keras-hub-nightly 0.22.0.dev202508170419__py3-none-any.whl → 0.24.0.dev202511090424__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of keras-hub-nightly might be problematic. Click here for more details.
- keras_hub/layers/__init__.py +15 -0
- keras_hub/models/__init__.py +93 -0
- keras_hub/src/layers/modeling/position_embedding.py +21 -6
- keras_hub/src/layers/modeling/reversible_embedding.py +8 -1
- keras_hub/src/layers/modeling/rotary_embedding.py +16 -6
- keras_hub/src/layers/modeling/sine_position_encoding.py +21 -8
- keras_hub/src/layers/modeling/token_and_position_embedding.py +2 -1
- keras_hub/src/models/backbone.py +28 -16
- keras_hub/src/models/causal_lm.py +37 -0
- keras_hub/src/models/causal_lm_preprocessor.py +14 -0
- keras_hub/src/models/clip/clip_presets.py +8 -8
- keras_hub/src/models/d_fine/__init__.py +5 -0
- keras_hub/src/models/d_fine/d_fine_attention.py +461 -0
- keras_hub/src/models/d_fine/d_fine_backbone.py +891 -0
- keras_hub/src/models/d_fine/d_fine_decoder.py +944 -0
- keras_hub/src/models/d_fine/d_fine_encoder.py +365 -0
- keras_hub/src/models/d_fine/d_fine_hybrid_encoder.py +642 -0
- keras_hub/src/models/d_fine/d_fine_image_converter.py +8 -0
- keras_hub/src/models/d_fine/d_fine_layers.py +1828 -0
- keras_hub/src/models/d_fine/d_fine_loss.py +938 -0
- keras_hub/src/models/d_fine/d_fine_object_detector.py +875 -0
- keras_hub/src/models/d_fine/d_fine_object_detector_preprocessor.py +14 -0
- keras_hub/src/models/d_fine/d_fine_presets.py +155 -0
- keras_hub/src/models/d_fine/d_fine_utils.py +827 -0
- keras_hub/src/models/deberta_v3/disentangled_self_attention.py +7 -2
- keras_hub/src/models/depth_anything/__init__.py +9 -0
- keras_hub/src/models/depth_anything/depth_anything_backbone.py +232 -0
- keras_hub/src/models/depth_anything/depth_anything_depth_estimator.py +70 -0
- keras_hub/src/models/depth_anything/depth_anything_depth_estimator_preprocessor.py +16 -0
- keras_hub/src/models/depth_anything/depth_anything_image_converter.py +10 -0
- keras_hub/src/models/depth_anything/depth_anything_layers.py +725 -0
- keras_hub/src/models/depth_anything/depth_anything_loss.py +89 -0
- keras_hub/src/models/depth_anything/depth_anything_presets.py +41 -0
- keras_hub/src/models/depth_anything/interpolate.py +62 -0
- keras_hub/src/models/depth_estimator.py +239 -0
- keras_hub/src/models/depth_estimator_preprocessor.py +78 -0
- keras_hub/src/models/dinov2/dinov2_backbone.py +29 -3
- keras_hub/src/models/dinov2/dinov2_layers.py +16 -4
- keras_hub/src/models/dinov3/__init__.py +5 -0
- keras_hub/src/models/dinov3/dinov3_backbone.py +263 -0
- keras_hub/src/models/dinov3/dinov3_image_converter.py +8 -0
- keras_hub/src/models/dinov3/dinov3_layers.py +1013 -0
- keras_hub/src/models/dinov3/dinov3_presets.py +4 -0
- keras_hub/src/models/gemma/gemma_backbone.py +0 -1
- keras_hub/src/models/gemma/gemma_presets.py +30 -0
- keras_hub/src/models/gemma3/gemma3_attention.py +48 -0
- keras_hub/src/models/gemma3/gemma3_backbone.py +4 -1
- keras_hub/src/models/gemma3/gemma3_decoder_block.py +12 -0
- keras_hub/src/models/gemma3/gemma3_presets.py +39 -0
- keras_hub/src/models/hgnetv2/hgnetv2_backbone.py +4 -1
- keras_hub/src/models/hgnetv2/hgnetv2_encoder.py +3 -2
- keras_hub/src/models/hgnetv2/hgnetv2_layers.py +27 -11
- keras_hub/src/models/image_to_image.py +5 -0
- keras_hub/src/models/inpaint.py +5 -0
- keras_hub/src/models/mobilenetv5/__init__.py +9 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_attention.py +699 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_backbone.py +396 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_blocks.py +890 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_builder.py +436 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier.py +157 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_image_classifier_preprocessor.py +16 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_image_converter.py +10 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_layers.py +462 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_presets.py +15 -0
- keras_hub/src/models/mobilenetv5/mobilenetv5_utils.py +146 -0
- keras_hub/src/models/parseq/__init__.py +5 -0
- keras_hub/src/models/parseq/parseq_backbone.py +134 -0
- keras_hub/src/models/parseq/parseq_causal_lm.py +466 -0
- keras_hub/src/models/parseq/parseq_causal_lm_preprocessor.py +168 -0
- keras_hub/src/models/parseq/parseq_decoder.py +418 -0
- keras_hub/src/models/parseq/parseq_image_converter.py +8 -0
- keras_hub/src/models/parseq/parseq_presets.py +15 -0
- keras_hub/src/models/parseq/parseq_tokenizer.py +221 -0
- keras_hub/src/models/qwen3_moe/__init__.py +5 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_attention.py +371 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_backbone.py +365 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm.py +357 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_causal_lm_preprocessor.py +12 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_decoder.py +672 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_layernorm.py +45 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_presets.py +30 -0
- keras_hub/src/models/qwen3_moe/qwen3_moe_tokenizer.py +48 -0
- keras_hub/src/models/sam/sam_prompt_encoder.py +3 -1
- keras_hub/src/models/siglip/siglip_presets.py +15 -0
- keras_hub/src/models/smollm3/smollm3_backbone.py +211 -0
- keras_hub/src/models/smollm3/smollm3_causal_lm.py +310 -0
- keras_hub/src/models/smollm3/smollm3_causal_lm_preprocessor.py +84 -0
- keras_hub/src/models/smollm3/smollm3_layers.py +757 -0
- keras_hub/src/models/smollm3/smollm3_tokenizer.py +60 -0
- keras_hub/src/models/smollm3/smollm3_utils.py +56 -0
- keras_hub/src/models/stable_diffusion_3/stable_diffusion_3_presets.py +3 -3
- keras_hub/src/models/t5gemma/__init__.py +5 -0
- keras_hub/src/models/t5gemma/t5gemma_attention.py +370 -0
- keras_hub/src/models/t5gemma/t5gemma_backbone.py +366 -0
- keras_hub/src/models/t5gemma/t5gemma_decoder.py +355 -0
- keras_hub/src/models/t5gemma/t5gemma_encoder.py +214 -0
- keras_hub/src/models/t5gemma/t5gemma_layers.py +118 -0
- keras_hub/src/models/t5gemma/t5gemma_presets.py +374 -0
- keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm.py +442 -0
- keras_hub/src/models/t5gemma/t5gemma_seq_2_seq_lm_preprocessor.py +216 -0
- keras_hub/src/models/t5gemma/t5gemma_tokenizer.py +84 -0
- keras_hub/src/models/text_to_image.py +5 -0
- keras_hub/src/samplers/beam_sampler.py +6 -6
- keras_hub/src/samplers/sampler.py +8 -6
- keras_hub/src/tests/test_case.py +40 -3
- keras_hub/src/tokenizers/tokenizer.py +15 -0
- keras_hub/src/utils/openvino_utils.py +141 -0
- keras_hub/src/utils/preset_utils.py +58 -2
- keras_hub/src/utils/tensor_utils.py +26 -2
- keras_hub/src/utils/timm/convert_mobilenetv5.py +321 -0
- keras_hub/src/utils/timm/preset_loader.py +8 -4
- keras_hub/src/utils/transformers/convert_dinov2.py +1 -0
- keras_hub/src/utils/transformers/convert_dinov3.py +106 -0
- keras_hub/src/utils/transformers/convert_qwen3_moe.py +216 -0
- keras_hub/src/utils/transformers/convert_smollm3.py +139 -0
- keras_hub/src/utils/transformers/convert_t5gemma.py +229 -0
- keras_hub/src/utils/transformers/convert_vit.py +4 -1
- keras_hub/src/utils/transformers/export/gemma.py +49 -4
- keras_hub/src/utils/transformers/export/hf_exporter.py +71 -25
- keras_hub/src/utils/transformers/preset_loader.py +12 -0
- keras_hub/src/version.py +1 -1
- keras_hub/tokenizers/__init__.py +15 -0
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/METADATA +1 -1
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/RECORD +126 -47
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/WHEEL +0 -0
- {keras_hub_nightly-0.22.0.dev202508170419.dist-info → keras_hub_nightly-0.24.0.dev202511090424.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
from keras_hub.src.api_export import keras_hub_export
|
|
2
|
+
from keras_hub.src.models.causal_lm_preprocessor import CausalLMPreprocessor
|
|
3
|
+
from keras_hub.src.models.smollm3.smollm3_backbone import SmolLM3Backbone
|
|
4
|
+
from keras_hub.src.models.smollm3.smollm3_tokenizer import SmolLM3Tokenizer
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@keras_hub_export(
|
|
8
|
+
[
|
|
9
|
+
"keras_hub.models.SmolLMCausalLMPreprocessor",
|
|
10
|
+
"keras_hub.models.SmolLM3CausalLMPreprocessor",
|
|
11
|
+
]
|
|
12
|
+
)
|
|
13
|
+
class SmolLM3CausalLMPreprocessor(CausalLMPreprocessor):
|
|
14
|
+
"""SmolLM3 Causal LM preprocessor.
|
|
15
|
+
|
|
16
|
+
This preprocessing layer is meant for use with
|
|
17
|
+
`keras_hub.models.SmolLM3CausalLM`. By default, it will take in batches of
|
|
18
|
+
strings, and return outputs in a `(x, y, sample_weight)` format, where the
|
|
19
|
+
`y` label is the next token id in the `x` sequence.
|
|
20
|
+
|
|
21
|
+
For use with generation, the layer also exposes two methods
|
|
22
|
+
`generate_preprocess()` and `generate_postprocess()`. When this preprocessor
|
|
23
|
+
is attached to a `keras_hub.models.SmolLM3CausalLM` instance, these methods
|
|
24
|
+
will be called implicitly in `generate()`. They can also be called
|
|
25
|
+
standalone (e.g. to precompute preprocessing inputs for generation in a
|
|
26
|
+
separate process).
|
|
27
|
+
|
|
28
|
+
Args:
|
|
29
|
+
tokenizer: A `keras_hub.models.SmolLM3Tokenizer` instance.
|
|
30
|
+
sequence_length: The length of the packed inputs.
|
|
31
|
+
add_start_token: If `True`, the preprocessor will prepend the tokenizer
|
|
32
|
+
start token to each input sequence. Default is `True`.
|
|
33
|
+
add_end_token: If `True`, the preprocessor will append the tokenizer
|
|
34
|
+
end token to each input sequence. Default is `False`.
|
|
35
|
+
|
|
36
|
+
Call arguments:
|
|
37
|
+
x: A string, `tf.Tensor` or list of python strings.
|
|
38
|
+
y: Label data. Should always be `None` as the layer generates labels.
|
|
39
|
+
sample_weight: Label weights. Should always be `None` as the layer
|
|
40
|
+
generates label weights.
|
|
41
|
+
sequence_length: Pass to override the configured `sequence_length` of
|
|
42
|
+
the layer.
|
|
43
|
+
|
|
44
|
+
Examples:
|
|
45
|
+
```python
|
|
46
|
+
# Load the preprocessor from a preset.
|
|
47
|
+
preprocessor = keras_hub.models.SmolLM3CausalLMPreprocessor.from_preset(
|
|
48
|
+
"..."
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
# Tokenize and pack a single sentence.
|
|
52
|
+
sentence = tf.constant("...")
|
|
53
|
+
preprocessor(sentence)
|
|
54
|
+
# Same output.
|
|
55
|
+
preprocessor("...")
|
|
56
|
+
|
|
57
|
+
# Tokenize a batch of sentences.
|
|
58
|
+
sentences = tf.constant(["...", "..."])
|
|
59
|
+
preprocessor(sentences)
|
|
60
|
+
# Same output.
|
|
61
|
+
preprocessor(["...", "..."])
|
|
62
|
+
|
|
63
|
+
# Map a dataset to preprocess a single sentence.
|
|
64
|
+
features = tf.constant(
|
|
65
|
+
[
|
|
66
|
+
"...",
|
|
67
|
+
"...",
|
|
68
|
+
]
|
|
69
|
+
)
|
|
70
|
+
labels = tf.constant([1, 0])
|
|
71
|
+
ds = tf.data.Dataset.from_tensor_slices((features, labels))
|
|
72
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
73
|
+
|
|
74
|
+
# Map a dataset to preprocess unlabled sentences.
|
|
75
|
+
ds = tf.data.Dataset.from_tensor_slices(features)
|
|
76
|
+
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
|
|
77
|
+
```
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
backbone_cls = SmolLM3Backbone
|
|
81
|
+
tokenizer_cls = SmolLM3Tokenizer
|
|
82
|
+
|
|
83
|
+
def __init__(self, *args, **kwargs):
|
|
84
|
+
super().__init__(*args, **kwargs)
|