kib-lap 0.5__cp313-cp313-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- Examples/Cross_Section_Thin.py +61 -0
- Examples/__init__.py +0 -0
- KIB_LAP/Betonbau/Bemessung_Polygon.py +667 -0
- KIB_LAP/Betonbau/Bemessung_Zust_II.py +648 -0
- KIB_LAP/Betonbau/Cross_Section_Kappa.py +925 -0
- KIB_LAP/Betonbau/Druckglied_KGV.py +179 -0
- KIB_LAP/Betonbau/Iterative_Design.py +723 -0
- KIB_LAP/Betonbau/Materialkennwerte_Beton.py +196 -0
- KIB_LAP/Betonbau/Querschnittsbreite.py +194 -0
- KIB_LAP/Betonbau/Querschnittsbreite_Kreis.py +63 -0
- KIB_LAP/Betonbau/__init__.py +2 -0
- KIB_LAP/Betonbau/beam_plate_T.py +921 -0
- KIB_LAP/Betonbau/beam_plate_T_reverse.py +915 -0
- KIB_LAP/Betonbau/beam_rectangular.py +635 -0
- KIB_LAP/Betonbau/beam_sub_section.py +9 -0
- KIB_LAP/Dynamik/Cross_Section_Properties.py +155 -0
- KIB_LAP/Dynamik/Deformation_Method.py +587 -0
- KIB_LAP/Dynamik/Duhamel_SDOF.py +221 -0
- KIB_LAP/Dynamik/FFT.py +87 -0
- KIB_LAP/Dynamik/Kontinuum_Eigenmodes.py +418 -0
- KIB_LAP/Dynamik/Kontinuum_Schwingung.py +757 -0
- KIB_LAP/Dynamik/Pendulum_Spring_Linearized.py +91 -0
- KIB_LAP/Dynamik/Pendulum_Spring_Problem.py +94 -0
- KIB_LAP/Dynamik/__init__.py +0 -0
- KIB_LAP/Examples/Cross_Section_Thin.py +61 -0
- KIB_LAP/Examples/Cross_Section_Thin_2.py +14 -0
- KIB_LAP/Examples/Plattentragwerke.py +39 -0
- KIB_LAP/Examples/Plattentragwerke_2.py +60 -0
- KIB_LAP/Examples/ShearDesign.py +28 -0
- KIB_LAP/Examples/__init__.py +0 -0
- KIB_LAP/Plattenbeulen/Plate_Design.py +276 -0
- KIB_LAP/Plattenbeulen/Ritz_Optimiert.py +658 -0
- KIB_LAP/Plattenbeulen/__init__.py +2 -0
- KIB_LAP/Plattenbeulen/dist/__init__.py +0 -0
- KIB_LAP/Plattenbeulen/plate_buckling.cpp +561 -0
- KIB_LAP/Plattenbeulen/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/Plattenbeulen/plate_buckling_cpp.cpp +561 -0
- KIB_LAP/Plattenbeulen/setup.py +35 -0
- KIB_LAP/Plattentragwerke/Functions.cpp +326 -0
- KIB_LAP/Plattentragwerke/Functions.h +41 -0
- KIB_LAP/Plattentragwerke/NumInte.cpp +23 -0
- KIB_LAP/Plattentragwerke/NumericalIntegration.cpp +23 -0
- KIB_LAP/Plattentragwerke/PlateBendingKirchhoff.py +843 -0
- KIB_LAP/Plattentragwerke/__init__.py +1 -0
- KIB_LAP/Plattentragwerke/plate_bending.cpp +341 -0
- KIB_LAP/Plattentragwerke/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/Plattentragwerke/setup.py +39 -0
- KIB_LAP/Querschnittswerte/Querschnitt_Duenn.py +526 -0
- KIB_LAP/Querschnittswerte/__init__.py +1 -0
- KIB_LAP/STABRAUM/InputData.py +92 -0
- KIB_LAP/STABRAUM/Programm.py +1403 -0
- KIB_LAP/STABRAUM/Steifigkeitsmatrix.py +275 -0
- KIB_LAP/STABRAUM/__init__.py +3 -0
- KIB_LAP/Stahlbau/__init__.py +0 -0
- KIB_LAP/Verbundbau/Verbundtraeger_Bemessung.py +766 -0
- KIB_LAP/Verbundbau/__init__.py +0 -0
- KIB_LAP/__init__.py +4 -0
- KIB_LAP/main.py +2 -0
- KIB_LAP/plate_bending_cpp.cp313-win_amd64.pyd +0 -0
- KIB_LAP/plate_buckling_cpp.cp313-win_amd64.pyd +0 -0
- kib_lap-0.5.dist-info/METADATA +25 -0
- kib_lap-0.5.dist-info/RECORD +64 -0
- kib_lap-0.5.dist-info/WHEEL +5 -0
- kib_lap-0.5.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from matplotlib import pyplot as plt
|
|
3
|
+
from math import cos, sin, pi
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class TwoMassesSpring_Lin:
|
|
7
|
+
def __init__(
|
|
8
|
+
self,
|
|
9
|
+
r_inp=5,
|
|
10
|
+
E_inp=30000e6,
|
|
11
|
+
I_inp=833.33,
|
|
12
|
+
l_inp=30,
|
|
13
|
+
m1_inp=5.625e6,
|
|
14
|
+
m2_inp=981250, dtinp = 1e-3, timeinp = 10,
|
|
15
|
+
dtinp = 1e-3, timeinp = 10,
|
|
16
|
+
_phi_0 = 30 , _x1_0 = 0,
|
|
17
|
+
_dphi_0 = 0 , _dx1_0 = 0
|
|
18
|
+
):
|
|
19
|
+
|
|
20
|
+
self.r = r_inp
|
|
21
|
+
E = E_inp
|
|
22
|
+
|
|
23
|
+
I = I_inp
|
|
24
|
+
l = l_inp
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
# Mass parameters
|
|
29
|
+
self.m_1 = m1_inp
|
|
30
|
+
self.m_2 = m2_inp
|
|
31
|
+
|
|
32
|
+
self.k_1 = 3 * E * I / l**3
|
|
33
|
+
|
|
34
|
+
self.g = 9.81 # Gravity constant
|
|
35
|
+
|
|
36
|
+
# Initial conditions
|
|
37
|
+
self.x1_0 = _x1_0
|
|
38
|
+
self.phi_0 = _phi_0 / 180 * np.pi
|
|
39
|
+
self.xd1_0 = _dphi_0
|
|
40
|
+
self.phid_0 = _x1_0
|
|
41
|
+
|
|
42
|
+
# Time steps
|
|
43
|
+
self.dt = dtinp
|
|
44
|
+
self.T_ges = timeinp
|
|
45
|
+
self.N_steps = int(self.T_ges / self.dt)
|
|
46
|
+
|
|
47
|
+
def construct_mass_matrix(self, phi):
|
|
48
|
+
m_11 = self.m_1 + self.m_2
|
|
49
|
+
m_12 = self.m_2 * self.r
|
|
50
|
+
m_21 = self.m_2 * self.r
|
|
51
|
+
m_22 = self.m_2 * self.r**2
|
|
52
|
+
|
|
53
|
+
M = np.array([[m_11, m_12], [m_21, m_22]])
|
|
54
|
+
return M
|
|
55
|
+
|
|
56
|
+
def construct_force_vector(self, phi, phid):
|
|
57
|
+
f_10 = -self.k_1 * self.x1_0
|
|
58
|
+
f_20 = -self.m_2 * self.g * self.r * phi
|
|
59
|
+
|
|
60
|
+
F = np.array([f_10, f_20])
|
|
61
|
+
return F
|
|
62
|
+
|
|
63
|
+
def equations_of_motion(self, state):
|
|
64
|
+
x1, phi, xd1, phid = state
|
|
65
|
+
M = self.construct_mass_matrix(phi)
|
|
66
|
+
F = self.construct_force_vector(phi, phid)
|
|
67
|
+
acc = np.linalg.solve(M, F)
|
|
68
|
+
return np.array([xd1, phid, acc[0], acc[1]])
|
|
69
|
+
|
|
70
|
+
def RK4_step(self, state):
|
|
71
|
+
k1 = self.equations_of_motion(state)
|
|
72
|
+
k2 = self.equations_of_motion(state + 0.5 * k1 * self.dt)
|
|
73
|
+
k3 = self.equations_of_motion(state + 0.5 * k2 * self.dt)
|
|
74
|
+
k4 = self.equations_of_motion(state + k3 * self.dt)
|
|
75
|
+
return state + self.dt * (k1 + 2 * k2 + 2 * k3 + k4) / 6
|
|
76
|
+
|
|
77
|
+
def solve(self):
|
|
78
|
+
state = np.array(
|
|
79
|
+
[self.x1_0, self.phi_0, self.xd1_0, self.phid_0]
|
|
80
|
+
) # Initial state [x1, phi, xd1, phid]
|
|
81
|
+
list_x1 = []
|
|
82
|
+
list_phi = []
|
|
83
|
+
time = []
|
|
84
|
+
|
|
85
|
+
for i in range(self.N_steps):
|
|
86
|
+
state = self.RK4_step(state)
|
|
87
|
+
list_x1.append(state[0])
|
|
88
|
+
list_phi.append(state[1])
|
|
89
|
+
time.append(self.dt * i)
|
|
90
|
+
|
|
91
|
+
return time, list_x1, list_phi
|
|
@@ -0,0 +1,94 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from math import sin, cos
|
|
3
|
+
from matplotlib import pyplot as plt
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class TwoMassesSpringRopeRK4:
|
|
7
|
+
def __init__(
|
|
8
|
+
self,
|
|
9
|
+
r_inp=5,
|
|
10
|
+
E_inp=30000e6,
|
|
11
|
+
I_inp=833.33,
|
|
12
|
+
l_inp=30,
|
|
13
|
+
m1_inp=5.625e6,
|
|
14
|
+
m2_inp=981250,
|
|
15
|
+
dtinp = 1e-3, timeinp = 10,
|
|
16
|
+
_phi_0 = 30 , _x1_0 = 0,
|
|
17
|
+
_dphi_0 = 0 , _dx1_0 = 0
|
|
18
|
+
):
|
|
19
|
+
self.r = r_inp
|
|
20
|
+
E = E_inp
|
|
21
|
+
I = I_inp
|
|
22
|
+
l = l_inp
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
self.k_1 = 3 * E * I / l**3
|
|
26
|
+
|
|
27
|
+
# Mass parameters
|
|
28
|
+
self.m_1 = m1_inp
|
|
29
|
+
self.m_2 = m2_inp
|
|
30
|
+
|
|
31
|
+
# Damping parameters
|
|
32
|
+
|
|
33
|
+
# Gravity
|
|
34
|
+
|
|
35
|
+
self.g = 9.81 # Gravity constant
|
|
36
|
+
|
|
37
|
+
# Initial conditions
|
|
38
|
+
self.x1_0 = _x1_0
|
|
39
|
+
self.phi_0 = _phi_0 / 180 * np.pi
|
|
40
|
+
self.xd1_0 = _dphi_0
|
|
41
|
+
self.phid_0 = _x1_0
|
|
42
|
+
|
|
43
|
+
# Time steps
|
|
44
|
+
self.dt = dtinp
|
|
45
|
+
self.T_ges = timeinp
|
|
46
|
+
self.N_steps = int(self.T_ges / self.dt)
|
|
47
|
+
|
|
48
|
+
def construct_mass_matrix(self, phi):
|
|
49
|
+
m_11 = self.m_1 + self.m_2
|
|
50
|
+
m_12 = self.m_2 * self.r * cos(phi)
|
|
51
|
+
m_21 = self.m_2 * self.r * cos(phi)
|
|
52
|
+
m_22 = self.m_2 * self.r**2
|
|
53
|
+
|
|
54
|
+
M = np.array([[m_11, m_12], [m_21, m_22]])
|
|
55
|
+
return M
|
|
56
|
+
|
|
57
|
+
def construct_force_vector(self, phi, phid):
|
|
58
|
+
f_10 = -self.k_1 * self.x1_0 + self.m_2 * self.r * phid**2 * sin(phi)
|
|
59
|
+
f_20 = -self.m_2 * self.g * self.r * sin(phi)
|
|
60
|
+
|
|
61
|
+
F = np.array([f_10, f_20])
|
|
62
|
+
return F
|
|
63
|
+
|
|
64
|
+
def equations_of_motion(self, state):
|
|
65
|
+
x1, phi, xd1, phid = state
|
|
66
|
+
M = self.construct_mass_matrix(phi)
|
|
67
|
+
F = self.construct_force_vector(phi, phid)
|
|
68
|
+
acc = np.linalg.solve(M, F)
|
|
69
|
+
return np.array([xd1, phid, acc[0], acc[1]])
|
|
70
|
+
|
|
71
|
+
def RK4_step(self, state):
|
|
72
|
+
k1 = self.equations_of_motion(state)
|
|
73
|
+
k2 = self.equations_of_motion(state + 0.5 * k1 * self.dt)
|
|
74
|
+
k3 = self.equations_of_motion(state + 0.5 * k2 * self.dt)
|
|
75
|
+
k4 = self.equations_of_motion(state + k3 * self.dt)
|
|
76
|
+
return state + self.dt * (k1 + 2 * k2 + 2 * k3 + k4) / 6
|
|
77
|
+
|
|
78
|
+
def solve(self):
|
|
79
|
+
state = np.array(
|
|
80
|
+
[self.x1_0, self.phi_0, self.xd1_0, self.phid_0]
|
|
81
|
+
) # Initial state [x1, phi, xd1, phid]
|
|
82
|
+
list_x1 = []
|
|
83
|
+
list_phi = []
|
|
84
|
+
time = []
|
|
85
|
+
|
|
86
|
+
for i in range(self.N_steps):
|
|
87
|
+
state = self.RK4_step(state)
|
|
88
|
+
list_x1.append(state[0])
|
|
89
|
+
list_phi.append(state[1])
|
|
90
|
+
time.append(self.dt * i)
|
|
91
|
+
|
|
92
|
+
return time, list_x1, list_phi
|
|
93
|
+
|
|
94
|
+
|
|
File without changes
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
|
|
2
|
+
import pandas as pd
|
|
3
|
+
import os
|
|
4
|
+
import sys
|
|
5
|
+
import numpy as np
|
|
6
|
+
|
|
7
|
+
# Absoluten Pfad des Projekts und des KIB-Ordners berechnen
|
|
8
|
+
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
|
9
|
+
kib_directory = os.path.join(project_root, "KIB_LAP")
|
|
10
|
+
|
|
11
|
+
# Debug-Ausgabe, um die Pfade zu überprüfen
|
|
12
|
+
print("Project Root:", project_root)
|
|
13
|
+
print("KIB Directory:", kib_directory)
|
|
14
|
+
|
|
15
|
+
# Füge das KIB-Verzeichnis zum sys.path hinzu, falls es nicht vorhanden ist
|
|
16
|
+
if kib_directory not in sys.path:
|
|
17
|
+
sys.path.insert(0, kib_directory)
|
|
18
|
+
|
|
19
|
+
# Importieren des Moduls
|
|
20
|
+
try:
|
|
21
|
+
from KIB_LAP.Querschnittswerte import CrossSectionThin
|
|
22
|
+
print("Import erfolgreich!")
|
|
23
|
+
except ModuleNotFoundError as e:
|
|
24
|
+
print("Fehler beim Import:", e)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
Node_Cords = pd.DataFrame({
|
|
28
|
+
"Nr.": [1, 2, 3, 4, 5, 6],
|
|
29
|
+
"y": [-0.35, 0, 0.35, 0, -0.30, 0.30],
|
|
30
|
+
"z": [0, 0, 0, 0.400, 0.400, 0.400]
|
|
31
|
+
})
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
CrossSectionElements = pd.DataFrame({
|
|
35
|
+
"nr": [1, 2, 3, 4, 5],
|
|
36
|
+
"npa": [1, 2, 2, 4, 4],
|
|
37
|
+
"npe": [2, 3, 4, 5, 6],
|
|
38
|
+
"t [m]": [0.02, 0.02, 0.01, 0.02, 0.02]
|
|
39
|
+
})
|
|
40
|
+
|
|
41
|
+
Class = CrossSectionThin(
|
|
42
|
+
2.1e5,
|
|
43
|
+
0.3,
|
|
44
|
+
Node_Cords,
|
|
45
|
+
CrossSectionElements,
|
|
46
|
+
"Calculation"
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
Class.read_node_input()
|
|
51
|
+
Class.CalculateElementStiffness()
|
|
52
|
+
Class.Calculate_GesMat()
|
|
53
|
+
Class.SolverTorsion()
|
|
54
|
+
Class.CalculateAyzw()
|
|
55
|
+
Class.Update_SMP()
|
|
56
|
+
Class.Calculate_IwIt()
|
|
57
|
+
Class.Calculate_WoWu()
|
|
58
|
+
Class.Calculate_ShearStress_Vz()
|
|
59
|
+
Class.Calculate_imryrzrw()
|
|
60
|
+
Class.Export_Controll_Data()
|
|
61
|
+
Class.Export_Cross_Section_Data()
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
from KIB_LAP.Querschnittswerte import CrossSectionThin
|
|
2
|
+
import pandas as pd
|
|
3
|
+
|
|
4
|
+
# Lade die hochgeladenen CSV-Dateien
|
|
5
|
+
node_file_path = 'Querschnittswerte/Knoten.csv'
|
|
6
|
+
element_file_path = 'Querschnittswerte/Elemente.csv'
|
|
7
|
+
|
|
8
|
+
# Dateien einlesen
|
|
9
|
+
node_data = pd.read_csv(node_file_path)
|
|
10
|
+
element_data = pd.read_csv(element_file_path)
|
|
11
|
+
|
|
12
|
+
CS = CrossSectionThin(210000,0.30,node_param=node_data, element_param=element_data, Speichername = "Calculation_2")
|
|
13
|
+
|
|
14
|
+
CS.Calculation_Start()
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
# Beispielhafte Nutzung der Klasse
|
|
2
|
+
from KIB_LAP.Plattentragwerke import PlateBendingKirchhoffClass
|
|
3
|
+
import numpy as np
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
from matplotlib import cm
|
|
6
|
+
import pandas as pd
|
|
7
|
+
import time
|
|
8
|
+
import os
|
|
9
|
+
|
|
10
|
+
if __name__ == "__main__":
|
|
11
|
+
a = 14
|
|
12
|
+
b = 4.5
|
|
13
|
+
|
|
14
|
+
Plate = PlateBendingKirchhoffClass(
|
|
15
|
+
E=35000,
|
|
16
|
+
t=0.35,
|
|
17
|
+
a=a,
|
|
18
|
+
b=b,
|
|
19
|
+
p0=1,
|
|
20
|
+
x0=0.5,
|
|
21
|
+
u=0.5,
|
|
22
|
+
y0=0.5,
|
|
23
|
+
v=0.5,
|
|
24
|
+
nu=0.0,
|
|
25
|
+
n_inte=30,
|
|
26
|
+
loading="Regular",
|
|
27
|
+
support="hhhh",
|
|
28
|
+
reihen=20
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
start_time = time.time()
|
|
32
|
+
Plate.CalculateAll()
|
|
33
|
+
end_time = time.time()
|
|
34
|
+
duration = end_time - start_time
|
|
35
|
+
|
|
36
|
+
print("Berechnungszeit:", duration, "Sekunden")
|
|
37
|
+
|
|
38
|
+
Plate.PlotLoad()
|
|
39
|
+
Plate.PlotMomentGrid()
|
|
@@ -0,0 +1,60 @@
|
|
|
1
|
+
from KIB_LAP.Plattentragwerke import PlateBendingKirchhoffClass
|
|
2
|
+
import numpy as np
|
|
3
|
+
import matplotlib.pyplot as plt
|
|
4
|
+
from matplotlib import cm
|
|
5
|
+
import pandas as pd
|
|
6
|
+
import time
|
|
7
|
+
import os
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
a = 10.5
|
|
11
|
+
b = 10
|
|
12
|
+
|
|
13
|
+
Plate = PlateBendingKirchhoffClass(
|
|
14
|
+
35000, 0.35, a, b, 1, 0.5, 0.5, 0.5, 0.5, 0.0, 0, 0, n_inte=50, loading="Liste", support = "hhff",reihen = 8)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
# Daten als Liste von Listen
|
|
18
|
+
new_data = [
|
|
19
|
+
["No.","x0[m]","x1[m]","y0[m]","y1[m]","p0[MN/m**2]"],
|
|
20
|
+
[1,2-0.2,2+0.2,0.5,0.9,150/0.4**2/1000],
|
|
21
|
+
[2,3.2-0.2,3.2+0.2,0.5,0.9,150/0.4**2/1000],
|
|
22
|
+
[3,3.2-0.2,3.2+0.2,2.5,2.9,150/0.4**2/1000],
|
|
23
|
+
[4,2-0.2,2+0.2,2.5,2.9,150/0.4**2/1000],
|
|
24
|
+
|
|
25
|
+
[6,2-0.2,2+0.2,3.5,3.9,100/0.4**2/1000],
|
|
26
|
+
[7,3.2-0.2,3.2+0.2,3.5,3.9,100/0.4**2/1000],
|
|
27
|
+
[8,3.2-0.2,3.2+0.2,5.5,5.9,100/0.4**2/1000],
|
|
28
|
+
[9,2-0.2,2+0.2,5.5,5.9,100/0.4**2/1000],
|
|
29
|
+
|
|
30
|
+
[10,2-0.2,2+0.2,6.5,6.9,100/0.4**2/1000],
|
|
31
|
+
[11,3.2-0.2,3.2+0.2,6.5,6.9,100/0.4**2/1000],
|
|
32
|
+
[12,3.2-0.2,3.2+0.2,8.5,8.9,100/0.4**2/1000],
|
|
33
|
+
[13,2-0.2,2+0.2,8.5,8.9,100/0.4**2/1000]
|
|
34
|
+
|
|
35
|
+
]
|
|
36
|
+
|
|
37
|
+
# Konvertiere die Daten in ein DataFrame
|
|
38
|
+
df = pd.DataFrame(new_data[1:], columns=new_data[0])
|
|
39
|
+
|
|
40
|
+
# Dateipfad zur CSV-Datei
|
|
41
|
+
file_path = 'Loading/Constant_Loading.csv'
|
|
42
|
+
|
|
43
|
+
# Schreibe das DataFrame in eine CSV-Datei
|
|
44
|
+
df.to_csv(file_path, index=False)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
Plate.CalculateAll()
|
|
48
|
+
|
|
49
|
+
Plate.SolutionPointDisp(0.5,0.5)
|
|
50
|
+
Plate.SolutionPointMomentx(0.5,0.5)
|
|
51
|
+
Plate.SolutionPointMomenty(0.5,0.5)
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
Plate.PlotLoad()
|
|
55
|
+
print("BENDING MOMENTS")
|
|
56
|
+
Plate.PlotMomentGrid()
|
|
57
|
+
print("SHEAR FORCES")
|
|
58
|
+
Plate.PlotShearForceGrid()
|
|
59
|
+
print("DRILL MOMENTS")
|
|
60
|
+
Plate.PlotTorsionalMomentGrid()
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
from KIB_LAP.Betonbau import BeamRectangular
|
|
2
|
+
from KIB_LAP.Betonbau import BeamSubSection
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
import matplotlib.pyplot as plt
|
|
6
|
+
from matplotlib import cm
|
|
7
|
+
import pandas as pd
|
|
8
|
+
import time
|
|
9
|
+
import os
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
Beam = BeamRectangular(1,1.00,0.60)
|
|
13
|
+
|
|
14
|
+
moment_ed = 0.20
|
|
15
|
+
normal_force_ed = 0.20
|
|
16
|
+
shear_force_ed = 0.30
|
|
17
|
+
effective_height = 0.65
|
|
18
|
+
effective_height_pressure = 0.08
|
|
19
|
+
elasticity_modulus_steel = 200000
|
|
20
|
+
|
|
21
|
+
BeamSection = BeamSubSection(moment_ed, normal_force_ed,shear_force_ed, effective_height,effective_height_pressure, elasticity_modulus_steel)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
Beam.calculate_beam_section_without_shearreinforcement(BeamSection,30*0.01**2,35,500)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
print(Beam.v_rdcs * 1000)
|
|
28
|
+
print(Beam.v_rdcmin * 1000)
|
|
File without changes
|
|
@@ -0,0 +1,276 @@
|
|
|
1
|
+
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
|
|
6
|
+
from pylatex import (
|
|
7
|
+
Document,
|
|
8
|
+
Section,
|
|
9
|
+
Subsection,
|
|
10
|
+
Command,
|
|
11
|
+
Tabular,
|
|
12
|
+
Math,
|
|
13
|
+
TikZ,
|
|
14
|
+
Axis,
|
|
15
|
+
Plot,
|
|
16
|
+
Figure,
|
|
17
|
+
Matrix,
|
|
18
|
+
Alignat,
|
|
19
|
+
MultiRow,
|
|
20
|
+
MultiColumn,
|
|
21
|
+
Tabularx,
|
|
22
|
+
Tabu,
|
|
23
|
+
ColumnType,
|
|
24
|
+
LongTable,
|
|
25
|
+
Table,
|
|
26
|
+
Center
|
|
27
|
+
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
from pylatex.utils import escape_latex, fix_filename, dumps_list, bold, \
|
|
31
|
+
italic, verbatim, NoEscape
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class Beulnachweise_Platten:
|
|
36
|
+
"""
|
|
37
|
+
Das ist eine Klasse zur Berechnung einfacher Beulfelder.
|
|
38
|
+
|
|
39
|
+
self.sigma_1_x = Größte Druckspannung an einer Seite des Beulfeldes.
|
|
40
|
+
Hier wird üblicherweise ein positives Vorzeichen
|
|
41
|
+
für Druckspannungen gewählt.
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
"""
|
|
46
|
+
def __init__(self):
|
|
47
|
+
# Spannungen aus Sofistik
|
|
48
|
+
self.sigma_1_x = 387.5 # Druckspannung (Positiv)
|
|
49
|
+
self.sigma_2_x = -262.9 # Zugspannung negativ
|
|
50
|
+
self.sigma_1_v = 387.5
|
|
51
|
+
self.sigma_2_v = 262.9
|
|
52
|
+
self.tau_1 = 0
|
|
53
|
+
self.tau_2 = 0
|
|
54
|
+
|
|
55
|
+
# Materialkenngrößen
|
|
56
|
+
self.fyd = 460
|
|
57
|
+
self.E_s = 210e3
|
|
58
|
+
|
|
59
|
+
# Faktoren bis zum Erreichen der kritischen Beulvergleichsspannungen
|
|
60
|
+
self.alpha_ult_k_1_x = self.fyd/self.sigma_1_x
|
|
61
|
+
# Geometrie des Beulfeldes
|
|
62
|
+
self.b = 5.00
|
|
63
|
+
self.a = 1.90
|
|
64
|
+
self.t = 0.02
|
|
65
|
+
self.alpha = self.a/self.b
|
|
66
|
+
|
|
67
|
+
self.chi_w = 0
|
|
68
|
+
self.rho = 0
|
|
69
|
+
|
|
70
|
+
def Nachweisfuehrung(self):
|
|
71
|
+
# Ermittlung linear elastischer Beulspannungen
|
|
72
|
+
|
|
73
|
+
self.sigma_e = 1.9*(100*self.t/self.b)**2*10
|
|
74
|
+
self.psi = self.sigma_2_x/self.sigma_1_x # Randspannungsverhältnis bezogen auf die größe Druckspannung (Druck positiv)
|
|
75
|
+
|
|
76
|
+
self.k_sigma = (self.alpha + 1/self.alpha)**2 * (2.1)/(self.psi+1.1)
|
|
77
|
+
|
|
78
|
+
self.sigma_cr = self.k_sigma*self.sigma_e
|
|
79
|
+
self.alpha_cr = self.sigma_cr/self.sigma_1_x
|
|
80
|
+
|
|
81
|
+
self.alpha_ult_k = self.fyd/self.sigma_1_v
|
|
82
|
+
|
|
83
|
+
#____Abminderungsfaktoren für das Plattenbeulen für ein beidseitig gestützes Feld___#
|
|
84
|
+
self.lambda_p = np.sqrt(self.alpha_ult_k/self.alpha_cr)
|
|
85
|
+
|
|
86
|
+
# Abminderungsfaktor chi_w
|
|
87
|
+
|
|
88
|
+
self.eta = 1.20
|
|
89
|
+
if (self.fyd > 460):
|
|
90
|
+
self.eta = 1.00
|
|
91
|
+
if (self.lambda_p < 0.83/self.eta):
|
|
92
|
+
self.chi_w = self.eta
|
|
93
|
+
elif(self.lambda_p >= 0.83 / self.eta):
|
|
94
|
+
self.chi_w = 0.83 / self.lambda_p
|
|
95
|
+
|
|
96
|
+
print(self.chi_w)
|
|
97
|
+
|
|
98
|
+
# Abminderungskenngröße rho_x
|
|
99
|
+
# Für plattenartiges Versagen
|
|
100
|
+
|
|
101
|
+
if (self.lambda_p <= 0.5 + np.sqrt(0.085 - 0.055 * self.psi)):
|
|
102
|
+
self.rho = 1.0
|
|
103
|
+
elif (self.lambda_p > 0.5 + np.sqrt(0.085 - 0.055 * self.psi)):
|
|
104
|
+
self.rho = min((self.lambda_p - 0.055 * (3+self.psi))/(self.lambda_p**2),1.00)
|
|
105
|
+
|
|
106
|
+
# Für Knickstabähnliches Verhalten
|
|
107
|
+
|
|
108
|
+
self.alpha_e = 0.21 # Für nicht ausgesteifte Blechfelder: alpha_e = 0.21
|
|
109
|
+
|
|
110
|
+
self.phi = 0.5*(1+self.alpha_e*(self.lambda_p -0.2) + self.lambda_p**2)
|
|
111
|
+
|
|
112
|
+
self.chi_c = 1/(self.phi + np.sqrt(self.phi**2 - self.lambda_p**2))
|
|
113
|
+
|
|
114
|
+
# Knickspannung
|
|
115
|
+
|
|
116
|
+
self.sigma_cr_r = (np.pi**2 * self.E_s * self.t**2)/(12 * (1-0.3)*self.a**2)
|
|
117
|
+
self.sigma_cr_p_x = self.sigma_1_x
|
|
118
|
+
|
|
119
|
+
# Interpolation zwischen plattenartigen / knickstabähnlichem Verhalten
|
|
120
|
+
|
|
121
|
+
self.xi = self.sigma_cr_p_x/self.sigma_cr_r-1
|
|
122
|
+
|
|
123
|
+
print(self.xi)
|
|
124
|
+
|
|
125
|
+
self.xi = max(min(self.xi,1),0)
|
|
126
|
+
|
|
127
|
+
print(self.xi)
|
|
128
|
+
|
|
129
|
+
self.rho_x = (self.rho - self.chi_c)*self.xi*(2-self.xi) + self.chi_c
|
|
130
|
+
|
|
131
|
+
print(self.rho_x)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
# Nachweisführung
|
|
135
|
+
|
|
136
|
+
self.eta = (self.sigma_1_x/(self.fyd * self.rho_x / 1.10))
|
|
137
|
+
|
|
138
|
+
def Ausgabe_Pdf_Latex(self,width ,*args, **kwargs):
|
|
139
|
+
fname = "Beulnachweise"
|
|
140
|
+
geometry_options = {"right": "2cm", "left": "2cm"}
|
|
141
|
+
self.doc = Document(fname, geometry_options=geometry_options)
|
|
142
|
+
|
|
143
|
+
with self.doc.create(Section("Berechnung der Beulnachweise nach DIN EN 1993-1-5")):
|
|
144
|
+
self.doc.append("Take a look at this beautiful plot:")
|
|
145
|
+
|
|
146
|
+
# with doc.create(Figure(position="htbp")) as plot:
|
|
147
|
+
# plot.add_plot(width=NoEscape(width), *args, **kwargs)
|
|
148
|
+
# plot.add_caption("I am a caption.")
|
|
149
|
+
|
|
150
|
+
self.doc.create(Subsection("Materialkenngrößen"))
|
|
151
|
+
self.doc.append("")
|
|
152
|
+
#self.doc.append(Math(data=["2*3", "=", 3 * 2]))
|
|
153
|
+
|
|
154
|
+
self.doc.create(Subsection("Geometrische und materielle Kenngrößen"))
|
|
155
|
+
|
|
156
|
+
def Material_Properties():
|
|
157
|
+
# Tabular
|
|
158
|
+
|
|
159
|
+
self.doc.append(NoEscape(r"\centering"))
|
|
160
|
+
|
|
161
|
+
table = Table(position="htb")
|
|
162
|
+
|
|
163
|
+
self.doc.append(Command('centering'))
|
|
164
|
+
table.add_caption("Material properties")
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
t = Tabular(table_spec='|c|c|c|', data=None, pos=1, width=3)
|
|
168
|
+
|
|
169
|
+
t.add_hline(start=None, end=None)
|
|
170
|
+
|
|
171
|
+
t.add_row(("Kenngröße", "Wert", "Einheit"), escape=False, strict=True, mapper=[bold])
|
|
172
|
+
t.add_hline(start=None, end=None)
|
|
173
|
+
|
|
174
|
+
t.add_row(["Streckgrenze", self.fyd, "MN/m²"])
|
|
175
|
+
t.add_row([NoEscape(r"Streckgrenze - $$\gamma_{\text{M1}}$$") , f"{self.fyd/1.10:.2f}", "MN/m²"])
|
|
176
|
+
t.add_row(["E-Modul", self.E_s, "MN/m²"])
|
|
177
|
+
t.add_hline(start=None, end=None)
|
|
178
|
+
# t.add_row(1, 2, escape=False, strict=True, mapper=[bold])
|
|
179
|
+
|
|
180
|
+
# # MultiColumn/MultiRow.
|
|
181
|
+
# t.add_row((MultiColumn(size=2, align='|c|', data='MultiColumn'),),
|
|
182
|
+
# strict=True)
|
|
183
|
+
|
|
184
|
+
# # One multiRow-cell in that table would not be proper LaTeX,
|
|
185
|
+
# # so strict is set to False
|
|
186
|
+
|
|
187
|
+
# t.add_row((MultiRow(size=2, width='*', data='MultiRow'),), strict=False)
|
|
188
|
+
|
|
189
|
+
# append tabular to table
|
|
190
|
+
table.append(t)
|
|
191
|
+
|
|
192
|
+
table = self.doc.append(table)
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
Material_Properties()
|
|
197
|
+
|
|
198
|
+
def Section_Entry_Parameters():
|
|
199
|
+
|
|
200
|
+
table = Table(position="htb")
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
table.add_caption("Eingangsgrößen")
|
|
204
|
+
|
|
205
|
+
t = Tabular(table_spec='|c|c|c|', data=None, pos=1, width=3)
|
|
206
|
+
self.doc.append(Command('centering'))
|
|
207
|
+
|
|
208
|
+
t.add_hline(start=None, end=None)
|
|
209
|
+
|
|
210
|
+
t.add_row(("Kenngröße", "Wert", "Einheit"), escape=False, strict=True, mapper=[bold])
|
|
211
|
+
t.add_hline(start=None, end=None)
|
|
212
|
+
|
|
213
|
+
t.add_row(["Länge des Beulfeldes a", self.a, "m"])
|
|
214
|
+
t.add_row(["Breite des Beulfeldes a", self.b, "m"])
|
|
215
|
+
t.add_row(["Blechdicke t ", self.t, "m"])
|
|
216
|
+
|
|
217
|
+
t.add_row([NoEscape(r"Seitenverhältnis $$\alpha $$"), f"{self.a/self.b:.2f}", "-"])
|
|
218
|
+
t.add_row([NoEscape(r"Spannungsverhältnis $$\psi $$"), f"{self.psi:.2f}", "-"])
|
|
219
|
+
|
|
220
|
+
t.add_hline(start=None, end=None)
|
|
221
|
+
# t.add_row(1, 2, escape=False, strict=True, mapper=[bold])
|
|
222
|
+
|
|
223
|
+
# # MultiColumn/MultiRow.
|
|
224
|
+
# t.add_row((MultiColumn(size=2, align='|c|', data='MultiColumn'),),
|
|
225
|
+
# strict=True)
|
|
226
|
+
|
|
227
|
+
# # One multiRow-cell in that table would not be proper LaTeX,
|
|
228
|
+
# # so strict is set to False
|
|
229
|
+
|
|
230
|
+
# t.add_row((MultiRow(size=2, width='*', data='MultiRow'),), strict=False)
|
|
231
|
+
|
|
232
|
+
# append tabular to table
|
|
233
|
+
table.append(t)
|
|
234
|
+
|
|
235
|
+
table = self.doc.append(table)
|
|
236
|
+
|
|
237
|
+
Section_Entry_Parameters()
|
|
238
|
+
|
|
239
|
+
self.doc.create(Subsection("Abminderungsfaktoren für die Streckgrenze"))
|
|
240
|
+
|
|
241
|
+
def Abschnitt_Beulwerte():
|
|
242
|
+
self.doc.append(NoEscape(f"Die Beulwerte werden zunächst in Abhängigkeit des Seitenverhältnisses {{\alpha}} bestimmt. "))
|
|
243
|
+
self.doc.append(NoEscape(f"Für Seitenverhältnisse <= 1 sind die Beulwerte (rechnerisch) unabhängig vom Seitenverhältnis."))
|
|
244
|
+
|
|
245
|
+
|
|
246
|
+
if (self.alpha < 1.0):
|
|
247
|
+
self.doc.append(Math(data=[NoEscape(f"k_{{\sigma}} = ({self.alpha:.2f} + 1/{self.alpha:.2f} ){{^2}} {{\cdot}} 2.1/({self.psi:.2f} +1.1) = {self.k_sigma:.2f}")]))
|
|
248
|
+
elif (self.alpha > 1.0):
|
|
249
|
+
if (self.psi == -1):
|
|
250
|
+
self.doc.append(Math(data=[23.9]))
|
|
251
|
+
elif(self.psi <0 and self.psi > -1):
|
|
252
|
+
self.res_biegung_normal = 7.81 - 6.29 * self.psi + 9.78 * self.psi**2
|
|
253
|
+
self.doc.append(Math(data=[NoEscape(f"k_{{\sigma}} = 7.81 - 6.29 {{\cdot \psi}} + 9.78 {{\cdot \psi^2 }} = {self.res_biegung_normal}")]))
|
|
254
|
+
|
|
255
|
+
Abschnitt_Beulwerte()
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
self.doc.generate_pdf(clean_tex=False)
|
|
264
|
+
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
# a = Beulnachweise_Platten()
|
|
271
|
+
# a.Nachweisfuehrung()
|
|
272
|
+
# a.Ausgabe_Pdf_Latex(10)
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
|