gpbench 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (188) hide show
  1. gp_agent_tool/compute_dataset_feature.py +67 -0
  2. gp_agent_tool/config.py +65 -0
  3. gp_agent_tool/experience/create_masked_dataset_summary.py +97 -0
  4. gp_agent_tool/experience/dataset_summary_info.py +13 -0
  5. gp_agent_tool/experience/experience_info.py +12 -0
  6. gp_agent_tool/experience/get_matched_experience.py +111 -0
  7. gp_agent_tool/llm_client.py +119 -0
  8. gp_agent_tool/logging_utils.py +24 -0
  9. gp_agent_tool/main.py +347 -0
  10. gp_agent_tool/read_agent/__init__.py +46 -0
  11. gp_agent_tool/read_agent/nodes.py +674 -0
  12. gp_agent_tool/read_agent/prompts.py +547 -0
  13. gp_agent_tool/read_agent/python_repl_tool.py +165 -0
  14. gp_agent_tool/read_agent/state.py +101 -0
  15. gp_agent_tool/read_agent/workflow.py +54 -0
  16. gpbench/__init__.py +25 -0
  17. gpbench/_selftest.py +104 -0
  18. gpbench/method_class/BayesA/BayesA_class.py +141 -0
  19. gpbench/method_class/BayesA/__init__.py +5 -0
  20. gpbench/method_class/BayesA/_bayesfromR.py +96 -0
  21. gpbench/method_class/BayesA/_param_free_base_model.py +84 -0
  22. gpbench/method_class/BayesA/bayesAfromR.py +16 -0
  23. gpbench/method_class/BayesB/BayesB_class.py +140 -0
  24. gpbench/method_class/BayesB/__init__.py +5 -0
  25. gpbench/method_class/BayesB/_bayesfromR.py +96 -0
  26. gpbench/method_class/BayesB/_param_free_base_model.py +84 -0
  27. gpbench/method_class/BayesB/bayesBfromR.py +16 -0
  28. gpbench/method_class/BayesC/BayesC_class.py +141 -0
  29. gpbench/method_class/BayesC/__init__.py +4 -0
  30. gpbench/method_class/BayesC/_bayesfromR.py +96 -0
  31. gpbench/method_class/BayesC/_param_free_base_model.py +84 -0
  32. gpbench/method_class/BayesC/bayesCfromR.py +16 -0
  33. gpbench/method_class/CropARNet/CropARNet_class.py +186 -0
  34. gpbench/method_class/CropARNet/CropARNet_he_class.py +154 -0
  35. gpbench/method_class/CropARNet/__init__.py +5 -0
  36. gpbench/method_class/CropARNet/base_CropARNet_class.py +178 -0
  37. gpbench/method_class/Cropformer/Cropformer_class.py +308 -0
  38. gpbench/method_class/Cropformer/__init__.py +5 -0
  39. gpbench/method_class/Cropformer/cropformer_he_class.py +221 -0
  40. gpbench/method_class/DL_GWAS/DL_GWAS_class.py +250 -0
  41. gpbench/method_class/DL_GWAS/DL_GWAS_he_class.py +169 -0
  42. gpbench/method_class/DL_GWAS/__init__.py +5 -0
  43. gpbench/method_class/DNNGP/DNNGP_class.py +163 -0
  44. gpbench/method_class/DNNGP/DNNGP_he_class.py +138 -0
  45. gpbench/method_class/DNNGP/__init__.py +5 -0
  46. gpbench/method_class/DNNGP/base_dnngp_class.py +116 -0
  47. gpbench/method_class/DeepCCR/DeepCCR_class.py +172 -0
  48. gpbench/method_class/DeepCCR/DeepCCR_he_class.py +161 -0
  49. gpbench/method_class/DeepCCR/__init__.py +5 -0
  50. gpbench/method_class/DeepCCR/base_DeepCCR_class.py +209 -0
  51. gpbench/method_class/DeepGS/DeepGS_class.py +184 -0
  52. gpbench/method_class/DeepGS/DeepGS_he_class.py +150 -0
  53. gpbench/method_class/DeepGS/__init__.py +5 -0
  54. gpbench/method_class/DeepGS/base_deepgs_class.py +153 -0
  55. gpbench/method_class/EIR/EIR_class.py +276 -0
  56. gpbench/method_class/EIR/EIR_he_class.py +184 -0
  57. gpbench/method_class/EIR/__init__.py +5 -0
  58. gpbench/method_class/EIR/utils/__init__.py +0 -0
  59. gpbench/method_class/EIR/utils/array_output_modules.py +97 -0
  60. gpbench/method_class/EIR/utils/common.py +65 -0
  61. gpbench/method_class/EIR/utils/lcl_layers.py +235 -0
  62. gpbench/method_class/EIR/utils/logging.py +59 -0
  63. gpbench/method_class/EIR/utils/mlp_layers.py +92 -0
  64. gpbench/method_class/EIR/utils/models_locally_connected.py +642 -0
  65. gpbench/method_class/EIR/utils/transformer_models.py +546 -0
  66. gpbench/method_class/ElasticNet/ElasticNet_class.py +133 -0
  67. gpbench/method_class/ElasticNet/ElasticNet_he_class.py +91 -0
  68. gpbench/method_class/ElasticNet/__init__.py +5 -0
  69. gpbench/method_class/G2PDeep/G2PDeep_he_class.py +217 -0
  70. gpbench/method_class/G2PDeep/G2Pdeep_class.py +205 -0
  71. gpbench/method_class/G2PDeep/__init__.py +5 -0
  72. gpbench/method_class/G2PDeep/base_G2PDeep_class.py +209 -0
  73. gpbench/method_class/GBLUP/GBLUP_class.py +183 -0
  74. gpbench/method_class/GBLUP/__init__.py +5 -0
  75. gpbench/method_class/GEFormer/GEFormer_class.py +169 -0
  76. gpbench/method_class/GEFormer/GEFormer_he_class.py +137 -0
  77. gpbench/method_class/GEFormer/__init__.py +5 -0
  78. gpbench/method_class/GEFormer/gMLP_class.py +357 -0
  79. gpbench/method_class/LightGBM/LightGBM_class.py +224 -0
  80. gpbench/method_class/LightGBM/LightGBM_he_class.py +121 -0
  81. gpbench/method_class/LightGBM/__init__.py +5 -0
  82. gpbench/method_class/RF/RF_GPU_class.py +165 -0
  83. gpbench/method_class/RF/RF_GPU_he_class.py +124 -0
  84. gpbench/method_class/RF/__init__.py +5 -0
  85. gpbench/method_class/SVC/SVC_GPU.py +181 -0
  86. gpbench/method_class/SVC/SVC_GPU_he.py +106 -0
  87. gpbench/method_class/SVC/__init__.py +5 -0
  88. gpbench/method_class/SoyDNGP/AlexNet_206_class.py +179 -0
  89. gpbench/method_class/SoyDNGP/SoyDNGP_class.py +189 -0
  90. gpbench/method_class/SoyDNGP/SoyDNGP_he_class.py +112 -0
  91. gpbench/method_class/SoyDNGP/__init__.py +5 -0
  92. gpbench/method_class/XGBoost/XGboost_GPU_class.py +198 -0
  93. gpbench/method_class/XGBoost/XGboost_GPU_he_class.py +178 -0
  94. gpbench/method_class/XGBoost/__init__.py +5 -0
  95. gpbench/method_class/__init__.py +52 -0
  96. gpbench/method_class/rrBLUP/__init__.py +5 -0
  97. gpbench/method_class/rrBLUP/rrBLUP_class.py +140 -0
  98. gpbench/method_reg/BayesA/BayesA.py +116 -0
  99. gpbench/method_reg/BayesA/__init__.py +5 -0
  100. gpbench/method_reg/BayesA/_bayesfromR.py +96 -0
  101. gpbench/method_reg/BayesA/_param_free_base_model.py +84 -0
  102. gpbench/method_reg/BayesA/bayesAfromR.py +16 -0
  103. gpbench/method_reg/BayesB/BayesB.py +117 -0
  104. gpbench/method_reg/BayesB/__init__.py +5 -0
  105. gpbench/method_reg/BayesB/_bayesfromR.py +96 -0
  106. gpbench/method_reg/BayesB/_param_free_base_model.py +84 -0
  107. gpbench/method_reg/BayesB/bayesBfromR.py +16 -0
  108. gpbench/method_reg/BayesC/BayesC.py +115 -0
  109. gpbench/method_reg/BayesC/__init__.py +5 -0
  110. gpbench/method_reg/BayesC/_bayesfromR.py +96 -0
  111. gpbench/method_reg/BayesC/_param_free_base_model.py +84 -0
  112. gpbench/method_reg/BayesC/bayesCfromR.py +16 -0
  113. gpbench/method_reg/CropARNet/CropARNet.py +159 -0
  114. gpbench/method_reg/CropARNet/CropARNet_Hyperparameters.py +109 -0
  115. gpbench/method_reg/CropARNet/__init__.py +5 -0
  116. gpbench/method_reg/CropARNet/base_CropARNet.py +137 -0
  117. gpbench/method_reg/Cropformer/Cropformer.py +313 -0
  118. gpbench/method_reg/Cropformer/Cropformer_Hyperparameters.py +250 -0
  119. gpbench/method_reg/Cropformer/__init__.py +5 -0
  120. gpbench/method_reg/DL_GWAS/DL_GWAS.py +186 -0
  121. gpbench/method_reg/DL_GWAS/DL_GWAS_Hyperparameters.py +125 -0
  122. gpbench/method_reg/DL_GWAS/__init__.py +5 -0
  123. gpbench/method_reg/DNNGP/DNNGP.py +157 -0
  124. gpbench/method_reg/DNNGP/DNNGP_Hyperparameters.py +118 -0
  125. gpbench/method_reg/DNNGP/__init__.py +5 -0
  126. gpbench/method_reg/DNNGP/base_dnngp.py +101 -0
  127. gpbench/method_reg/DeepCCR/DeepCCR.py +149 -0
  128. gpbench/method_reg/DeepCCR/DeepCCR_Hyperparameters.py +110 -0
  129. gpbench/method_reg/DeepCCR/__init__.py +5 -0
  130. gpbench/method_reg/DeepCCR/base_DeepCCR.py +171 -0
  131. gpbench/method_reg/DeepGS/DeepGS.py +165 -0
  132. gpbench/method_reg/DeepGS/DeepGS_Hyperparameters.py +114 -0
  133. gpbench/method_reg/DeepGS/__init__.py +5 -0
  134. gpbench/method_reg/DeepGS/base_deepgs.py +98 -0
  135. gpbench/method_reg/EIR/EIR.py +258 -0
  136. gpbench/method_reg/EIR/EIR_Hyperparameters.py +178 -0
  137. gpbench/method_reg/EIR/__init__.py +5 -0
  138. gpbench/method_reg/EIR/utils/__init__.py +0 -0
  139. gpbench/method_reg/EIR/utils/array_output_modules.py +97 -0
  140. gpbench/method_reg/EIR/utils/common.py +65 -0
  141. gpbench/method_reg/EIR/utils/lcl_layers.py +235 -0
  142. gpbench/method_reg/EIR/utils/logging.py +59 -0
  143. gpbench/method_reg/EIR/utils/mlp_layers.py +92 -0
  144. gpbench/method_reg/EIR/utils/models_locally_connected.py +642 -0
  145. gpbench/method_reg/EIR/utils/transformer_models.py +546 -0
  146. gpbench/method_reg/ElasticNet/ElasticNet.py +123 -0
  147. gpbench/method_reg/ElasticNet/ElasticNet_he.py +83 -0
  148. gpbench/method_reg/ElasticNet/__init__.py +5 -0
  149. gpbench/method_reg/G2PDeep/G2PDeep_Hyperparameters.py +107 -0
  150. gpbench/method_reg/G2PDeep/G2Pdeep.py +166 -0
  151. gpbench/method_reg/G2PDeep/__init__.py +5 -0
  152. gpbench/method_reg/G2PDeep/base_G2PDeep.py +209 -0
  153. gpbench/method_reg/GBLUP/GBLUP_R.py +182 -0
  154. gpbench/method_reg/GBLUP/__init__.py +5 -0
  155. gpbench/method_reg/GEFormer/GEFormer.py +164 -0
  156. gpbench/method_reg/GEFormer/GEFormer_Hyperparameters.py +106 -0
  157. gpbench/method_reg/GEFormer/__init__.py +5 -0
  158. gpbench/method_reg/GEFormer/gMLP.py +341 -0
  159. gpbench/method_reg/LightGBM/LightGBM.py +237 -0
  160. gpbench/method_reg/LightGBM/LightGBM_Hyperparameters.py +77 -0
  161. gpbench/method_reg/LightGBM/__init__.py +5 -0
  162. gpbench/method_reg/MVP/MVP.py +182 -0
  163. gpbench/method_reg/MVP/MVP_Hyperparameters.py +126 -0
  164. gpbench/method_reg/MVP/__init__.py +5 -0
  165. gpbench/method_reg/MVP/base_MVP.py +113 -0
  166. gpbench/method_reg/RF/RF_GPU.py +174 -0
  167. gpbench/method_reg/RF/RF_Hyperparameters.py +163 -0
  168. gpbench/method_reg/RF/__init__.py +5 -0
  169. gpbench/method_reg/SVC/SVC_GPU.py +194 -0
  170. gpbench/method_reg/SVC/SVC_Hyperparameters.py +107 -0
  171. gpbench/method_reg/SVC/__init__.py +5 -0
  172. gpbench/method_reg/SoyDNGP/AlexNet_206.py +185 -0
  173. gpbench/method_reg/SoyDNGP/SoyDNGP.py +179 -0
  174. gpbench/method_reg/SoyDNGP/SoyDNGP_Hyperparameters.py +105 -0
  175. gpbench/method_reg/SoyDNGP/__init__.py +5 -0
  176. gpbench/method_reg/XGBoost/XGboost_GPU.py +188 -0
  177. gpbench/method_reg/XGBoost/XGboost_Hyperparameters.py +167 -0
  178. gpbench/method_reg/XGBoost/__init__.py +5 -0
  179. gpbench/method_reg/__init__.py +55 -0
  180. gpbench/method_reg/rrBLUP/__init__.py +5 -0
  181. gpbench/method_reg/rrBLUP/rrBLUP.py +123 -0
  182. gpbench-1.0.0.dist-info/METADATA +379 -0
  183. gpbench-1.0.0.dist-info/RECORD +188 -0
  184. gpbench-1.0.0.dist-info/WHEEL +5 -0
  185. gpbench-1.0.0.dist-info/entry_points.txt +2 -0
  186. gpbench-1.0.0.dist-info/top_level.txt +3 -0
  187. tests/test_import.py +80 -0
  188. tests/test_method.py +232 -0
@@ -0,0 +1,181 @@
1
+ import os
2
+ import time
3
+ import psutil
4
+ import argparse
5
+ import random
6
+ import torch
7
+ import numpy as np
8
+ import pandas as pd
9
+ import swanlab
10
+ import pynvml
11
+
12
+ from sklearn.model_selection import StratifiedKFold
13
+ from sklearn.preprocessing import LabelEncoder
14
+ from sklearn.metrics import accuracy_score, precision_recall_fscore_support
15
+
16
+ try:
17
+ import cupy as cp
18
+ from cuml.svm import SVC as cuSVC
19
+ CUML_AVAILABLE = True
20
+ except ImportError:
21
+ from sklearn.svm import SVC
22
+ CUML_AVAILABLE = False
23
+
24
+ from . import SVC_GPU_he
25
+
26
+
27
+ def parse_args():
28
+ parser = argparse.ArgumentParser()
29
+ parser.add_argument('--methods', type=str, default='SVR/')
30
+ parser.add_argument('--species', type=str, default='')
31
+ parser.add_argument('--phe', type=str, default='')
32
+ parser.add_argument('--data_dir', type=str, default='../../data/')
33
+ parser.add_argument('--result_dir', type=str, default='result/')
34
+
35
+ parser.add_argument('--C', type=float, default=1.0)
36
+ parser.add_argument('--kernel', type=str, default='rbf')
37
+ parser.add_argument('--gamma', type=str, default='scale')
38
+ parser.add_argument('--degree', type=int, default=3)
39
+ parser.add_argument('--use_gpu',default=True)
40
+
41
+ return parser.parse_args()
42
+
43
+ def set_seed(seed=42):
44
+ random.seed(seed)
45
+ np.random.seed(seed)
46
+ torch.manual_seed(seed)
47
+
48
+ def load_data(args):
49
+ X = np.load(os.path.join(args.data_dir, args.species, 'genotype.npz'))["arr_0"]
50
+ Y = np.load(os.path.join(args.data_dir, args.species, 'phenotype.npz'))["arr_0"]
51
+ print(f"Samples: {X.shape[0]}, SNPs: {X.shape[1]}")
52
+ return X, Y
53
+
54
+ def get_gpu_mem_by_pid(pid, handle):
55
+ procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
56
+ for p in procs:
57
+ if p.pid == pid:
58
+ return p.usedGpuMemory / 1024**2
59
+ return 0.0
60
+
61
+ def run_cv(args, X, y, handle=None):
62
+ result_dir = os.path.join(args.result_dir, args.methods + args.species)
63
+ os.makedirs(result_dir, exist_ok=True)
64
+
65
+ use_gpu = args.use_gpu and CUML_AVAILABLE
66
+ kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
67
+
68
+ le = LabelEncoder()
69
+ y_all = le.fit_transform(y)
70
+ np.save(os.path.join(result_dir, 'label_mapping.npy'), le.classes_)
71
+
72
+ all_acc, all_prec, all_rec, all_f1 = [], [], [], []
73
+ start_time = time.time()
74
+ process = psutil.Process(os.getpid())
75
+
76
+ for fold, (train_idx, test_idx) in enumerate(kf.split(X, y_all)):
77
+ fold_start = time.time()
78
+ print(f"\n===== Fold {fold} =====")
79
+
80
+ X_train, X_test = X[train_idx], X[test_idx]
81
+ y_train, y_test = y_all[train_idx], y_all[test_idx]
82
+
83
+ if use_gpu:
84
+ X_train_gpu = cp.asarray(X_train, dtype=cp.float32)
85
+ X_test_gpu = cp.asarray(X_test, dtype=cp.float32)
86
+ y_train_gpu = cp.asarray(y_train, dtype=cp.int32)
87
+
88
+ model = cuSVC(
89
+ C=args.C,
90
+ kernel=args.kernel,
91
+ gamma=args.gamma,
92
+ degree=args.degree,
93
+ probability=True
94
+ )
95
+ model.fit(X_train_gpu, y_train_gpu)
96
+ y_pred = model.predict(X_test_gpu)
97
+ y_pred = cp.asnumpy(y_pred)
98
+ else:
99
+ model = SVC(
100
+ C=args.C,
101
+ kernel=args.kernel,
102
+ gamma=args.gamma,
103
+ degree=args.degree,
104
+ probability=True
105
+ )
106
+ model.fit(X_train, y_train)
107
+ y_pred = model.predict(X_test)
108
+
109
+ acc = accuracy_score(y_test, y_pred)
110
+ prec, rec, f1, _ = precision_recall_fscore_support(
111
+ y_test,
112
+ y_pred,
113
+ average="macro",
114
+ zero_division=0
115
+ )
116
+
117
+ all_acc.append(acc)
118
+ all_prec.append(prec)
119
+ all_rec.append(rec)
120
+ all_f1.append(f1)
121
+
122
+ fold_time = time.time() - fold_start
123
+ gpu_mem = get_gpu_mem_by_pid(os.getpid(), handle) if (use_gpu and handle) else 0.0 # 修正:检查handle
124
+ cpu_mem = process.memory_info().rss / 1024**2
125
+
126
+ print(
127
+ f"Fold {fold}: "
128
+ f"ACC={acc:.4f}, "
129
+ f"PREC={prec:.4f}, "
130
+ f"REC={rec:.4f}, "
131
+ f"F1={f1:.4f}, "
132
+ f"Time={fold_time:.2f}s, "
133
+ f"GPU={gpu_mem:.2f}MB, "
134
+ f"CPU={cpu_mem:.2f}MB"
135
+ )
136
+
137
+ df = pd.DataFrame({
138
+ "Y_test": le.inverse_transform(y_test),
139
+ "Y_pred": le.inverse_transform(y_pred)
140
+ })
141
+ df.to_csv(os.path.join(result_dir, f"fold{fold}.csv"), index=False)
142
+
143
+ # ===== Summary =====
144
+ print("\n===== CV Summary =====")
145
+ print(f"ACC : {np.mean(all_acc):.4f} ± {np.std(all_acc):.4f}")
146
+ print(f"PREC: {np.mean(all_prec):.4f} ± {np.std(all_prec):.4f}")
147
+ print(f"REC : {np.mean(all_rec):.4f} ± {np.std(all_rec):.4f}")
148
+ print(f"F1 : {np.mean(all_f1):.4f} ± {np.std(all_f1):.4f}")
149
+
150
+
151
+ def SVC_class():
152
+ set_seed(42)
153
+ pynvml.nvmlInit()
154
+ handle = pynvml.nvmlDeviceGetHandleByIndex(0)
155
+
156
+ args = parse_args()
157
+ all_species = ["Human/Sim/"]
158
+
159
+ for species in all_species:
160
+ args.species = species
161
+ X, Y = load_data(args)
162
+ label = Y[:, 0]
163
+ best_params = SVC_GPU_he.Hyperparameter(X, label)
164
+ args.C = best_params['C']
165
+ args.kernel = best_params['kernel']
166
+ args.gamma = best_params['gamma']
167
+ args.degree = best_params['degree']
168
+
169
+ start_time = time.time()
170
+ run_cv(args, X, label, handle)
171
+
172
+ elapsed_time = time.time() - start_time
173
+ print(f"Total running time: {elapsed_time:.2f} s")
174
+ print("Successfully finished!")
175
+
176
+ if CUML_AVAILABLE:
177
+ cp.get_default_memory_pool().free_all_blocks()
178
+
179
+
180
+ if __name__ == "__main__":
181
+ SVC_class()
@@ -0,0 +1,106 @@
1
+ import gc
2
+ import random
3
+ import time
4
+ import torch
5
+ import optuna
6
+ import numpy as np
7
+
8
+ from sklearn.model_selection import StratifiedKFold
9
+ from sklearn.preprocessing import LabelEncoder
10
+ from sklearn.metrics import accuracy_score, precision_recall_fscore_support
11
+
12
+ try:
13
+ import cupy as cp
14
+ from cuml.svm import SVC as cuSVC
15
+ CUML_AVAILABLE = True
16
+ except ImportError:
17
+ from sklearn.svm import SVC
18
+ CUML_AVAILABLE = False
19
+
20
+ def set_seed(seed=42):
21
+ random.seed(seed)
22
+ np.random.seed(seed)
23
+ torch.manual_seed(seed)
24
+ if torch.cuda.is_available():
25
+ torch.cuda.manual_seed_all(seed)
26
+ torch.backends.cudnn.deterministic = True
27
+ torch.backends.cudnn.benchmark = False
28
+
29
+ def run_cv_eval(data, label, C, kernel, gamma, degree):
30
+ kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
31
+
32
+ le = LabelEncoder()
33
+ y_all = le.fit_transform(label)
34
+
35
+ accs, precs, recs, f1s = [], [], [], []
36
+
37
+ for fold, (train_idx, test_idx) in enumerate(kf.split(data, y_all)):
38
+ print(f"===== Fold {fold+1} =====")
39
+ X_train, X_test = data[train_idx], data[test_idx]
40
+ y_train, y_test = y_all[train_idx], y_all[test_idx]
41
+
42
+ if CUML_AVAILABLE:
43
+ X_train_gpu = cp.asarray(X_train, dtype=cp.float32)
44
+ X_test_gpu = cp.asarray(X_test, dtype=cp.float32)
45
+ y_train_gpu = cp.asarray(y_train, dtype=cp.int32)
46
+
47
+ model = cuSVC(
48
+ C=C,
49
+ kernel=kernel,
50
+ gamma=gamma,
51
+ degree=degree,
52
+ probability=True
53
+ )
54
+ model.fit(X_train_gpu, y_train_gpu)
55
+ y_pred = model.predict(X_test_gpu)
56
+ y_pred = cp.asnumpy(y_pred)
57
+ else:
58
+ model = SVC(
59
+ C=C,
60
+ kernel=kernel,
61
+ gamma=gamma,
62
+ degree=degree,
63
+ probability=True
64
+ )
65
+ model.fit(X_train, y_train)
66
+ y_pred = model.predict(X_test)
67
+
68
+ acc = accuracy_score(y_test, y_pred)
69
+ prec, rec, f1, _ = precision_recall_fscore_support(y_test, y_pred, average="macro", zero_division=0)
70
+
71
+ accs.append(acc)
72
+ precs.append(prec)
73
+ recs.append(rec)
74
+ f1s.append(f1)
75
+
76
+ print(f"Fold {fold+1}: acc={acc:.4f}, prec={prec:.4f}, rec={rec:.4f}, f1={f1:.4f}")
77
+
78
+ del model
79
+ if CUML_AVAILABLE:
80
+ cp.get_default_memory_pool().free_all_blocks()
81
+ gc.collect()
82
+
83
+ return (np.mean(accs), np.mean(precs), np.mean(recs), np.mean(f1s))
84
+
85
+ def Hyperparameter(data, label):
86
+ set_seed(42)
87
+
88
+ def objective(trial):
89
+ C = trial.suggest_loguniform("C", 1e-3, 1)
90
+ kernel = trial.suggest_categorical("kernel", ["rbf", "poly"])
91
+ gamma = trial.suggest_categorical("gamma", ["scale", "auto"])
92
+ degree = trial.suggest_int("degree", 1, 5)
93
+
94
+ acc, prec, rec, f1 = run_cv_eval(data=data, label=label, C=C,
95
+ kernel=kernel, gamma=gamma, degree=degree)
96
+ return f1
97
+
98
+ study = optuna.create_study(direction="maximize")
99
+ study.optimize(objective, n_trials=20)
100
+
101
+ print("\n===== Best Parameters =====")
102
+ print(study.best_params)
103
+ print("Best macro-F1:", study.best_value)
104
+ print("Successfully finished Optuna search")
105
+
106
+ return study.best_params
@@ -0,0 +1,5 @@
1
+ from .SVC_GPU import SVC_class
2
+
3
+ SVC = SVC_class
4
+
5
+ __all__ = ["SVC","SVC_class"]
@@ -0,0 +1,179 @@
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import Module
4
+ import numpy as np
5
+ class CA_Block(nn.Module):
6
+ def __init__(self, channel, h, w, reduction=16):
7
+ super(CA_Block, self).__init__()
8
+
9
+ self.h = h
10
+ self.w = w
11
+
12
+ self.avg_pool_x = nn.AdaptiveAvgPool2d((h, 1))
13
+ self.avg_pool_y = nn.AdaptiveAvgPool2d((1, w))
14
+
15
+ self.conv_1x1 = nn.Conv2d(in_channels=channel, out_channels=channel//reduction, kernel_size=1, stride=1, bias=False)
16
+
17
+ self.relu = nn.ReLU()
18
+ self.bn = nn.BatchNorm2d(channel//reduction)
19
+
20
+ self.F_h = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
21
+ self.F_w = nn.Conv2d(in_channels=channel//reduction, out_channels=channel, kernel_size=1, stride=1, bias=False)
22
+
23
+ self.sigmoid_h = nn.Sigmoid()
24
+ self.sigmoid_w = nn.Sigmoid()
25
+
26
+ def forward(self, x):
27
+
28
+ x_h = self.avg_pool_x(x).permute(0, 1, 3, 2)
29
+ x_w = self.avg_pool_y(x)
30
+
31
+ x_cat_conv_relu = self.relu(self.conv_1x1(torch.cat((x_h, x_w), 3)))
32
+
33
+ x_cat_conv_split_h, x_cat_conv_split_w = x_cat_conv_relu.split([self.h, self.w], 3)
34
+
35
+ s_h = self.sigmoid_h(self.F_h(x_cat_conv_split_h.permute(0, 1, 3, 2)))
36
+ s_w = self.sigmoid_w(self.F_w(x_cat_conv_split_w))
37
+
38
+ out = x * s_h.expand_as(x) * s_w.expand_as(x)
39
+
40
+ return out
41
+
42
+ class AlexNet(nn.Module):
43
+ def __init__(self, num_classes):
44
+ super().__init__()
45
+ self.num_classes = num_classes
46
+ self.net = nn.Sequential(
47
+
48
+ nn.Conv2d(3,32,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
49
+ nn.BatchNorm2d(32),
50
+ nn.Dropout(0.3),
51
+ nn.ReLU(),
52
+
53
+ CA_Block(32,206,206,reduction=16),
54
+
55
+ nn.Conv2d(32,64,kernel_size=4,padding=1,padding_mode='reflect',stride=2,bias=False),
56
+ nn.BatchNorm2d(64),
57
+ nn.Dropout(0.3),
58
+ nn.ReLU(),
59
+
60
+ nn.Conv2d(64,64,kernel_size=3,padding=1,padding_mode='reflect',stride=2,bias=False),
61
+ nn.BatchNorm2d(64),
62
+ nn.Dropout(0.3),
63
+ nn.ReLU(),
64
+
65
+ nn.Conv2d(64,64,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
66
+ nn.BatchNorm2d(64),
67
+ nn.Dropout(0.3),
68
+ nn.ReLU(),
69
+
70
+ nn.Conv2d(64,128,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
71
+ nn.BatchNorm2d(128),
72
+ nn.Dropout(0.3),
73
+ nn.ReLU(),
74
+
75
+ nn.Conv2d(128,128,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
76
+ nn.BatchNorm2d(128),
77
+ nn.Dropout(0.3),
78
+ nn.ReLU(),
79
+
80
+ nn.Conv2d(128,256,kernel_size=2,stride=2,bias=False),
81
+ nn.BatchNorm2d(256),
82
+ nn.Dropout(0.3),
83
+ nn.ReLU(),
84
+
85
+ nn.Conv2d(256,256,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
86
+ nn.BatchNorm2d(256),
87
+ nn.Dropout(0.3),
88
+ nn.ReLU(),
89
+
90
+ nn.Conv2d(256,512,kernel_size=2,stride=2,bias=False),
91
+ nn.BatchNorm2d(512),
92
+ nn.Dropout(0.3),
93
+ nn.ReLU(),
94
+
95
+ nn.Conv2d(512,512,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
96
+ nn.BatchNorm2d(512),
97
+ nn.Dropout(0.3),
98
+ nn.ReLU(),
99
+
100
+ nn.Conv2d(512,1024,kernel_size=3,padding=1,padding_mode='reflect',stride=2,bias=False),
101
+ nn.BatchNorm2d(1024),
102
+ nn.Dropout(0.3),
103
+ nn.ReLU(),
104
+
105
+ nn.Conv2d(1024,1024,kernel_size=3,padding=1,padding_mode='reflect',stride=1,bias=False),
106
+ nn.BatchNorm2d(1024),
107
+ nn.Dropout(0.3),
108
+ nn.ReLU(),
109
+
110
+ CA_Block(1024,7,7,reduction=16),
111
+
112
+ nn.Flatten(),
113
+ nn.Dropout(0.3),
114
+ nn.ReLU(),
115
+
116
+ nn.Linear(50176, num_classes),
117
+ )
118
+ def forward(self, x):
119
+ x = x.permute(0, 3, 1, 2)
120
+ return self.net(x)
121
+
122
+ def train_model(self, train_loader, valid_loader, num_epochs, learning_rate, patience, device):
123
+ optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate, weight_decay=1e-5)
124
+ criterion = nn.CrossEntropyLoss()
125
+ self.to(device)
126
+
127
+ best_loss = float('inf')
128
+ best_state = None
129
+ trigger_times = 0
130
+
131
+ for epoch in range(num_epochs):
132
+ self.train()
133
+ train_loss = 0.0
134
+ for inputs, labels in train_loader:
135
+ inputs, labels = inputs.to(device), labels.to(device).long() # long() for classification
136
+ optimizer.zero_grad()
137
+ outputs = self(inputs) # (B, num_classes)
138
+ loss = criterion(outputs, labels)
139
+ loss.backward()
140
+ optimizer.step()
141
+ train_loss += loss.item() * inputs.size(0)
142
+
143
+ self.eval()
144
+ valid_loss = 0.0
145
+ with torch.no_grad():
146
+ for inputs, labels in valid_loader:
147
+ inputs, labels = inputs.to(device), labels.to(device).long()
148
+ outputs = self(inputs)
149
+ loss = criterion(outputs, labels)
150
+ valid_loss += loss.item() * inputs.size(0)
151
+
152
+ train_loss /= len(train_loader.dataset)
153
+ valid_loss /= len(valid_loader.dataset)
154
+
155
+ # ---------- Early stopping ----------
156
+ if valid_loss < best_loss:
157
+ best_loss = valid_loss
158
+ best_state = self.state_dict()
159
+ trigger_times = 0
160
+ else:
161
+ trigger_times += 1
162
+ if trigger_times >= patience:
163
+ print(f"Early stopping at epoch {epoch+1}")
164
+ break
165
+
166
+ if best_state is not None:
167
+ self.load_state_dict(best_state)
168
+ return best_loss
169
+
170
+ def predict(self, test_loader):
171
+ self.eval()
172
+ y_pred = []
173
+ with torch.no_grad():
174
+ for inputs, _ in test_loader:
175
+ outputs = self(inputs) # (B, num_classes)
176
+ preds = torch.argmax(outputs, dim=1) # (B,)
177
+ y_pred.append(preds.cpu().numpy())
178
+ y_pred = np.concatenate(y_pred, axis=0)
179
+ return y_pred
@@ -0,0 +1,189 @@
1
+ import os
2
+ import time
3
+ import psutil
4
+ import swanlab
5
+ import argparse
6
+ import random
7
+ import torch
8
+ import numpy as np
9
+ import pandas as pd
10
+ from sklearn.model_selection import StratifiedKFold, train_test_split
11
+ from sklearn.preprocessing import LabelEncoder
12
+ from sklearn.metrics import accuracy_score, precision_recall_fscore_support
13
+ from .AlexNet_206_class import AlexNet
14
+ from torch.utils.data import DataLoader, TensorDataset
15
+ from . import SoyDNGP_he_class
16
+ import pynvml
17
+
18
+ def parse_args():
19
+ parser = argparse.ArgumentParser(description="Argument parser")
20
+ parser.add_argument('--methods', type=str, default='SoyDNGP/', help='Random seed')
21
+ parser.add_argument('--species', type=str, default='Chicken/', help='Species name')
22
+ parser.add_argument('--phe', type=str, default='', help='Dataset name')
23
+ parser.add_argument('--data_dir', type=str, default='../../data/')
24
+ parser.add_argument('--result_dir', type=str, default='result/')
25
+
26
+ parser.add_argument('--epochs', type=int, default=1000, help='Number of training rounds')
27
+ parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
28
+ parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate')
29
+ parser.add_argument('--patience', type=int, default=10, help='Patience for early stopping')
30
+ args = parser.parse_args()
31
+ return args
32
+
33
+ def get_data(dataframe):
34
+ data_matrix = np.array(dataframe)
35
+ total_sample, total_snp = data_matrix.shape
36
+
37
+ one_hot = np.zeros((total_sample, total_snp, 3), dtype=np.float32)
38
+ one_hot[data_matrix == 2] = [1, 1, 0]
39
+ one_hot[data_matrix == 1] = [1, 0, 1]
40
+ one_hot[data_matrix == 0] = [0, 1, 1]
41
+
42
+ target_snp = 206 * 206
43
+ if total_snp != target_snp:
44
+ print(f"⚠ SNP Number {total_snp} != {target_snp}")
45
+ new_one_hot = np.zeros((total_sample, target_snp, 3), dtype=np.float32)
46
+ copy_len = min(total_snp, target_snp)
47
+ new_one_hot[:, :copy_len] = one_hot[:, :copy_len]
48
+ one_hot = new_one_hot
49
+
50
+ one_hot = one_hot.reshape(total_sample, 206, 206, 3)
51
+ return one_hot
52
+
53
+
54
+ def load_data(args):
55
+ xData = np.load(os.path.join(args.data_dir, args.species, 'genotype.npz'))["arr_0"]
56
+ yData = np.load(os.path.join(args.data_dir, args.species, 'phenotype.npz'))["arr_0"]
57
+ names = np.load(os.path.join(args.data_dir, args.species, 'phenotype.npz'))["arr_1"]
58
+
59
+ nsample = xData.shape[0]
60
+ nsnp = xData.shape[1]
61
+ print("Number of samples: ", nsample)
62
+ print("Number of SNPs: ", nsnp)
63
+ xData = get_data(xData)
64
+ return xData, yData, nsample, nsnp, names
65
+
66
+ def set_seed(seed=42):
67
+ random.seed(seed)
68
+ np.random.seed(seed)
69
+ torch.manual_seed(seed)
70
+ torch.cuda.manual_seed_all(seed)
71
+ torch.backends.cudnn.deterministic = True
72
+ torch.backends.cudnn.benchmark = False
73
+
74
+ def get_gpu_mem_by_pid(pid):
75
+ procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
76
+ for p in procs:
77
+ if p.pid == pid:
78
+ return p.usedGpuMemory / 1024**2
79
+ return 0.0
80
+
81
+
82
+ def run_nested_cv(args, data, label, nsnp, num_classes, device):
83
+ result_dir = os.path.join(args.result_dir, args.methods + args.species + args.phe)
84
+ os.makedirs(result_dir, exist_ok=True)
85
+ print("Starting 10-fold cross-validation...")
86
+ kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
87
+
88
+ all_acc, all_prec, all_rec, all_f1 = [], [], [], []
89
+ time_star = time.time()
90
+ for fold, (train_index, test_index) in enumerate(kf.split(data, label)):
91
+ print(f"Running fold {fold}...")
92
+ process = psutil.Process(os.getpid())
93
+ fold_start_time = time.time()
94
+
95
+ X_train, X_test = data[train_index], data[test_index]
96
+ y_train, y_test = label[train_index], label[test_index]
97
+
98
+ X_train_sub, X_valid, y_train_sub, y_valid = train_test_split(
99
+ X_train, y_train, test_size=0.1, stratify=y_train, random_state=42
100
+ )
101
+
102
+ x_train_tensor = torch.from_numpy(X_train_sub).float().to(device)
103
+ y_train_tensor = torch.from_numpy(y_train_sub).long().to(device)
104
+ x_valid_tensor = torch.from_numpy(X_valid).float().to(device)
105
+ y_valid_tensor = torch.from_numpy(y_valid).long().to(device)
106
+ x_test_tensor = torch.from_numpy(X_test).float().to(device)
107
+ y_test_tensor = torch.from_numpy(y_test).long().to(device)
108
+
109
+ train_data = TensorDataset(x_train_tensor, y_train_tensor)
110
+ valid_data = TensorDataset(x_valid_tensor, y_valid_tensor)
111
+ test_data = TensorDataset(x_test_tensor, y_test_tensor)
112
+
113
+ train_loader = DataLoader(train_data, args.batch_size, shuffle=True)
114
+ valid_loader = DataLoader(valid_data, args.batch_size, shuffle=False)
115
+ test_loader = DataLoader(test_data, args.batch_size, shuffle=False)
116
+
117
+ model = AlexNet(num_classes=num_classes)
118
+ model.train_model(train_loader, valid_loader, args.epochs, args.learning_rate, args.patience, device)
119
+ y_pred = model.predict(test_loader)
120
+
121
+ acc = accuracy_score(y_test, y_pred)
122
+ prec, rec, f1, _ = precision_recall_fscore_support(
123
+ y_test, y_pred, average="macro", zero_division=0
124
+ )
125
+
126
+ all_acc.append(acc)
127
+ all_prec.append(prec)
128
+ all_rec.append(rec)
129
+ all_f1.append(f1)
130
+
131
+ fold_time = time.time() - fold_start_time
132
+ fold_gpu_mem = get_gpu_mem_by_pid(os.getpid())
133
+ fold_cpu_mem = process.memory_info().rss / 1024**2
134
+ print(f'Fold {fold}: ACC={acc:.4f}, PREC={prec:.4f}, REC={rec:.4f}, F1={f1:.4f}, '
135
+ f'Time={fold_time:.2f}s, GPU={fold_gpu_mem:.2f}MB, CPU={fold_cpu_mem:.2f}MB')
136
+
137
+ if torch.cuda.is_available():
138
+ torch.cuda.empty_cache()
139
+ torch.cuda.reset_peak_memory_stats()
140
+ results_df = pd.DataFrame({'Y_test': y_test, 'Y_pred': y_pred})
141
+ results_df.to_csv(os.path.join(result_dir, f"fold{fold}.csv"), index=False)
142
+
143
+ print("\n===== Cross-validation summary =====")
144
+ print(f"Average ACC: {np.mean(all_acc):.4f} ± {np.std(all_acc):.4f}")
145
+ print(f"Average PREC: {np.mean(all_prec):.4f} ± {np.std(all_prec):.4f}")
146
+ print(f"Average REC: {np.mean(all_rec):.4f} ± {np.std(all_rec):.4f}")
147
+ print(f"Average F1 : {np.mean(all_f1):.4f} ± {np.std(all_f1):.4f}")
148
+ print(f"Time: {time.time() - time_star:.2f}s")
149
+
150
+
151
+ def SoyDNGP_class():
152
+ set_seed(42)
153
+ torch.cuda.empty_cache()
154
+ pynvml.nvmlInit()
155
+ handle = pynvml.nvmlDeviceGetHandleByIndex(0)
156
+
157
+ args = parse_args()
158
+ all_species = ["Human/Sim/"]
159
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
160
+ args.device = device
161
+ for i in range(len(all_species)):
162
+ args.species = all_species[i]
163
+ X, Y, nsamples, nsnp, names = load_data(args)
164
+ print("Starting:", args.methods + args.species)
165
+
166
+ label_raw = np.nan_to_num(Y[:, 0])
167
+ le = LabelEncoder()
168
+ label = le.fit_transform(label_raw)
169
+ num_classes = len(le.classes_)
170
+
171
+ best_params = SoyDNGP_he_class.Hyperparameter(X, label, nsnp, num_classes)
172
+ args.learning_rate = best_params['learning_rate']
173
+ args.batch_size = best_params['batch_size']
174
+ args.patience = best_params['patience']
175
+
176
+ start_time = time.time()
177
+ if torch.cuda.is_available():
178
+ torch.cuda.reset_peak_memory_stats()
179
+ process = psutil.Process(os.getpid())
180
+
181
+ run_nested_cv(args, data=X, label=label, nsnp=nsnp, num_classes=num_classes, device=device)
182
+
183
+ elapsed_time = time.time() - start_time
184
+ print(f"Running time: {elapsed_time:.2f}s")
185
+ print("successfully")
186
+
187
+
188
+ if __name__ == "__main__":
189
+ SoyDNGP_class()