keras-hub-nightly 0.22.0.dev202508170419__py3-none-any.whl → 0.24.0.dev202511090424__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of keras-hub-nightly might be problematic. Click here for more details.

Files changed (126) hide show
  1. keras_hub/layers/__init__.py +15 -0
  2. keras_hub/models/__init__.py +93 -0
  3. keras_hub/src/layers/modeling/position_embedding.py +21 -6
  4. keras_hub/src/layers/modeling/reversible_embedding.py +8 -1
  5. keras_hub/src/layers/modeling/rotary_embedding.py +16 -6
  6. keras_hub/src/layers/modeling/sine_position_encoding.py +21 -8
  7. keras_hub/src/layers/modeling/token_and_position_embedding.py +2 -1
  8. keras_hub/src/models/backbone.py +28 -16
  9. keras_hub/src/models/causal_lm.py +37 -0
  10. keras_hub/src/models/causal_lm_preprocessor.py +14 -0
  11. keras_hub/src/models/clip/clip_presets.py +8 -8
  12. keras_hub/src/models/d_fine/__init__.py +5 -0
  13. keras_hub/src/models/d_fine/d_fine_attention.py +461 -0
  14. keras_hub/src/models/d_fine/d_fine_backbone.py +891 -0
  15. keras_hub/src/models/d_fine/d_fine_decoder.py +944 -0
  16. keras_hub/src/models/d_fine/d_fine_encoder.py +365 -0
  17. keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +642 -0
  18. keras_hub/src/models/d_fine/d_fine_image_converter.py +8 -0
  19. keras_hub/src/models/d_fine/d_fine_layers.py +1828 -0
  20. keras_hub/src/models/d_fine/d_fine_loss.py +938 -0
  21. keras_hub/src/models/d_fine/d_fine_object_detector.py +875 -0
  22. keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +14 -0
  23. keras_hub/src/models/d_fine/d_fine_presets.py +155 -0
  24. keras_hub/src/models/d_fine/d_fine_utils.py +827 -0
  25. keras_hub/src/models/deberta_v3/disentangled_self_attention.py +7 -2
  26. keras_hub/src/models/depth_anything/__init__.py +9 -0
  27. keras_hub/src/models/depth_anything/depth_anything_backbone.py +232 -0
  28. keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +70 -0
  29. keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +16 -0
  30. keras_hub/src/models/depth_anything/depth_anything_image_converter.py +10 -0
  31. keras_hub/src/models/depth_anything/depth_anything_layers.py +725 -0
  32. keras_hub/src/models/depth_anything/depth_anything_loss.py +89 -0
  33. keras_hub/src/models/depth_anything/depth_anything_presets.py +41 -0
  34. keras_hub/src/models/depth_anything/interpolate.py +62 -0
  35. keras_hub/src/models/depth_estimator.py +239 -0
  36. keras_hub/src/models/depth_estimator_preprocessor.py +78 -0
  37. keras_hub/src/models/dinov2/dinov2_backbone.py +29 -3
  38. keras_hub/src/models/dinov2/dinov2_layers.py +16 -4
  39. keras_hub/src/models/dinov3/__init__.py +5 -0
  40. keras_hub/src/models/dinov3/dinov3_backbone.py +263 -0
  41. keras_hub/src/models/dinov3/dinov3_image_converter.py +8 -0
  42. keras_hub/src/models/dinov3/dinov3_layers.py +1013 -0
  43. keras_hub/src/models/dinov3/dinov3_presets.py +4 -0
  44. keras_hub/src/models/gemma/gemma_backbone.py +0 -1
  45. keras_hub/src/models/gemma/gemma_presets.py +30 -0
  46. keras_hub/src/models/gemma3/gemma3_attention.py +48 -0
  47. keras_hub/src/models/gemma3/gemma3_backbone.py +4 -1
  48. keras_hub/src/models/gemma3/gemma3_decoder_block.py +12 -0
  49. keras_hub/src/models/gemma3/gemma3_presets.py +39 -0
  50. keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +4 -1
  51. keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +3 -2
  52. keras_hub/src/models/hgnetv2/hgnetv2_layers.py +27 -11
  53. keras_hub/src/models/image_to_image.py +5 -0
  54. keras_hub/src/models/inpaint.py +5 -0
  55. keras_hub/src/models/mobilenetv5/__init__.py +9 -0
  56. keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +699 -0
  57. keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +396 -0
  58. keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +890 -0
  59. keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +436 -0
  60. keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +157 -0
  61. keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +16 -0
  62. keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +10 -0
  63. keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +462 -0
  64. keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
  65. keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +146 -0
  66. keras_hub/src/models/parseq/__init__.py +5 -0
  67. keras_hub/src/models/parseq/parseq_backbone.py +134 -0
  68. keras_hub/src/models/parseq/parseq_causal_lm.py +466 -0
  69. keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +168 -0
  70. keras_hub/src/models/parseq/parseq_decoder.py +418 -0
  71. keras_hub/src/models/parseq/parseq_image_converter.py +8 -0
  72. keras_hub/src/models/parseq/parseq_presets.py +15 -0
  73. keras_hub/src/models/parseq/parseq_tokenizer.py +221 -0
  74. keras_hub/src/models/qwen3_moe/__init__.py +5 -0
  75. keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +371 -0
  76. keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +365 -0
  77. keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +357 -0
  78. keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +12 -0
  79. keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +672 -0
  80. keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +45 -0
  81. keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +30 -0
  82. keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +48 -0
  83. keras_hub/src/models/sam/sam_prompt_encoder.py +3 -1
  84. keras_hub/src/models/siglip/siglip_presets.py +15 -0
  85. keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
  86. keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
  87. keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
  88. keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
  89. keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
  90. keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
  91. keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
  92. keras_hub/src/models/t5gemma/__init__.py +5 -0
  93. keras_hub/src/models/t5gemma/t5gemma_attention.py +370 -0
  94. keras_hub/src/models/t5gemma/t5gemma_backbone.py +366 -0
  95. keras_hub/src/models/t5gemma/t5gemma_decoder.py +355 -0
  96. keras_hub/src/models/t5gemma/t5gemma_encoder.py +214 -0
  97. keras_hub/src/models/t5gemma/t5gemma_layers.py +118 -0
  98. keras_hub/src/models/t5gemma/t5gemma_presets.py +374 -0
  99. keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +442 -0
  100. keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +216 -0
  101. keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +84 -0
  102. keras_hub/src/models/text_to_image.py +5 -0
  103. keras_hub/src/samplers/beam_sampler.py +6 -6
  104. keras_hub/src/samplers/sampler.py +8 -6
  105. keras_hub/src/tests/test_case.py +40 -3
  106. keras_hub/src/tokenizers/tokenizer.py +15 -0
  107. keras_hub/src/utils/openvino_utils.py +141 -0
  108. keras_hub/src/utils/preset_utils.py +58 -2
  109. keras_hub/src/utils/tensor_utils.py +26 -2
  110. keras_hub/src/utils/timm/convert_mobilenetv5.py +321 -0
  111. keras_hub/src/utils/timm/preset_loader.py +8 -4
  112. keras_hub/src/utils/transformers/convert_dinov2.py +1 -0
  113. keras_hub/src/utils/transformers/convert_dinov3.py +106 -0
  114. keras_hub/src/utils/transformers/convert_qwen3_moe.py +216 -0
  115. keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
  116. keras_hub/src/utils/transformers/convert_t5gemma.py +229 -0
  117. keras_hub/src/utils/transformers/convert_vit.py +4 -1
  118. keras_hub/src/utils/transformers/export/gemma.py +49 -4
  119. keras_hub/src/utils/transformers/export/hf_exporter.py +71 -25
  120. keras_hub/src/utils/transformers/preset_loader.py +12 -0
  121. keras_hub/src/version.py +1 -1
  122. keras_hub/tokenizers/__init__.py +15 -0
  123. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/METADATA +1 -1
  124. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/RECORD +126 -47
  125. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/WHEEL +0 -0
  126. {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,374 @@
1
+ # Metadata for loading pretrained model weights.
2
+ backbone_presets = {
3
+ "t5gemma_s_s_ul2": {
4
+ "metadata": {
5
+ "description": (
6
+ "T5Gemma S/S model with a small encoder and small decoder, "
7
+ "adapted as a UL2 model."
8
+ ),
9
+ "params": 312517632,
10
+ "path": "t5gemma",
11
+ },
12
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_ul2/1",
13
+ },
14
+ "t5gemma_s_s_prefixlm": {
15
+ "metadata": {
16
+ "description": (
17
+ "T5Gemma S/S model with a small encoder and small decoder, "
18
+ "adapted as a prefix language model."
19
+ ),
20
+ "params": 312517632,
21
+ "path": "t5gemma",
22
+ },
23
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_prefixlm/1",
24
+ },
25
+ "t5gemma_s_s_ul2_it": {
26
+ "metadata": {
27
+ "description": (
28
+ "T5Gemma S/S model with a small encoder and small decoder, "
29
+ "adapted as a UL2 model and fine-tuned for instruction "
30
+ "following."
31
+ ),
32
+ "params": 312517632,
33
+ "path": "t5gemma",
34
+ },
35
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_ul2_it/1",
36
+ },
37
+ "t5gemma_s_s_prefixlm_it": {
38
+ "metadata": {
39
+ "description": (
40
+ "T5Gemma S/S model with a small encoder and small decoder, "
41
+ "adapted as a prefix language model and fine-tuned for "
42
+ "instruction following."
43
+ ),
44
+ "params": 312517632,
45
+ "path": "t5gemma",
46
+ },
47
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_s_s_prefixlm_it/1",
48
+ },
49
+ "t5gemma_b_b_ul2": {
50
+ "metadata": {
51
+ "description": (
52
+ "T5Gemma B/B model with a base encoder and base decoder, "
53
+ "adapted as a UL2 model."
54
+ ),
55
+ "params": 591490560,
56
+ "path": "t5gemma",
57
+ },
58
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_ul2/1",
59
+ },
60
+ "t5gemma_b_b_prefixlm": {
61
+ "metadata": {
62
+ "description": (
63
+ "T5Gemma B/B model with a base encoder and base decoder, "
64
+ "adapted as a prefix language model."
65
+ ),
66
+ "params": 591490560,
67
+ "path": "t5gemma",
68
+ },
69
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_prefixlm/1",
70
+ },
71
+ "t5gemma_b_b_ul2_it": {
72
+ "metadata": {
73
+ "description": (
74
+ "T5Gemma B/B model with a base encoder and base decoder, "
75
+ "adapted as a UL2 model and fine-tuned for instruction "
76
+ "following."
77
+ ),
78
+ "params": 591490560,
79
+ "path": "t5gemma",
80
+ },
81
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_ul2_it/1",
82
+ },
83
+ "t5gemma_b_b_prefixlm_it": {
84
+ "metadata": {
85
+ "description": (
86
+ "T5Gemma B/B model with a base encoder and base decoder, "
87
+ "adapted as a prefix language model and fine-tuned for "
88
+ "instruction following."
89
+ ),
90
+ "params": 591490560,
91
+ "path": "t5gemma",
92
+ },
93
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_b_b_prefixlm_it/1",
94
+ },
95
+ "t5gemma_l_l_ul2": {
96
+ "metadata": {
97
+ "description": (
98
+ "T5Gemma L/L model with a large encoder and large decoder, "
99
+ "adapted as a UL2 model."
100
+ ),
101
+ "params": 1241761792,
102
+ "path": "t5gemma",
103
+ },
104
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_ul2/1",
105
+ },
106
+ "t5gemma_l_l_prefixlm": {
107
+ "metadata": {
108
+ "description": (
109
+ "T5Gemma L/L model with a large encoder and large decoder, "
110
+ "adapted as a prefix language model."
111
+ ),
112
+ "params": 1241761792,
113
+ "path": "t5gemma",
114
+ },
115
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_prefixlm/1",
116
+ },
117
+ "t5gemma_l_l_ul2_it": {
118
+ "metadata": {
119
+ "description": (
120
+ "T5Gemma L/L model with a large encoder and large decoder, "
121
+ "adapted as a UL2 model and fine-tuned for instruction "
122
+ "following."
123
+ ),
124
+ "params": 1241761792,
125
+ "path": "t5gemma",
126
+ },
127
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_ul2_it/1",
128
+ },
129
+ "t5gemma_l_l_prefixlm_it": {
130
+ "metadata": {
131
+ "description": (
132
+ "T5Gemma L/L model with a large encoder and large decoder, "
133
+ "adapted as a prefix language model and fine-tuned for "
134
+ "instruction following."
135
+ ),
136
+ "params": 1241761792,
137
+ "path": "t5gemma",
138
+ },
139
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_l_l_prefixlm_it/1",
140
+ },
141
+ "t5gemma_ml_ml_ul2": {
142
+ "metadata": {
143
+ "description": (
144
+ "T5Gemma ML/ML model with a medium-large encoder and "
145
+ "medium-large decoder, adapted as a UL2 model."
146
+ ),
147
+ "params": 2200345344,
148
+ "path": "t5gemma",
149
+ },
150
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_ul2/1",
151
+ },
152
+ "t5gemma_ml_ml_prefixlm": {
153
+ "metadata": {
154
+ "description": (
155
+ "T5Gemma ML/ML model with a medium-large encoder and "
156
+ "medium-large decoder, adapted as a prefix language model."
157
+ ),
158
+ "params": 2200345344,
159
+ "path": "t5gemma",
160
+ },
161
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_prefixlm/1",
162
+ },
163
+ "t5gemma_ml_ml_ul2_it": {
164
+ "metadata": {
165
+ "description": (
166
+ "T5Gemma ML/ML model with a medium-large encoder and "
167
+ "medium-large decoder, adapted as a UL2 model and fine-tuned "
168
+ "for instruction following."
169
+ ),
170
+ "params": 2200345344,
171
+ "path": "t5gemma",
172
+ },
173
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_ul2_it/1",
174
+ },
175
+ "t5gemma_ml_ml_prefixlm_it": {
176
+ "metadata": {
177
+ "description": (
178
+ "T5Gemma ML/ML model with a medium-large encoder and "
179
+ "medium-large decoder, adapted as a prefix language model and "
180
+ "fine-tuned for instruction following."
181
+ ),
182
+ "params": 2200345344,
183
+ "path": "t5gemma",
184
+ },
185
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_ml_ml_prefixlm_it/1",
186
+ },
187
+ "t5gemma_xl_xl_ul2": {
188
+ "metadata": {
189
+ "description": (
190
+ "T5Gemma XL/XL model with an extra-large encoder and "
191
+ "extra-large decoder, adapted as a UL2 model."
192
+ ),
193
+ "params": 3766980608,
194
+ "path": "t5gemma",
195
+ },
196
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_ul2/1",
197
+ },
198
+ "t5gemma_xl_xl_prefixlm": {
199
+ "metadata": {
200
+ "description": (
201
+ "T5Gemma XL/XL model with an extra-large encoder and "
202
+ "extra-large decoder, adapted as a prefix language model."
203
+ ),
204
+ "params": 3766980608,
205
+ "path": "t5gemma",
206
+ },
207
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_prefixlm/1",
208
+ },
209
+ "t5gemma_xl_xl_ul2_it": {
210
+ "metadata": {
211
+ "description": (
212
+ "T5Gemma XL/XL model with an extra-large encoder and "
213
+ "extra-large decoder, adapted as a UL2 model and fine-tuned "
214
+ "for instruction following."
215
+ ),
216
+ "params": 3766980608,
217
+ "path": "t5gemma",
218
+ },
219
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_ul2_it/1",
220
+ },
221
+ "t5gemma_xl_xl_prefixlm_it": {
222
+ "metadata": {
223
+ "description": (
224
+ "T5Gemma XL/XL model with an extra-large encoder and "
225
+ "extra-large decoder, adapted as a prefix language model and "
226
+ "fine-tuned for instruction following."
227
+ ),
228
+ "params": 3766980608,
229
+ "path": "t5gemma",
230
+ },
231
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_xl_xl_prefixlm_it/1",
232
+ },
233
+ "t5gemma_2b_2b_ul2": {
234
+ "metadata": {
235
+ "description": (
236
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
237
+ "2-billion-parameter decoder, adapted as a UL2 model."
238
+ ),
239
+ "params": 5596853760,
240
+ "path": "t5gemma",
241
+ },
242
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_ul2/1",
243
+ },
244
+ "t5gemma_2b_2b_prefixlm": {
245
+ "metadata": {
246
+ "description": (
247
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
248
+ "2-billion-parameter decoder, adapted as a prefix language "
249
+ "model."
250
+ ),
251
+ "params": 5596853760,
252
+ "path": "t5gemma",
253
+ },
254
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_prefixlm/1",
255
+ },
256
+ "t5gemma_2b_2b_ul2_it": {
257
+ "metadata": {
258
+ "description": (
259
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
260
+ "2-billion-parameter decoder, adapted as a UL2 model and "
261
+ "fine-tuned for instruction following."
262
+ ),
263
+ "params": 5596853760,
264
+ "path": "t5gemma",
265
+ },
266
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_ul2_it/1",
267
+ },
268
+ "t5gemma_2b_2b_prefixlm_it": {
269
+ "metadata": {
270
+ "description": (
271
+ "T5Gemma 2B/2B model with a 2-billion-parameter encoder and "
272
+ "2-billion-parameter decoder, adapted as a prefix language "
273
+ "model and fine-tuned for instruction following."
274
+ ),
275
+ "params": 5596853760,
276
+ "path": "t5gemma",
277
+ },
278
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_2b_2b_prefixlm_it/1",
279
+ },
280
+ "t5gemma_9b_2b_ul2": {
281
+ "metadata": {
282
+ "description": (
283
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
284
+ "2-billion-parameter decoder, adapted as a UL2 model."
285
+ ),
286
+ "params": 12292375296,
287
+ "path": "t5gemma",
288
+ },
289
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_ul2/1",
290
+ },
291
+ "t5gemma_9b_2b_prefixlm": {
292
+ "metadata": {
293
+ "description": (
294
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
295
+ "2-billion-parameter decoder, adapted as a prefix language "
296
+ "model."
297
+ ),
298
+ "params": 12292375296,
299
+ "path": "t5gemma",
300
+ },
301
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_prefixlm/1",
302
+ },
303
+ "t5gemma_9b_2b_ul2_it": {
304
+ "metadata": {
305
+ "description": (
306
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
307
+ "2-billion-parameter decoder, adapted as a UL2 model and "
308
+ "fine-tuned for instruction following."
309
+ ),
310
+ "params": 12292375296,
311
+ "path": "t5gemma",
312
+ },
313
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_ul2_it/1",
314
+ },
315
+ "t5gemma_9b_2b_prefixlm_it": {
316
+ "metadata": {
317
+ "description": (
318
+ "T5Gemma 9B/2B model with a 9-billion-parameter encoder and "
319
+ "2-billion-parameter decoder, adapted as a prefix language "
320
+ "model and fine-tuned for instruction following."
321
+ ),
322
+ "params": 12292375296,
323
+ "path": "t5gemma",
324
+ },
325
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_2b_prefixlm_it/1",
326
+ },
327
+ "t5gemma_9b_9b_ul2": {
328
+ "metadata": {
329
+ "description": (
330
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
331
+ "9-billion-parameter decoder, adapted as a UL2 model."
332
+ ),
333
+ "params": 20333401088,
334
+ "path": "t5gemma",
335
+ },
336
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_ul2/1",
337
+ },
338
+ "t5gemma_9b_9b_prefixlm": {
339
+ "metadata": {
340
+ "description": (
341
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
342
+ "9-billion-parameter decoder, adapted as a prefix language "
343
+ "model."
344
+ ),
345
+ "params": 20333401088,
346
+ "path": "t5gemma",
347
+ },
348
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_prefixlm/1",
349
+ },
350
+ "t5gemma_9b_9b_ul2_it": {
351
+ "metadata": {
352
+ "description": (
353
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
354
+ "9-billion-parameter decoder, adapted as a UL2 model and "
355
+ "fine-tuned for instruction following."
356
+ ),
357
+ "params": 20333401088,
358
+ "path": "t5gemma",
359
+ },
360
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_ul2_it/1",
361
+ },
362
+ "t5gemma_9b_9b_prefixlm_it": {
363
+ "metadata": {
364
+ "description": (
365
+ "T5Gemma 9B/9B model with a 9-billion-parameter encoder and "
366
+ "9-billion-parameter decoder, adapted as a prefix language "
367
+ "model and fine-tuned for instruction following."
368
+ ),
369
+ "params": 20333401088,
370
+ "path": "t5gemma",
371
+ },
372
+ "kaggle_handle": "kaggle://keras/t5-gemma/keras/t5gemma_9b_9b_prefixlm_it/1",
373
+ },
374
+ }