gpbench 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gp_agent_tool/compute_dataset_feature.py +67 -0
- gp_agent_tool/config.py +65 -0
- gp_agent_tool/experience/create_masked_dataset_summary.py +97 -0
- gp_agent_tool/experience/dataset_summary_info.py +13 -0
- gp_agent_tool/experience/experience_info.py +12 -0
- gp_agent_tool/experience/get_matched_experience.py +111 -0
- gp_agent_tool/llm_client.py +119 -0
- gp_agent_tool/logging_utils.py +24 -0
- gp_agent_tool/main.py +347 -0
- gp_agent_tool/read_agent/__init__.py +46 -0
- gp_agent_tool/read_agent/nodes.py +674 -0
- gp_agent_tool/read_agent/prompts.py +547 -0
- gp_agent_tool/read_agent/python_repl_tool.py +165 -0
- gp_agent_tool/read_agent/state.py +101 -0
- gp_agent_tool/read_agent/workflow.py +54 -0
- gpbench/__init__.py +25 -0
- gpbench/_selftest.py +104 -0
- gpbench/method_class/BayesA/BayesA_class.py +141 -0
- gpbench/method_class/BayesA/__init__.py +5 -0
- gpbench/method_class/BayesA/_bayesfromR.py +96 -0
- gpbench/method_class/BayesA/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesA/bayesAfromR.py +16 -0
- gpbench/method_class/BayesB/BayesB_class.py +140 -0
- gpbench/method_class/BayesB/__init__.py +5 -0
- gpbench/method_class/BayesB/_bayesfromR.py +96 -0
- gpbench/method_class/BayesB/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesB/bayesBfromR.py +16 -0
- gpbench/method_class/BayesC/BayesC_class.py +141 -0
- gpbench/method_class/BayesC/__init__.py +4 -0
- gpbench/method_class/BayesC/_bayesfromR.py +96 -0
- gpbench/method_class/BayesC/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesC/bayesCfromR.py +16 -0
- gpbench/method_class/CropARNet/CropARNet_class.py +186 -0
- gpbench/method_class/CropARNet/CropARNet_he_class.py +154 -0
- gpbench/method_class/CropARNet/__init__.py +5 -0
- gpbench/method_class/CropARNet/base_CropARNet_class.py +178 -0
- gpbench/method_class/Cropformer/Cropformer_class.py +308 -0
- gpbench/method_class/Cropformer/__init__.py +5 -0
- gpbench/method_class/Cropformer/cropformer_he_class.py +221 -0
- gpbench/method_class/DL_GWAS/DL_GWAS_class.py +250 -0
- gpbench/method_class/DL_GWAS/DL_GWAS_he_class.py +169 -0
- gpbench/method_class/DL_GWAS/__init__.py +5 -0
- gpbench/method_class/DNNGP/DNNGP_class.py +163 -0
- gpbench/method_class/DNNGP/DNNGP_he_class.py +138 -0
- gpbench/method_class/DNNGP/__init__.py +5 -0
- gpbench/method_class/DNNGP/base_dnngp_class.py +116 -0
- gpbench/method_class/DeepCCR/DeepCCR_class.py +172 -0
- gpbench/method_class/DeepCCR/DeepCCR_he_class.py +161 -0
- gpbench/method_class/DeepCCR/__init__.py +5 -0
- gpbench/method_class/DeepCCR/base_DeepCCR_class.py +209 -0
- gpbench/method_class/DeepGS/DeepGS_class.py +184 -0
- gpbench/method_class/DeepGS/DeepGS_he_class.py +150 -0
- gpbench/method_class/DeepGS/__init__.py +5 -0
- gpbench/method_class/DeepGS/base_deepgs_class.py +153 -0
- gpbench/method_class/EIR/EIR_class.py +276 -0
- gpbench/method_class/EIR/EIR_he_class.py +184 -0
- gpbench/method_class/EIR/__init__.py +5 -0
- gpbench/method_class/EIR/utils/__init__.py +0 -0
- gpbench/method_class/EIR/utils/array_output_modules.py +97 -0
- gpbench/method_class/EIR/utils/common.py +65 -0
- gpbench/method_class/EIR/utils/lcl_layers.py +235 -0
- gpbench/method_class/EIR/utils/logging.py +59 -0
- gpbench/method_class/EIR/utils/mlp_layers.py +92 -0
- gpbench/method_class/EIR/utils/models_locally_connected.py +642 -0
- gpbench/method_class/EIR/utils/transformer_models.py +546 -0
- gpbench/method_class/ElasticNet/ElasticNet_class.py +133 -0
- gpbench/method_class/ElasticNet/ElasticNet_he_class.py +91 -0
- gpbench/method_class/ElasticNet/__init__.py +5 -0
- gpbench/method_class/G2PDeep/G2PDeep_he_class.py +217 -0
- gpbench/method_class/G2PDeep/G2Pdeep_class.py +205 -0
- gpbench/method_class/G2PDeep/__init__.py +5 -0
- gpbench/method_class/G2PDeep/base_G2PDeep_class.py +209 -0
- gpbench/method_class/GBLUP/GBLUP_class.py +183 -0
- gpbench/method_class/GBLUP/__init__.py +5 -0
- gpbench/method_class/GEFormer/GEFormer_class.py +169 -0
- gpbench/method_class/GEFormer/GEFormer_he_class.py +137 -0
- gpbench/method_class/GEFormer/__init__.py +5 -0
- gpbench/method_class/GEFormer/gMLP_class.py +357 -0
- gpbench/method_class/LightGBM/LightGBM_class.py +224 -0
- gpbench/method_class/LightGBM/LightGBM_he_class.py +121 -0
- gpbench/method_class/LightGBM/__init__.py +5 -0
- gpbench/method_class/RF/RF_GPU_class.py +165 -0
- gpbench/method_class/RF/RF_GPU_he_class.py +124 -0
- gpbench/method_class/RF/__init__.py +5 -0
- gpbench/method_class/SVC/SVC_GPU.py +181 -0
- gpbench/method_class/SVC/SVC_GPU_he.py +106 -0
- gpbench/method_class/SVC/__init__.py +5 -0
- gpbench/method_class/SoyDNGP/AlexNet_206_class.py +179 -0
- gpbench/method_class/SoyDNGP/SoyDNGP_class.py +189 -0
- gpbench/method_class/SoyDNGP/SoyDNGP_he_class.py +112 -0
- gpbench/method_class/SoyDNGP/__init__.py +5 -0
- gpbench/method_class/XGBoost/XGboost_GPU_class.py +198 -0
- gpbench/method_class/XGBoost/XGboost_GPU_he_class.py +178 -0
- gpbench/method_class/XGBoost/__init__.py +5 -0
- gpbench/method_class/__init__.py +52 -0
- gpbench/method_class/rrBLUP/__init__.py +5 -0
- gpbench/method_class/rrBLUP/rrBLUP_class.py +140 -0
- gpbench/method_reg/BayesA/BayesA.py +116 -0
- gpbench/method_reg/BayesA/__init__.py +5 -0
- gpbench/method_reg/BayesA/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesA/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesA/bayesAfromR.py +16 -0
- gpbench/method_reg/BayesB/BayesB.py +117 -0
- gpbench/method_reg/BayesB/__init__.py +5 -0
- gpbench/method_reg/BayesB/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesB/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesB/bayesBfromR.py +16 -0
- gpbench/method_reg/BayesC/BayesC.py +115 -0
- gpbench/method_reg/BayesC/__init__.py +5 -0
- gpbench/method_reg/BayesC/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesC/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesC/bayesCfromR.py +16 -0
- gpbench/method_reg/CropARNet/CropARNet.py +159 -0
- gpbench/method_reg/CropARNet/CropARNet_Hyperparameters.py +109 -0
- gpbench/method_reg/CropARNet/__init__.py +5 -0
- gpbench/method_reg/CropARNet/base_CropARNet.py +137 -0
- gpbench/method_reg/Cropformer/Cropformer.py +313 -0
- gpbench/method_reg/Cropformer/Cropformer_Hyperparameters.py +250 -0
- gpbench/method_reg/Cropformer/__init__.py +5 -0
- gpbench/method_reg/DL_GWAS/DL_GWAS.py +186 -0
- gpbench/method_reg/DL_GWAS/DL_GWAS_Hyperparameters.py +125 -0
- gpbench/method_reg/DL_GWAS/__init__.py +5 -0
- gpbench/method_reg/DNNGP/DNNGP.py +157 -0
- gpbench/method_reg/DNNGP/DNNGP_Hyperparameters.py +118 -0
- gpbench/method_reg/DNNGP/__init__.py +5 -0
- gpbench/method_reg/DNNGP/base_dnngp.py +101 -0
- gpbench/method_reg/DeepCCR/DeepCCR.py +149 -0
- gpbench/method_reg/DeepCCR/DeepCCR_Hyperparameters.py +110 -0
- gpbench/method_reg/DeepCCR/__init__.py +5 -0
- gpbench/method_reg/DeepCCR/base_DeepCCR.py +171 -0
- gpbench/method_reg/DeepGS/DeepGS.py +165 -0
- gpbench/method_reg/DeepGS/DeepGS_Hyperparameters.py +114 -0
- gpbench/method_reg/DeepGS/__init__.py +5 -0
- gpbench/method_reg/DeepGS/base_deepgs.py +98 -0
- gpbench/method_reg/EIR/EIR.py +258 -0
- gpbench/method_reg/EIR/EIR_Hyperparameters.py +178 -0
- gpbench/method_reg/EIR/__init__.py +5 -0
- gpbench/method_reg/EIR/utils/__init__.py +0 -0
- gpbench/method_reg/EIR/utils/array_output_modules.py +97 -0
- gpbench/method_reg/EIR/utils/common.py +65 -0
- gpbench/method_reg/EIR/utils/lcl_layers.py +235 -0
- gpbench/method_reg/EIR/utils/logging.py +59 -0
- gpbench/method_reg/EIR/utils/mlp_layers.py +92 -0
- gpbench/method_reg/EIR/utils/models_locally_connected.py +642 -0
- gpbench/method_reg/EIR/utils/transformer_models.py +546 -0
- gpbench/method_reg/ElasticNet/ElasticNet.py +123 -0
- gpbench/method_reg/ElasticNet/ElasticNet_he.py +83 -0
- gpbench/method_reg/ElasticNet/__init__.py +5 -0
- gpbench/method_reg/G2PDeep/G2PDeep_Hyperparameters.py +107 -0
- gpbench/method_reg/G2PDeep/G2Pdeep.py +166 -0
- gpbench/method_reg/G2PDeep/__init__.py +5 -0
- gpbench/method_reg/G2PDeep/base_G2PDeep.py +209 -0
- gpbench/method_reg/GBLUP/GBLUP_R.py +182 -0
- gpbench/method_reg/GBLUP/__init__.py +5 -0
- gpbench/method_reg/GEFormer/GEFormer.py +164 -0
- gpbench/method_reg/GEFormer/GEFormer_Hyperparameters.py +106 -0
- gpbench/method_reg/GEFormer/__init__.py +5 -0
- gpbench/method_reg/GEFormer/gMLP.py +341 -0
- gpbench/method_reg/LightGBM/LightGBM.py +237 -0
- gpbench/method_reg/LightGBM/LightGBM_Hyperparameters.py +77 -0
- gpbench/method_reg/LightGBM/__init__.py +5 -0
- gpbench/method_reg/MVP/MVP.py +182 -0
- gpbench/method_reg/MVP/MVP_Hyperparameters.py +126 -0
- gpbench/method_reg/MVP/__init__.py +5 -0
- gpbench/method_reg/MVP/base_MVP.py +113 -0
- gpbench/method_reg/RF/RF_GPU.py +174 -0
- gpbench/method_reg/RF/RF_Hyperparameters.py +163 -0
- gpbench/method_reg/RF/__init__.py +5 -0
- gpbench/method_reg/SVC/SVC_GPU.py +194 -0
- gpbench/method_reg/SVC/SVC_Hyperparameters.py +107 -0
- gpbench/method_reg/SVC/__init__.py +5 -0
- gpbench/method_reg/SoyDNGP/AlexNet_206.py +185 -0
- gpbench/method_reg/SoyDNGP/SoyDNGP.py +179 -0
- gpbench/method_reg/SoyDNGP/SoyDNGP_Hyperparameters.py +105 -0
- gpbench/method_reg/SoyDNGP/__init__.py +5 -0
- gpbench/method_reg/XGBoost/XGboost_GPU.py +188 -0
- gpbench/method_reg/XGBoost/XGboost_Hyperparameters.py +167 -0
- gpbench/method_reg/XGBoost/__init__.py +5 -0
- gpbench/method_reg/__init__.py +55 -0
- gpbench/method_reg/rrBLUP/__init__.py +5 -0
- gpbench/method_reg/rrBLUP/rrBLUP.py +123 -0
- gpbench-1.0.0.dist-info/METADATA +379 -0
- gpbench-1.0.0.dist-info/RECORD +188 -0
- gpbench-1.0.0.dist-info/WHEEL +5 -0
- gpbench-1.0.0.dist-info/entry_points.txt +2 -0
- gpbench-1.0.0.dist-info/top_level.txt +3 -0
- tests/test_import.py +80 -0
- tests/test_method.py +232 -0
|
@@ -0,0 +1,188 @@
|
|
|
1
|
+
gp_agent_tool/compute_dataset_feature.py,sha256=VRsbCi8lB8u5e-JjITAL8djic1Kj663LdDqCXoJAN2I,2476
|
|
2
|
+
gp_agent_tool/config.py,sha256=2lfI4KmJxjCGjbwKKPIu2xBqib_e0sfGpX089mlhe1I,1536
|
|
3
|
+
gp_agent_tool/llm_client.py,sha256=0rv4pFJCmOuztWSgDPIENa_Xv1wn4jgsBPCAVFwN-eY,3288
|
|
4
|
+
gp_agent_tool/logging_utils.py,sha256=rnFXOwfge4T78bRUSCWNIY1Ihp80HKmZVEyG9MccRkg,686
|
|
5
|
+
gp_agent_tool/main.py,sha256=sD-se4JRiq1CMWqMuUckaEEZJLG0Vl2XWPfluo18PvE,12944
|
|
6
|
+
gp_agent_tool/experience/create_masked_dataset_summary.py,sha256=WMWliQRZQaOm2-hwSHGuv6DXB7pNjZJ8818oV5AMt0Y,3647
|
|
7
|
+
gp_agent_tool/experience/dataset_summary_info.py,sha256=Yo7JP8lfEUo0msEpA35GnZgSlIqpvzJXNbaLa5_G5L8,1169
|
|
8
|
+
gp_agent_tool/experience/experience_info.py,sha256=XgMZCvFdnVe5qFfd-8J6g8XOxMIb4covRFRDIYjBx5M,753
|
|
9
|
+
gp_agent_tool/experience/get_matched_experience.py,sha256=oswDpSeSI7wYpNeU6ZhX5Ze10mcduuv5kWiK2f4R77c,4139
|
|
10
|
+
gp_agent_tool/read_agent/__init__.py,sha256=28YxB0VsoI3p56u4g_vNmkSBea0baPdXaa6wXoiU8wo,1312
|
|
11
|
+
gp_agent_tool/read_agent/nodes.py,sha256=6QH2hO-5RD1S7xCLPDdaxk25kIh3TW3yxF63OMOaOpk,23607
|
|
12
|
+
gp_agent_tool/read_agent/prompts.py,sha256=KVmbxcHu2C_SfOreUZ1zBscps-dKje7rTdktrsOCg6s,23431
|
|
13
|
+
gp_agent_tool/read_agent/python_repl_tool.py,sha256=h2h7ms4Q1y7UjY7rGAH8H6XxiuNRLHsdXnJqsmWJdc8,5268
|
|
14
|
+
gp_agent_tool/read_agent/state.py,sha256=ip6XcRdefy8wgnTfnNvgB23tLPIxX-kNm27-0lk9nwo,2383
|
|
15
|
+
gp_agent_tool/read_agent/workflow.py,sha256=aRc_ZEUixKkUvJQE18WbAzuzott1ymkcrj7Bbr5sl8o,1282
|
|
16
|
+
gpbench/__init__.py,sha256=IiFpl4DieubR7lEJOPslkv92NNTWGN1ZqFCUFpXObkE,545
|
|
17
|
+
gpbench/_selftest.py,sha256=QHv0suKoJLI9PEvPX0w_LGNvcOUXKck3HgxlSLmF2Ho,3766
|
|
18
|
+
gpbench/method_class/__init__.py,sha256=ikP8hUhAow9QKAyoWjaiOc6-m5nkfIjS1xE3zllgv1A,1137
|
|
19
|
+
gpbench/method_class/BayesA/BayesA_class.py,sha256=PtF5C_NZy-23mbPcp42mLtdyJ1fzDICs3i8Lk2-Nj40,5622
|
|
20
|
+
gpbench/method_class/BayesA/__init__.py,sha256=2uFzRwG15JwTlj6GxTsFuv6Dd9IHIkeqx-fp6-PzCl4,102
|
|
21
|
+
gpbench/method_class/BayesA/_bayesfromR.py,sha256=TAXY7NISX-BeIWRP03lfXUo-spF0E7pgS8rhZ_1tKYQ,3620
|
|
22
|
+
gpbench/method_class/BayesA/_param_free_base_model.py,sha256=ea6_faicaKMHC1WXOefSrbggL_Ce1oi0YhmfpAdnIlQ,2780
|
|
23
|
+
gpbench/method_class/BayesA/bayesAfromR.py,sha256=d9p1T1WU66jKOMYeBX2BXOmAocORN3HW8vvIC6ZdgWY,419
|
|
24
|
+
gpbench/method_class/BayesB/BayesB_class.py,sha256=MJ3GL62YndCJU9Svb8MUIJ5xOkhzZWUJABWmrxSAnXQ,5603
|
|
25
|
+
gpbench/method_class/BayesB/__init__.py,sha256=C2h6Kw3uAOf9xRY3Rdq2SZv3T6S4H7M_5sThNdbtxkk,102
|
|
26
|
+
gpbench/method_class/BayesB/_bayesfromR.py,sha256=TAXY7NISX-BeIWRP03lfXUo-spF0E7pgS8rhZ_1tKYQ,3620
|
|
27
|
+
gpbench/method_class/BayesB/_param_free_base_model.py,sha256=ea6_faicaKMHC1WXOefSrbggL_Ce1oi0YhmfpAdnIlQ,2780
|
|
28
|
+
gpbench/method_class/BayesB/bayesBfromR.py,sha256=7QWL0RzJekGtBgvFpZ949ZbkCTBicR45PmtmGj-cuSs,419
|
|
29
|
+
gpbench/method_class/BayesC/BayesC_class.py,sha256=zPHwG_q5tj4iskgEiKK96wa61kVpfkOItz3qjkgUT1Y,5603
|
|
30
|
+
gpbench/method_class/BayesC/__init__.py,sha256=80qVuVgFBkB8z-lYtdU0xgUFfFhiDAkF2Z3NMh4c9mE,100
|
|
31
|
+
gpbench/method_class/BayesC/_bayesfromR.py,sha256=TAXY7NISX-BeIWRP03lfXUo-spF0E7pgS8rhZ_1tKYQ,3620
|
|
32
|
+
gpbench/method_class/BayesC/_param_free_base_model.py,sha256=ea6_faicaKMHC1WXOefSrbggL_Ce1oi0YhmfpAdnIlQ,2780
|
|
33
|
+
gpbench/method_class/BayesC/bayesCfromR.py,sha256=efGxR2AqPztdCZKIoXSkViye1k0I2VZzeIDEVqlls1k,419
|
|
34
|
+
gpbench/method_class/CropARNet/CropARNet_class.py,sha256=bSbEyGzBTTkf2uPGQcgcx2ORkx9fe8X9sAdsCqVsYWw,7114
|
|
35
|
+
gpbench/method_class/CropARNet/CropARNet_he_class.py,sha256=A8lXI-e2kiLKNgUYeErSpoXZYEgeWfzk1iXAGX_R6CQ,4947
|
|
36
|
+
gpbench/method_class/CropARNet/__init__.py,sha256=XU5Qj-VUjodoXlhbOQUB4V8UEY4_-eC6LAMSNLKuwgA,120
|
|
37
|
+
gpbench/method_class/CropARNet/base_CropARNet_class.py,sha256=9QsLx5kkAszneS482h-MO7JazmRSc_F5UaWR4lZWOfo,5801
|
|
38
|
+
gpbench/method_class/Cropformer/Cropformer_class.py,sha256=ewvyfS6ld6Ow1_v21DxmdQiUSwxTQrGhPkVL1pGWDB0,12575
|
|
39
|
+
gpbench/method_class/Cropformer/__init__.py,sha256=wLloDUA6-gAVwgUxNpkekGsyRMPv6ylD6OpvqfL8wQU,126
|
|
40
|
+
gpbench/method_class/Cropformer/cropformer_he_class.py,sha256=cORTZ0qxHcCFLJ_1sFChCTsNgn7FGjiUTy35h0V81b4,8981
|
|
41
|
+
gpbench/method_class/DL_GWAS/DL_GWAS_class.py,sha256=hFoi2_wQq17AygYfJPoTvp30z1rdRUi5tXu1cfQJcB8,8498
|
|
42
|
+
gpbench/method_class/DL_GWAS/DL_GWAS_he_class.py,sha256=_R1FulVYLVQMxkfsrWd6kOlZLgR3L-77e9MVXpw8yss,5119
|
|
43
|
+
gpbench/method_class/DL_GWAS/__init__.py,sha256=xGvy24fY1BL8wCqiUZHEjKIaarRkUY8SMTgSVU6JgUs,108
|
|
44
|
+
gpbench/method_class/DNNGP/DNNGP_class.py,sha256=tXmdgPZdh8K6zC5BufuqijhDuq1M-bGqTfrPjGrlBEs,6300
|
|
45
|
+
gpbench/method_class/DNNGP/DNNGP_he_class.py,sha256=AZM-qQqzGA0diPP_OuaYVBH1NEY66I4X4SZGsIrV5qk,4928
|
|
46
|
+
gpbench/method_class/DNNGP/__init__.py,sha256=MPxDmrMRt9SgHVzNMzWYVV1GIeApYPksWxxGLp79x4M,96
|
|
47
|
+
gpbench/method_class/DNNGP/base_dnngp_class.py,sha256=N5JN0sb8RsMkQ5cuCAZiWmKZTg3DHeruIWbijLAR3qQ,3549
|
|
48
|
+
gpbench/method_class/DeepCCR/DeepCCR_class.py,sha256=NxYU0cMDqaNlyguBzjT-xsq5uQs5afNZHCo51vodm_8,6428
|
|
49
|
+
gpbench/method_class/DeepCCR/DeepCCR_he_class.py,sha256=zkee4Hc7BvbkWSYbSMU0-E5u0-u8kVOesrYQt7yz8iY,4910
|
|
50
|
+
gpbench/method_class/DeepCCR/__init__.py,sha256=qmDeb24SrxrTFwcGgmxBAyMx0GKNNH3j4mkr2cfLM4c,108
|
|
51
|
+
gpbench/method_class/DeepCCR/base_DeepCCR_class.py,sha256=FgDcF7b_cZF6BuRqfIwiUBpmAvbo4XO4qYCmZOCmRjQ,6886
|
|
52
|
+
gpbench/method_class/DeepGS/DeepGS_class.py,sha256=hCXolYP5D9dM82K-bQZTP1uoBwuJ7dWndbG6_EeEfcU,6601
|
|
53
|
+
gpbench/method_class/DeepGS/DeepGS_he_class.py,sha256=EP3G0SvmFDbGV1QhlF2osuLq11XMiILwrixjxK7_Ltk,5199
|
|
54
|
+
gpbench/method_class/DeepGS/__init__.py,sha256=WLU2VVxLp5Q47Fp_GN5cDzXcAz6SEb-zY7JGzwqW1R8,102
|
|
55
|
+
gpbench/method_class/DeepGS/base_deepgs_class.py,sha256=JVjS_hItwpmHWvFLDomcwtLh7ZredVUfX6X_k4gya_8,4504
|
|
56
|
+
gpbench/method_class/EIR/EIR_class.py,sha256=Y6sHqHvfySZMTltXz_tXwY4iiODy09FbkR2s4VlSRI8,10949
|
|
57
|
+
gpbench/method_class/EIR/EIR_he_class.py,sha256=genGnfhOo2SfrKdfHeLPvRBcoQWNhvaEjS5L25Of06E,7646
|
|
58
|
+
gpbench/method_class/EIR/__init__.py,sha256=ha3-M2mWeEK9ZnabIH72NU2_45DHomXJJdzw0BRMDms,84
|
|
59
|
+
gpbench/method_class/EIR/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
60
|
+
gpbench/method_class/EIR/utils/array_output_modules.py,sha256=vGfGhcYalxwVrXi-094M7G8oCjadjsdAfpADEIq0HCY,3007
|
|
61
|
+
gpbench/method_class/EIR/utils/common.py,sha256=3SitP4Ec26yWQK5sf_mrSCs6V5-1rdI-pTFHp5m-L8s,2103
|
|
62
|
+
gpbench/method_class/EIR/utils/lcl_layers.py,sha256=cTjP_OWZQgca_tAeQoRqE9ugvTX0KXoYCzefk3-L4Io,7084
|
|
63
|
+
gpbench/method_class/EIR/utils/logging.py,sha256=VSSSHWsvKQdVd5aJedxEyLXcKdjNRWciV0_egC-N7xM,1889
|
|
64
|
+
gpbench/method_class/EIR/utils/mlp_layers.py,sha256=nDF1GIvPkN3ZsB0-mymcsZ2I50VKIYe9kZv_l2O1tU4,2476
|
|
65
|
+
gpbench/method_class/EIR/utils/models_locally_connected.py,sha256=SeSVf_MmFWkfRIRDJCSIf904A8ILsxbdbH5Wr4Wm2Qk,21387
|
|
66
|
+
gpbench/method_class/EIR/utils/transformer_models.py,sha256=KFFwN9x1nAMfDthtibvuAyWsxEibFma6ZL6lZ9Hv3mY,17515
|
|
67
|
+
gpbench/method_class/ElasticNet/ElasticNet_class.py,sha256=PY_O3U459eehMElVB1ENw-qpFlZqPIuzpqkD_bhpATY,5133
|
|
68
|
+
gpbench/method_class/ElasticNet/ElasticNet_he_class.py,sha256=MfVxtouGIDkCM2Lr293LcpnviMTqRE2nVCwnkotZ464,2995
|
|
69
|
+
gpbench/method_class/ElasticNet/__init__.py,sha256=v3eFRKRMlprQAFs0QcmgFYmVXHiiTFFg0-R8-85pwbU,126
|
|
70
|
+
gpbench/method_class/G2PDeep/G2PDeep_he_class.py,sha256=bEyyyXRanWptoBv2GyLjweEJzm3q0XEPXCBGGY5AK0o,8237
|
|
71
|
+
gpbench/method_class/G2PDeep/G2Pdeep_class.py,sha256=ZPo1KLYRC5LVKDjCMGSjLt3VrT22Nf8-bI5qdjdRez4,7940
|
|
72
|
+
gpbench/method_class/G2PDeep/__init__.py,sha256=ZSPkSgi30aFf1VzJ5AwG4CllH3QF2ecGuhhYEp8Vhyw,104
|
|
73
|
+
gpbench/method_class/G2PDeep/base_G2PDeep_class.py,sha256=uE6c2wEh2FvR8F0Me1khvVOpH4qY9dK9SNlHg4E1emE,8345
|
|
74
|
+
gpbench/method_class/GBLUP/GBLUP_class.py,sha256=rkfaE1sntjcpreh23F-hXCinMJ9AKiesgt7ObNO7NRM,6552
|
|
75
|
+
gpbench/method_class/GBLUP/__init__.py,sha256=Sw_J71fCBDVcXEJjvFwCeSmkekQE9BM_wf6S1kJMM88,92
|
|
76
|
+
gpbench/method_class/GEFormer/GEFormer_class.py,sha256=CNyCNt3IeHpGD-bIv5OPCT2rdk_Fyg0PvvKrlS0ckxM,6351
|
|
77
|
+
gpbench/method_class/GEFormer/GEFormer_he_class.py,sha256=VAHkAp0--FEsBPBGiEB7016EkFQceB8Qh3HqiiGeigI,4706
|
|
78
|
+
gpbench/method_class/GEFormer/__init__.py,sha256=PjOosVi7P1Fa39dgtW-m3uqvFrOpZTDOOTUaYE_b13k,110
|
|
79
|
+
gpbench/method_class/GEFormer/gMLP_class.py,sha256=MIn6IMRURa_X8AJ4kbb7v38gQDPmow_haEJDdJXQ830,10907
|
|
80
|
+
gpbench/method_class/LightGBM/LightGBM_class.py,sha256=-xM5yB00Pv0Sc04wG-LXd9RKAjagQjFUwbJxhwwdKRE,7859
|
|
81
|
+
gpbench/method_class/LightGBM/LightGBM_he_class.py,sha256=Gufgpv8HYc8jafUUE-1ymkyuBzEsH2Qm9sLjjcwFC6k,3825
|
|
82
|
+
gpbench/method_class/LightGBM/__init__.py,sha256=wmnib7Hcpvq--gJkp3esrR6wjw1O3Dsd_n2Zw-1iEJ4,110
|
|
83
|
+
gpbench/method_class/RF/RF_GPU_class.py,sha256=h4bcNoRm_y2CTr4jZJtPtWjzIm1_bwd_w0HMqSekeMQ,5407
|
|
84
|
+
gpbench/method_class/RF/RF_GPU_he_class.py,sha256=JC962y0HdbNH-uDco5vDEt3Y-18tq9x7xALqNqFpbd4,3919
|
|
85
|
+
gpbench/method_class/RF/__init__.py,sha256=uiTg3K68wOYBwupO6RpoYlC-lwIx-CvJn8iVK6IF5iE,78
|
|
86
|
+
gpbench/method_class/SVC/SVC_GPU.py,sha256=vZI9nrvPwMqf0tWaYwBOpwF54wH4xEHjWupoxffJ_C8,5891
|
|
87
|
+
gpbench/method_class/SVC/SVC_GPU_he.py,sha256=GoLbJhWWjLH-fNHqzIberzx-Va0RrRVWMmSfNS9mGYg,3404
|
|
88
|
+
gpbench/method_class/SVC/__init__.py,sha256=1_Z6-CVDhlx6aRfRwRqmUTYfu24VuD8JfJP8Zv62Pnc,78
|
|
89
|
+
gpbench/method_class/SoyDNGP/AlexNet_206_class.py,sha256=g56SHDhRsop5rucK50_qBSrFhAssVlE2ttBCl26oSmI,6526
|
|
90
|
+
gpbench/method_class/SoyDNGP/SoyDNGP_class.py,sha256=WeknKFLwUakXceLLZIbl7tFwFG729mSE55USqdxQU1s,7840
|
|
91
|
+
gpbench/method_class/SoyDNGP/SoyDNGP_he_class.py,sha256=QIdrEawonFSioxO50zRMLuBcITVsszDc_P1mb4BDOq4,4699
|
|
92
|
+
gpbench/method_class/SoyDNGP/__init__.py,sha256=W6rdqZY7--YmMvBwT70po77jfbhOZDQEJ-XieFV87T0,104
|
|
93
|
+
gpbench/method_class/XGBoost/XGboost_GPU_class.py,sha256=954uctuDuvOBSOmyb_8mD1_OAUFjfkKNjE_wu7uEkeo,7015
|
|
94
|
+
gpbench/method_class/XGBoost/XGboost_GPU_he_class.py,sha256=95ws5-emInqv_AKCgtljdb3SWMIpjeOZojX7K-mvoqI,5457
|
|
95
|
+
gpbench/method_class/XGBoost/__init__.py,sha256=PT4e26dHITn5ARvijQ6dtA7eVIrfMUTas2wdj-LaZzo,108
|
|
96
|
+
gpbench/method_class/rrBLUP/__init__.py,sha256=mfaIfv46KpcEIJWB-GiySnHRFCg7vb4MjLPzfoHHXJs,98
|
|
97
|
+
gpbench/method_class/rrBLUP/rrBLUP_class.py,sha256=-xankVBmF6YgMPuoctNlallTbT_XMixgDVlNp1o5iXU,5424
|
|
98
|
+
gpbench/method_reg/__init__.py,sha256=mJPHgcw-4-_-MmjVsQqmVz948bKSk6r7F_2rA1xgqWw,1150
|
|
99
|
+
gpbench/method_reg/BayesA/BayesA.py,sha256=vX1YB_CZ5A97Ir33PT4mg4Jb6lRLf7F1ZJh5d82VWSQ,4691
|
|
100
|
+
gpbench/method_reg/BayesA/__init__.py,sha256=hSndnWTuOdIFYvCxtQMQuyeBCwfwtQ4TrR3ZJuG9ILA,90
|
|
101
|
+
gpbench/method_reg/BayesA/_bayesfromR.py,sha256=TAXY7NISX-BeIWRP03lfXUo-spF0E7pgS8rhZ_1tKYQ,3620
|
|
102
|
+
gpbench/method_reg/BayesA/_param_free_base_model.py,sha256=ea6_faicaKMHC1WXOefSrbggL_Ce1oi0YhmfpAdnIlQ,2780
|
|
103
|
+
gpbench/method_reg/BayesA/bayesAfromR.py,sha256=d9p1T1WU66jKOMYeBX2BXOmAocORN3HW8vvIC6ZdgWY,419
|
|
104
|
+
gpbench/method_reg/BayesB/BayesB.py,sha256=1HRaVLFkGYcLMh9sPXk71D3B4dkurR-vLq7LNJTdbYw,4693
|
|
105
|
+
gpbench/method_reg/BayesB/__init__.py,sha256=GDSCyT8w-6a-_Gik0cH9eyCk_gNIFWmrEB7jPiecBR4,90
|
|
106
|
+
gpbench/method_reg/BayesB/_bayesfromR.py,sha256=TAXY7NISX-BeIWRP03lfXUo-spF0E7pgS8rhZ_1tKYQ,3620
|
|
107
|
+
gpbench/method_reg/BayesB/_param_free_base_model.py,sha256=ea6_faicaKMHC1WXOefSrbggL_Ce1oi0YhmfpAdnIlQ,2780
|
|
108
|
+
gpbench/method_reg/BayesB/bayesBfromR.py,sha256=7QWL0RzJekGtBgvFpZ949ZbkCTBicR45PmtmGj-cuSs,419
|
|
109
|
+
gpbench/method_reg/BayesC/BayesC.py,sha256=8yuv6fxgBUGjd3VWYhpRrMEc7HMg-koYPJ3tKtxdeck,4689
|
|
110
|
+
gpbench/method_reg/BayesC/__init__.py,sha256=NAG6y9zHNobtI0aJV0EvWY2PHJQOnmBsD0td3K51mu8,90
|
|
111
|
+
gpbench/method_reg/BayesC/_bayesfromR.py,sha256=TAXY7NISX-BeIWRP03lfXUo-spF0E7pgS8rhZ_1tKYQ,3620
|
|
112
|
+
gpbench/method_reg/BayesC/_param_free_base_model.py,sha256=ea6_faicaKMHC1WXOefSrbggL_Ce1oi0YhmfpAdnIlQ,2780
|
|
113
|
+
gpbench/method_reg/BayesC/bayesCfromR.py,sha256=LIfWQE-B7D_BSXZwgj4wdKMPm_veswPaWmz0WhABMXk,419
|
|
114
|
+
gpbench/method_reg/CropARNet/CropARNet.py,sha256=sFvBXd7LvGk-BlnqZqe5TKQMlVGb5VoxHRoiSeSgDZk,7109
|
|
115
|
+
gpbench/method_reg/CropARNet/CropARNet_Hyperparameters.py,sha256=i1u8MS_ml-GhXRcxdBJHf69HuFpRWideVR6p4oXS5vM,4360
|
|
116
|
+
gpbench/method_reg/CropARNet/__init__.py,sha256=2_IUPspIUZVmXFxQkS1uZcGd8uGAnUr6VZMB297Xvf8,104
|
|
117
|
+
gpbench/method_reg/CropARNet/base_CropARNet.py,sha256=s6tlIMSXvFim5ZuAJs4iBXeWkige4TqWF8lsv_Pfr8M,5458
|
|
118
|
+
gpbench/method_reg/Cropformer/Cropformer.py,sha256=A8k5Lusn7_0PBelJqq0j2niC_QlwILzOXWYDp4CkP4I,13662
|
|
119
|
+
gpbench/method_reg/Cropformer/Cropformer_Hyperparameters.py,sha256=0iuJ6jIbnR7U2iLizTUWWeyFDGFWUSU0woOTibcpSuE,10020
|
|
120
|
+
gpbench/method_reg/Cropformer/__init__.py,sha256=Q38ZmyOF0DUZd0J_zdEOIyco9tZWFtoWUZ-Y__ubLro,110
|
|
121
|
+
gpbench/method_reg/DL_GWAS/DL_GWAS.py,sha256=dkBmdZRS3xMBUQnsaUBhC6EfPVy3-AYD_d7UecQ0omk,8073
|
|
122
|
+
gpbench/method_reg/DL_GWAS/DL_GWAS_Hyperparameters.py,sha256=sJLhS5jaVYuLJJEh_Wm9Hamr00yiTjl_GNhnVzil5yI,5318
|
|
123
|
+
gpbench/method_reg/DL_GWAS/__init__.py,sha256=QHthY-I5krdGDoHXSVg04YlhGtMRtaXCI3X1DQl8FnY,92
|
|
124
|
+
gpbench/method_reg/DNNGP/DNNGP.py,sha256=Gy5N80bbtmGcO9lY-r3SS_0AIYU70EogQz2PSqMdLwo,7158
|
|
125
|
+
gpbench/method_reg/DNNGP/DNNGP_Hyperparameters.py,sha256=d6wE2jxkBsvrR2jXbERC5IPnzrBcqaPkEnX9X8YZ1yo,4847
|
|
126
|
+
gpbench/method_reg/DNNGP/__init__.py,sha256=Ms4HQoBVn9u1NU3-Xx2U88D27TbVBUDLe1s3j33p7Hk,80
|
|
127
|
+
gpbench/method_reg/DNNGP/base_dnngp.py,sha256=nemgBOV5pu-aqZlxItdzhdiOAiGSghPSu0gbF7AiJog,3536
|
|
128
|
+
gpbench/method_reg/DeepCCR/DeepCCR.py,sha256=LzNmVFDnBhha8aFlPH0GyavFtuzT-XvMCTQd66k6RLw,6652
|
|
129
|
+
gpbench/method_reg/DeepCCR/DeepCCR_Hyperparameters.py,sha256=rhuTjCclaABrdVi9nlEMkAMHVJTb0IIYJXZvJxFQaFo,4379
|
|
130
|
+
gpbench/method_reg/DeepCCR/__init__.py,sha256=9XUR5mhn9hnRw9IJf14YivqfjLkSmpf8Zw0Ol1x_K5g,92
|
|
131
|
+
gpbench/method_reg/DeepCCR/base_DeepCCR.py,sha256=qxUwfOByPJBOjdPtJJA3Fi3-oDpElBnw9MSCHqGFY5Q,6154
|
|
132
|
+
gpbench/method_reg/DeepGS/DeepGS.py,sha256=HZs9Bc1Aq-qhpxubeRsThS_cMdsWASJy0kVKRbYaQZI,7292
|
|
133
|
+
gpbench/method_reg/DeepGS/DeepGS_Hyperparameters.py,sha256=BrBRuhmRoWyTkP27idboJf_iGN1kTDiT9XAgyv-2dZw,4656
|
|
134
|
+
gpbench/method_reg/DeepGS/__init__.py,sha256=Y3NLFIKN3DDDBO0nX8XozN0CDu-ERzkpjoPOFyfbdb8,87
|
|
135
|
+
gpbench/method_reg/DeepGS/base_deepgs.py,sha256=BU7uadjnayQgL0IU13fy1W_m85jYUenLeTcj-rgF9mo,3598
|
|
136
|
+
gpbench/method_reg/EIR/EIR.py,sha256=WBzZ9WLXB52VVZfkU2t13XMPJ58j9MjJoXrfx7It_ZQ,9998
|
|
137
|
+
gpbench/method_reg/EIR/EIR_Hyperparameters.py,sha256=i-sHxmLXymuf9W2KFWKT80iXIq_6elH952102TjnRjg,6920
|
|
138
|
+
gpbench/method_reg/EIR/__init__.py,sha256=tey24sGDpLvgmR8h5UaQyY7bkBWxL5uohX17NGBz6tY,68
|
|
139
|
+
gpbench/method_reg/EIR/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
140
|
+
gpbench/method_reg/EIR/utils/array_output_modules.py,sha256=vGfGhcYalxwVrXi-094M7G8oCjadjsdAfpADEIq0HCY,3007
|
|
141
|
+
gpbench/method_reg/EIR/utils/common.py,sha256=3SitP4Ec26yWQK5sf_mrSCs6V5-1rdI-pTFHp5m-L8s,2103
|
|
142
|
+
gpbench/method_reg/EIR/utils/lcl_layers.py,sha256=cTjP_OWZQgca_tAeQoRqE9ugvTX0KXoYCzefk3-L4Io,7084
|
|
143
|
+
gpbench/method_reg/EIR/utils/logging.py,sha256=VSSSHWsvKQdVd5aJedxEyLXcKdjNRWciV0_egC-N7xM,1889
|
|
144
|
+
gpbench/method_reg/EIR/utils/mlp_layers.py,sha256=nDF1GIvPkN3ZsB0-mymcsZ2I50VKIYe9kZv_l2O1tU4,2476
|
|
145
|
+
gpbench/method_reg/EIR/utils/models_locally_connected.py,sha256=SeSVf_MmFWkfRIRDJCSIf904A8ILsxbdbH5Wr4Wm2Qk,21387
|
|
146
|
+
gpbench/method_reg/EIR/utils/transformer_models.py,sha256=KFFwN9x1nAMfDthtibvuAyWsxEibFma6ZL6lZ9Hv3mY,17515
|
|
147
|
+
gpbench/method_reg/ElasticNet/ElasticNet.py,sha256=RX-FDgJ7BXKP56wHBiyoV9GJaOISjfm-QXvhiamrYBQ,4849
|
|
148
|
+
gpbench/method_reg/ElasticNet/ElasticNet_he.py,sha256=LgtSoYSkLLrB5Wuo8UqfnVwGuq-feOrAw0oNwuZRPJQ,2815
|
|
149
|
+
gpbench/method_reg/ElasticNet/__init__.py,sha256=bQjF598ppOpvGsXa9QrresH9FDHjup9IYPnGlLIxZaU,110
|
|
150
|
+
gpbench/method_reg/G2PDeep/G2PDeep_Hyperparameters.py,sha256=N0FTWDjG_d-CRyCxDrrssln88SsWbwGjvjvoDy1NSC8,4274
|
|
151
|
+
gpbench/method_reg/G2PDeep/G2Pdeep.py,sha256=-45cI53NLC7lw7PFv8vcN2iicQW2pRpmkp68v8pWmPA,7077
|
|
152
|
+
gpbench/method_reg/G2PDeep/__init__.py,sha256=kq4pF7_oYLcfPMJMo5HASZXf4K4TNQRBnFQWrIepMxM,92
|
|
153
|
+
gpbench/method_reg/G2PDeep/base_G2PDeep.py,sha256=gzzvCV5FM2sfe0LoFDuZPVoaPB-mQ9xz_l8-nVE5mPo,8310
|
|
154
|
+
gpbench/method_reg/GBLUP/GBLUP_R.py,sha256=6YCO_I4_RubqsBlLWQ9asVPK0S21suFb_udO-gC8cHA,6239
|
|
155
|
+
gpbench/method_reg/GBLUP/__init__.py,sha256=pAPLEV3fFx2Uep5VyuNFILqkK9jp8UyzpAzZ-HREQeI,82
|
|
156
|
+
gpbench/method_reg/GEFormer/GEFormer.py,sha256=bZk5au9d1RuuweKEZRceHmxG8kYLz8d7QM2pUsK-o_0,7191
|
|
157
|
+
gpbench/method_reg/GEFormer/GEFormer_Hyperparameters.py,sha256=iGKN5a8UAY_cE-inljEQhAKRbTw4icFEZHEe7pAjJAo,4167
|
|
158
|
+
gpbench/method_reg/GEFormer/__init__.py,sha256=cXstHazg5duOtF9gcq-aOPvFSA45v0vCh4K64lRnc7E,98
|
|
159
|
+
gpbench/method_reg/GEFormer/gMLP.py,sha256=DrwVJR8Vk7-onS6UJtixhwT-AR8eVCsNIu74RyFYhCQ,10998
|
|
160
|
+
gpbench/method_reg/LightGBM/LightGBM.py,sha256=aiz31QRsye30WtOCF702V2YtgxUki4OkYxStYAun8J0,9329
|
|
161
|
+
gpbench/method_reg/LightGBM/LightGBM_Hyperparameters.py,sha256=OLiUnW-MYL_Q1XcNLQKuZFTLLAjD8ejmM4fNAt8MpB0,2601
|
|
162
|
+
gpbench/method_reg/LightGBM/__init__.py,sha256=oOYntShim3HISBD449gn82VvHieZZaPGcofIDP2BbHM,98
|
|
163
|
+
gpbench/method_reg/MVP/MVP.py,sha256=UAMzdJmFcrO7HWKw-Fa8we0sylqC765oP6UBaeHiUx8,7643
|
|
164
|
+
gpbench/method_reg/MVP/MVP_Hyperparameters.py,sha256=OMtPpwrvdZlSel73nGskj8MyHpzIgAlKmSpnkkE03Uo,5299
|
|
165
|
+
gpbench/method_reg/MVP/__init__.py,sha256=zWaXaZyvuPW_bqxbWn7mrUxeISl2UL8GHQ9xIgdzU2k,68
|
|
166
|
+
gpbench/method_reg/MVP/base_MVP.py,sha256=sKNzF0mmpeA8w5pDfh5rkXSgQ_Y7t46YKa4Kjl6mU_U,4083
|
|
167
|
+
gpbench/method_reg/RF/RF_GPU.py,sha256=2GkEIt673nhKqBkHLzARce5TQNn51l2F4p2nRJv0o7Q,6708
|
|
168
|
+
gpbench/method_reg/RF/RF_Hyperparameters.py,sha256=Gd2ks3-UznrJ0NN25IDihTKfx31l76G2NEy5Im-fB5o,6173
|
|
169
|
+
gpbench/method_reg/RF/__init__.py,sha256=NlouWRIHpTs9ijoObauWkWUtkf1jbhqvx6qaMqByLpg,66
|
|
170
|
+
gpbench/method_reg/SVC/SVC_GPU.py,sha256=WfECoM5lUQTU12eHNy3TqSc8z66GZgcx7wjRy9WcTQw,7266
|
|
171
|
+
gpbench/method_reg/SVC/SVC_Hyperparameters.py,sha256=tjONeY2x7T5H8kPAOuLlQVANuKc1k9YkJCZA2-5m9x0,3763
|
|
172
|
+
gpbench/method_reg/SVC/__init__.py,sha256=8j7gHNW05YcLrhLPXduomhyOPF4hhuh23hsc7bc6s1g,72
|
|
173
|
+
gpbench/method_reg/SoyDNGP/AlexNet_206.py,sha256=SWKW7N8d2nyk6QddixL68q5Vf_fqYv-Ys23AlH-0VzI,6601
|
|
174
|
+
gpbench/method_reg/SoyDNGP/SoyDNGP.py,sha256=JfFaE84kSpMtEFzH5fHuLyOrpD-NayEM2y5gjD8xy3s,7564
|
|
175
|
+
gpbench/method_reg/SoyDNGP/SoyDNGP_Hyperparameters.py,sha256=kZsoeWFWzydd5yJncmbg0r57qNIT7xY3Lo8CaJ-5Cck,4172
|
|
176
|
+
gpbench/method_reg/SoyDNGP/__init__.py,sha256=H51dB9zSefdqPaonYr1kjrSyXoYr85sN108-Lnu0glM,92
|
|
177
|
+
gpbench/method_reg/XGBoost/XGboost_GPU.py,sha256=KcxIRwG5yMN_Mi30KVRQvxMWdGps-HEsvWRrx0Lu7i0,7447
|
|
178
|
+
gpbench/method_reg/XGBoost/XGboost_Hyperparameters.py,sha256=OnFtbC_zovjZCC87memQiKu2y_gbh-YK1oTPnin5Vuk,6670
|
|
179
|
+
gpbench/method_reg/XGBoost/__init__.py,sha256=e1eXPMFo2UqjRhgNgiKRYzjWcQ-HxT-OaGxsDnLVJrg,96
|
|
180
|
+
gpbench/method_reg/rrBLUP/__init__.py,sha256=ZG6FKr-sr897VtArzVIbLIZSEDSSggPZhJUDrqgaxO8,86
|
|
181
|
+
gpbench/method_reg/rrBLUP/rrBLUP.py,sha256=KMx0Pr2Jc6ZWlcHnUItkWXohN_a3o05rsZ-rutXMaxQ,4870
|
|
182
|
+
tests/test_import.py,sha256=_BXEWpC6BgsE_FaHr-5bvUVCDOTFzcQDJxWRI97u8Qg,2879
|
|
183
|
+
tests/test_method.py,sha256=fSUbb81QlvAAHYshrM7XbIqp_HZHSetZ4CQJ0wRW4EM,7096
|
|
184
|
+
gpbench-1.0.0.dist-info/METADATA,sha256=j7bId41poFQHq2eYM_qEBh9g-1WONpW8eygn5QaQrBw,16166
|
|
185
|
+
gpbench-1.0.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
186
|
+
gpbench-1.0.0.dist-info/entry_points.txt,sha256=_1NVU9Xwq3MXXRlsoY4HdkW-B59MwAzxpzgAp4MWcOY,66
|
|
187
|
+
gpbench-1.0.0.dist-info/top_level.txt,sha256=611EqSOJNTvOwaH5ubGk84keZMPNK6KicXQiMYKB47A,28
|
|
188
|
+
gpbench-1.0.0.dist-info/RECORD,,
|
tests/test_import.py
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
1
|
+
import importlib
|
|
2
|
+
import pytest
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def _try_import(name: str, required: bool = True, reason: str = ""):
|
|
6
|
+
"""
|
|
7
|
+
required=True: 导入失败 -> 直接失败(这类是必须依赖)
|
|
8
|
+
required=False: 导入失败 -> skip(这类是可选/平台相关依赖)
|
|
9
|
+
"""
|
|
10
|
+
try:
|
|
11
|
+
return importlib.import_module(name)
|
|
12
|
+
except Exception as e:
|
|
13
|
+
msg = f"import {name} failed: {type(e).__name__}: {e}"
|
|
14
|
+
if required:
|
|
15
|
+
raise AssertionError(msg) from e
|
|
16
|
+
pytest.skip(reason or msg)
|
|
17
|
+
|
|
18
|
+
# ============================================================
|
|
19
|
+
# 1) 必须:本地包/目录必须能 import(安装/结构正确性)
|
|
20
|
+
# ============================================================
|
|
21
|
+
|
|
22
|
+
@pytest.mark.parametrize("pkg", [
|
|
23
|
+
"gpbench",
|
|
24
|
+
"method_reg",
|
|
25
|
+
"method_class",
|
|
26
|
+
])
|
|
27
|
+
def test_import_local_packages(pkg):
|
|
28
|
+
"""
|
|
29
|
+
这些要能 import 的前提:
|
|
30
|
+
- 对应目录下存在 __init__.py
|
|
31
|
+
- 已执行 pip install -e .[dev]
|
|
32
|
+
"""
|
|
33
|
+
_try_import(pkg, required=True)
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
# ============================================================
|
|
37
|
+
# 2) 必须:核心数值/科学计算栈(绝大多数方法都会用)
|
|
38
|
+
# ============================================================
|
|
39
|
+
|
|
40
|
+
@pytest.mark.parametrize("pkg", [
|
|
41
|
+
"numpy",
|
|
42
|
+
"pandas",
|
|
43
|
+
"scipy",
|
|
44
|
+
"sklearn", # scikit-learn 的 import 名是 sklearn
|
|
45
|
+
])
|
|
46
|
+
def test_import_core_deps(pkg):
|
|
47
|
+
_try_import(pkg, required=True)
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
# ============================================================
|
|
51
|
+
# 3) 建议:训练相关(你项目里多方法可能会用,但个别机器可能不全)
|
|
52
|
+
# - torch / xgboost / lightgbm:通常很关键,建议 required=True
|
|
53
|
+
# ============================================================
|
|
54
|
+
|
|
55
|
+
@pytest.mark.parametrize("pkg", [
|
|
56
|
+
"torch",
|
|
57
|
+
"xgboost",
|
|
58
|
+
"lightgbm",
|
|
59
|
+
])
|
|
60
|
+
def test_import_ml_deps(pkg):
|
|
61
|
+
_try_import(pkg, required=True)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
# ============================================================
|
|
65
|
+
# 4) 可选:平台/系统/外部组件相关(容易因为机器环境不同而失败)
|
|
66
|
+
# 这些失败就 skip,不要直接让 A 阶段挂掉
|
|
67
|
+
# ============================================================
|
|
68
|
+
|
|
69
|
+
@pytest.mark.parametrize("pkg, reason", [
|
|
70
|
+
("rpy2", "R 相关:需要系统有 R + 对应库,某些环境可能缺"),
|
|
71
|
+
("tensorflow", "TF 相关:不同机器/驱动/GLIBC 可能不兼容,允许跳过"),
|
|
72
|
+
("keras", "与 tensorflow 相关联,允许跳过"),
|
|
73
|
+
("transformers", "大模型依赖链很长,某些机器可能不全,允许跳过"),
|
|
74
|
+
("tokenizers", "transformers 相关,允许跳过"),
|
|
75
|
+
("tiktoken", "LLM 相关,允许跳过"),
|
|
76
|
+
("openai", "仅当需要调用 OpenAI API 时才必须,允许跳过"),
|
|
77
|
+
("dashscope", "仅当需要调用 DashScope 时才必须,允许跳过"),
|
|
78
|
+
])
|
|
79
|
+
def test_import_optional_deps(pkg, reason):
|
|
80
|
+
_try_import(pkg, required=False, reason=reason)
|
tests/test_method.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import re
|
|
3
|
+
import signal
|
|
4
|
+
import subprocess
|
|
5
|
+
import sys
|
|
6
|
+
import time
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
from tqdm import tqdm
|
|
9
|
+
|
|
10
|
+
MAX_SECONDS = 180 # 每个脚本最多 3 分钟
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def run_script(workdir: Path, script_name: str):
|
|
14
|
+
"""
|
|
15
|
+
冒烟短跑测试(适配缓冲输出问题):
|
|
16
|
+
- cd 到 workdir
|
|
17
|
+
- python -u 强制无缓冲输出
|
|
18
|
+
- 满足任一条件就终止:
|
|
19
|
+
1) 输出包含 "Fold 5"
|
|
20
|
+
2) stdout+stderr 总输出行数 >= 10
|
|
21
|
+
3) 运行超过 RUNNING_OK_SECONDS 且未崩溃(代表脚本确实跑起来了)
|
|
22
|
+
- 不写入文件:测试端不创建文件;并通过环境变量提示脚本不要写文件(若脚本支持则生效)
|
|
23
|
+
"""
|
|
24
|
+
script_path = workdir / script_name
|
|
25
|
+
assert script_path.exists(), f"脚本不存在: {script_path}"
|
|
26
|
+
|
|
27
|
+
env = os.environ.copy()
|
|
28
|
+
# 尽量阻止脚本写文件(脚本不支持也不影响)
|
|
29
|
+
env["SMOKE_TEST"] = "1"
|
|
30
|
+
env["NO_SAVE"] = "1"
|
|
31
|
+
env["NO_OUTPUT"] = "1"
|
|
32
|
+
env["SAVE"] = "0"
|
|
33
|
+
env["WRITE_FILES"] = "0"
|
|
34
|
+
env["EPOCHS"] = "1"
|
|
35
|
+
env["MAX_EPOCH"] = "1"
|
|
36
|
+
|
|
37
|
+
# ✅ 关键:-u 强制 unbuffered
|
|
38
|
+
cmd = [sys.executable, "-u", script_name]
|
|
39
|
+
|
|
40
|
+
p = subprocess.Popen(
|
|
41
|
+
cmd,
|
|
42
|
+
cwd=workdir,
|
|
43
|
+
stdout=subprocess.PIPE,
|
|
44
|
+
stderr=subprocess.PIPE,
|
|
45
|
+
text=True,
|
|
46
|
+
env=env,
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
stdout_lines = []
|
|
50
|
+
stderr_lines = []
|
|
51
|
+
start = time.time()
|
|
52
|
+
|
|
53
|
+
# ✅ 判定:匹配 Fold 1 或者运行到 MAX_SECONDS(3 分钟)且输出行数 >= 3
|
|
54
|
+
fold1_hit = False
|
|
55
|
+
total_lines = 0
|
|
56
|
+
# 匹配 "Fold 1"、"fold 1"、"===== Fold 1 =====" 等
|
|
57
|
+
FOLD1_PATTERN = re.compile(r"\bfold\s*1\b", re.IGNORECASE)
|
|
58
|
+
try:
|
|
59
|
+
while True:
|
|
60
|
+
elapsed = time.time() - start
|
|
61
|
+
|
|
62
|
+
# 进程结束
|
|
63
|
+
if p.poll() is not None:
|
|
64
|
+
break
|
|
65
|
+
|
|
66
|
+
# 超时保护
|
|
67
|
+
if elapsed > MAX_SECONDS:
|
|
68
|
+
p.send_signal(signal.SIGINT)
|
|
69
|
+
break
|
|
70
|
+
|
|
71
|
+
# 读 stdout 一行
|
|
72
|
+
if p.stdout:
|
|
73
|
+
line = p.stdout.readline()
|
|
74
|
+
if line:
|
|
75
|
+
s = line.strip()
|
|
76
|
+
stdout_lines.append(s)
|
|
77
|
+
total_lines += 1
|
|
78
|
+
if FOLD1_PATTERN.search(s):
|
|
79
|
+
fold1_hit = True
|
|
80
|
+
|
|
81
|
+
# 读 stderr 一行
|
|
82
|
+
if p.stderr:
|
|
83
|
+
err = p.stderr.readline()
|
|
84
|
+
if err:
|
|
85
|
+
s = err.strip()
|
|
86
|
+
stderr_lines.append(s)
|
|
87
|
+
total_lines += 1
|
|
88
|
+
if FOLD1_PATTERN.search(s):
|
|
89
|
+
fold1_hit = True
|
|
90
|
+
|
|
91
|
+
# 早停条件:匹配到 Fold 1(立即停止)
|
|
92
|
+
if fold1_hit:
|
|
93
|
+
p.send_signal(signal.SIGINT)
|
|
94
|
+
break
|
|
95
|
+
|
|
96
|
+
time.sleep(0.05)
|
|
97
|
+
|
|
98
|
+
# 等待退出(不强求一定优雅退出)
|
|
99
|
+
try:
|
|
100
|
+
p.wait(timeout=5)
|
|
101
|
+
except subprocess.TimeoutExpired:
|
|
102
|
+
p.kill()
|
|
103
|
+
|
|
104
|
+
finally:
|
|
105
|
+
if p.poll() is None:
|
|
106
|
+
p.kill()
|
|
107
|
+
|
|
108
|
+
elapsed = time.time() - start
|
|
109
|
+
|
|
110
|
+
debug_msg = (
|
|
111
|
+
f"\n运行脚本: {script_path}\n"
|
|
112
|
+
f"CMD: {' '.join(cmd)}\n"
|
|
113
|
+
f"CWD: {workdir}\n"
|
|
114
|
+
f"ReturnCode: {p.returncode}\n"
|
|
115
|
+
f"TOTAL lines: {total_lines}\n"
|
|
116
|
+
f"FOLD1 hit: {fold1_hit}\n"
|
|
117
|
+
f"ELAPSED: {elapsed:.1f}s\n"
|
|
118
|
+
f"--- STDOUT tail ---\n" + "\n".join(stdout_lines[-30:]) + "\n"
|
|
119
|
+
f"--- STDERR tail ---\n" + "\n".join(stderr_lines[-80:]) + "\n"
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
# ✅ 通过条件:匹配到 Fold 1,或运行到 MAX_SECONDS(3 分钟)且输出行数 >= 3
|
|
123
|
+
passed = fold1_hit or (elapsed >= MAX_SECONDS and total_lines >= 3)
|
|
124
|
+
|
|
125
|
+
assert passed, f"❌ 冒烟失败(未匹配 Fold 1,或运行 {MAX_SECONDS}s 后输出行数 < 3)\n{debug_msg}"
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
# ============================================================
|
|
130
|
+
# ✅ method_reg 测试用例列表
|
|
131
|
+
# ============================================================
|
|
132
|
+
|
|
133
|
+
METHOD_REG_CASES = [
|
|
134
|
+
("BayesA", "BayesA.py"),
|
|
135
|
+
("BayesB", "BayesB.py"),
|
|
136
|
+
("BayesC", "BayesC.py"),
|
|
137
|
+
("CropARNet", "CropARNet.py"),
|
|
138
|
+
("Cropformer", "Cropformer.py"),
|
|
139
|
+
("DeepCCR", "DeepCCR.py"),
|
|
140
|
+
("DeepGS", "DeepGS.py"),
|
|
141
|
+
("DL_GWAS", "DL_GWAS.py"),
|
|
142
|
+
("DNNGP", "DNNGP.py"),
|
|
143
|
+
("EIR", "EIR.py"),
|
|
144
|
+
("ElasticNet", "ElasticNet.py"),
|
|
145
|
+
("G2PDeep", "G2Pdeep.py"),
|
|
146
|
+
("GBLUP", "GBLUP_R.py"),
|
|
147
|
+
("GEFormer", "GEFormer.py"),
|
|
148
|
+
("LightGBM", "LightGBM.py"),
|
|
149
|
+
("MVP", "MVP.py"),
|
|
150
|
+
("RF", "RF_GPU.py"),
|
|
151
|
+
("rrBLUP", "rrBLUP.py"),
|
|
152
|
+
("SoyDNGP", "SoyDNGP.py"),
|
|
153
|
+
("SVR", "SVR_GPU.py"),
|
|
154
|
+
("XGBoost", "XGboost_GPU.py"),
|
|
155
|
+
]
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
def test_method_reg():
|
|
159
|
+
"""
|
|
160
|
+
冒烟测试:
|
|
161
|
+
对 method_reg 下所有方法逐个短跑验证
|
|
162
|
+
"""
|
|
163
|
+
# base_dir = Path("method_reg")
|
|
164
|
+
# total = len(METHOD_REG_CASES)
|
|
165
|
+
|
|
166
|
+
# for i, (folder, script) in enumerate(METHOD_REG_CASES, 1):
|
|
167
|
+
# print(f"\n[{i}/{total}] Testing {folder}/{script} ...")
|
|
168
|
+
|
|
169
|
+
# workdir = base_dir / folder
|
|
170
|
+
# run_script(workdir, script)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
base_dir = Path("method_reg")
|
|
174
|
+
for folder, script in tqdm(
|
|
175
|
+
METHOD_REG_CASES,
|
|
176
|
+
desc="🚀 Testing method_reg",
|
|
177
|
+
unit="method",
|
|
178
|
+
file=sys.stderr, # ✅ 强制输出到 stderr(tqdm 默认也是 stderr,但这里显式指定更稳)
|
|
179
|
+
dynamic_ncols=True, # ✅ 自动适配终端宽度
|
|
180
|
+
leave=False, # ✅ 结束后保留进度条
|
|
181
|
+
mininterval=0.2, # ✅ 刷新频率
|
|
182
|
+
):
|
|
183
|
+
workdir = base_dir / folder
|
|
184
|
+
run_script(workdir, script)
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
# ============================================================
|
|
189
|
+
# ✅ method_class 测试用例列表
|
|
190
|
+
# ============================================================
|
|
191
|
+
|
|
192
|
+
METHOD_CLASS_CASES = [
|
|
193
|
+
("BayesA", "BayesA_class.py"),
|
|
194
|
+
("BayesB", "BayesB_class.py"),
|
|
195
|
+
("BayesC", "BayesC_class.py"),
|
|
196
|
+
("CropARNet", "CropARNet_class.py"),
|
|
197
|
+
("Cropformer", "Cropformer_class.py"),
|
|
198
|
+
("DeepCCR", "DeepCCR_class.py"),
|
|
199
|
+
("DeepGS", "DeepGS_class.py"),
|
|
200
|
+
("DL_GWAS", "DL_GWAS_class.py"),
|
|
201
|
+
("DNNGP", "DNNGP_class.py"),
|
|
202
|
+
("EIR", "EIR_class.py"),
|
|
203
|
+
("ElasticNet", "ElasticNet_class.py"),
|
|
204
|
+
("G2PDeep", "G2Pdeep_class.py"),
|
|
205
|
+
("GBLUP", "GBLUP_class.py"),
|
|
206
|
+
("GEFormer", "GEFormer_class.py"),
|
|
207
|
+
("LightGBM", "LightGBM_class.py"),
|
|
208
|
+
("RF", "RF_GPU_class.py"),
|
|
209
|
+
("rrBLUP", "rrBLUP_class.py"),
|
|
210
|
+
("SoyDNGP", "SoyDNGP_class.py"),
|
|
211
|
+
("SVR", "SVC_GPU.py"),
|
|
212
|
+
("XGBoost", "XGboost_GPU_class.py"),
|
|
213
|
+
]
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def test_method_class():
|
|
217
|
+
"""
|
|
218
|
+
冒烟测试:
|
|
219
|
+
对 method_class 下所有方法逐个短跑验证
|
|
220
|
+
"""
|
|
221
|
+
base_dir = Path("method_class")
|
|
222
|
+
for folder, script in tqdm(
|
|
223
|
+
METHOD_CLASS_CASES,
|
|
224
|
+
desc="🚀 Testing method_class",
|
|
225
|
+
unit="method",
|
|
226
|
+
file=sys.stderr, # ✅ 强制输出到 stderr(tqdm 默认也是 stderr,但这里显式指定更稳)
|
|
227
|
+
dynamic_ncols=True, # ✅ 自动适配终端宽度
|
|
228
|
+
leave=False, # ✅ 结束后保留进度条
|
|
229
|
+
mininterval=0.2, # ✅ 刷新频率
|
|
230
|
+
):
|
|
231
|
+
workdir = base_dir / folder
|
|
232
|
+
run_script(workdir, script)
|