keras-hub-nightly 0.22.0.dev202508170419__py3-none-any.whl → 0.24.0.dev202511090424__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- keras_hub/layers/__init__.py +15 -0
- keras_hub/models/__init__.py +93 -0
- keras_hub/src/layers/modeling/position_embedding.py +21 -6
- keras_hub/src/layers/modeling/reversible_embedding.py +8 -1
- keras_hub/src/layers/modeling/rotary_embedding.py +16 -6
- keras_hub/src/layers/modeling/sine_position_encoding.py +21 -8
- keras_hub/src/layers/modeling/token_and_position_embedding.py +2 -1
- keras_hub/src/models/backbone.py +28 -16
- keras_hub/src/models/causal_lm.py +37 -0
- keras_hub/src/models/causal_lm_preprocessor.py +14 -0
- keras_hub/src/models/clip/clip_presets.py +8 -8
- keras_hub/src/models/d_fine/__init__.py +5 -0
- keras_hub/src/models/d_fine/d_fine_attention.py +461 -0
- keras_hub/src/models/d_fine/d_fine_backbone.py +891 -0
- keras_hub/src/models/d_fine/d_fine_decoder.py +944 -0
- keras_hub/src/models/d_fine/d_fine_encoder.py +365 -0
- keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +642 -0
- keras_hub/src/models/d_fine/d_fine_image_converter.py +8 -0
- keras_hub/src/models/d_fine/d_fine_layers.py +1828 -0
- keras_hub/src/models/d_fine/d_fine_loss.py +938 -0
- keras_hub/src/models/d_fine/d_fine_object_detector.py +875 -0
- keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +14 -0
- keras_hub/src/models/d_fine/d_fine_presets.py +155 -0
- keras_hub/src/models/d_fine/d_fine_utils.py +827 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +7 -2
- keras_hub/src/models/depth_anything/__init__.py +9 -0
- keras_hub/src/models/depth_anything/depth_anything_backbone.py +232 -0
- keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +70 -0
- keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +16 -0
- keras_hub/src/models/depth_anything/depth_anything_image_converter.py +10 -0
- keras_hub/src/models/depth_anything/depth_anything_layers.py +725 -0
- keras_hub/src/models/depth_anything/depth_anything_loss.py +89 -0
- keras_hub/src/models/depth_anything/depth_anything_presets.py +41 -0
- keras_hub/src/models/depth_anything/interpolate.py +62 -0
- keras_hub/src/models/depth_estimator.py +239 -0
- keras_hub/src/models/depth_estimator_preprocessor.py +78 -0
- keras_hub/src/models/dinov2/dinov2_backbone.py +29 -3
- keras_hub/src/models/dinov2/dinov2_layers.py +16 -4
- keras_hub/src/models/dinov3/__init__.py +5 -0
- keras_hub/src/models/dinov3/dinov3_backbone.py +263 -0
- keras_hub/src/models/dinov3/dinov3_image_converter.py +8 -0
- keras_hub/src/models/dinov3/dinov3_layers.py +1013 -0
- keras_hub/src/models/dinov3/dinov3_presets.py +4 -0
- keras_hub/src/models/gemma/gemma_backbone.py +0 -1
- keras_hub/src/models/gemma/gemma_presets.py +30 -0
- keras_hub/src/models/gemma3/gemma3_attention.py +48 -0
- keras_hub/src/models/gemma3/gemma3_backbone.py +4 -1
- keras_hub/src/models/gemma3/gemma3_decoder_block.py +12 -0
- keras_hub/src/models/gemma3/gemma3_presets.py +39 -0
- keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +4 -1
- keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +3 -2
- keras_hub/src/models/hgnetv2/hgnetv2_layers.py +27 -11
- keras_hub/src/models/image_to_image.py +5 -0
- keras_hub/src/models/inpaint.py +5 -0
- keras_hub/src/models/mobilenetv5/__init__.py +9 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +699 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +396 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +890 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +436 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +157 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +16 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +10 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +462 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +146 -0
- keras_hub/src/models/parseq/__init__.py +5 -0
- keras_hub/src/models/parseq/parseq_backbone.py +134 -0
- keras_hub/src/models/parseq/parseq_causal_lm.py +466 -0
- keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +168 -0
- keras_hub/src/models/parseq/parseq_decoder.py +418 -0
- keras_hub/src/models/parseq/parseq_image_converter.py +8 -0
- keras_hub/src/models/parseq/parseq_presets.py +15 -0
- keras_hub/src/models/parseq/parseq_tokenizer.py +221 -0
- keras_hub/src/models/qwen3_moe/__init__.py +5 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +371 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +365 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +357 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +12 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +672 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +45 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +30 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +48 -0
- keras_hub/src/models/sam/sam_prompt_encoder.py +3 -1
- keras_hub/src/models/siglip/siglip_presets.py +15 -0
- keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
- keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
- keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
- keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
- keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
- keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
- keras_hub/src/models/t5gemma/__init__.py +5 -0
- keras_hub/src/models/t5gemma/t5gemma_attention.py +370 -0
- keras_hub/src/models/t5gemma/t5gemma_backbone.py +366 -0
- keras_hub/src/models/t5gemma/t5gemma_decoder.py +355 -0
- keras_hub/src/models/t5gemma/t5gemma_encoder.py +214 -0
- keras_hub/src/models/t5gemma/t5gemma_layers.py +118 -0
- keras_hub/src/models/t5gemma/t5gemma_presets.py +374 -0
- keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +442 -0
- keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +216 -0
- keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +84 -0
- keras_hub/src/models/text_to_image.py +5 -0
- keras_hub/src/samplers/beam_sampler.py +6 -6
- keras_hub/src/samplers/sampler.py +8 -6
- keras_hub/src/tests/test_case.py +40 -3
- keras_hub/src/tokenizers/tokenizer.py +15 -0
- keras_hub/src/utils/openvino_utils.py +141 -0
- keras_hub/src/utils/preset_utils.py +58 -2
- keras_hub/src/utils/tensor_utils.py +26 -2
- keras_hub/src/utils/timm/convert_mobilenetv5.py +321 -0
- keras_hub/src/utils/timm/preset_loader.py +8 -4
- keras_hub/src/utils/transformers/convert_dinov2.py +1 -0
- keras_hub/src/utils/transformers/convert_dinov3.py +106 -0
- keras_hub/src/utils/transformers/convert_qwen3_moe.py +216 -0
- keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
- keras_hub/src/utils/transformers/convert_t5gemma.py +229 -0
- keras_hub/src/utils/transformers/convert_vit.py +4 -1
- keras_hub/src/utils/transformers/export/gemma.py +49 -4
- keras_hub/src/utils/transformers/export/hf_exporter.py +71 -25
- keras_hub/src/utils/transformers/preset_loader.py +12 -0
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +15 -0
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/RECORD +126 -47
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,699 @@
|
|
|
1
|
+
import keras
|
|
2
|
+
|
|
3
|
+
from keras_hub.src.models.mobilenetv5.mobilenetv5_layers import DropPath
|
|
4
|
+
from keras_hub.src.models.mobilenetv5.mobilenetv5_layers import LayerScale2d
|
|
5
|
+
from keras_hub.src.models.mobilenetv5.mobilenetv5_layers import RmsNorm2d
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class MultiQueryAttention2d(keras.layers.Layer):
|
|
9
|
+
"""Implements 2D Multi-Query Attention.
|
|
10
|
+
|
|
11
|
+
This layer performs attention on 2D spatial inputs. It uses a multi-query
|
|
12
|
+
attention mechanism where multiple query heads attend to a single key and
|
|
13
|
+
value.
|
|
14
|
+
|
|
15
|
+
Args:
|
|
16
|
+
filters: int. The output channel dimension.
|
|
17
|
+
num_heads: int. The number of attention heads.
|
|
18
|
+
key_dim: int. The dimension of the key. If `None`, it is calculated as
|
|
19
|
+
`dim // num_heads`.
|
|
20
|
+
value_dim: int. The dimension of the value. If `None`, it is calculated
|
|
21
|
+
as `dim // num_heads`.
|
|
22
|
+
query_strides: int or tuple. The stride for downsampling the query.
|
|
23
|
+
kv_stride: int. The stride for downsampling the key and value.
|
|
24
|
+
dw_kernel_size: int. The kernel size for the depthwise convolution used
|
|
25
|
+
for downsampling.
|
|
26
|
+
dilation: int. The dilation rate for the depthwise convolution.
|
|
27
|
+
padding: str. The padding type for convolutions.
|
|
28
|
+
attn_drop: float. The dropout rate for the attention weights.
|
|
29
|
+
proj_drop: float. The dropout rate for the output projection.
|
|
30
|
+
norm_layer: keras.layers.Layer. The normalization layer to use.
|
|
31
|
+
use_bias: bool. If `True`, bias terms are used in convolutions.
|
|
32
|
+
channel_axis: int. The axis representing the channels in the input
|
|
33
|
+
tensor.
|
|
34
|
+
data_format: str. The format of the input data, either
|
|
35
|
+
`"channels_last"` or `"channels_first"`.
|
|
36
|
+
"""
|
|
37
|
+
|
|
38
|
+
def __init__(
|
|
39
|
+
self,
|
|
40
|
+
filters,
|
|
41
|
+
num_heads=8,
|
|
42
|
+
key_dim=None,
|
|
43
|
+
value_dim=None,
|
|
44
|
+
query_strides=1,
|
|
45
|
+
kv_stride=1,
|
|
46
|
+
dw_kernel_size=3,
|
|
47
|
+
dilation=1,
|
|
48
|
+
padding="same",
|
|
49
|
+
attn_drop=0.0,
|
|
50
|
+
proj_drop=0.0,
|
|
51
|
+
norm_layer=keras.layers.BatchNormalization,
|
|
52
|
+
use_bias=False,
|
|
53
|
+
channel_axis=None,
|
|
54
|
+
data_format=None,
|
|
55
|
+
dtype=None,
|
|
56
|
+
**kwargs,
|
|
57
|
+
):
|
|
58
|
+
super().__init__(dtype=dtype, **kwargs)
|
|
59
|
+
self.filters = filters
|
|
60
|
+
self.num_heads = num_heads
|
|
61
|
+
self.key_dim_arg = key_dim
|
|
62
|
+
self.value_dim_arg = value_dim
|
|
63
|
+
self.query_strides_arg = query_strides
|
|
64
|
+
self.kv_stride = kv_stride
|
|
65
|
+
self.dw_kernel_size = dw_kernel_size
|
|
66
|
+
self.dilation = dilation
|
|
67
|
+
self.padding_arg = padding
|
|
68
|
+
self.attn_drop_rate = attn_drop
|
|
69
|
+
self.proj_drop_rate = proj_drop
|
|
70
|
+
self.norm_layer = norm_layer
|
|
71
|
+
self.use_bias = use_bias
|
|
72
|
+
self.channel_axis = channel_axis
|
|
73
|
+
self.data_format = data_format
|
|
74
|
+
self.query_strides = (
|
|
75
|
+
query_strides
|
|
76
|
+
if isinstance(query_strides, (list, tuple))
|
|
77
|
+
else (query_strides, query_strides)
|
|
78
|
+
)
|
|
79
|
+
self.has_query_strides = any([s > 1 for s in self.query_strides])
|
|
80
|
+
self.padding = padding
|
|
81
|
+
self.conv_kernel_initializer = keras.initializers.VarianceScaling(
|
|
82
|
+
scale=2.0, mode="fan_out", distribution="untruncated_normal"
|
|
83
|
+
)
|
|
84
|
+
self.bias_initializer = "zeros"
|
|
85
|
+
self.attn_drop_layer = keras.layers.Dropout(
|
|
86
|
+
attn_drop, dtype=self.dtype_policy
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
def build(self, input_shape):
|
|
90
|
+
super().build(input_shape)
|
|
91
|
+
dim = input_shape[self.channel_axis]
|
|
92
|
+
self.key_dim = self.key_dim_arg or dim // self.num_heads
|
|
93
|
+
self.value_dim = self.value_dim_arg or dim // self.num_heads
|
|
94
|
+
self.scale = self.key_dim**-0.5
|
|
95
|
+
query_layers = []
|
|
96
|
+
if self.has_query_strides:
|
|
97
|
+
pool_padding = "valid" if self.padding == "valid" else "same"
|
|
98
|
+
query_layers.append(
|
|
99
|
+
keras.layers.AveragePooling2D(
|
|
100
|
+
pool_size=self.query_strides,
|
|
101
|
+
strides=self.query_strides,
|
|
102
|
+
padding=pool_padding,
|
|
103
|
+
data_format=self.data_format,
|
|
104
|
+
name="query_down_pool",
|
|
105
|
+
dtype=self.dtype_policy,
|
|
106
|
+
)
|
|
107
|
+
)
|
|
108
|
+
if self.norm_layer is RmsNorm2d:
|
|
109
|
+
norm = self.norm_layer(
|
|
110
|
+
dim=dim,
|
|
111
|
+
channel_axis=self.channel_axis,
|
|
112
|
+
data_format=self.data_format,
|
|
113
|
+
name="query_norm",
|
|
114
|
+
dtype=self.dtype_policy,
|
|
115
|
+
)
|
|
116
|
+
else:
|
|
117
|
+
norm = self.norm_layer(
|
|
118
|
+
axis=self.channel_axis,
|
|
119
|
+
name="query_norm",
|
|
120
|
+
gamma_initializer="ones",
|
|
121
|
+
beta_initializer="zeros",
|
|
122
|
+
dtype=self.dtype_policy,
|
|
123
|
+
)
|
|
124
|
+
query_layers.append(norm)
|
|
125
|
+
query_layers.append(
|
|
126
|
+
keras.layers.Conv2D(
|
|
127
|
+
filters=self.num_heads * self.key_dim,
|
|
128
|
+
kernel_size=1,
|
|
129
|
+
use_bias=self.use_bias,
|
|
130
|
+
data_format=self.data_format,
|
|
131
|
+
name="query_proj",
|
|
132
|
+
kernel_initializer=self.conv_kernel_initializer,
|
|
133
|
+
bias_initializer=self.bias_initializer,
|
|
134
|
+
dtype=self.dtype_policy,
|
|
135
|
+
)
|
|
136
|
+
)
|
|
137
|
+
self.query_layers = query_layers
|
|
138
|
+
key_layers = []
|
|
139
|
+
if self.kv_stride > 1:
|
|
140
|
+
key_layers.append(
|
|
141
|
+
keras.layers.DepthwiseConv2D(
|
|
142
|
+
kernel_size=self.dw_kernel_size,
|
|
143
|
+
strides=self.kv_stride,
|
|
144
|
+
dilation_rate=self.dilation,
|
|
145
|
+
padding=self.padding,
|
|
146
|
+
data_format=self.data_format,
|
|
147
|
+
name="key_down_conv",
|
|
148
|
+
depthwise_initializer=self.conv_kernel_initializer,
|
|
149
|
+
bias_initializer=self.bias_initializer,
|
|
150
|
+
use_bias=False,
|
|
151
|
+
dtype=self.dtype_policy,
|
|
152
|
+
)
|
|
153
|
+
)
|
|
154
|
+
if self.norm_layer is RmsNorm2d:
|
|
155
|
+
norm = self.norm_layer(
|
|
156
|
+
dim=dim,
|
|
157
|
+
channel_axis=self.channel_axis,
|
|
158
|
+
data_format=self.data_format,
|
|
159
|
+
name="key_norm",
|
|
160
|
+
dtype=self.dtype_policy,
|
|
161
|
+
)
|
|
162
|
+
else:
|
|
163
|
+
norm = self.norm_layer(
|
|
164
|
+
axis=self.channel_axis,
|
|
165
|
+
gamma_initializer="ones",
|
|
166
|
+
beta_initializer="zeros",
|
|
167
|
+
name="key_norm",
|
|
168
|
+
dtype=self.dtype_policy,
|
|
169
|
+
)
|
|
170
|
+
key_layers.append(norm)
|
|
171
|
+
key_layers.append(
|
|
172
|
+
keras.layers.Conv2D(
|
|
173
|
+
filters=self.key_dim,
|
|
174
|
+
kernel_size=1,
|
|
175
|
+
padding="valid",
|
|
176
|
+
use_bias=self.use_bias,
|
|
177
|
+
data_format=self.data_format,
|
|
178
|
+
name="key_proj",
|
|
179
|
+
kernel_initializer=self.conv_kernel_initializer,
|
|
180
|
+
bias_initializer=self.bias_initializer,
|
|
181
|
+
dtype=self.dtype_policy,
|
|
182
|
+
)
|
|
183
|
+
)
|
|
184
|
+
self.key_layers = key_layers
|
|
185
|
+
value_layers = []
|
|
186
|
+
if self.kv_stride > 1:
|
|
187
|
+
value_layers.append(
|
|
188
|
+
keras.layers.DepthwiseConv2D(
|
|
189
|
+
kernel_size=self.dw_kernel_size,
|
|
190
|
+
strides=self.kv_stride,
|
|
191
|
+
dilation_rate=self.dilation,
|
|
192
|
+
padding=self.padding,
|
|
193
|
+
data_format=self.data_format,
|
|
194
|
+
name="value_down_conv",
|
|
195
|
+
depthwise_initializer=self.conv_kernel_initializer,
|
|
196
|
+
bias_initializer=self.bias_initializer,
|
|
197
|
+
use_bias=False,
|
|
198
|
+
dtype=self.dtype_policy,
|
|
199
|
+
)
|
|
200
|
+
)
|
|
201
|
+
if self.norm_layer is RmsNorm2d:
|
|
202
|
+
norm = self.norm_layer(
|
|
203
|
+
dim=dim,
|
|
204
|
+
channel_axis=self.channel_axis,
|
|
205
|
+
data_format=self.data_format,
|
|
206
|
+
name="value_norm",
|
|
207
|
+
dtype=self.dtype_policy,
|
|
208
|
+
)
|
|
209
|
+
else:
|
|
210
|
+
norm = self.norm_layer(
|
|
211
|
+
axis=self.channel_axis,
|
|
212
|
+
gamma_initializer="ones",
|
|
213
|
+
beta_initializer="zeros",
|
|
214
|
+
name="value_norm",
|
|
215
|
+
dtype=self.dtype_policy,
|
|
216
|
+
)
|
|
217
|
+
value_layers.append(norm)
|
|
218
|
+
value_layers.append(
|
|
219
|
+
keras.layers.Conv2D(
|
|
220
|
+
filters=self.value_dim,
|
|
221
|
+
kernel_size=1,
|
|
222
|
+
padding="valid",
|
|
223
|
+
use_bias=self.use_bias,
|
|
224
|
+
data_format=self.data_format,
|
|
225
|
+
name="value_proj",
|
|
226
|
+
kernel_initializer=self.conv_kernel_initializer,
|
|
227
|
+
bias_initializer=self.bias_initializer,
|
|
228
|
+
dtype=self.dtype_policy,
|
|
229
|
+
)
|
|
230
|
+
)
|
|
231
|
+
self.value_layers = value_layers
|
|
232
|
+
output_layers = []
|
|
233
|
+
if self.has_query_strides:
|
|
234
|
+
output_layers.append(
|
|
235
|
+
keras.layers.UpSampling2D(
|
|
236
|
+
size=self.query_strides,
|
|
237
|
+
interpolation="bilinear",
|
|
238
|
+
data_format=self.data_format,
|
|
239
|
+
name="output_upsample",
|
|
240
|
+
dtype=self.dtype_policy,
|
|
241
|
+
)
|
|
242
|
+
)
|
|
243
|
+
output_layers.append(
|
|
244
|
+
keras.layers.Conv2D(
|
|
245
|
+
filters=self.filters,
|
|
246
|
+
kernel_size=1,
|
|
247
|
+
use_bias=self.use_bias,
|
|
248
|
+
data_format=self.data_format,
|
|
249
|
+
name="output_proj",
|
|
250
|
+
kernel_initializer=self.conv_kernel_initializer,
|
|
251
|
+
bias_initializer=self.bias_initializer,
|
|
252
|
+
dtype=self.dtype_policy,
|
|
253
|
+
)
|
|
254
|
+
)
|
|
255
|
+
output_layers.append(
|
|
256
|
+
keras.layers.Dropout(self.proj_drop_rate, dtype=self.dtype_policy)
|
|
257
|
+
)
|
|
258
|
+
self.output_proj_layers = output_layers
|
|
259
|
+
|
|
260
|
+
def call(self, x, training=False):
|
|
261
|
+
B = keras.ops.shape(x)[0]
|
|
262
|
+
q = x
|
|
263
|
+
for layer in self.query_layers:
|
|
264
|
+
try:
|
|
265
|
+
q = layer(q, training=training)
|
|
266
|
+
except TypeError:
|
|
267
|
+
q = layer(q)
|
|
268
|
+
k = x
|
|
269
|
+
for layer in self.key_layers:
|
|
270
|
+
try:
|
|
271
|
+
k = layer(k, training=training)
|
|
272
|
+
except TypeError:
|
|
273
|
+
k = layer(k)
|
|
274
|
+
v = x
|
|
275
|
+
for layer in self.value_layers:
|
|
276
|
+
try:
|
|
277
|
+
v = layer(v, training=training)
|
|
278
|
+
except TypeError:
|
|
279
|
+
v = layer(v)
|
|
280
|
+
if self.data_format == "channels_last":
|
|
281
|
+
q = keras.ops.transpose(q, (0, 3, 1, 2))
|
|
282
|
+
k = keras.ops.transpose(k, (0, 3, 1, 2))
|
|
283
|
+
v = keras.ops.transpose(v, (0, 3, 1, 2))
|
|
284
|
+
s_q = keras.ops.shape(q)
|
|
285
|
+
h_q, w_q = s_q[2], s_q[3]
|
|
286
|
+
q = keras.ops.reshape(q, (B, self.num_heads, self.key_dim, -1))
|
|
287
|
+
q = keras.ops.transpose(q, (0, 1, 3, 2))
|
|
288
|
+
k = keras.ops.reshape(k, (B, self.key_dim, -1))
|
|
289
|
+
k = keras.ops.transpose(k, (0, 2, 1))
|
|
290
|
+
k = keras.ops.expand_dims(k, axis=1)
|
|
291
|
+
v = keras.ops.reshape(v, (B, self.value_dim, -1))
|
|
292
|
+
v = keras.ops.transpose(v, (0, 2, 1))
|
|
293
|
+
v = keras.ops.expand_dims(v, axis=1)
|
|
294
|
+
q = q * self.scale
|
|
295
|
+
attn = keras.ops.matmul(q, keras.ops.transpose(k, (0, 1, 3, 2)))
|
|
296
|
+
attn = keras.ops.softmax(attn, axis=-1)
|
|
297
|
+
attn = self.attn_drop_layer(attn, training=training)
|
|
298
|
+
o = keras.ops.matmul(attn, v)
|
|
299
|
+
o = keras.ops.transpose(o, (0, 2, 1, 3))
|
|
300
|
+
feat_dim = self.num_heads * self.value_dim
|
|
301
|
+
o = keras.ops.reshape(o, (B, h_q, w_q, feat_dim))
|
|
302
|
+
if self.data_format == "channels_first":
|
|
303
|
+
o = keras.ops.transpose(o, (0, 3, 1, 2))
|
|
304
|
+
x_out = o
|
|
305
|
+
for layer in self.output_proj_layers:
|
|
306
|
+
try:
|
|
307
|
+
x_out = layer(x_out, training=training)
|
|
308
|
+
except TypeError:
|
|
309
|
+
x_out = layer(x_out)
|
|
310
|
+
return x_out
|
|
311
|
+
|
|
312
|
+
def get_config(self):
|
|
313
|
+
config = super().get_config()
|
|
314
|
+
config.update(
|
|
315
|
+
{
|
|
316
|
+
"filters": self.filters,
|
|
317
|
+
"num_heads": self.num_heads,
|
|
318
|
+
"key_dim": self.key_dim_arg,
|
|
319
|
+
"value_dim": self.value_dim_arg,
|
|
320
|
+
"query_strides": self.query_strides_arg,
|
|
321
|
+
"kv_stride": self.kv_stride,
|
|
322
|
+
"dw_kernel_size": self.dw_kernel_size,
|
|
323
|
+
"dilation": self.dilation,
|
|
324
|
+
"padding": self.padding_arg,
|
|
325
|
+
"attn_drop": self.attn_drop_rate,
|
|
326
|
+
"proj_drop": self.proj_drop_rate,
|
|
327
|
+
"norm_layer": keras.saving.serialize_keras_object(
|
|
328
|
+
self.norm_layer
|
|
329
|
+
),
|
|
330
|
+
"use_bias": self.use_bias,
|
|
331
|
+
"channel_axis": self.channel_axis,
|
|
332
|
+
"data_format": self.data_format,
|
|
333
|
+
}
|
|
334
|
+
)
|
|
335
|
+
return config
|
|
336
|
+
|
|
337
|
+
@classmethod
|
|
338
|
+
def from_config(cls, config):
|
|
339
|
+
config["norm_layer"] = keras.saving.deserialize_keras_object(
|
|
340
|
+
config["norm_layer"]
|
|
341
|
+
)
|
|
342
|
+
return cls(**config)
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
class Attention2d(keras.layers.Layer):
|
|
346
|
+
"""Implements 2D Multi-Head Attention.
|
|
347
|
+
|
|
348
|
+
This layer performs multi-head self-attention on 2D spatial inputs.
|
|
349
|
+
|
|
350
|
+
Args:
|
|
351
|
+
filters: int. The output channel dimension.
|
|
352
|
+
num_heads: int. The number of attention heads.
|
|
353
|
+
bias: bool. If `True`, bias terms are used in the qkv and projection
|
|
354
|
+
convolutions.
|
|
355
|
+
attn_drop: float. The dropout rate for the attention weights.
|
|
356
|
+
proj_drop: float. The dropout rate for the output projection.
|
|
357
|
+
channel_axis: int. The axis representing the channels in the input
|
|
358
|
+
tensor.
|
|
359
|
+
data_format: str. The format of the input data, either
|
|
360
|
+
`"channels_last"` or `"channels_first"`.
|
|
361
|
+
"""
|
|
362
|
+
|
|
363
|
+
def __init__(
|
|
364
|
+
self,
|
|
365
|
+
filters,
|
|
366
|
+
num_heads=32,
|
|
367
|
+
bias=True,
|
|
368
|
+
attn_drop=0.0,
|
|
369
|
+
proj_drop=0.0,
|
|
370
|
+
channel_axis=None,
|
|
371
|
+
data_format=None,
|
|
372
|
+
dtype=None,
|
|
373
|
+
**kwargs,
|
|
374
|
+
):
|
|
375
|
+
super().__init__(dtype=dtype, **kwargs)
|
|
376
|
+
self.filters = filters
|
|
377
|
+
self.num_heads = num_heads
|
|
378
|
+
self.bias = bias
|
|
379
|
+
self.attn_drop_rate = attn_drop
|
|
380
|
+
self.proj_drop_rate = proj_drop
|
|
381
|
+
self.channel_axis = channel_axis
|
|
382
|
+
self.data_format = data_format
|
|
383
|
+
self.conv_kernel_initializer = keras.initializers.VarianceScaling(
|
|
384
|
+
scale=2.0, mode="fan_out", distribution="untruncated_normal"
|
|
385
|
+
)
|
|
386
|
+
self.bias_initializer = "zeros"
|
|
387
|
+
self.attn_drop_layer = keras.layers.Dropout(
|
|
388
|
+
attn_drop, dtype=self.dtype_policy
|
|
389
|
+
)
|
|
390
|
+
|
|
391
|
+
def build(self, input_shape):
|
|
392
|
+
super().build(input_shape)
|
|
393
|
+
dim = input_shape[self.channel_axis]
|
|
394
|
+
self.head_dim = dim // self.num_heads
|
|
395
|
+
self.qkv = keras.layers.Conv2D(
|
|
396
|
+
dim * 3,
|
|
397
|
+
kernel_size=1,
|
|
398
|
+
use_bias=self.bias,
|
|
399
|
+
data_format=self.data_format,
|
|
400
|
+
name="qkv",
|
|
401
|
+
dtype=self.dtype_policy,
|
|
402
|
+
kernel_initializer=self.conv_kernel_initializer,
|
|
403
|
+
bias_initializer=self.bias_initializer,
|
|
404
|
+
)
|
|
405
|
+
self.proj = keras.layers.Conv2D(
|
|
406
|
+
self.filters,
|
|
407
|
+
kernel_size=1,
|
|
408
|
+
use_bias=self.bias,
|
|
409
|
+
data_format=self.data_format,
|
|
410
|
+
name="proj",
|
|
411
|
+
dtype=self.dtype_policy,
|
|
412
|
+
kernel_initializer=self.conv_kernel_initializer,
|
|
413
|
+
bias_initializer=self.bias_initializer,
|
|
414
|
+
)
|
|
415
|
+
self.proj_drop_layer = keras.layers.Dropout(
|
|
416
|
+
self.proj_drop_rate, dtype=self.dtype_policy
|
|
417
|
+
)
|
|
418
|
+
|
|
419
|
+
def call(self, x, attn_mask=None, training=False):
|
|
420
|
+
if self.data_format == "channels_first":
|
|
421
|
+
B, C, H, W = keras.ops.shape(x)
|
|
422
|
+
else:
|
|
423
|
+
B, H, W, C = keras.ops.shape(x)
|
|
424
|
+
qkv = self.qkv(x)
|
|
425
|
+
if self.data_format == "channels_last":
|
|
426
|
+
qkv = keras.ops.transpose(qkv, (0, 3, 1, 2))
|
|
427
|
+
q, k, v = keras.ops.unstack(
|
|
428
|
+
keras.ops.reshape(
|
|
429
|
+
qkv,
|
|
430
|
+
(B, 3, self.num_heads, self.head_dim, H * W),
|
|
431
|
+
),
|
|
432
|
+
axis=1,
|
|
433
|
+
)
|
|
434
|
+
q = keras.ops.transpose(q, (0, 1, 3, 2))
|
|
435
|
+
k = keras.ops.transpose(k, (0, 1, 2, 3))
|
|
436
|
+
v = keras.ops.transpose(v, (0, 1, 3, 2))
|
|
437
|
+
attn = keras.ops.matmul(q, k) * (self.head_dim**-0.5)
|
|
438
|
+
if attn_mask is not None:
|
|
439
|
+
attn = attn + attn_mask
|
|
440
|
+
attn = keras.ops.softmax(attn, axis=-1)
|
|
441
|
+
attn = self.attn_drop_layer(attn, training=training)
|
|
442
|
+
x = keras.ops.matmul(attn, v)
|
|
443
|
+
x = keras.ops.transpose(x, (0, 1, 3, 2))
|
|
444
|
+
if self.data_format == "channels_first":
|
|
445
|
+
x = keras.ops.reshape(x, (B, -1, H, W))
|
|
446
|
+
else:
|
|
447
|
+
x = keras.ops.reshape(x, (B, H, W, -1))
|
|
448
|
+
x = self.proj(x)
|
|
449
|
+
x = self.proj_drop_layer(x, training=training)
|
|
450
|
+
return x
|
|
451
|
+
|
|
452
|
+
def get_config(self):
|
|
453
|
+
config = super().get_config()
|
|
454
|
+
config.update(
|
|
455
|
+
{
|
|
456
|
+
"filters": self.filters,
|
|
457
|
+
"num_heads": self.num_heads,
|
|
458
|
+
"bias": self.bias,
|
|
459
|
+
"attn_drop": self.attn_drop_rate,
|
|
460
|
+
"proj_drop": self.proj_drop_rate,
|
|
461
|
+
"channel_axis": self.channel_axis,
|
|
462
|
+
"data_format": self.data_format,
|
|
463
|
+
}
|
|
464
|
+
)
|
|
465
|
+
return config
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+
class MobileAttention(keras.layers.Layer):
|
|
469
|
+
"""MobileNetV5 attention block.
|
|
470
|
+
|
|
471
|
+
This block combines attention with depthwise convolutions for efficiency.
|
|
472
|
+
It can use either standard Multi-Head Attention or Multi-Query Attention.
|
|
473
|
+
|
|
474
|
+
Args:
|
|
475
|
+
filters: int. The number of output channels.
|
|
476
|
+
stride: int. The stride for the block.
|
|
477
|
+
dw_kernel_size: int. The kernel size for the depthwise convolution in
|
|
478
|
+
Multi-Query Attention.
|
|
479
|
+
dilation: int. The dilation rate for convolutions.
|
|
480
|
+
pad_type: str. The padding type for convolutions.
|
|
481
|
+
num_heads: int. The number of attention heads.
|
|
482
|
+
key_dim: int. The dimension of the key.
|
|
483
|
+
value_dim: int. The dimension of the value.
|
|
484
|
+
use_multi_query: bool. If `True`, use `MultiQueryAttention2d`,
|
|
485
|
+
otherwise use `Attention2d`.
|
|
486
|
+
query_strides: tuple. The strides for the query downsampling.
|
|
487
|
+
kv_stride: int. The stride for key/value downsampling.
|
|
488
|
+
cpe_dw_kernel_size: int. The kernel size for the conditional position
|
|
489
|
+
encoding depthwise convolution.
|
|
490
|
+
noskip: bool. If `True`, the skip connection is disabled.
|
|
491
|
+
norm_layer: str. The normalization layer to use (`"batch_norm"` or
|
|
492
|
+
`"rms_norm"`).
|
|
493
|
+
drop_path_rate: float. The stochastic depth rate.
|
|
494
|
+
attn_drop: float. The dropout rate for the attention weights.
|
|
495
|
+
proj_drop: float. The dropout rate for the output projection.
|
|
496
|
+
layer_scale_init_value: float. The initial value for layer scale. If
|
|
497
|
+
`None`, layer scale is not used.
|
|
498
|
+
use_bias: bool. If `True`, bias terms are used in convolutions.
|
|
499
|
+
use_cpe: bool. If `True`, a conditional position encoding is added.
|
|
500
|
+
channel_axis: int. The axis representing the channels in the input
|
|
501
|
+
tensor.
|
|
502
|
+
data_format: str. The format of the input data, either
|
|
503
|
+
`"channels_last"` or `"channels_first"`.
|
|
504
|
+
"""
|
|
505
|
+
|
|
506
|
+
def __init__(
|
|
507
|
+
self,
|
|
508
|
+
filters,
|
|
509
|
+
stride=1,
|
|
510
|
+
dw_kernel_size=3,
|
|
511
|
+
dilation=1,
|
|
512
|
+
pad_type="same",
|
|
513
|
+
num_heads=8,
|
|
514
|
+
key_dim=64,
|
|
515
|
+
value_dim=64,
|
|
516
|
+
use_multi_query=False,
|
|
517
|
+
query_strides=(1, 1),
|
|
518
|
+
kv_stride=1,
|
|
519
|
+
cpe_dw_kernel_size=3,
|
|
520
|
+
noskip=False,
|
|
521
|
+
norm_layer="batch_norm",
|
|
522
|
+
drop_path_rate=0.0,
|
|
523
|
+
attn_drop=0.0,
|
|
524
|
+
proj_drop=0.0,
|
|
525
|
+
layer_scale_init_value=1e-5,
|
|
526
|
+
use_bias=False,
|
|
527
|
+
use_cpe=False,
|
|
528
|
+
channel_axis=None,
|
|
529
|
+
data_format=None,
|
|
530
|
+
dtype=None,
|
|
531
|
+
**kwargs,
|
|
532
|
+
):
|
|
533
|
+
super().__init__(dtype=dtype, **kwargs)
|
|
534
|
+
self.filters = filters
|
|
535
|
+
self.stride = stride
|
|
536
|
+
self.dw_kernel_size = dw_kernel_size
|
|
537
|
+
self.dilation = dilation
|
|
538
|
+
self.pad_type = pad_type
|
|
539
|
+
self.num_heads = num_heads
|
|
540
|
+
self.key_dim = key_dim
|
|
541
|
+
self.value_dim = value_dim
|
|
542
|
+
self.use_multi_query = use_multi_query
|
|
543
|
+
self.query_strides = query_strides
|
|
544
|
+
self.kv_stride = kv_stride
|
|
545
|
+
self.cpe_dw_kernel_size = cpe_dw_kernel_size
|
|
546
|
+
self.noskip = noskip
|
|
547
|
+
self.norm_layer_name = norm_layer
|
|
548
|
+
self.drop_path_rate = drop_path_rate
|
|
549
|
+
self.attn_drop_rate = attn_drop
|
|
550
|
+
self.proj_drop_rate = proj_drop
|
|
551
|
+
self.layer_scale_init_value = layer_scale_init_value
|
|
552
|
+
self.use_bias = use_bias
|
|
553
|
+
self.use_cpe = use_cpe
|
|
554
|
+
self.channel_axis = channel_axis
|
|
555
|
+
self.data_format = data_format
|
|
556
|
+
self.conv_kernel_initializer = keras.initializers.VarianceScaling(
|
|
557
|
+
scale=2.0, mode="fan_out", distribution="untruncated_normal"
|
|
558
|
+
)
|
|
559
|
+
self.bias_initializer = "zeros"
|
|
560
|
+
|
|
561
|
+
def build(self, input_shape):
|
|
562
|
+
super().build(input_shape)
|
|
563
|
+
in_chs = input_shape[self.channel_axis]
|
|
564
|
+
self.has_skip = (
|
|
565
|
+
self.stride == 1 and in_chs == self.filters
|
|
566
|
+
) and not self.noskip
|
|
567
|
+
if self.use_cpe:
|
|
568
|
+
self.conv_cpe_dw = keras.layers.DepthwiseConv2D(
|
|
569
|
+
kernel_size=self.cpe_dw_kernel_size,
|
|
570
|
+
strides=1,
|
|
571
|
+
padding="same",
|
|
572
|
+
dilation_rate=self.dilation,
|
|
573
|
+
use_bias=True,
|
|
574
|
+
data_format=self.data_format,
|
|
575
|
+
name="conv_cpe_dw",
|
|
576
|
+
depthwise_initializer=self.conv_kernel_initializer,
|
|
577
|
+
bias_initializer=self.bias_initializer,
|
|
578
|
+
dtype=self.dtype_policy,
|
|
579
|
+
)
|
|
580
|
+
else:
|
|
581
|
+
self.conv_cpe_dw = None
|
|
582
|
+
if self.norm_layer_name == "batch_norm":
|
|
583
|
+
self.norm = keras.layers.BatchNormalization(
|
|
584
|
+
axis=self.channel_axis,
|
|
585
|
+
name="norm",
|
|
586
|
+
gamma_initializer="ones",
|
|
587
|
+
beta_initializer="zeros",
|
|
588
|
+
dtype=self.dtype_policy,
|
|
589
|
+
)
|
|
590
|
+
elif self.norm_layer_name == "rms_norm":
|
|
591
|
+
self.norm = RmsNorm2d(
|
|
592
|
+
in_chs,
|
|
593
|
+
data_format=self.data_format,
|
|
594
|
+
gamma_initializer="ones",
|
|
595
|
+
channel_axis=self.channel_axis,
|
|
596
|
+
name="norm",
|
|
597
|
+
dtype=self.dtype_policy,
|
|
598
|
+
)
|
|
599
|
+
else:
|
|
600
|
+
raise ValueError(f"Unsupported norm_layer: {self.norm_layer_name}")
|
|
601
|
+
num_heads = self.num_heads
|
|
602
|
+
if num_heads is None:
|
|
603
|
+
assert in_chs % self.key_dim == 0
|
|
604
|
+
num_heads = in_chs // self.key_dim
|
|
605
|
+
attn_norm_layer = (
|
|
606
|
+
RmsNorm2d
|
|
607
|
+
if self.norm_layer_name == "rms_norm"
|
|
608
|
+
else keras.layers.BatchNormalization
|
|
609
|
+
)
|
|
610
|
+
if self.use_multi_query:
|
|
611
|
+
self.attn = MultiQueryAttention2d(
|
|
612
|
+
filters=self.filters,
|
|
613
|
+
num_heads=num_heads,
|
|
614
|
+
key_dim=self.key_dim,
|
|
615
|
+
value_dim=self.value_dim,
|
|
616
|
+
query_strides=self.query_strides,
|
|
617
|
+
kv_stride=self.kv_stride,
|
|
618
|
+
dw_kernel_size=self.dw_kernel_size,
|
|
619
|
+
dilation=self.dilation,
|
|
620
|
+
padding=self.pad_type,
|
|
621
|
+
attn_drop=self.attn_drop_rate,
|
|
622
|
+
proj_drop=self.proj_drop_rate,
|
|
623
|
+
norm_layer=attn_norm_layer,
|
|
624
|
+
use_bias=self.use_bias,
|
|
625
|
+
channel_axis=self.channel_axis,
|
|
626
|
+
data_format=self.data_format,
|
|
627
|
+
name="attn",
|
|
628
|
+
dtype=self.dtype_policy,
|
|
629
|
+
)
|
|
630
|
+
else:
|
|
631
|
+
self.attn = Attention2d(
|
|
632
|
+
filters=self.filters,
|
|
633
|
+
num_heads=num_heads,
|
|
634
|
+
attn_drop=self.attn_drop_rate,
|
|
635
|
+
proj_drop=self.proj_drop_rate,
|
|
636
|
+
bias=self.use_bias,
|
|
637
|
+
channel_axis=self.channel_axis,
|
|
638
|
+
data_format=self.data_format,
|
|
639
|
+
name="attn",
|
|
640
|
+
dtype=self.dtype_policy,
|
|
641
|
+
)
|
|
642
|
+
if self.layer_scale_init_value is not None:
|
|
643
|
+
self.layer_scale = LayerScale2d(
|
|
644
|
+
self.filters,
|
|
645
|
+
self.layer_scale_init_value,
|
|
646
|
+
name="layer_scale",
|
|
647
|
+
channel_axis=self.channel_axis,
|
|
648
|
+
data_format=self.data_format,
|
|
649
|
+
dtype=self.dtype_policy,
|
|
650
|
+
)
|
|
651
|
+
else:
|
|
652
|
+
self.layer_scale = lambda x: x
|
|
653
|
+
self.drop_path = (
|
|
654
|
+
DropPath(self.drop_path_rate, dtype=self.dtype_policy)
|
|
655
|
+
if self.drop_path_rate > 0.0
|
|
656
|
+
else lambda x, training: x
|
|
657
|
+
)
|
|
658
|
+
|
|
659
|
+
def call(self, x, training=False):
|
|
660
|
+
if self.conv_cpe_dw is not None:
|
|
661
|
+
x = x + self.conv_cpe_dw(x)
|
|
662
|
+
shortcut = x
|
|
663
|
+
x_normed = self.norm(x, training=training)
|
|
664
|
+
x_attn = self.attn(x_normed, training=training)
|
|
665
|
+
x_scaled = self.layer_scale(x_attn)
|
|
666
|
+
if self.has_skip:
|
|
667
|
+
return self.drop_path(x_scaled, training=training) + shortcut
|
|
668
|
+
else:
|
|
669
|
+
return x_scaled
|
|
670
|
+
|
|
671
|
+
def get_config(self):
|
|
672
|
+
config = super().get_config()
|
|
673
|
+
config.update(
|
|
674
|
+
{
|
|
675
|
+
"filters": self.filters,
|
|
676
|
+
"stride": self.stride,
|
|
677
|
+
"dw_kernel_size": self.dw_kernel_size,
|
|
678
|
+
"dilation": self.dilation,
|
|
679
|
+
"pad_type": self.pad_type,
|
|
680
|
+
"num_heads": self.num_heads,
|
|
681
|
+
"key_dim": self.key_dim,
|
|
682
|
+
"value_dim": self.value_dim,
|
|
683
|
+
"use_multi_query": self.use_multi_query,
|
|
684
|
+
"query_strides": self.query_strides,
|
|
685
|
+
"kv_stride": self.kv_stride,
|
|
686
|
+
"cpe_dw_kernel_size": self.cpe_dw_kernel_size,
|
|
687
|
+
"noskip": self.noskip,
|
|
688
|
+
"norm_layer": self.norm_layer_name,
|
|
689
|
+
"drop_path_rate": self.drop_path_rate,
|
|
690
|
+
"attn_drop": self.attn_drop_rate,
|
|
691
|
+
"proj_drop": self.proj_drop_rate,
|
|
692
|
+
"layer_scale_init_value": self.layer_scale_init_value,
|
|
693
|
+
"use_bias": self.use_bias,
|
|
694
|
+
"use_cpe": self.use_cpe,
|
|
695
|
+
"channel_axis": self.channel_axis,
|
|
696
|
+
"data_format": self.data_format,
|
|
697
|
+
}
|
|
698
|
+
)
|
|
699
|
+
return config
|