keras-hub-nightly 0.22.0.dev202508170419__py3-none-any.whl → 0.24.0.dev202511090424__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (126) hide show
  1. keras_hub/layers/__init__.py +15 -0
  2. keras_hub/models/__init__.py +93 -0
  3. keras_hub/src/layers/modeling/position_embedding.py +21 -6
  4. keras_hub/src/layers/modeling/reversible_embedding.py +8 -1
  5. keras_hub/src/layers/modeling/rotary_embedding.py +16 -6
  6. keras_hub/src/layers/modeling/sine_position_encoding.py +21 -8
  7. keras_hub/src/layers/modeling/token_and_position_embedding.py +2 -1
  8. keras_hub/src/models/backbone.py +28 -16
  9. keras_hub/src/models/causal_lm.py +37 -0
  10. keras_hub/src/models/causal_lm_preprocessor.py +14 -0
  11. keras_hub/src/models/clip/clip_presets.py +8 -8
  12. keras_hub/src/models/d_fine/__init__.py +5 -0
  13. keras_hub/src/models/d_fine/d_fine_attention.py +461 -0
  14. keras_hub/src/models/d_fine/d_fine_backbone.py +891 -0
  15. keras_hub/src/models/d_fine/d_fine_decoder.py +944 -0
  16. keras_hub/src/models/d_fine/d_fine_encoder.py +365 -0
  17. keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +642 -0
  18. keras_hub/src/models/d_fine/d_fine_image_converter.py +8 -0
  19. keras_hub/src/models/d_fine/d_fine_layers.py +1828 -0
  20. keras_hub/src/models/d_fine/d_fine_loss.py +938 -0
  21. keras_hub/src/models/d_fine/d_fine_object_detector.py +875 -0
  22. keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +14 -0
  23. keras_hub/src/models/d_fine/d_fine_presets.py +155 -0
  24. keras_hub/src/models/d_fine/d_fine_utils.py +827 -0
  25. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +7 -2
  26. keras_hub/src/models/depth_anything/__init__.py +9 -0
  27. keras_hub/src/models/depth_anything/depth_anything_backbone.py +232 -0
  28. keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +70 -0
  29. keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +16 -0
  30. keras_hub/src/models/depth_anything/depth_anything_image_converter.py +10 -0
  31. keras_hub/src/models/depth_anything/depth_anything_layers.py +725 -0
  32. keras_hub/src/models/depth_anything/depth_anything_loss.py +89 -0
  33. keras_hub/src/models/depth_anything/depth_anything_presets.py +41 -0
  34. keras_hub/src/models/depth_anything/interpolate.py +62 -0
  35. keras_hub/src/models/depth_estimator.py +239 -0
  36. keras_hub/src/models/depth_estimator_preprocessor.py +78 -0
  37. keras_hub/src/models/dinov2/dinov2_backbone.py +29 -3
  38. keras_hub/src/models/dinov2/dinov2_layers.py +16 -4
  39. keras_hub/src/models/dinov3/__init__.py +5 -0
  40. keras_hub/src/models/dinov3/dinov3_backbone.py +263 -0
  41. keras_hub/src/models/dinov3/dinov3_image_converter.py +8 -0
  42. keras_hub/src/models/dinov3/dinov3_layers.py +1013 -0
  43. keras_hub/src/models/dinov3/dinov3_presets.py +4 -0
  44. keras_hub/src/models/gemma/gemma_backbone.py +0 -1
  45. keras_hub/src/models/gemma/gemma_presets.py +30 -0
  46. keras_hub/src/models/gemma3/gemma3_attention.py +48 -0
  47. keras_hub/src/models/gemma3/gemma3_backbone.py +4 -1
  48. keras_hub/src/models/gemma3/gemma3_decoder_block.py +12 -0
  49. keras_hub/src/models/gemma3/gemma3_presets.py +39 -0
  50. keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +4 -1
  51. keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +3 -2
  52. keras_hub/src/models/hgnetv2/hgnetv2_layers.py +27 -11
  53. keras_hub/src/models/image_to_image.py +5 -0
  54. keras_hub/src/models/inpaint.py +5 -0
  55. keras_hub/src/models/mobilenetv5/__init__.py +9 -0
  56. keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +699 -0
  57. keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +396 -0
  58. keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +890 -0
  59. keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +436 -0
  60. keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +157 -0
  61. keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +16 -0
  62. keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +10 -0
  63. keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +462 -0
  64. keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
  65. keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +146 -0
  66. keras_hub/src/models/parseq/__init__.py +5 -0
  67. keras_hub/src/models/parseq/parseq_backbone.py +134 -0
  68. keras_hub/src/models/parseq/parseq_causal_lm.py +466 -0
  69. keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +168 -0
  70. keras_hub/src/models/parseq/parseq_decoder.py +418 -0
  71. keras_hub/src/models/parseq/parseq_image_converter.py +8 -0
  72. keras_hub/src/models/parseq/parseq_presets.py +15 -0
  73. keras_hub/src/models/parseq/parseq_tokenizer.py +221 -0
  74. keras_hub/src/models/qwen3_moe/__init__.py +5 -0
  75. keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +371 -0
  76. keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +365 -0
  77. keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +357 -0
  78. keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +12 -0
  79. keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +672 -0
  80. keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +45 -0
  81. keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +30 -0
  82. keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +48 -0
  83. keras_hub/src/models/sam/sam_prompt_encoder.py +3 -1
  84. keras_hub/src/models/siglip/siglip_presets.py +15 -0
  85. keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
  86. keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
  87. keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
  88. keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
  89. keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
  90. keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
  91. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
  92. keras_hub/src/models/t5gemma/__init__.py +5 -0
  93. keras_hub/src/models/t5gemma/t5gemma_attention.py +370 -0
  94. keras_hub/src/models/t5gemma/t5gemma_backbone.py +366 -0
  95. keras_hub/src/models/t5gemma/t5gemma_decoder.py +355 -0
  96. keras_hub/src/models/t5gemma/t5gemma_encoder.py +214 -0
  97. keras_hub/src/models/t5gemma/t5gemma_layers.py +118 -0
  98. keras_hub/src/models/t5gemma/t5gemma_presets.py +374 -0
  99. keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +442 -0
  100. keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +216 -0
  101. keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +84 -0
  102. keras_hub/src/models/text_to_image.py +5 -0
  103. keras_hub/src/samplers/beam_sampler.py +6 -6
  104. keras_hub/src/samplers/sampler.py +8 -6
  105. keras_hub/src/tests/test_case.py +40 -3
  106. keras_hub/src/tokenizers/tokenizer.py +15 -0
  107. keras_hub/src/utils/openvino_utils.py +141 -0
  108. keras_hub/src/utils/preset_utils.py +58 -2
  109. keras_hub/src/utils/tensor_utils.py +26 -2
  110. keras_hub/src/utils/timm/convert_mobilenetv5.py +321 -0
  111. keras_hub/src/utils/timm/preset_loader.py +8 -4
  112. keras_hub/src/utils/transformers/convert_dinov2.py +1 -0
  113. keras_hub/src/utils/transformers/convert_dinov3.py +106 -0
  114. keras_hub/src/utils/transformers/convert_qwen3_moe.py +216 -0
  115. keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
  116. keras_hub/src/utils/transformers/convert_t5gemma.py +229 -0
  117. keras_hub/src/utils/transformers/convert_vit.py +4 -1
  118. keras_hub/src/utils/transformers/export/gemma.py +49 -4
  119. keras_hub/src/utils/transformers/export/hf_exporter.py +71 -25
  120. keras_hub/src/utils/transformers/preset_loader.py +12 -0
  121. keras_hub/src/version.py +1 -1
  122. keras_hub/tokenizers/__init__.py +15 -0
  123. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/METADATA +1 -1
  124. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/RECORD +126 -47
  125. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/WHEEL +0 -0
  126. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/top_level.txt +0 -0
@@ -6,58 +6,59 @@ import warnings
6
6
  import keras
7
7
 
8
8
  from keras_hub.src.utils.transformers.export.gemma import get_gemma_config
9
+ from keras_hub.src.utils.transformers.export.gemma import (
10
+ get_gemma_tokenizer_config,
11
+ )
9
12
  from keras_hub.src.utils.transformers.export.gemma import get_gemma_weights_map
10
13
 
11
14
  MODEL_CONFIGS = {
12
15
  "GemmaBackbone": get_gemma_config,
13
- # Add future models here, e.g., "LlamaBackbone": get_llama_config,
16
+ # Add for future models, e.g., "MistralBackbone": get_mistral_config
14
17
  }
15
18
 
16
19
  MODEL_EXPORTERS = {
17
20
  "GemmaBackbone": get_gemma_weights_map,
18
- # Add future models here, e.g., "LlamaBackbone": get_llama_weights_map,
21
+ # Add for future models, e.g., "MistralBackbone": get_mistral_weights_map
19
22
  }
20
23
 
24
+ MODEL_TOKENIZER_CONFIGS = {
25
+ "GemmaTokenizer": get_gemma_tokenizer_config,
26
+ # Add for future models, e.g., "MistralTokenizer":
27
+ # get_mistral_tokenizer_config
28
+ }
21
29
 
22
- def export_to_safetensors(keras_model, path):
23
- """Converts a Keras model to Hugging Face safetensor format.
24
30
 
25
- It does the following:
26
- - Extracts and maps weights from the Keras backbone to safetensors.
27
- - Saves the configuration as 'config.json'.
28
- - Saves weights in 'model.safetensors'.
29
- - Saves tokenizer assets.
31
+ def export_backbone(backbone, path, include_lm_head=False):
32
+ """Export the backbone model to HuggingFace format.
30
33
 
31
34
  Args:
32
- keras_model: The Keras model to convert.
33
- path: str. Path of the directory to which the safetensors file,
34
- config and tokenizer will be saved.
35
+ backbone: The Keras backbone model to convert.
36
+ path: str. Path to save the exported model.
37
+ include_lm_head: bool. If True, include lm_head weights if applicable.
35
38
  """
36
39
  backend = keras.config.backend()
37
- backbone = keras_model.backbone
38
40
  model_type = backbone.__class__.__name__
39
-
40
41
  if model_type not in MODEL_CONFIGS:
41
- raise ValueError(f"Config not implemented for {model_type}")
42
-
42
+ raise ValueError(
43
+ f"Export to Transformers format not implemented for {model_type}"
44
+ )
43
45
  if model_type not in MODEL_EXPORTERS:
44
- raise ValueError(f"Exporter not implemented for {model_type}")
45
-
46
+ raise ValueError(
47
+ f"Export to Transformers format not implemented for {model_type}"
48
+ )
49
+ # Get config
46
50
  get_config_fn = MODEL_CONFIGS[model_type]
47
51
  hf_config = get_config_fn(backbone)
48
-
52
+ # Get weights
49
53
  get_weights_fn = MODEL_EXPORTERS[model_type]
50
- weights_dict = get_weights_fn(backbone)
51
-
54
+ weights_dict = get_weights_fn(backbone, include_lm_head=include_lm_head)
52
55
  if not weights_dict:
53
56
  raise ValueError("No weights to save.")
54
-
55
57
  # Save config
56
58
  os.makedirs(path, exist_ok=True)
57
59
  config_path = os.path.join(path, "config.json")
58
60
  with open(config_path, "w") as f:
59
61
  json.dump(hf_config, f)
60
-
61
62
  # Save weights based on backend
62
63
  weights_path = os.path.join(path, "model.safetensors")
63
64
  if backend == "torch":
@@ -81,9 +82,28 @@ def export_to_safetensors(keras_model, path):
81
82
  else:
82
83
  raise ValueError(f"Unsupported backend: {backend}")
83
84
 
84
- # Save tokenizer assets
85
- keras_model.preprocessor.tokenizer.save_assets(path)
86
85
 
86
+ def export_tokenizer(tokenizer, path):
87
+ """Export only the tokenizer to HuggingFace Transformers format.
88
+
89
+ Args:
90
+ tokenizer: The Keras tokenizer to convert.
91
+ path: str. Path to save the exported tokenizer.
92
+ """
93
+ os.makedirs(path, exist_ok=True)
94
+ # Save tokenizer assets
95
+ tokenizer.save_assets(path)
96
+ # Export tokenizer config
97
+ tokenizer_type = tokenizer.__class__.__name__
98
+ if tokenizer_type not in MODEL_TOKENIZER_CONFIGS:
99
+ raise ValueError(
100
+ "Export to Transformers format not implemented for {tokenizer_type}"
101
+ )
102
+ get_tokenizer_config_fn = MODEL_TOKENIZER_CONFIGS[tokenizer_type]
103
+ tokenizer_config = get_tokenizer_config_fn(tokenizer)
104
+ tokenizer_config_path = os.path.join(path, "tokenizer_config.json")
105
+ with open(tokenizer_config_path, "w") as f:
106
+ json.dump(tokenizer_config, f, indent=4)
87
107
  # Rename vocabulary file
88
108
  vocab_spm_path = os.path.join(path, "vocabulary.spm")
89
109
  tokenizer_model_path = os.path.join(path, "tokenizer.model")
@@ -96,3 +116,29 @@ def export_to_safetensors(keras_model, path):
96
116
  "is correct and that the vocabulary file is present "
97
117
  "in the original model."
98
118
  )
119
+
120
+
121
+ def export_to_safetensors(keras_model, path):
122
+ """Converts a Keras model to Hugging Face Transformers format.
123
+
124
+ It does the following:
125
+ - Exports the backbone (config and weights).
126
+ - Exports the tokenizer assets.
127
+
128
+ Args:
129
+ keras_model: The Keras model to convert.
130
+ path: str. Path of the directory to which the safetensors file,
131
+ config and tokenizer will be saved.
132
+ """
133
+ backbone = keras_model.backbone
134
+ export_backbone(backbone, path, include_lm_head=True)
135
+ if (
136
+ keras_model.preprocessor is not None
137
+ and keras_model.preprocessor.tokenizer is None
138
+ ):
139
+ raise ValueError(
140
+ "CausalLM preprocessor must have a tokenizer for export "
141
+ "if attached."
142
+ )
143
+ if keras_model.preprocessor is not None:
144
+ export_tokenizer(keras_model.preprocessor.tokenizer, path)
@@ -8,6 +8,7 @@ from keras_hub.src.utils.transformers import convert_bart
8
8
  from keras_hub.src.utils.transformers import convert_bert
9
9
  from keras_hub.src.utils.transformers import convert_deit
10
10
  from keras_hub.src.utils.transformers import convert_dinov2
11
+ from keras_hub.src.utils.transformers import convert_dinov3
11
12
  from keras_hub.src.utils.transformers import convert_distilbert
12
13
  from keras_hub.src.utils.transformers import convert_esm
13
14
  from keras_hub.src.utils.transformers import convert_gemma
@@ -18,7 +19,10 @@ from keras_hub.src.utils.transformers import convert_mixtral
18
19
  from keras_hub.src.utils.transformers import convert_pali_gemma
19
20
  from keras_hub.src.utils.transformers import convert_qwen
20
21
  from keras_hub.src.utils.transformers import convert_qwen3
22
+ from keras_hub.src.utils.transformers import convert_qwen3_moe
21
23
  from keras_hub.src.utils.transformers import convert_qwen_moe
24
+ from keras_hub.src.utils.transformers import convert_smollm3
25
+ from keras_hub.src.utils.transformers import convert_t5gemma
22
26
  from keras_hub.src.utils.transformers import convert_vit
23
27
  from keras_hub.src.utils.transformers.safetensor_utils import SafetensorLoader
24
28
 
@@ -39,6 +43,8 @@ class TransformersPresetLoader(PresetLoader):
39
43
  self.converter = convert_distilbert
40
44
  elif model_type in ("dinov2", "dinov2_with_registers"):
41
45
  self.converter = convert_dinov2
46
+ elif model_type == "dinov3_vit":
47
+ self.converter = convert_dinov3
42
48
  elif model_type == "esm":
43
49
  self.converter = convert_esm
44
50
  elif model_type in ("gemma", "gemma2"):
@@ -60,8 +66,14 @@ class TransformersPresetLoader(PresetLoader):
60
66
  self.converter = convert_mixtral
61
67
  elif model_type == "qwen2_moe":
62
68
  self.converter = convert_qwen_moe
69
+ elif model_type == "qwen3_moe":
70
+ self.converter = convert_qwen3_moe
63
71
  elif model_type == "qwen3":
64
72
  self.converter = convert_qwen3
73
+ elif model_type == "smollm3":
74
+ self.converter = convert_smollm3
75
+ elif model_type == "t5gemma":
76
+ self.converter = convert_t5gemma
65
77
  else:
66
78
  raise ValueError(
67
79
  "KerasHub has no converter for huggingface/transformers models "
keras_hub/src/version.py CHANGED
@@ -1,7 +1,7 @@
1
1
  from keras_hub.src.api_export import keras_hub_export
2
2
 
3
3
  # Unique source of truth for the version number.
4
- __version__ = "0.22.0.dev202508170419"
4
+ __version__ = "0.24.0.dev202511090424"
5
5
 
6
6
 
7
7
  @keras_hub_export("keras_hub.version")
@@ -66,6 +66,9 @@ from keras_hub.src.models.opt.opt_tokenizer import OPTTokenizer as OPTTokenizer
66
66
  from keras_hub.src.models.pali_gemma.pali_gemma_tokenizer import (
67
67
  PaliGemmaTokenizer as PaliGemmaTokenizer,
68
68
  )
69
+ from keras_hub.src.models.parseq.parseq_tokenizer import (
70
+ PARSeqTokenizer as PARSeqTokenizer,
71
+ )
69
72
  from keras_hub.src.models.phi3.phi3_tokenizer import (
70
73
  Phi3Tokenizer as Phi3Tokenizer,
71
74
  )
@@ -75,6 +78,9 @@ from keras_hub.src.models.qwen.qwen_tokenizer import (
75
78
  from keras_hub.src.models.qwen.qwen_tokenizer import (
76
79
  QwenTokenizer as QwenTokenizer,
77
80
  )
81
+ from keras_hub.src.models.qwen3_moe.qwen3_moe_tokenizer import (
82
+ Qwen3MoeTokenizer as Qwen3MoeTokenizer,
83
+ )
78
84
  from keras_hub.src.models.qwen_moe.qwen_moe_tokenizer import (
79
85
  QwenMoeTokenizer as QwenMoeTokenizer,
80
86
  )
@@ -87,7 +93,16 @@ from keras_hub.src.models.roformer_v2.roformer_v2_tokenizer import (
87
93
  from keras_hub.src.models.siglip.siglip_tokenizer import (
88
94
  SigLIPTokenizer as SigLIPTokenizer,
89
95
  )
96
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
97
+ SmolLM3Tokenizer as SmolLM3Tokenizer,
98
+ )
99
+ from keras_hub.src.models.smollm3.smollm3_tokenizer import (
100
+ SmolLM3Tokenizer as SmolLMTokenizer,
101
+ )
90
102
  from keras_hub.src.models.t5.t5_tokenizer import T5Tokenizer as T5Tokenizer
103
+ from keras_hub.src.models.t5gemma.t5gemma_tokenizer import (
104
+ T5GemmaTokenizer as T5GemmaTokenizer,
105
+ )
91
106
  from keras_hub.src.models.whisper.whisper_tokenizer import (
92
107
  WhisperTokenizer as WhisperTokenizer,
93
108
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: keras-hub-nightly
3
- Version: 0.22.0.dev202508170419
3
+ Version: 0.24.0.dev202511090424
4
4
  Summary: Pretrained models for Keras.
5
5
  Author-email: Keras team <keras-users@googlegroups.com>
6
6
  License-Expression: Apache-2.0
@@ -1,11 +1,11 @@
1
1
  keras_hub/__init__.py,sha256=bJbUZkqwhZvTb1Tqx1fbkq6mzBYiEyq-Hin3oQIkhdE,558
2
- keras_hub/layers/__init__.py,sha256=SMkchjCbNydCBULOFC1pzZRaD-KWZ2CaH6CEVf1MRWE,5428
2
+ keras_hub/layers/__init__.py,sha256=hY5hZX5oOxRTFxfPe2hGhrHWJwF1kB7QiwITSS4Xp2A,6061
3
3
  keras_hub/metrics/__init__.py,sha256=KYalsMPBnfwim9BdGHFfJ5WxUKFXOQ1QoKIMT_0lwlM,439
4
- keras_hub/models/__init__.py,sha256=UXMwKVZ7bg-AOrq2xsl8M0idUAS89pkdCvQKhzL-D3I,28439
4
+ keras_hub/models/__init__.py,sha256=XGYkwfBVZiPw5ZjSV5S_n3FnkPf06yYNzxZjXMhiX70,32166
5
5
  keras_hub/samplers/__init__.py,sha256=aFQIkiqbZpi8vjrPp2MVII4QUfE-eQjra5fMeHsoy7k,886
6
6
  keras_hub/src/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  keras_hub/src/api_export.py,sha256=9pQZK27JObxWZ96QPLBp1OBsjWigh1iuV6RglPGMRk0,1499
8
- keras_hub/src/version.py,sha256=nMoJ7CK6uEyL1Mp1eA7Uu3r4f00Fkkrt48MvAmntcjs,222
8
+ keras_hub/src/version.py,sha256=0oZ2eQ3pK7UNLgYg6OOna2ubpYCdPpH9WrlbvIq-QC0,222
9
9
  keras_hub/src/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
10
  keras_hub/src/layers/modeling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
11
  keras_hub/src/layers/modeling/alibi_bias.py,sha256=1XBTHI52L_iJDhN_w5ydu_iMhCuTgQAxEPwcLA6BPuk,4411
@@ -15,12 +15,12 @@ keras_hub/src/layers/modeling/cached_multi_head_attention.py,sha256=8IDyP3JMeALV
15
15
  keras_hub/src/layers/modeling/f_net_encoder.py,sha256=zkVeO5Nk_kBZCUGq2LeDGmPEIM_cr-aGqCKtQGOHKTY,6842
16
16
  keras_hub/src/layers/modeling/masked_lm_head.py,sha256=no6XQb76KB2cUiksYC0MSdyeDOK7pn8MY6cmdCDxpKs,9015
17
17
  keras_hub/src/layers/modeling/non_max_supression.py,sha256=yAkAH1CCj_tYXgQTav39IRr_Uxn8hmzJgIxqbYQyZY8,22565
18
- keras_hub/src/layers/modeling/position_embedding.py,sha256=FfTS6JGMhnOIzo9bHzvoxBbdQNctc32iRLI7ZjdxoTY,3850
19
- keras_hub/src/layers/modeling/reversible_embedding.py,sha256=w6f1LQzwPOKUdlWDy3YRECaDzb8veCB2PAxy4L0HJ7w,10866
18
+ keras_hub/src/layers/modeling/position_embedding.py,sha256=vqmmUbMU-41Ns6qwR_4N1IvVsV0arGlkiTD7D7NMS2s,4562
19
+ keras_hub/src/layers/modeling/reversible_embedding.py,sha256=PVZ3G-2pIYp7fU4d6GAB9OpMUPcNGRye0hg_7XG2QBY,11096
20
20
  keras_hub/src/layers/modeling/rms_normalization.py,sha256=Ylnc9vkDw1A_ZqiKpQ09jVTAGumS5rspjdQOkH-mxf4,1084
21
- keras_hub/src/layers/modeling/rotary_embedding.py,sha256=BuMD2dCyZi73Eokddx8Q9cFb4pJVlOL2OgFwsom2p8I,6059
22
- keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=NAPW9HaVTMNZgUJNzA3l1B3C_FNvaY7IW-5tQgFgnNg,3453
23
- keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=Q-MhVHZSd_W2eWjDCj-s7wo3z8UHmgZ-7j7hElkaXBQ,5263
21
+ keras_hub/src/layers/modeling/rotary_embedding.py,sha256=uKcEyidierqdEs67QYPMQrJ1u0gxqJYT22_YGnhkQ-I,6546
22
+ keras_hub/src/layers/modeling/sine_position_encoding.py,sha256=aLoadvQW1eeivac8gzymP740NXppblZ2C_OlErLMfN4,4063
23
+ keras_hub/src/layers/modeling/token_and_position_embedding.py,sha256=10PDSErd6T6pisor1p6i5-7wCZtswhVQiuzNMKzf4xk,5312
24
24
  keras_hub/src/layers/modeling/transformer_decoder.py,sha256=50KLxaZwaQglWIcFotx3BFh6RwCMXRvGZNXHQBrJ5KM,21172
25
25
  keras_hub/src/layers/modeling/transformer_encoder.py,sha256=kKPGfjpdhqGJs4MmRyx7fk9xU_2TAS-gLGhq9FZdU0w,10828
26
26
  keras_hub/src/layers/modeling/transformer_layer_utils.py,sha256=FuznrW33iG50B-VDN8R1RjuA5JG72yNMJ1TBgWLxR0E,3487
@@ -43,16 +43,18 @@ keras_hub/src/metrics/rouge_n.py,sha256=JoFtmgjF4Ic263ny6bfD6vMHKreH9le3HnOOxemu
43
43
  keras_hub/src/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
44
  keras_hub/src/models/audio_to_text.py,sha256=XoOjXtKBX6K1fz-zOXcdVo3FpjuxCMnJZh2LQcYXb_0,2726
45
45
  keras_hub/src/models/audio_to_text_preprocessor.py,sha256=GS-WWyJ6aSsPRxi_0bxvxA00h2mT2FEwSdAoQXAUYVI,3249
46
- keras_hub/src/models/backbone.py,sha256=utZP09_u5FpMGiq8jl3W98TCW8CysndwLw2VCs3BHz8,11780
47
- keras_hub/src/models/causal_lm.py,sha256=ReaF-i3SHsCkHh4c28jM72QjMQ8x7yiCwG39FRb-7KE,16786
48
- keras_hub/src/models/causal_lm_preprocessor.py,sha256=YY7VJZicdmnjDSWi9g4_pEpd5bdJK166GlWcapvokF0,6663
46
+ keras_hub/src/models/backbone.py,sha256=BdqPsne7lIITIxn6jY6AN4vZ-Rc9VnpqTxvVNR3CS7M,12210
47
+ keras_hub/src/models/causal_lm.py,sha256=x86PTAzoBpAdJyenPRNNBAkazUjcRLr4wb2hMs5SrQ0,18344
48
+ keras_hub/src/models/causal_lm_preprocessor.py,sha256=nxl-sfmCfkfl6JmVRASa878QbaZUgWSA6Jdu48x4-dY,7155
49
+ keras_hub/src/models/depth_estimator.py,sha256=JR7wtunOPrfEoDkLspoZnL2ItWhZFDeAxxw2vue5QLs,8992
50
+ keras_hub/src/models/depth_estimator_preprocessor.py,sha256=2iE8NAUyiD2AvjZwNoXKUaOUogcE1fRzTNXLQ75GZpQ,2822
49
51
  keras_hub/src/models/feature_pyramid_backbone.py,sha256=clEW-TTQSVJ_5qFNdDF0iABkin1p_xlBUFjJrC7T0IA,2247
50
52
  keras_hub/src/models/image_classifier.py,sha256=yt6cjhPfqs8A_eWXBsXdXFzn-aRgH2rVHUq7Zu7CyK8,7804
51
53
  keras_hub/src/models/image_classifier_preprocessor.py,sha256=Bf7jSqHB1hX2ZWoWQS4GcXNOY_EjeoJi-_vtzCAqw4o,2690
52
54
  keras_hub/src/models/image_segmenter.py,sha256=C1bzIO59pG58iist5GLn_qnlotDpcAVxPV_8a68BkAc,2876
53
55
  keras_hub/src/models/image_segmenter_preprocessor.py,sha256=d7I2Hk0SKWyKpjRS6WYccmh_CYQBpWoj0JF5RRrU6rw,3748
54
- keras_hub/src/models/image_to_image.py,sha256=IJLZ6svgvcQvypwF6oe4SbJj_Zuk2-CrgHFBQcsY7n8,16753
55
- keras_hub/src/models/inpaint.py,sha256=fxZZrheYIK1rI6BjqZsxt9G2U0afMZR62Z87ZzuSNrQ,20815
56
+ keras_hub/src/models/image_to_image.py,sha256=nblRd-16n5_JxKIH6IJU7bHTFRGxyCpKUilg6VjWuek,16933
57
+ keras_hub/src/models/inpaint.py,sha256=oqdj0Q9dNG54g6sNQ5foto8saPd5Sx8kYZuHCZPBqrY,20995
56
58
  keras_hub/src/models/masked_lm.py,sha256=uXO_dE_hILlOC9jNr6oK6IHi9IGUqLyNGvr6nMt8Rk0,3576
57
59
  keras_hub/src/models/masked_lm_preprocessor.py,sha256=g8vrnyYwqdnSw5xppROM1Gzo_jmMWKYZoQCsKdfrFKk,5656
58
60
  keras_hub/src/models/object_detector.py,sha256=oAK42fFBKuN0G_WM-DhygFkgQ0KsEwU_ZiU4umHywqc,3757
@@ -63,7 +65,7 @@ keras_hub/src/models/seq_2_seq_lm_preprocessor.py,sha256=DJmm4VTt8AdLtq1k9YKl_VR
63
65
  keras_hub/src/models/task.py,sha256=e9zK2zHgeOkjNACcCmAf-lGuEGF_eRoP_lKlirdIXuk,14817
64
66
  keras_hub/src/models/text_classifier.py,sha256=B6cTYDbDZW8vRvenXrLwgMMVIYMb7Pr14GvX8C_wclQ,4159
65
67
  keras_hub/src/models/text_classifier_preprocessor.py,sha256=EoWp-GHnaLnAKTdAzDmC-soAV92ATF3QozdubdV2WXI,4722
66
- keras_hub/src/models/text_to_image.py,sha256=NIy4S6Fh8MsbNiskAFhjmFXgRiiFqn_rOvpGOO6LlF0,13390
68
+ keras_hub/src/models/text_to_image.py,sha256=Y2JcTBLb_l6_nnzASOXDziqP91tCPFN6m9wv6dlSe00,13570
67
69
  keras_hub/src/models/text_to_image_preprocessor.py,sha256=SKMxEABl5sy1QIA3irHTZKs7VgMdx9Cxy4IaxDU6faM,1211
68
70
  keras_hub/src/models/albert/__init__.py,sha256=rR6q_-8FujB1FXp6r4KOI7xi4gFjtAhQwXjp-MIhiyg,257
69
71
  keras_hub/src/models/albert/albert_backbone.py,sha256=4NQFo8lhv8rFiNIwQeZxxKxFwT3nKcCt36FUa6oPGok,10073
@@ -106,7 +108,7 @@ keras_hub/src/models/clip/clip_backbone.py,sha256=DRAXEJFVPcgf1-AeVDDmuoxplwTCl4
106
108
  keras_hub/src/models/clip/clip_image_converter.py,sha256=XyHEDB4RbYiveMN1hLQxHgGADb_goyWyE0TceAd2owM,330
107
109
  keras_hub/src/models/clip/clip_layers.py,sha256=ns3Zzm5UzMpm-ynyU3aJu2d4i3HmzNiZKdAea624ako,10184
108
110
  keras_hub/src/models/clip/clip_preprocessor.py,sha256=xj-FzK7gLIUyvTo2iM1zHh9f2Ff25tZCYFxsPE3dwFU,4771
109
- keras_hub/src/models/clip/clip_presets.py,sha256=b9Azial1dUtuNV96Q0Ahz-bcBRmlIjnZPUzMvAMb8OY,3348
111
+ keras_hub/src/models/clip/clip_presets.py,sha256=vrLk5UpOk4fvo4kRn05BPKUnhtvkRoSg7iS9UJEqNw8,3348
110
112
  keras_hub/src/models/clip/clip_text_encoder.py,sha256=lZa9Ditvn4DH9As3NEML_Wl6g2qeYer_LzRHGu1hqCM,5449
111
113
  keras_hub/src/models/clip/clip_tokenizer.py,sha256=6gIm_LWRbCeBQUI9M2gA8-OXb4tXGygixkbcL6joV1c,7444
112
114
  keras_hub/src/models/clip/clip_vision_encoder.py,sha256=C5grKgIgFF8ls-kkGdYorpw5tbfgbmBQe6VJg_3yWII,6368
@@ -116,6 +118,19 @@ keras_hub/src/models/cspnet/cspnet_image_classifier.py,sha256=JqfBHIBTFxaLOyAWx6
116
118
  keras_hub/src/models/cspnet/cspnet_image_classifier_preprocessor.py,sha256=ACRnOhjslk2ZZhpPfJioW4um4RLYa-Suk59z9wa5vfo,543
117
119
  keras_hub/src/models/cspnet/cspnet_image_converter.py,sha256=f-ICTY2T-RlCykU6qOHDxg0fY7ECfZ_xpSJzIVmbvpc,342
118
120
  keras_hub/src/models/cspnet/cspnet_presets.py,sha256=n01_7DTvbmaA_qs2GWiNLkBXNrrEvigPXSGc2NDTot8,1870
121
+ keras_hub/src/models/d_fine/__init__.py,sha256=-1dG2O0zjDhODJG8DEWuZo6MCbmlGgIsIqJwBhDXDU4,255
122
+ keras_hub/src/models/d_fine/d_fine_attention.py,sha256=RlsgB9XxTz88wkGSRVFYpKSdiKMVxyb-fCnnpEfVQqo,17848
123
+ keras_hub/src/models/d_fine/d_fine_backbone.py,sha256=KDBVu5LNKqBfNmKsnyJGY0YmJZRLOEo9Pi0VSjjJr5M,37363
124
+ keras_hub/src/models/d_fine/d_fine_decoder.py,sha256=7b4yZaLf2BLA51szoJCgUdqw91QGzv7oxs-DvqVjsvg,38658
125
+ keras_hub/src/models/d_fine/d_fine_encoder.py,sha256=7AV09Y4rRf3JQC5Uxksr5d_r-2jh8syU9dL7dN5ow04,14974
126
+ keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py,sha256=Q4yKVGpknBKHp_rjKzebT1XJgA5yiOzcAugCp2UlrmU,28305
127
+ keras_hub/src/models/d_fine/d_fine_image_converter.py,sha256=8KFAnLISLzDmFWIlGYWM-n1DY3rdQAqm7Sds-ZnRCKk,338
128
+ keras_hub/src/models/d_fine/d_fine_layers.py,sha256=hClOattmgjUcxcAS3LgpX36xKvD9yWTq0UhQX27U20Y,71265
129
+ keras_hub/src/models/d_fine/d_fine_loss.py,sha256=zO-LBBXJvbmSpsQ-DvTWN2N5qJmToIp61DMfnp31XE8,36046
130
+ keras_hub/src/models/d_fine/d_fine_object_detector.py,sha256=ap5ZQypupCDhsdFhm4hVQuMY3767r5cYEQZwOY3LYDI,32762
131
+ keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py,sha256=738VvyHGQdsGN3sSP1yDnOOiC4RpYSQSES7OySynVm8,532
132
+ keras_hub/src/models/d_fine/d_fine_presets.py,sha256=KCrx2ZwprCcm_uYPrJaMwiy_FDSqdsG_v2YAljYloDk,5737
133
+ keras_hub/src/models/d_fine/d_fine_utils.py,sha256=-EL5zanBgwDe6-RV4N9dwp-fkd7cy4SrGZDhc3WRR5A,31130
119
134
  keras_hub/src/models/deberta_v3/__init__.py,sha256=6E-QtAD1uvTBobrn5bUoyB1qtaCJU-t73TtbAEH6i9g,288
120
135
  keras_hub/src/models/deberta_v3/deberta_v3_backbone.py,sha256=oXdV7naTiMowuU3GsXEUo5K0GXiKbPKxdo27o5fXWjc,7258
121
136
  keras_hub/src/models/deberta_v3/deberta_v3_masked_lm.py,sha256=ADBktf1DdiP9T6LCaMhdFiZ_mUbBRKMekY5mGwAeJIo,4186
@@ -125,7 +140,7 @@ keras_hub/src/models/deberta_v3/deberta_v3_text_classifier.py,sha256=OuhJrC2klo6
125
140
  keras_hub/src/models/deberta_v3/deberta_v3_text_classifier_preprocessor.py,sha256=3U2x8Nr7HhwdhAyd3duYo8jj0JDYuB8Z1WMzArzQpKI,5975
126
141
  keras_hub/src/models/deberta_v3/deberta_v3_tokenizer.py,sha256=zEMCLy9eCiBEpA_xM2j8ACg7YJunD3bAruEK-1beElk,4987
127
142
  keras_hub/src/models/deberta_v3/disentangled_attention_encoder.py,sha256=UdcZyRsFGbjWiWP7gQomMIZsq-YoA_aaA3o5R-oerXc,8571
128
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=twNrrj2sostMH_0j-5JEfJRwNGSM-rkmbzsESfXitYo,13146
143
+ keras_hub/src/models/deberta_v3/disentangled_self_attention.py,sha256=YHkYMTzeQGKZ1wj1uoo9Yb1Up7QbIFOIg7V-tijOrfg,13304
129
144
  keras_hub/src/models/deberta_v3/relative_embedding.py,sha256=Ye27E5DIBZ5_QBA2xKDK40SazpUMJ51LSC_Bb9rcyZc,2900
130
145
  keras_hub/src/models/deeplab_v3/__init__.py,sha256=FHAUPM4a1DJj4EsNTbYEd1riNq__uHU4eB3t3Z1zgj0,288
131
146
  keras_hub/src/models/deeplab_v3/deeplab_v3_backbone.py,sha256=dH7HHu_NAnE-HP6ivOL7fFLQZHt_MWmehlMccLljhPc,7764
@@ -147,11 +162,25 @@ keras_hub/src/models/densenet/densenet_image_classifier.py,sha256=ye-Ix3oU42pfsD
147
162
  keras_hub/src/models/densenet/densenet_image_classifier_preprocessor.py,sha256=xDZbTw_h6pjLDzf8QmbDyMnMsFzgh-dPX1ldg9kddhg,563
148
163
  keras_hub/src/models/densenet/densenet_image_converter.py,sha256=DoxYlJVZ9uaabFhVjWOmzvhONoc8KNcQj2vQ6Z1AUpU,354
149
164
  keras_hub/src/models/densenet/densenet_presets.py,sha256=d2GEB9cWYrzP8Qj1w8CWiRW976MibQBuk_YQYvgCzr4,1222
165
+ keras_hub/src/models/depth_anything/__init__.py,sha256=NAU7sgJ68ddqKO0X8h5C1V0QC8PQ2lT8QdmM-oZe91M,321
166
+ keras_hub/src/models/depth_anything/depth_anything_backbone.py,sha256=bZzfCJI5Altrs85t8f_QYfQ-C-uhgaWXz_TWQBdaJsU,9308
167
+ keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py,sha256=sqAgwA5x2U8EhoRQhLNgHynFzFY5dKUZs8xFTMrxrMM,2904
168
+ keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py,sha256=ucmXNfY5RoRRYlSvRBZzZm6CuBGbHVlbiehXiM_yOg8,621
169
+ keras_hub/src/models/depth_anything/depth_anything_image_converter.py,sha256=Xutwc8IyklFilDcc4psNBwPGRDcFlzalWXsHvEz7rUc,395
170
+ keras_hub/src/models/depth_anything/depth_anything_layers.py,sha256=_43iEE7F8P7BL4xssjpPeFyhiDk4gGLu-wPxuqQ-nT8,27739
171
+ keras_hub/src/models/depth_anything/depth_anything_loss.py,sha256=GJqzvLkCZrWsMDO6T2Gt_9-TYJqorfNnyOXSNgLUjQg,3389
172
+ keras_hub/src/models/depth_anything/depth_anything_presets.py,sha256=A3Afr06IRL02u-9EPNTTiGb6DgzjQavSwVmWHz0OoMc,1536
173
+ keras_hub/src/models/depth_anything/interpolate.py,sha256=qwrPGP6wA4jZ-XcSeulhkyxPDiMRxHlC92EqSd0H5Tk,2041
150
174
  keras_hub/src/models/dinov2/__init__.py,sha256=qacZi82EfAloVND4gDLZjqgR5_yVdz_dc4mMKyCsjOA,257
151
- keras_hub/src/models/dinov2/dinov2_backbone.py,sha256=kwzd5eqftMS0m5v1HB_4y7JiHxp13ECgG9dNsDoknWo,9491
175
+ keras_hub/src/models/dinov2/dinov2_backbone.py,sha256=QH3lzE1EnxTcOSii9KS1Qx3lq0XcZMsvElB7AL_ejZY,10672
152
176
  keras_hub/src/models/dinov2/dinov2_image_converter.py,sha256=gfFROdYV5rOzo3kJFlRvRHYjek8z9YirKfrFwlVJO3g,342
153
- keras_hub/src/models/dinov2/dinov2_layers.py,sha256=-G3elRWDy09_VPJDJa0qYS5P8vkBGgxPooMZhy2ifu0,33140
177
+ keras_hub/src/models/dinov2/dinov2_layers.py,sha256=wo80Re043Gjly-XE-sT01QAYq3h793zhmU-Nb6SFN4g,33702
154
178
  keras_hub/src/models/dinov2/dinov2_presets.py,sha256=ho493GPH98K4LH1E54UV2qZZ4h7Un9ylbBmMQjNoKh4,2937
179
+ keras_hub/src/models/dinov3/__init__.py,sha256=AI7vTZJBG6Ygb48o6pXtHzxKk0Rek3p7-HffD-Y48cc,257
180
+ keras_hub/src/models/dinov3/dinov3_backbone.py,sha256=WDHipJSG10seRzYG_hARifF52wqhj9enkhuZ6mgJmjw,10511
181
+ keras_hub/src/models/dinov3/dinov3_image_converter.py,sha256=_oHDcI2CoxjbSLxLfkK1zEPcf4Goy0S66igmrXt58cQ,342
182
+ keras_hub/src/models/dinov3/dinov3_layers.py,sha256=w5K2btblrgrULqzPQdbvtkyR5Px2UZkqcZQ7jq2K3Uk,37169
183
+ keras_hub/src/models/dinov3/dinov3_presets.py,sha256=AXXdrgrs9WBrsGlac0TgWV0DIPnvKdlxD3kUhbii1sk,114
155
184
  keras_hub/src/models/distil_bert/__init__.py,sha256=3Z0w-Mt3aOR0u9RGzjHQ7B3J3qBF2pGjupDGQ9yyzoc,303
156
185
  keras_hub/src/models/distil_bert/distil_bert_backbone.py,sha256=rnAf_GokB3wAeJwVZtgUKQO_bKJIa8RavhL_ykTJpNw,6440
157
186
  keras_hub/src/models/distil_bert/distil_bert_masked_lm.py,sha256=axeZd5UcxFr3_Q8H4yG10CINh93wbcyjlPLauqe5N9E,4289
@@ -208,22 +237,22 @@ keras_hub/src/models/flux/flux_text_to_image.py,sha256=Rf5dD2EhG0bE8Gyg9sqaA8YEe
208
237
  keras_hub/src/models/flux/flux_text_to_image_preprocessor.py,sha256=2kI2vSZvTia5ISb4BVPgC_e1l5rkirLSjhm13P-UR_k,2362
209
238
  keras_hub/src/models/gemma/__init__.py,sha256=rVzOJMJ39bgVlT8UdC0t8PlN2c237GKTBmfHIsbPuOQ,251
210
239
  keras_hub/src/models/gemma/gemma_attention.py,sha256=wmU5FgQu1Ajg-KHKVXTLHWH7pXqN4_zVJTCp_FXMcAs,10095
211
- keras_hub/src/models/gemma/gemma_backbone.py,sha256=GzAUSArw_pN9dtWQzTVhWDbW-XyWt4GyMcFLn9hwmh0,13391
240
+ keras_hub/src/models/gemma/gemma_backbone.py,sha256=pAAVaVKB6nlA0PncVnFXvNgJV7SeZy_ko2AxoIs0jF0,13364
212
241
  keras_hub/src/models/gemma/gemma_causal_lm.py,sha256=3OXaIXlrKqMIuUnBk-bUz-0SYFL-XkkQTWm8qRY2YII,16770
213
242
  keras_hub/src/models/gemma/gemma_causal_lm_preprocessor.py,sha256=bpKkEurWIfa6Kp9s4pz84-sBDSA6ZFNHP8nXG1fFQrg,2912
214
243
  keras_hub/src/models/gemma/gemma_decoder_block.py,sha256=f5UsRO-VNsKJfm_WHVJWK4UahhzYm3sKprJ8jjr-zm4,7628
215
- keras_hub/src/models/gemma/gemma_presets.py,sha256=ZOZEZP3MaIn4-y5i0-QxNeAVtNoWvVYTAu96wvIFMpA,7178
244
+ keras_hub/src/models/gemma/gemma_presets.py,sha256=wAH7mjz9tbQqqdwajU2dilGytnWK1qc-aTIVLtjpTWg,8263
216
245
  keras_hub/src/models/gemma/gemma_tokenizer.py,sha256=FhcyNL4lo63MqOhTQPFr07-u3BddL0fVM4TmOm8ku-I,2622
217
246
  keras_hub/src/models/gemma/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
218
247
  keras_hub/src/models/gemma3/__init__.py,sha256=oPFadkdK5DRLD6sYx83iTetY5daWuSzmJilLjokHcbU,257
219
- keras_hub/src/models/gemma3/gemma3_attention.py,sha256=VstFCTVsplcDNSgnyBcSpLgKn-pktJ39D5Ri-Bb7BQA,13628
220
- keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=CaVUQAKrBd1b_7gF7dyTWLjJebzzMd24_3oUipVu5gE,16445
248
+ keras_hub/src/models/gemma3/gemma3_attention.py,sha256=u3RNI8dva5lzzqFNTAe9996s87cNJ_GEWc9BIJD337Q,15473
249
+ keras_hub/src/models/gemma3/gemma3_backbone.py,sha256=HdWDRuF9MMwIzNVZEd1j53ILzptskvCxFiO__nfVQYU,16686
221
250
  keras_hub/src/models/gemma3/gemma3_causal_lm.py,sha256=U3C9TWlIz8VefAxQ0wJ6bDz18wqHBie8B26Ub_nFZs4,13843
222
251
  keras_hub/src/models/gemma3/gemma3_causal_lm_preprocessor.py,sha256=vjt4N-zr0Eb5kvkOR-WUgskDTNe64L_6tYnhyNb6xaE,29601
223
- keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=6PLlpDxxF67stDv74fw9nNgUHBWmTLx6qGygJwyu5FY,10819
252
+ keras_hub/src/models/gemma3/gemma3_decoder_block.py,sha256=CYwYazqwakLNfhOLBl_8Q2TVZcMcOxMtiZtuVlk_hoo,11470
224
253
  keras_hub/src/models/gemma3/gemma3_image_converter.py,sha256=czi5JrTyKiK0nFzvonviBIX8jjvLHqvGNA9RyheB31k,536
225
254
  keras_hub/src/models/gemma3/gemma3_interleave_embeddings.py,sha256=CfYdudk5En9iU6vEnrcrEWIztloD1r8VzF2extqAhAM,4616
226
- keras_hub/src/models/gemma3/gemma3_presets.py,sha256=FGAHYE4HTLuiceuiCKBJtc1aNd7OgMB59KD0s6Ba_Fg,6105
255
+ keras_hub/src/models/gemma3/gemma3_presets.py,sha256=1GZSwsGRA19RllhZPR-kFjH5y9A6308V3TYfqHAnXUw,7744
227
256
  keras_hub/src/models/gemma3/gemma3_tokenizer.py,sha256=ZaBclFIwzJkSXDuZMBQLHUKV8RWEdZ_dsJMvMcc3qXw,3215
228
257
  keras_hub/src/models/gemma3/gemma3_vision_encoder.py,sha256=7XI0oBjIfJItV5w90t5bWb3C2KzjhvDnIC7wjIq4Cns,20850
229
258
  keras_hub/src/models/gemma3/rms_normalization.py,sha256=fku-JEo2sNy-ytX7ySD1sRzdhRAPmYex_z8oFk1NiG8,833
@@ -242,12 +271,12 @@ keras_hub/src/models/gpt_neo_x/gpt_neo_x_causal_lm_preprocessor.py,sha256=YiVz9q
242
271
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_decoder.py,sha256=hmB81V0SuI6bEsxEuFkYgq58wbcrv1YLvmXGin5T3E0,9732
243
272
  keras_hub/src/models/gpt_neo_x/gpt_neo_x_tokenizer.py,sha256=aKso-8yGrynn3tZ5xm2egcXIBQo3__sWZDBtjmS3ZgU,1991
244
273
  keras_hub/src/models/hgnetv2/__init__.py,sha256=hGilfTnRPpVFS3YpRhJWEyK8CaPIzkRh6zUC1_5imaY,263
245
- keras_hub/src/models/hgnetv2/hgnetv2_backbone.py,sha256=eqVrbU2EyB2ToxK1g2QRW90zd5GyvJ8I7PKVBgqRpfY,7966
246
- keras_hub/src/models/hgnetv2/hgnetv2_encoder.py,sha256=VL6XCqyXieUPkqXS7fhsAT-EV6jzyN_i31EjsAizgVU,6464
274
+ keras_hub/src/models/hgnetv2/hgnetv2_backbone.py,sha256=PeejT-joxAXaMFb_H2AYrM4ilTwQTwFDA3vjal2ffW8,8016
275
+ keras_hub/src/models/hgnetv2/hgnetv2_encoder.py,sha256=51G78sl1UzUrO9TED3kQEPiYRUZ7mqP-ErZavKe12BA,6492
247
276
  keras_hub/src/models/hgnetv2/hgnetv2_image_classifier.py,sha256=62Xual9pRBkU6G_RUdCblx68Z827SCA_5q9utCXxwa0,7897
248
277
  keras_hub/src/models/hgnetv2/hgnetv2_image_classifier_preprocessor.py,sha256=df7OKvJmz2UqOXrqECvI9QdVMVkVMWhK0go9sltajnI,553
249
278
  keras_hub/src/models/hgnetv2/hgnetv2_image_converter.py,sha256=qaGRtDeQwmC0PR69KWC7GzYNdWZ5cHu_exhNzdYyYzM,348
250
- keras_hub/src/models/hgnetv2/hgnetv2_layers.py,sha256=OMUKW5VWL0xkEQl7RJYGAbTTB7qeqH3FHtMMuiQ0QmI,36418
279
+ keras_hub/src/models/hgnetv2/hgnetv2_layers.py,sha256=Kqte7B1LxrLFZhGDR65qUnMAju5sheSDV1kKsnxPEw8,37039
251
280
  keras_hub/src/models/hgnetv2/hgnetv2_presets.py,sha256=kbwxp8Nh4jdDN6egSmSxxwpY7CP5AklINXlWI0K3ZYA,2078
252
281
  keras_hub/src/models/llama/__init__.py,sha256=svVZjGi71R3lVbq0AdbqlXj909mr3Rp9EPXdiO0w0G0,251
253
282
  keras_hub/src/models/llama/llama_attention.py,sha256=UFHOWr69vTkOxLdgSUckGaSuUUyqlJ_xYoswWHVnTOU,8977
@@ -297,6 +326,17 @@ keras_hub/src/models/mobilenet/mobilenet_image_classifier_preprocessor.py,sha256
297
326
  keras_hub/src/models/mobilenet/mobilenet_image_converter.py,sha256=a3Ka0UYYK5wHSOjf2oMHSgofRazTAeUfttklVefq14w,360
298
327
  keras_hub/src/models/mobilenet/mobilenet_presets.py,sha256=hR_3xxI_PigE8UprXW4lAuKRa3LFGdidBaN8LklxwRQ,1895
299
328
  keras_hub/src/models/mobilenet/util.py,sha256=S7j4UacmVIJ3fU8cymyAoK49eHcpWIKTOyUQiEjcbzQ,721
329
+ keras_hub/src/models/mobilenetv5/__init__.py,sha256=UBySIjlMZeXRpef3FJMpA8w--XbPDcO-up-4zwYJQG0,305
330
+ keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py,sha256=rH4cp1B5_r8g7gKvDdMvfEGfmMHUB2OMEbWQbX9yUMg,26499
331
+ keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py,sha256=y19FpVh0M3w9jSmP34E-GixdjMsU2cEJKrtjLcFfGZU,17167
332
+ keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py,sha256=aw2H-duaCkxGSHB-nKnG8nQhAPxNkmlPUn0FHDb_cTs,34026
333
+ keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py,sha256=_vgjuqJq9GXlccKaL783q77rgtzfa0Oc9aNOhGWeprc,17092
334
+ keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py,sha256=BvL0yClapvG9I5hNMUFuYCXXfnBsBGmKR0ICL6MQqrc,5944
335
+ keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py,sha256=4yhM71JqOzQWiCXTidWAMCNaaIO8QVq5vXl_129ylsI,602
336
+ keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py,sha256=HroX3OOwajIz9CIqlcGf9K9MYUEQ86wifABy9ZGRql4,381
337
+ keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py,sha256=wLyR_gTcqiNLUt86fhxhEbbhZH3YA9CbvMSPnA4vTvg,15889
338
+ keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py,sha256=fkWhfnoXxalYFLCsnuT1_aMrP_A5txx8s41MgMVe_ro,481
339
+ keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py,sha256=ij2Dfguotb6RGSXuX-MsxF8JBXBWLdSi0LfDOKGp2rk,4868
300
340
  keras_hub/src/models/moonshine/__init__.py,sha256=WK_9Cy1dp5KplNAaTsaJbd-2DGLsiHQsIL5ZnXuCbDQ,275
301
341
  keras_hub/src/models/moonshine/moonshine_audio_converter.py,sha256=FnvR7SP44uVOsA3g9azUhQjsVg809eJ5nqoJZQ-DAq0,11854
302
342
  keras_hub/src/models/moonshine/moonshine_audio_to_text.py,sha256=dXFtjaxL1jpcIAiiZY1-kcNL-S4RiRJiAC2uR_a3Fyc,15865
@@ -323,6 +363,14 @@ keras_hub/src/models/pali_gemma/pali_gemma_image_converter.py,sha256=5yM_jUtrFsW
323
363
  keras_hub/src/models/pali_gemma/pali_gemma_presets.py,sha256=Q_zfHEjGTtXEiCwjoJc2g6HjmoNoLgSDRNfRvIsf0dA,12989
324
364
  keras_hub/src/models/pali_gemma/pali_gemma_tokenizer.py,sha256=ljTiADHo0Ok88q-jVzwJIle2C8xcxnudLTsBLzIySaM,2415
325
365
  keras_hub/src/models/pali_gemma/pali_gemma_vit.py,sha256=SbWanwCoONSwgiWQsc6lFdvhqKZ-zDW42XzQt8CNMtU,18311
366
+ keras_hub/src/models/parseq/__init__.py,sha256=BedkGhH5vJ-sm0gxGi3xfDiS0JN-CkOvGGQUBeYFwV4,257
367
+ keras_hub/src/models/parseq/parseq_backbone.py,sha256=FX28p7VZerjoHwlyfrvht3Pibl9GlTczDxo1iXtO6cA,4767
368
+ keras_hub/src/models/parseq/parseq_causal_lm.py,sha256=fhxhXCOgrIfe5aFimWz_w31VOZj5nb6w9Mx0kuzm718,17187
369
+ keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py,sha256=2pVdqEepiSQf8Z01J1qKoTRbLeQGhWtomjKw1Gaxrhk,6057
370
+ keras_hub/src/models/parseq/parseq_decoder.py,sha256=R9yRlfwkk0q-HEchn5bW34qqTcEnCRDsD3Ru7ENi4F4,14442
371
+ keras_hub/src/models/parseq/parseq_image_converter.py,sha256=cEFXRICZQ5lEf3qpgmfSBMMiDZI7PC-0kO5wb-kLYx4,342
372
+ keras_hub/src/models/parseq/parseq_presets.py,sha256=DAZuTCWcWe_1kxI8edhlYQ9xcwHNCtlDg4cTjg5GY8M,405
373
+ keras_hub/src/models/parseq/parseq_tokenizer.py,sha256=SEbeYRxU7VzHuyTWKJK5hOhqq_DZqXvGALnG8MNCN3I,8164
326
374
  keras_hub/src/models/phi3/__init__.py,sha256=zIbf1MU-ks91mEkjTRJAsk51N3BBnXDF2JM1vO-13PQ,245
327
375
  keras_hub/src/models/phi3/phi3_attention.py,sha256=pojx23rG2NPqy0MRo_OspnxipJCZvexZ2V25xucimHY,9980
328
376
  keras_hub/src/models/phi3/phi3_backbone.py,sha256=fY-OY2ZrqxDHglYjTM0OCacBdEQHwj-XNmU0MnXL7iU,8885
@@ -351,6 +399,15 @@ keras_hub/src/models/qwen3/qwen3_decoder.py,sha256=68s9jQj53zFmXE4-SGXKYHu546fXO
351
399
  keras_hub/src/models/qwen3/qwen3_layernorm.py,sha256=EJxjf7Pr6ufPQnNeuYQxkExzPjPk4PQxqMsoBeSEkDo,1073
352
400
  keras_hub/src/models/qwen3/qwen3_presets.py,sha256=eAqRbjLyRTSXcN-jnGHqoCHejKm2gmt8_zL4EPoE-JA,2518
353
401
  keras_hub/src/models/qwen3/qwen3_tokenizer.py,sha256=LmPtg0vprMchDvYfTj8m5PraXI2QS3-YgdIIpIm5iAs,1448
402
+ keras_hub/src/models/qwen3_moe/__init__.py,sha256=0jp5BHZ8O8cCrp4g6VWWDUwB5_fSDXvCVCSf6Q0UB6o,273
403
+ keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py,sha256=rZnzWA-cAhuWSuHSJfrNqf5_Cu0PNEe7PKbPNbhJdeM,13355
404
+ keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py,sha256=gguc_M5akemEaQCklTDFiABSRa4nwa4IuDzlfzRRpKM,14618
405
+ keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py,sha256=g3IlpuNzKbcAt_VBYnm895GBLQIPDuMP9eVbL44tf-A,13286
406
+ keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py,sha256=CU5sH0bljNCPuN7sKNnP1FV-jexc12WK0HFU7RWsAvU,499
407
+ keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py,sha256=lUmDkxrikv4s40tcT9a8muCbEbfUBN97nTFWQEelIJw,25926
408
+ keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py,sha256=T6BjJm93F37_0XrrqkWPPXXg4DFOt3f6Al0LDF8N15Y,1360
409
+ keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py,sha256=CWImTWsUVYPcdN-RnvRlgQ_8vD7brLA0oq0ptuRxvR0,1144
410
+ keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py,sha256=tDx1WSxmpiWn39NhzkQO-YUbdy713RYHKc_F-EUa6Tw,1473
354
411
  keras_hub/src/models/qwen_moe/__init__.py,sha256=5D8GUmVDsJs0J4sVZHcXOLkZf12U96l-WtwyVee4lu8,267
355
412
  keras_hub/src/models/qwen_moe/qwen_moe_attention.py,sha256=o0mcVTDMtElMYq3NSYRCfuYVdF-W8YDSU5ogensrVJg,13277
356
413
  keras_hub/src/models/qwen_moe/qwen_moe_backbone.py,sha256=nrfELvIvRLmrgKrUNXci2CrecmeI6bWzJj7HH-RcWJA,15341
@@ -401,7 +458,7 @@ keras_hub/src/models/sam/sam_image_segmenter_preprocessor.py,sha256=7slvyhGoMHmS
401
458
  keras_hub/src/models/sam/sam_layers.py,sha256=dNyTlTHnnjnr-J9T06V1loZJsfrgfySWemn2CKEGa-Q,13902
402
459
  keras_hub/src/models/sam/sam_mask_decoder.py,sha256=9RfjoNL7GSY6I9LZ3ulUa5cIoYSPJNP4KnHvq16lnM4,9549
403
460
  keras_hub/src/models/sam/sam_presets.py,sha256=PVaWbFk5obdeh42pvW2_VqaieADOmKsbTU_X1Wp3sF8,875
404
- keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=-fIDCHaLg48XrelFqkZVy3xEYtNRyckCyWyQAuGfJ1w,11834
461
+ keras_hub/src/models/sam/sam_prompt_encoder.py,sha256=sUj7po6DmobKwHQzKm4BNp_p5TJZj-ik4_FUV0K6smw,11877
405
462
  keras_hub/src/models/sam/sam_transformer.py,sha256=8Bfj6FP691djsSZrvH_dgo6llARlS7ReU-zoqsrHPvQ,5742
406
463
  keras_hub/src/models/segformer/__init__.py,sha256=ERgxA8tyeG2l4G6ywHisn6Oo0Iu7_9OAkzrC9TEFHSE,365
407
464
  keras_hub/src/models/segformer/segformer_backbone.py,sha256=T61WQ50T6IwSeiK1NfUKJu3eqbj_m5gz9cpUPtqMfcc,5666
@@ -415,17 +472,23 @@ keras_hub/src/models/siglip/siglip_image_converter.py,sha256=yjYc0XOyL37WLlr-X6V
415
472
  keras_hub/src/models/siglip/siglip_layers.py,sha256=c20n6v3cFsI-Im9GBVTknhj_IpX79I4a-fajBKRMzQA,19893
416
473
  keras_hub/src/models/siglip/siglip_loss.py,sha256=n6zmOeL0o7Nwb5iaoEZfrxiAsQoqZ9yLIlaCJsAfTg4,1442
417
474
  keras_hub/src/models/siglip/siglip_preprocessor.py,sha256=r1Ej7hVwr5BudFYTHkjW5yc3lk4OYZD1s3t32lKkuec,5660
418
- keras_hub/src/models/siglip/siglip_presets.py,sha256=gOzSVhLskAthfzq8jWOtQWv14euaqS2ywcZlNfivDOI,13164
475
+ keras_hub/src/models/siglip/siglip_presets.py,sha256=jtIQrNcq14othG1QgwBEfozEmoHdXXW270qylQEmA8E,13864
419
476
  keras_hub/src/models/siglip/siglip_text_encoder.py,sha256=xOVvzyQHLX9ne30y4ussar99gNMXPXHYKlkbCX_On2Y,5380
420
477
  keras_hub/src/models/siglip/siglip_tokenizer.py,sha256=j_67JbIHJDRk-CbiemG2dgAO6lp3_0_JdnfroZ90G18,2579
421
478
  keras_hub/src/models/siglip/siglip_vision_encoder.py,sha256=CaNaFq5thBC3TUXXOf2qknk5vWsauM20ZoaDPYRnXcs,5927
479
+ keras_hub/src/models/smollm3/smollm3_backbone.py,sha256=9e8ydwy7X0stVEWgIJYt69vt6JYSCiYpM73w6oLxyoQ,7949
480
+ keras_hub/src/models/smollm3/smollm3_causal_lm.py,sha256=PWn2zPu0YS3uRvmjksmXKXpxehl8lvEHAXaO0u7nweM,12641
481
+ keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py,sha256=gbj7IhDbgA30AM80uG6BeI1yZmGd5yQ2VEaPWWyS9M4,3121
482
+ keras_hub/src/models/smollm3/smollm3_layers.py,sha256=lR33IynX-1G42L3hNzOBnnIx-INOzJguSQDAwIPaSIQ,26632
483
+ keras_hub/src/models/smollm3/smollm3_tokenizer.py,sha256=evOVM8pgZUkWLoXAwWiYRSNNFZ7KBv1WtFdLqpHdCQU,1877
484
+ keras_hub/src/models/smollm3/smollm3_utils.py,sha256=zAqtZTv1G--k-Dbjvk886OcmsuIxyYicRiUQXcpyud0,1904
422
485
  keras_hub/src/models/stable_diffusion_3/__init__.py,sha256=ZKYQuaRObyhKq8GVAHmoRvlXp6FpU8ChvutVCHyXKuc,343
423
486
  keras_hub/src/models/stable_diffusion_3/flow_match_euler_discrete_scheduler.py,sha256=1K_B3d3fNn50eY84OgxVHyIHHZhmlJY03b71pMSmE9s,3246
424
487
  keras_hub/src/models/stable_diffusion_3/mmdit.py,sha256=emyDmtpJiFU_9crSDBC5CaXoZnM1Eti8uAQtwv2v8B0,42794
425
488
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_backbone.py,sha256=BEtMwYaxrJxHpNT_E1wK-SPCBCp4hgbnX-UjgqGrQ7g,24362
426
489
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_image_to_image.py,sha256=uNsNSQ4EFceGfIMzgjYWFMuL0XdfM58rubTcrCVPrts,5532
427
490
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_inpaint.py,sha256=2UIRz11DRbHJ7IVbkjpBjtbkZGC3-eYhMtVUWTmWMH8,6437
428
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=x7Ez4L955MJE4ABtBy-63YpU9XpR0Ro8QWPzYYJs1yE,2167
491
+ keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py,sha256=n5hLzjw9rmMwH-jsn9ztiQklgJfkTcf8Offkz__Ltu0,2167
429
492
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image.py,sha256=-xmmCaoPc1ixJvyIBwVTW1yKBA-rP4nWReovcs7OLKE,4620
430
493
  keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_text_to_image_preprocessor.py,sha256=crUT82moaPx8RVKrLtUHx1zry602f8DWItek9aFkojg,2903
431
494
  keras_hub/src/models/stable_diffusion_3/t5_encoder.py,sha256=oV7P1uwCKdGiD93zXq7kmqX0elMZQU4UvBa8wg6P1hs,5113
@@ -437,6 +500,16 @@ keras_hub/src/models/t5/t5_preprocessor.py,sha256=UVOnCHUJF_MBcOyfR9G9oeRUEoN3Xo
437
500
  keras_hub/src/models/t5/t5_presets.py,sha256=I9rOBMG4dcBaSK3UHRcaJHUuVHeXsez60TYRqXZKL-A,3173
438
501
  keras_hub/src/models/t5/t5_tokenizer.py,sha256=pLTu15JeYSpVmy-2600vBc-Mxn_uHyTKts4PI2MxxBM,2517
439
502
  keras_hub/src/models/t5/t5_transformer_layer.py,sha256=uDeP84F1x7xJxki5iKe12Zn6eWD_4yVjoFXMuod-a3A,5347
503
+ keras_hub/src/models/t5gemma/__init__.py,sha256=KFXci5c05Fi2xqmdn8wj0oz38GeCcIksaYo9bQWGOLA,263
504
+ keras_hub/src/models/t5gemma/t5gemma_attention.py,sha256=j1BqTCCEfeRiwYOlwrBDrLoIPB5mRaCMRS9J5bWobWA,15232
505
+ keras_hub/src/models/t5gemma/t5gemma_backbone.py,sha256=wV5UTSlHm9P5AhsK-Bnab_myyTaDEOtI-0h5Glhf_VA,16574
506
+ keras_hub/src/models/t5gemma/t5gemma_decoder.py,sha256=BHzdk5akm7sVbEyL7e176YYeuT2gVtSW7ol41b0PdSM,14375
507
+ keras_hub/src/models/t5gemma/t5gemma_encoder.py,sha256=KW5xZTVS9UgzoQspHwKcYkqKWYxob2wACZKQUv-zIC0,8675
508
+ keras_hub/src/models/t5gemma/t5gemma_layers.py,sha256=19_CLs6_lYTqdQJQTlalI50VEI8F3buNgXWoBoIgjas,4381
509
+ keras_hub/src/models/t5gemma/t5gemma_presets.py,sha256=vTL0DMAR-r0-Qco6cgdDGriZrwFUFgXD0CrqjWVoA1M,13901
510
+ keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py,sha256=-dRXqt1DbKQVUKqUqafBft2rJUB89tEj7NuRMlhX5og,17836
511
+ keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py,sha256=AXjmd0vOQ2J__E9GACeKWTosGrlkzcriC2OstQi0-x0,8186
512
+ keras_hub/src/models/t5gemma/t5gemma_tokenizer.py,sha256=4EUX_kUEDqB6QAKSv2VxBVUVrF16TIBBX34Dir7f-70,2740
440
513
  keras_hub/src/models/vae/__init__.py,sha256=i3UaSW4IJf76O7lSPE1dyxOVjuHx8iAYKivqvUbDHOw,62
441
514
  keras_hub/src/models/vae/vae_backbone.py,sha256=Yk0srJhB-zfxQeAoyZdNzvxfxPxPMVie0nqKU7cp-2M,7033
442
515
  keras_hub/src/models/vae/vae_layers.py,sha256=NaPjITYTvMcEOrtCQZXxqtkbDzB7odtiNxJx-YpvYy8,27751
@@ -484,32 +557,33 @@ keras_hub/src/models/xlnet/xlnet_backbone.py,sha256=cZVNzu1lPxCBme9cvhHSbgbDnX58
484
557
  keras_hub/src/models/xlnet/xlnet_content_and_query_embedding.py,sha256=QOYdbQBJ8mRQA1qFhj4JeHpzUToySYohe-oByxcFQaU,3942
485
558
  keras_hub/src/models/xlnet/xlnet_encoder.py,sha256=VQEjNWG8CBGbZXQEmT2gx-6NOFXtmMOyRmw0Rs-Y6C0,12757
486
559
  keras_hub/src/samplers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
487
- keras_hub/src/samplers/beam_sampler.py,sha256=0lWr9jywbXf3h68Vu66_CSLVvqZJw9ji4K5Y7_nvh70,7182
560
+ keras_hub/src/samplers/beam_sampler.py,sha256=JPb4X0Yuog4kk1vdq3kWst3bj-yN_dxcBL79xHCxdPY,7246
488
561
  keras_hub/src/samplers/contrastive_sampler.py,sha256=od69XNguQdgYpfhVjf5vc8BLhXiZ4QVmoSyd2ku_yWY,8304
489
562
  keras_hub/src/samplers/greedy_sampler.py,sha256=Ldu2-KRLFKeeCSlOP29d9JvQnRW_S4w_GQijP8dhRdw,958
490
563
  keras_hub/src/samplers/random_sampler.py,sha256=nQw2ldO0dwRFcz8SIC9xMty0CGc4m6DlAmNZEXMsdAg,1709
491
- keras_hub/src/samplers/sampler.py,sha256=5HGmXn-zEj-7XDpwt1riw_U3Mw9oA4oZahP9OZ_VIt8,8083
564
+ keras_hub/src/samplers/sampler.py,sha256=vxlryQ4c6zyBbRw39-LRWZYg0HX-4czfiMWy7dcL1d0,8253
492
565
  keras_hub/src/samplers/serialization.py,sha256=K6FC4AY1sfOLLIk2k4G783XWnQ_Rk3z1QrO97cZimNw,2770
493
566
  keras_hub/src/samplers/top_k_sampler.py,sha256=WSyrhmOCan55X2JYAnNWE88rkx66sXqdoerl87nOrDQ,2250
494
567
  keras_hub/src/samplers/top_p_sampler.py,sha256=9r29WdqBlrW_2TBma6QqkRps2Uit4a6iZPmq1Gsiuko,3400
495
568
  keras_hub/src/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
496
- keras_hub/src/tests/test_case.py,sha256=lBIH6rNJU7wasOV-Iq4mymPg28kznqMi81LOEWWvUYY,27476
569
+ keras_hub/src/tests/test_case.py,sha256=Ie0L8NbFJjSO0NWcjU0BRQRdbyCLxT1ru2M0FdU_uHo,29291
497
570
  keras_hub/src/tests/mocks/mock_gemma3_tokenizer.py,sha256=a4mSer84-xh9dVJUVpFUPzglCh-7NcFqHRKPDR35c8c,4888
498
571
  keras_hub/src/tokenizers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
499
572
  keras_hub/src/tokenizers/byte_pair_tokenizer.py,sha256=WeUlHMAf5y_MUjFIfVhEcFoOZu-z4kkSj-Dq-pegM9w,24052
500
573
  keras_hub/src/tokenizers/byte_tokenizer.py,sha256=GPIKaddXugbfckfhodADsBpaYb72DgFMs_xfXHnK4qU,10418
501
574
  keras_hub/src/tokenizers/sentence_piece_tokenizer.py,sha256=nOqkpa2nHitITpdowPHdwxiN87e8huLW8Dt2gozVnhI,9350
502
575
  keras_hub/src/tokenizers/sentence_piece_tokenizer_trainer.py,sha256=caqgV9N4lH97zBviFPdpwo_O95AaJBEJLQv6Icq3Hs8,4774
503
- keras_hub/src/tokenizers/tokenizer.py,sha256=v0Ka5ayrBwpsGBlkIadXK-b4RsMTbhV6BZrvKullbxY,9722
576
+ keras_hub/src/tokenizers/tokenizer.py,sha256=dk7ZY08k-YMb25FmeK6SQouLKXOvHQjOww2Z30KRyt0,10173
504
577
  keras_hub/src/tokenizers/unicode_codepoint_tokenizer.py,sha256=hRv_XxoPIPDpHfO0ZttSOv_M89sMaFpvmllojvKz_ac,13553
505
578
  keras_hub/src/tokenizers/word_piece_tokenizer.py,sha256=vP6AZgbzsRiuPCt3W_n94nsF7XiERnagWcH_rqJHtVU,19943
506
579
  keras_hub/src/tokenizers/word_piece_tokenizer_trainer.py,sha256=cylrs02ZrYQ1TuZr9oyS3NrVbDwGctA3VXbIh1pFJMQ,6743
507
580
  keras_hub/src/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
508
581
  keras_hub/src/utils/keras_utils.py,sha256=IWsbg-p-XVLuOkba8PAYNf9zDo4G2RkINLr58p12MhA,5291
582
+ keras_hub/src/utils/openvino_utils.py,sha256=P1ZvedLv91LZD-UAgAo2dy6WC5305elh1qvgmdYQIGc,4512
509
583
  keras_hub/src/utils/pipeline_model.py,sha256=jgzB6NQPSl0KOu08N-TazfOnXnUJbZjH2EXXhx25Ftg,9084
510
- keras_hub/src/utils/preset_utils.py,sha256=dEOAGjkjnu69nhWuS1wnHVyMmkYnlzUQAUPzbLexLhY,35142
584
+ keras_hub/src/utils/preset_utils.py,sha256=lyCg_PRcYH1Jy8lGKaO8sgpIbMrP-Ik66EbjGD4gizc,37677
511
585
  keras_hub/src/utils/python_utils.py,sha256=N8nWeO3san4YnGkffRXG3Ix7VEIMTKSN21FX5TuL7G8,202
512
- keras_hub/src/utils/tensor_utils.py,sha256=WrohV6-hvxtLE6rRRhtN4hy8GkHikV-NrRnVEYUwJQo,16133
586
+ keras_hub/src/utils/tensor_utils.py,sha256=tULr53SZLCczN_BD7XvbAq9c9bFVZTn7aYcLbqmbfx8,16982
513
587
  keras_hub/src/utils/coco/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
514
588
  keras_hub/src/utils/coco/coco_utils.py,sha256=x_QnUUvZ92zoFzMJugiInHORc4NrMdWVBkpp8BAYF6s,2586
515
589
  keras_hub/src/utils/imagenet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -519,15 +593,17 @@ keras_hub/src/utils/timm/convert_cspnet.py,sha256=9p1IF0B4UPbDTruQQXR6mJEUdhvQvH
519
593
  keras_hub/src/utils/timm/convert_densenet.py,sha256=fu8HBIQis5o3ib2tyI2qnmYScVrVIQySok8vTfa1qJ8,3393
520
594
  keras_hub/src/utils/timm/convert_efficientnet.py,sha256=SgEIlyyinS04qoQpEgh3WazHq544zNUCCpfmWh3EjSs,17100
521
595
  keras_hub/src/utils/timm/convert_mobilenet.py,sha256=XTqHOK4nJwigKefsw7ktWJtOgRpEVMO9MtRhuP5qP_k,9219
596
+ keras_hub/src/utils/timm/convert_mobilenetv5.py,sha256=B4qDcVH_v0dZCwcDmUnufbORbwpj-al8atnFMQX3bcg,12437
522
597
  keras_hub/src/utils/timm/convert_resnet.py,sha256=8JFkVtdpy5z9h83LJ97rD-a8FRejXPZvMNksNuStqjM,5834
523
598
  keras_hub/src/utils/timm/convert_vgg.py,sha256=MT5jGnLrzenPpe66Af_Lp1IdR9KGtsSrcmn6_UPqHvQ,2419
524
- keras_hub/src/utils/timm/preset_loader.py,sha256=4hULdq2K2hgPYTZR71PGV4YNDHLG1zcoxF9TXpg6fGE,3905
599
+ keras_hub/src/utils/timm/preset_loader.py,sha256=3bNmKinKjwc5-ToPCrT2dC2MsvD9tpIMzEKRknrnB5A,4190
525
600
  keras_hub/src/utils/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
526
601
  keras_hub/src/utils/transformers/convert_albert.py,sha256=VdKclZpCxtDWq3UbUUQZf4fR9DJK_JYZ73B4O_G9skg,7695
527
602
  keras_hub/src/utils/transformers/convert_bart.py,sha256=Tk4h9Md9rwN5wjQbGIVrC7qzDpF8kI8qm-FKL8HlUok,14411
528
603
  keras_hub/src/utils/transformers/convert_bert.py,sha256=4gQqXCJzC9QWdLPDUAq741K8t_kjPIET050YjUnLeDA,5977
529
604
  keras_hub/src/utils/transformers/convert_deit.py,sha256=ubcqYzMlhWTCE2S_TsXICCMmqjN9RsQPaw_70vArnjo,5306
530
- keras_hub/src/utils/transformers/convert_dinov2.py,sha256=FvmB3ggEgowVFPSO5WOzC2hKkG2JvjSb-DeVffu78iU,6908
605
+ keras_hub/src/utils/transformers/convert_dinov2.py,sha256=Zmxz33hKJCcykQOcW8XhG_Yy1l8XqIYam1cjzM69-Mk,6986
606
+ keras_hub/src/utils/transformers/convert_dinov3.py,sha256=rZqowTASKSAQQ1HrwlD9_tY7VAQHY_C4_61ky5wUbvE,4448
531
607
  keras_hub/src/utils/transformers/convert_distilbert.py,sha256=SlfIRhSRk5c1ir2HGiDPiXa5XdOId_DbcnZO9lbwyZ8,6498
532
608
  keras_hub/src/utils/transformers/convert_esm.py,sha256=rOgGnNY37ZbYnoVC3L-Y-yGGAxTRmYtQV0nJoandH2Y,6214
533
609
  keras_hub/src/utils/transformers/convert_gemma.py,sha256=ElCgwBpSN5Q7rV5PJawTsoytPzs5ZjuwoY60YAe8y_A,6533
@@ -538,15 +614,18 @@ keras_hub/src/utils/transformers/convert_mixtral.py,sha256=PxeCY8Xe7U_caICugwOCE
538
614
  keras_hub/src/utils/transformers/convert_pali_gemma.py,sha256=B1leeDw96Yvu81hYumf66hIid07k5NLqoeWAJgPnaLs,10649
539
615
  keras_hub/src/utils/transformers/convert_qwen.py,sha256=WUxMAEFVqRs7TRw7QU5TH3_ev4yf02R1xFVliMvTQqg,5886
540
616
  keras_hub/src/utils/transformers/convert_qwen3.py,sha256=LIormvCMWPq6X9Wo2eNbADjtFZ0nI7tFGZFBxmo4GKw,5700
617
+ keras_hub/src/utils/transformers/convert_qwen3_moe.py,sha256=4Cr2haS20VNHF1iqKRpKeZ47baV0TAXg87zkCfl-JTg,8876
541
618
  keras_hub/src/utils/transformers/convert_qwen_moe.py,sha256=a7R28aln-PdAcNuKAXdrtzvslho2Co6GypChxLMKPpc,10618
542
- keras_hub/src/utils/transformers/convert_vit.py,sha256=9SUZ9utNJhW_5cj3acMn9cRy47u2eIcDsrhmzj77o9k,5187
543
- keras_hub/src/utils/transformers/preset_loader.py,sha256=YZVpeNhFITHdauY3MWESrZLNUIJt9ilHJ1jUhvITNT8,4781
619
+ keras_hub/src/utils/transformers/convert_smollm3.py,sha256=V2vWES85YSNXNx39I8OwAcOvSpb9KxUscrDr7ra-LPA,5281
620
+ keras_hub/src/utils/transformers/convert_t5gemma.py,sha256=DPOwd61UhjspKuCsk3_EaNvSADGP_f8KLcZARHYVk5Y,9490
621
+ keras_hub/src/utils/transformers/convert_vit.py,sha256=YAmXh519ecSgEO5B4g-aEQg1Bb_6ifFafLMqDTfLn_c,5259
622
+ keras_hub/src/utils/transformers/preset_loader.py,sha256=alzuIEhDI6gLpEw05wPJVbOJ2LhwmLB_s7JhDqkb4ec,5364
544
623
  keras_hub/src/utils/transformers/safetensor_utils.py,sha256=CYUHyA4y-B61r7NDnCsFb4t_UmSwZ1k9L-8gzEd6KRg,3339
545
- keras_hub/src/utils/transformers/export/gemma.py,sha256=NpTSgRUSWp3WXQil1CjYUVFVyyVhpO-4-3q2en2Wxwg,3264
546
- keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=oTdRS8SalPCbi_cZPC55aZUBc-1_pdviUIp0XysA4cI,3234
547
- keras_hub/tokenizers/__init__.py,sha256=gQIESc4erRLuwxHyxtYy_Z0ePQXw_uhXAa4GVHMffYk,4244
624
+ keras_hub/src/utils/transformers/export/gemma.py,sha256=xX_vfQwvFZ_-lQX4kgMNOGKL7fL_1yk7QyGYV2Qyly4,4699
625
+ keras_hub/src/utils/transformers/export/hf_exporter.py,sha256=Qk52c6LIA2eMHUNY9Vy4STJSpnhLMdJ_t-3ljqhSr4k,5081
626
+ keras_hub/tokenizers/__init__.py,sha256=XFOxDmM1Mz9TxiE8ICZK_-yTTyRFywUUiVwRIzz2QZ8,4770
548
627
  keras_hub/utils/__init__.py,sha256=jXPqVGBpJr_PpYmqD8aDG-fRMlxH-ulqCR2SZMn288Y,646
549
- keras_hub_nightly-0.22.0.dev202508170419.dist-info/METADATA,sha256=Y2DYmGaNFYj7UdG9GdRXDMmkbh6XVggJ2ohGyutH37g,7395
550
- keras_hub_nightly-0.22.0.dev202508170419.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
551
- keras_hub_nightly-0.22.0.dev202508170419.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
552
- keras_hub_nightly-0.22.0.dev202508170419.dist-info/RECORD,,
628
+ keras_hub_nightly-0.24.0.dev202511090424.dist-info/METADATA,sha256=sQwmYQhujdR3LE7rPYvUYCmmx0jOFzEMRXOv3QqnASA,7395
629
+ keras_hub_nightly-0.24.0.dev202511090424.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
630
+ keras_hub_nightly-0.24.0.dev202511090424.dist-info/top_level.txt,sha256=N4J6piIWBKa38A4uV-CnIopnOEf8mHAbkNXafXm_CuA,10
631
+ keras_hub_nightly-0.24.0.dev202511090424.dist-info/RECORD,,