIB_LAP/Verbundbau/__init__.py +0 -0
  57. KIB_LAP/__init__.py +4 -0
  58. KIB_LAP/main.py +2 -0
  59. KIB_LAP/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
  60. KIB_LAP/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
  61. kib_lap-0.5.dist-info/METADATA +25 -0
  62. kib_lap-0.5.dist-info/RECORD +64 -0
  63. kib_lap-0.5.dist-info/WHEEL +5 -0
  64. kib_lap-0.5.dist-info/top_level.txt +1 -0
@@ -0,0 +1,91 @@
1
+ import numpy as np
2
+ from matplotlib import pyplot as plt
3
+ from math import cos, sin, pi
4
+
5
+
6
+ class TwoMassesSpring_Lin:
7
+ def __init__(
8
+ self,
9
+ r_inp=5,
10
+ E_inp=30000e6,
11
+ I_inp=833.33,
12
+ l_inp=30,
13
+ m1_inp=5.625e6,
14
+ m2_inp=981250, dtinp = 1e-3, timeinp = 10,
15
+ dtinp = 1e-3, timeinp = 10,
16
+ _phi_0 = 30 , _x1_0 = 0,
17
+ _dphi_0 = 0 , _dx1_0 = 0
18
+ ):
19
+
20
+ self.r = r_inp
21
+ E = E_inp
22
+
23
+ I = I_inp
24
+ l = l_inp
25
+
26
+
27
+
28
+ # Mass parameters
29
+ self.m_1 = m1_inp
30
+ self.m_2 = m2_inp
31
+
32
+ self.k_1 = 3 * E * I / l**3
33
+
34
+ self.g = 9.81 # Gravity constant
35
+
36
+ # Initial conditions
37
+ self.x1_0 = _x1_0
38
+ self.phi_0 = _phi_0 / 180 * np.pi
39
+ self.xd1_0 = _dphi_0
40
+ self.phid_0 = _x1_0
41
+
42
+ # Time steps
43
+ self.dt = dtinp
44
+ self.T_ges = timeinp
45
+ self.N_steps = int(self.T_ges / self.dt)
46
+
47
+ def construct_mass_matrix(self, phi):
48
+ m_11 = self.m_1 + self.m_2
49
+ m_12 = self.m_2 * self.r
50
+ m_21 = self.m_2 * self.r
51
+ m_22 = self.m_2 * self.r**2
52
+
53
+ M = np.array([[m_11, m_12], [m_21, m_22]])
54
+ return M
55
+
56
+ def construct_force_vector(self, phi, phid):
57
+ f_10 = -self.k_1 * self.x1_0
58
+ f_20 = -self.m_2 * self.g * self.r * phi
59
+
60
+ F = np.array([f_10, f_20])
61
+ return F
62
+
63
+ def equations_of_motion(self, state):
64
+ x1, phi, xd1, phid = state
65
+ M = self.construct_mass_matrix(phi)
66
+ F = self.construct_force_vector(phi, phid)
67
+ acc = np.linalg.solve(M, F)
68
+ return np.array([xd1, phid, acc[0], acc[1]])
69
+
70
+ def RK4_step(self, state):
71
+ k1 = self.equations_of_motion(state)
72
+ k2 = self.equations_of_motion(state + 0.5 * k1 * self.dt)
73
+ k3 = self.equations_of_motion(state + 0.5 * k2 * self.dt)
74
+ k4 = self.equations_of_motion(state + k3 * self.dt)
75
+ return state + self.dt * (k1 + 2 * k2 + 2 * k3 + k4) / 6
76
+
77
+ def solve(self):
78
+ state = np.array(
79
+ [self.x1_0, self.phi_0, self.xd1_0, self.phid_0]
80
+ ) # Initial state [x1, phi, xd1, phid]
81
+ list_x1 = []
82
+ list_phi = []
83
+ time = []
84
+
85
+ for i in range(self.N_steps):
86
+ state = self.RK4_step(state)
87
+ list_x1.append(state[0])
88
+ list_phi.append(state[1])
89
+ time.append(self.dt * i)
90
+
91
+ return time, list_x1, list_phi
@@ -0,0 +1,94 @@
1
+ import numpy as np
2
+ from math import sin, cos
3
+ from matplotlib import pyplot as plt
4
+
5
+
6
+ class TwoMassesSpringRopeRK4:
7
+ def __init__(
8
+ self,
9
+ r_inp=5,
10
+ E_inp=30000e6,
11
+ I_inp=833.33,
12
+ l_inp=30,
13
+ m1_inp=5.625e6,
14
+ m2_inp=981250,
15
+ dtinp = 1e-3, timeinp = 10,
16
+ _phi_0 = 30 , _x1_0 = 0,
17
+ _dphi_0 = 0 , _dx1_0 = 0
18
+ ):
19
+ self.r = r_inp
20
+ E = E_inp
21
+ I = I_inp
22
+ l = l_inp
23
+
24
+
25
+ self.k_1 = 3 * E * I / l**3
26
+
27
+ # Mass parameters
28
+ self.m_1 = m1_inp
29
+ self.m_2 = m2_inp
30
+
31
+ # Damping parameters
32
+
33
+ # Gravity
34
+
35
+ self.g = 9.81 # Gravity constant
36
+
37
+ # Initial conditions
38
+ self.x1_0 = _x1_0
39
+ self.phi_0 = _phi_0 / 180 * np.pi
40
+ self.xd1_0 = _dphi_0
41
+ self.phid_0 = _x1_0
42
+
43
+ # Time steps
44
+ self.dt = dtinp
45
+ self.T_ges = timeinp
46
+ self.N_steps = int(self.T_ges / self.dt)
47
+
48
+ def construct_mass_matrix(self, phi):
49
+ m_11 = self.m_1 + self.m_2
50
+ m_12 = self.m_2 * self.r * cos(phi)
51
+ m_21 = self.m_2 * self.r * cos(phi)
52
+ m_22 = self.m_2 * self.r**2
53
+
54
+ M = np.array([[m_11, m_12], [m_21, m_22]])
55
+ return M
56
+
57
+ def construct_force_vector(self, phi, phid):
58
+ f_10 = -self.k_1 * self.x1_0 + self.m_2 * self.r * phid**2 * sin(phi)
59
+ f_20 = -self.m_2 * self.g * self.r * sin(phi)
60
+
61
+ F = np.array([f_10, f_20])
62
+ return F
63
+
64
+ def equations_of_motion(self, state):
65
+ x1, phi, xd1, phid = state
66
+ M = self.construct_mass_matrix(phi)
67
+ F = self.construct_force_vector(phi, phid)
68
+ acc = np.linalg.solve(M, F)
69
+ return np.array([xd1, phid, acc[0], acc[1]])
70
+
71
+ def RK4_step(self, state):
72
+ k1 = self.equations_of_motion(state)
73
+ k2 = self.equations_of_motion(state + 0.5 * k1 * self.dt)
74
+ k3 = self.equations_of_motion(state + 0.5 * k2 * self.dt)
75
+ k4 = self.equations_of_motion(state + k3 * self.dt)
76
+ return state + self.dt * (k1 + 2 * k2 + 2 * k3 + k4) / 6
77
+
78
+ def solve(self):
79
+ state = np.array(
80
+ [self.x1_0, self.phi_0, self.xd1_0, self.phid_0]
81
+ ) # Initial state [x1, phi, xd1, phid]
82
+ list_x1 = []
83
+ list_phi = []
84
+ time = []
85
+
86
+ for i in range(self.N_steps):
87
+ state = self.RK4_step(state)
88
+ list_x1.append(state[0])
89
+ list_phi.append(state[1])
90
+ time.append(self.dt * i)
91
+
92
+ return time, list_x1, list_phi
93
+
94
+
File without changes
@@ -0,0 +1,61 @@
1
+
2
+ import pandas as pd
3
+ import os
4
+ import sys
5
+ import numpy as np
6
+
7
+ # Absoluten Pfad des Projekts und des KIB-Ordners berechnen
8
+ project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
9
+ kib_directory = os.path.join(project_root, "KIB_LAP")
10
+
11
+ # Debug-Ausgabe, um die Pfade zu überprüfen
12
+ print("Project Root:", project_root)
13
+ print("KIB Directory:", kib_directory)
14
+
15
+ # Füge das KIB-Verzeichnis zum sys.path hinzu, falls es nicht vorhanden ist
16
+ if kib_directory not in sys.path:
17
+ sys.path.insert(0, kib_directory)
18
+
19
+ # Importieren des Moduls
20
+ try:
21
+ from KIB_LAP.Querschnittswerte import CrossSectionThin
22
+ print("Import erfolgreich!")
23
+ except ModuleNotFoundError as e:
24
+ print("Fehler beim Import:", e)
25
+
26
+
27
+ Node_Cords = pd.DataFrame({
28
+ "Nr.": [1, 2, 3, 4, 5, 6],
29
+ "y": [-0.35, 0, 0.35, 0, -0.30, 0.30],
30
+ "z": [0, 0, 0, 0.400, 0.400, 0.400]
31
+ })
32
+
33
+
34
+ CrossSectionElements = pd.DataFrame({
35
+ "nr": [1, 2, 3, 4, 5],
36
+ "npa": [1, 2, 2, 4, 4],
37
+ "npe": [2, 3, 4, 5, 6],
38
+ "t [m]": [0.02, 0.02, 0.01, 0.02, 0.02]
39
+ })
40
+
41
+ Class = CrossSectionThin(
42
+ 2.1e5,
43
+ 0.3,
44
+ Node_Cords,
45
+ CrossSectionElements,
46
+ "Calculation"
47
+ )
48
+
49
+
50
+ Class.read_node_input()
51
+ Class.CalculateElementStiffness()
52
+ Class.Calculate_GesMat()
53
+ Class.SolverTorsion()
54
+ Class.CalculateAyzw()
55
+ Class.Update_SMP()
56
+ Class.Calculate_IwIt()
57
+ Class.Calculate_WoWu()
58
+ Class.Calculate_ShearStress_Vz()
59
+ Class.Calculate_imryrzrw()
60
+ Class.Export_Controll_Data()
61
+ Class.Export_Cross_Section_Data()
@@ -0,0 +1,14 @@
1
+ from KIB_LAP.Querschnittswerte import CrossSectionThin
2
+ import pandas as pd
3
+
4
+ # Lade die hochgeladenen CSV-Dateien
5
+ node_file_path = 'Querschnittswerte/Knoten.csv'
6
+ element_file_path = 'Querschnittswerte/Elemente.csv'
7
+
8
+ # Dateien einlesen
9
+ node_data = pd.read_csv(node_file_path)
10
+ element_data = pd.read_csv(element_file_path)
11
+
12
+ CS = CrossSectionThin(210000,0.30,node_param=node_data, element_param=element_data, Speichername = "Calculation_2")
13
+
14
+ CS.Calculation_Start()
@@ -0,0 +1,39 @@
1
+ # Beispielhafte Nutzung der Klasse
2
+ from KIB_LAP.Plattentragwerke import PlateBendingKirchhoffClass
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ from matplotlib import cm
6
+ import pandas as pd
7
+ import time
8
+ import os
9
+
10
+ if __name__ == "__main__":
11
+ a = 14
12
+ b = 4.5
13
+
14
+ Plate = PlateBendingKirchhoffClass(
15
+ E=35000,
16
+ t=0.35,
17
+ a=a,
18
+ b=b,
19
+ p0=1,
20
+ x0=0.5,
21
+ u=0.5,
22
+ y0=0.5,
23
+ v=0.5,
24
+ nu=0.0,
25
+ n_inte=30,
26
+ loading="Regular",
27
+ support="hhhh",
28
+ reihen=20
29
+ )
30
+
31
+ start_time = time.time()
32
+ Plate.CalculateAll()
33
+ end_time = time.time()
34
+ duration = end_time - start_time
35
+
36
+ print("Berechnungszeit:", duration, "Sekunden")
37
+
38
+ Plate.PlotLoad()
39
+ Plate.PlotMomentGrid()
@@ -0,0 +1,60 @@
1
+ from KIB_LAP.Plattentragwerke import PlateBendingKirchhoffClass
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ from matplotlib import cm
5
+ import pandas as pd
6
+ import time
7
+ import os
8
+
9
+
10
+ a = 10.5
11
+ b = 10
12
+
13
+ Plate = PlateBendingKirchhoffClass(
14
+ 35000, 0.35, a, b, 1, 0.5, 0.5, 0.5, 0.5, 0.0, 0, 0, n_inte=50, loading="Liste", support = "hhff",reihen = 8)
15
+
16
+
17
+ # Daten als Liste von Listen
18
+ new_data = [
19
+ ["No.","x0[m]","x1[m]","y0[m]","y1[m]","p0[MN/m**2]"],
20
+ [1,2-0.2,2+0.2,0.5,0.9,150/0.4**2/1000],
21
+ [2,3.2-0.2,3.2+0.2,0.5,0.9,150/0.4**2/1000],
22
+ [3,3.2-0.2,3.2+0.2,2.5,2.9,150/0.4**2/1000],
23
+ [4,2-0.2,2+0.2,2.5,2.9,150/0.4**2/1000],
24
+
25
+ [6,2-0.2,2+0.2,3.5,3.9,100/0.4**2/1000],
26
+ [7,3.2-0.2,3.2+0.2,3.5,3.9,100/0.4**2/1000],
27
+ [8,3.2-0.2,3.2+0.2,5.5,5.9,100/0.4**2/1000],
28
+ [9,2-0.2,2+0.2,5.5,5.9,100/0.4**2/1000],
29
+
30
+ [10,2-0.2,2+0.2,6.5,6.9,100/0.4**2/1000],
31
+ [11,3.2-0.2,3.2+0.2,6.5,6.9,100/0.4**2/1000],
32
+ [12,3.2-0.2,3.2+0.2,8.5,8.9,100/0.4**2/1000],
33
+ [13,2-0.2,2+0.2,8.5,8.9,100/0.4**2/1000]
34
+
35
+ ]
36
+
37
+ # Konvertiere die Daten in ein DataFrame
38
+ df = pd.DataFrame(new_data[1:], columns=new_data[0])
39
+
40
+ # Dateipfad zur CSV-Datei
41
+ file_path = 'Loading/Constant_Loading.csv'
42
+
43
+ # Schreibe das DataFrame in eine CSV-Datei
44
+ df.to_csv(file_path, index=False)
45
+
46
+
47
+ Plate.CalculateAll()
48
+
49
+ Plate.SolutionPointDisp(0.5,0.5)
50
+ Plate.SolutionPointMomentx(0.5,0.5)
51
+ Plate.SolutionPointMomenty(0.5,0.5)
52
+
53
+
54
+ Plate.PlotLoad()
55
+ print("BENDING MOMENTS")
56
+ Plate.PlotMomentGrid()
57
+ print("SHEAR FORCES")
58
+ Plate.PlotShearForceGrid()
59
+ print("DRILL MOMENTS")
60
+ Plate.PlotTorsionalMomentGrid()
@@ -0,0 +1,28 @@
1
+ from KIB_LAP.Betonbau import BeamRectangular
2
+ from KIB_LAP.Betonbau import BeamSubSection
3
+
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ from matplotlib import cm
7
+ import pandas as pd
8
+ import time
9
+ import os
10
+
11
+
12
+ Beam = BeamRectangular(1,1.00,0.60)
13
+
14
+ moment_ed = 0.20
15
+ normal_force_ed = 0.20
16
+ shear_force_ed = 0.30
17
+ effective_height = 0.65
18
+ effective_height_pressure = 0.08
19
+ elasticity_modulus_steel = 200000
20
+
21
+ BeamSection = BeamSubSection(moment_ed, normal_force_ed,shear_force_ed, effective_height,effective_height_pressure, elasticity_modulus_steel)
22
+
23
+
24
+ Beam.calculate_beam_section_without_shearreinforcement(BeamSection,30*0.01**2,35,500)
25
+
26
+
27
+ print(Beam.v_rdcs * 1000)
28
+ print(Beam.v_rdcmin * 1000)
File without changes
@@ -0,0 +1,276 @@
1
+
2
+
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+
6
+ from pylatex import (
7
+ Document,
8
+ Section,
9
+ Subsection,
10
+ Command,
11
+ Tabular,
12
+ Math,
13
+ TikZ,
14
+ Axis,
15
+ Plot,
16
+ Figure,
17
+ Matrix,
18
+ Alignat,
19
+ MultiRow,
20
+ MultiColumn,
21
+ Tabularx,
22
+ Tabu,
23
+ ColumnType,
24
+ LongTable,
25
+ Table,
26
+ Center
27
+
28
+ )
29
+
30
+ from pylatex.utils import escape_latex, fix_filename, dumps_list, bold, \
31
+ italic, verbatim, NoEscape
32
+
33
+
34
+
35
+ class Beulnachweise_Platten:
36
+ """
37
+ Das ist eine Klasse zur Berechnung einfacher Beulfelder.
38
+
39
+ self.sigma_1_x = Größte Druckspannung an einer Seite des Beulfeldes.
40
+ Hier wird üblicherweise ein positives Vorzeichen
41
+ für Druckspannungen gewählt.
42
+
43
+
44
+
45
+ """
46
+ def __init__(self):
47
+ # Spannungen aus Sofistik
48
+ self.sigma_1_x = 387.5 # Druckspannung (Positiv)
49
+ self.sigma_2_x = -262.9 # Zugspannung negativ
50
+ self.sigma_1_v = 387.5
51
+ self.sigma_2_v = 262.9
52
+ self.tau_1 = 0
53
+ self.tau_2 = 0
54
+
55
+ # Materialkenngrößen
56
+ self.fyd = 460
57
+ self.E_s = 210e3
58
+
59
+ # Faktoren bis zum Erreichen der kritischen Beulvergleichsspannungen
60
+ self.alpha_ult_k_1_x = self.fyd/self.sigma_1_x
61
+ # Geometrie des Beulfeldes
62
+ self.b = 5.00
63
+ self.a = 1.90
64
+ self.t = 0.02
65
+ self.alpha = self.a/self.b
66
+
67
+ self.chi_w = 0
68
+ self.rho = 0
69
+
70
+ def Nachweisfuehrung(self):
71
+ # Ermittlung linear elastischer Beulspannungen
72
+
73
+ self.sigma_e = 1.9*(100*self.t/self.b)**2*10
74
+ self.psi = self.sigma_2_x/self.sigma_1_x # Randspannungsverhältnis bezogen auf die größe Druckspannung (Druck positiv)
75
+
76
+ self.k_sigma = (self.alpha + 1/self.alpha)**2 * (2.1)/(self.psi+1.1)
77
+
78
+ self.sigma_cr = self.k_sigma*self.sigma_e
79
+ self.alpha_cr = self.sigma_cr/self.sigma_1_x
80
+
81
+ self.alpha_ult_k = self.fyd/self.sigma_1_v
82
+
83
+ #____Abminderungsfaktoren für das Plattenbeulen für ein beidseitig gestützes Feld___#
84
+ self.lambda_p = np.sqrt(self.alpha_ult_k/self.alpha_cr)
85
+
86
+ # Abminderungsfaktor chi_w
87
+
88
+ self.eta = 1.20
89
+ if (self.fyd > 460):
90
+ self.eta = 1.00
91
+ if (self.lambda_p < 0.83/self.eta):
92
+ self.chi_w = self.eta
93
+ elif(self.lambda_p >= 0.83 / self.eta):
94
+ self.chi_w = 0.83 / self.lambda_p
95
+
96
+ print(self.chi_w)
97
+
98
+ # Abminderungskenngröße rho_x
99
+ # Für plattenartiges Versagen
100
+
101
+ if (self.lambda_p <= 0.5 + np.sqrt(0.085 - 0.055 * self.psi)):
102
+ self.rho = 1.0
103
+ elif (self.lambda_p > 0.5 + np.sqrt(0.085 - 0.055 * self.psi)):
104
+ self.rho = min((self.lambda_p - 0.055 * (3+self.psi))/(self.lambda_p**2),1.00)
105
+
106
+ # Für Knickstabähnliches Verhalten
107
+
108
+ self.alpha_e = 0.21 # Für nicht ausgesteifte Blechfelder: alpha_e = 0.21
109
+
110
+ self.phi = 0.5*(1+self.alpha_e*(self.lambda_p -0.2) + self.lambda_p**2)
111
+
112
+ self.chi_c = 1/(self.phi + np.sqrt(self.phi**2 - self.lambda_p**2))
113
+
114
+ # Knickspannung
115
+
116
+ self.sigma_cr_r = (np.pi**2 * self.E_s * self.t**2)/(12 * (1-0.3)*self.a**2)
117
+ self.sigma_cr_p_x = self.sigma_1_x
118
+
119
+ # Interpolation zwischen plattenartigen / knickstabähnlichem Verhalten
120
+
121
+ self.xi = self.sigma_cr_p_x/self.sigma_cr_r-1
122
+
123
+ print(self.xi)
124
+
125
+ self.xi = max(min(self.xi,1),0)
126
+
127
+ print(self.xi)
128
+
129
+ self.rho_x = (self.rho - self.chi_c)*self.xi*(2-self.xi) + self.chi_c
130
+
131
+ print(self.rho_x)
132
+
133
+
134
+ # Nachweisführung
135
+
136
+ self.eta = (self.sigma_1_x/(self.fyd * self.rho_x / 1.10))
137
+
138
+ def Ausgabe_Pdf_Latex(self,width ,*args, **kwargs):
139
+ fname = "Beulnachweise"
140
+ geometry_options = {"right": "2cm", "left": "2cm"}
141
+ self.doc = Document(fname, geometry_options=geometry_options)
142
+
143
+ with self.doc.create(Section("Berechnung der Beulnachweise nach DIN EN 1993-1-5")):
144
+ self.doc.append("Take a look at this beautiful plot:")
145
+
146
+ # with doc.create(Figure(position="htbp")) as plot:
147
+ # plot.add_plot(width=NoEscape(width), *args, **kwargs)
148
+ # plot.add_caption("I am a caption.")
149
+
150
+ self.doc.create(Subsection("Materialkenngrößen"))
151
+ self.doc.append("")
152
+ #self.doc.append(Math(data=["2*3", "=", 3 * 2]))
153
+
154
+ self.doc.create(Subsection("Geometrische und materielle Kenngrößen"))
155
+
156
+ def Material_Properties():
157
+ # Tabular
158
+
159
+ self.doc.append(NoEscape(r"\centering"))
160
+
161
+ table = Table(position="htb")
162
+
163
+ self.doc.append(Command('centering'))
164
+ table.add_caption("Material properties")
165
+
166
+
167
+ t = Tabular(table_spec='|c|c|c|', data=None, pos=1, width=3)
168
+
169
+ t.add_hline(start=None, end=None)
170
+
171
+ t.add_row(("Kenngröße", "Wert", "Einheit"), escape=False, strict=True, mapper=[bold])
172
+ t.add_hline(start=None, end=None)
173
+
174
+ t.add_row(["Streckgrenze", self.fyd, "MN/m²"])
175
+ t.add_row([NoEscape(r"Streckgrenze - $$\gamma_{\text{M1}}$$") , f"{self.fyd/1.10:.2f}", "MN/m²"])
176
+ t.add_row(["E-Modul", self.E_s, "MN/m²"])
177
+ t.add_hline(start=None, end=None)
178
+ # t.add_row(1, 2, escape=False, strict=True, mapper=[bold])
179
+
180
+ # # MultiColumn/MultiRow.
181
+ # t.add_row((MultiColumn(size=2, align='|c|', data='MultiColumn'),),
182
+ # strict=True)
183
+
184
+ # # One multiRow-cell in that table would not be proper LaTeX,
185
+ # # so strict is set to False
186
+
187
+ # t.add_row((MultiRow(size=2, width='*', data='MultiRow'),), strict=False)
188
+
189
+ # append tabular to table
190
+ table.append(t)
191
+
192
+ table = self.doc.append(table)
193
+
194
+
195
+
196
+ Material_Properties()
197
+
198
+ def Section_Entry_Parameters():
199
+
200
+ table = Table(position="htb")
201
+
202
+
203
+ table.add_caption("Eingangsgrößen")
204
+
205
+ t = Tabular(table_spec='|c|c|c|', data=None, pos=1, width=3)
206
+ self.doc.append(Command('centering'))
207
+
208
+ t.add_hline(start=None, end=None)
209
+
210
+ t.add_row(("Kenngröße", "Wert", "Einheit"), escape=False, strict=True, mapper=[bold])
211
+ t.add_hline(start=None, end=None)
212
+
213
+ t.add_row(["Länge des Beulfeldes a", self.a, "m"])
214
+ t.add_row(["Breite des Beulfeldes a", self.b, "m"])
215
+ t.add_row(["Blechdicke t ", self.t, "m"])
216
+
217
+ t.add_row([NoEscape(r"Seitenverhältnis $$\alpha $$"), f"{self.a/self.b:.2f}", "-"])
218
+ t.add_row([NoEscape(r"Spannungsverhältnis $$\psi $$"), f"{self.psi:.2f}", "-"])
219
+
220
+ t.add_hline(start=None, end=None)
221
+ # t.add_row(1, 2, escape=False, strict=True, mapper=[bold])
222
+
223
+ # # MultiColumn/MultiRow.
224
+ # t.add_row((MultiColumn(size=2, align='|c|', data='MultiColumn'),),
225
+ # strict=True)
226
+
227
+ # # One multiRow-cell in that table would not be proper LaTeX,
228
+ # # so strict is set to False
229
+
230
+ # t.add_row((MultiRow(size=2, width='*', data='MultiRow'),), strict=False)
231
+
232
+ # append tabular to table
233
+ table.append(t)
234
+
235
+ table = self.doc.append(table)
236
+
237
+ Section_Entry_Parameters()
238
+
239
+ self.doc.create(Subsection("Abminderungsfaktoren für die Streckgrenze"))
240
+
241
+ def Abschnitt_Beulwerte():
242
+ self.doc.append(NoEscape(f"Die Beulwerte werden zunächst in Abhängigkeit des Seitenverhältnisses {{\alpha}} bestimmt. "))
243
+ self.doc.append(NoEscape(f"Für Seitenverhältnisse <= 1 sind die Beulwerte (rechnerisch) unabhängig vom Seitenverhältnis."))
244
+
245
+
246
+ if (self.alpha < 1.0):
247
+ self.doc.append(Math(data=[NoEscape(f"k_{{\sigma}} = ({self.alpha:.2f} + 1/{self.alpha:.2f} ){{^2}} {{\cdot}} 2.1/({self.psi:.2f} +1.1) = {self.k_sigma:.2f}")]))
248
+ elif (self.alpha > 1.0):
249
+ if (self.psi == -1):
250
+ self.doc.append(Math(data=[23.9]))
251
+ elif(self.psi <0 and self.psi > -1):
252
+ self.res_biegung_normal = 7.81 - 6.29 * self.psi + 9.78 * self.psi**2
253
+ self.doc.append(Math(data=[NoEscape(f"k_{{\sigma}} = 7.81 - 6.29 {{\cdot \psi}} + 9.78 {{\cdot \psi^2 }} = {self.res_biegung_normal}")]))
254
+
255
+ Abschnitt_Beulwerte()
256
+
257
+
258
+
259
+
260
+
261
+
262
+
263
+ self.doc.generate_pdf(clean_tex=False)
264
+
265
+
266
+
267
+
268
+
269
+
270
+ # a = Beulnachweise_Platten()
271
+ # a.Nachweisfuehrung()
272
+ # a.Ausgabe_Pdf_Latex(10)
273
+
274
+
275
+
276
+