gpbench 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gp_agent_tool/compute_dataset_feature.py +67 -0
- gp_agent_tool/config.py +65 -0
- gp_agent_tool/experience/create_masked_dataset_summary.py +97 -0
- gp_agent_tool/experience/dataset_summary_info.py +13 -0
- gp_agent_tool/experience/experience_info.py +12 -0
- gp_agent_tool/experience/get_matched_experience.py +111 -0
- gp_agent_tool/llm_client.py +119 -0
- gp_agent_tool/logging_utils.py +24 -0
- gp_agent_tool/main.py +347 -0
- gp_agent_tool/read_agent/__init__.py +46 -0
- gp_agent_tool/read_agent/nodes.py +674 -0
- gp_agent_tool/read_agent/prompts.py +547 -0
- gp_agent_tool/read_agent/python_repl_tool.py +165 -0
- gp_agent_tool/read_agent/state.py +101 -0
- gp_agent_tool/read_agent/workflow.py +54 -0
- gpbench/__init__.py +25 -0
- gpbench/_selftest.py +104 -0
- gpbench/method_class/BayesA/BayesA_class.py +141 -0
- gpbench/method_class/BayesA/__init__.py +5 -0
- gpbench/method_class/BayesA/_bayesfromR.py +96 -0
- gpbench/method_class/BayesA/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesA/bayesAfromR.py +16 -0
- gpbench/method_class/BayesB/BayesB_class.py +140 -0
- gpbench/method_class/BayesB/__init__.py +5 -0
- gpbench/method_class/BayesB/_bayesfromR.py +96 -0
- gpbench/method_class/BayesB/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesB/bayesBfromR.py +16 -0
- gpbench/method_class/BayesC/BayesC_class.py +141 -0
- gpbench/method_class/BayesC/__init__.py +4 -0
- gpbench/method_class/BayesC/_bayesfromR.py +96 -0
- gpbench/method_class/BayesC/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesC/bayesCfromR.py +16 -0
- gpbench/method_class/CropARNet/CropARNet_class.py +186 -0
- gpbench/method_class/CropARNet/CropARNet_he_class.py +154 -0
- gpbench/method_class/CropARNet/__init__.py +5 -0
- gpbench/method_class/CropARNet/base_CropARNet_class.py +178 -0
- gpbench/method_class/Cropformer/Cropformer_class.py +308 -0
- gpbench/method_class/Cropformer/__init__.py +5 -0
- gpbench/method_class/Cropformer/cropformer_he_class.py +221 -0
- gpbench/method_class/DL_GWAS/DL_GWAS_class.py +250 -0
- gpbench/method_class/DL_GWAS/DL_GWAS_he_class.py +169 -0
- gpbench/method_class/DL_GWAS/__init__.py +5 -0
- gpbench/method_class/DNNGP/DNNGP_class.py +163 -0
- gpbench/method_class/DNNGP/DNNGP_he_class.py +138 -0
- gpbench/method_class/DNNGP/__init__.py +5 -0
- gpbench/method_class/DNNGP/base_dnngp_class.py +116 -0
- gpbench/method_class/DeepCCR/DeepCCR_class.py +172 -0
- gpbench/method_class/DeepCCR/DeepCCR_he_class.py +161 -0
- gpbench/method_class/DeepCCR/__init__.py +5 -0
- gpbench/method_class/DeepCCR/base_DeepCCR_class.py +209 -0
- gpbench/method_class/DeepGS/DeepGS_class.py +184 -0
- gpbench/method_class/DeepGS/DeepGS_he_class.py +150 -0
- gpbench/method_class/DeepGS/__init__.py +5 -0
- gpbench/method_class/DeepGS/base_deepgs_class.py +153 -0
- gpbench/method_class/EIR/EIR_class.py +276 -0
- gpbench/method_class/EIR/EIR_he_class.py +184 -0
- gpbench/method_class/EIR/__init__.py +5 -0
- gpbench/method_class/EIR/utils/__init__.py +0 -0
- gpbench/method_class/EIR/utils/array_output_modules.py +97 -0
- gpbench/method_class/EIR/utils/common.py +65 -0
- gpbench/method_class/EIR/utils/lcl_layers.py +235 -0
- gpbench/method_class/EIR/utils/logging.py +59 -0
- gpbench/method_class/EIR/utils/mlp_layers.py +92 -0
- gpbench/method_class/EIR/utils/models_locally_connected.py +642 -0
- gpbench/method_class/EIR/utils/transformer_models.py +546 -0
- gpbench/method_class/ElasticNet/ElasticNet_class.py +133 -0
- gpbench/method_class/ElasticNet/ElasticNet_he_class.py +91 -0
- gpbench/method_class/ElasticNet/__init__.py +5 -0
- gpbench/method_class/G2PDeep/G2PDeep_he_class.py +217 -0
- gpbench/method_class/G2PDeep/G2Pdeep_class.py +205 -0
- gpbench/method_class/G2PDeep/__init__.py +5 -0
- gpbench/method_class/G2PDeep/base_G2PDeep_class.py +209 -0
- gpbench/method_class/GBLUP/GBLUP_class.py +183 -0
- gpbench/method_class/GBLUP/__init__.py +5 -0
- gpbench/method_class/GEFormer/GEFormer_class.py +169 -0
- gpbench/method_class/GEFormer/GEFormer_he_class.py +137 -0
- gpbench/method_class/GEFormer/__init__.py +5 -0
- gpbench/method_class/GEFormer/gMLP_class.py +357 -0
- gpbench/method_class/LightGBM/LightGBM_class.py +224 -0
- gpbench/method_class/LightGBM/LightGBM_he_class.py +121 -0
- gpbench/method_class/LightGBM/__init__.py +5 -0
- gpbench/method_class/RF/RF_GPU_class.py +165 -0
- gpbench/method_class/RF/RF_GPU_he_class.py +124 -0
- gpbench/method_class/RF/__init__.py +5 -0
- gpbench/method_class/SVC/SVC_GPU.py +181 -0
- gpbench/method_class/SVC/SVC_GPU_he.py +106 -0
- gpbench/method_class/SVC/__init__.py +5 -0
- gpbench/method_class/SoyDNGP/AlexNet_206_class.py +179 -0
- gpbench/method_class/SoyDNGP/SoyDNGP_class.py +189 -0
- gpbench/method_class/SoyDNGP/SoyDNGP_he_class.py +112 -0
- gpbench/method_class/SoyDNGP/__init__.py +5 -0
- gpbench/method_class/XGBoost/XGboost_GPU_class.py +198 -0
- gpbench/method_class/XGBoost/XGboost_GPU_he_class.py +178 -0
- gpbench/method_class/XGBoost/__init__.py +5 -0
- gpbench/method_class/__init__.py +52 -0
- gpbench/method_class/rrBLUP/__init__.py +5 -0
- gpbench/method_class/rrBLUP/rrBLUP_class.py +140 -0
- gpbench/method_reg/BayesA/BayesA.py +116 -0
- gpbench/method_reg/BayesA/__init__.py +5 -0
- gpbench/method_reg/BayesA/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesA/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesA/bayesAfromR.py +16 -0
- gpbench/method_reg/BayesB/BayesB.py +117 -0
- gpbench/method_reg/BayesB/__init__.py +5 -0
- gpbench/method_reg/BayesB/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesB/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesB/bayesBfromR.py +16 -0
- gpbench/method_reg/BayesC/BayesC.py +115 -0
- gpbench/method_reg/BayesC/__init__.py +5 -0
- gpbench/method_reg/BayesC/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesC/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesC/bayesCfromR.py +16 -0
- gpbench/method_reg/CropARNet/CropARNet.py +159 -0
- gpbench/method_reg/CropARNet/CropARNet_Hyperparameters.py +109 -0
- gpbench/method_reg/CropARNet/__init__.py +5 -0
- gpbench/method_reg/CropARNet/base_CropARNet.py +137 -0
- gpbench/method_reg/Cropformer/Cropformer.py +313 -0
- gpbench/method_reg/Cropformer/Cropformer_Hyperparameters.py +250 -0
- gpbench/method_reg/Cropformer/__init__.py +5 -0
- gpbench/method_reg/DL_GWAS/DL_GWAS.py +186 -0
- gpbench/method_reg/DL_GWAS/DL_GWAS_Hyperparameters.py +125 -0
- gpbench/method_reg/DL_GWAS/__init__.py +5 -0
- gpbench/method_reg/DNNGP/DNNGP.py +157 -0
- gpbench/method_reg/DNNGP/DNNGP_Hyperparameters.py +118 -0
- gpbench/method_reg/DNNGP/__init__.py +5 -0
- gpbench/method_reg/DNNGP/base_dnngp.py +101 -0
- gpbench/method_reg/DeepCCR/DeepCCR.py +149 -0
- gpbench/method_reg/DeepCCR/DeepCCR_Hyperparameters.py +110 -0
- gpbench/method_reg/DeepCCR/__init__.py +5 -0
- gpbench/method_reg/DeepCCR/base_DeepCCR.py +171 -0
- gpbench/method_reg/DeepGS/DeepGS.py +165 -0
- gpbench/method_reg/DeepGS/DeepGS_Hyperparameters.py +114 -0
- gpbench/method_reg/DeepGS/__init__.py +5 -0
- gpbench/method_reg/DeepGS/base_deepgs.py +98 -0
- gpbench/method_reg/EIR/EIR.py +258 -0
- gpbench/method_reg/EIR/EIR_Hyperparameters.py +178 -0
- gpbench/method_reg/EIR/__init__.py +5 -0
- gpbench/method_reg/EIR/utils/__init__.py +0 -0
- gpbench/method_reg/EIR/utils/array_output_modules.py +97 -0
- gpbench/method_reg/EIR/utils/common.py +65 -0
- gpbench/method_reg/EIR/utils/lcl_layers.py +235 -0
- gpbench/method_reg/EIR/utils/logging.py +59 -0
- gpbench/method_reg/EIR/utils/mlp_layers.py +92 -0
- gpbench/method_reg/EIR/utils/models_locally_connected.py +642 -0
- gpbench/method_reg/EIR/utils/transformer_models.py +546 -0
- gpbench/method_reg/ElasticNet/ElasticNet.py +123 -0
- gpbench/method_reg/ElasticNet/ElasticNet_he.py +83 -0
- gpbench/method_reg/ElasticNet/__init__.py +5 -0
- gpbench/method_reg/G2PDeep/G2PDeep_Hyperparameters.py +107 -0
- gpbench/method_reg/G2PDeep/G2Pdeep.py +166 -0
- gpbench/method_reg/G2PDeep/__init__.py +5 -0
- gpbench/method_reg/G2PDeep/base_G2PDeep.py +209 -0
- gpbench/method_reg/GBLUP/GBLUP_R.py +182 -0
- gpbench/method_reg/GBLUP/__init__.py +5 -0
- gpbench/method_reg/GEFormer/GEFormer.py +164 -0
- gpbench/method_reg/GEFormer/GEFormer_Hyperparameters.py +106 -0
- gpbench/method_reg/GEFormer/__init__.py +5 -0
- gpbench/method_reg/GEFormer/gMLP.py +341 -0
- gpbench/method_reg/LightGBM/LightGBM.py +237 -0
- gpbench/method_reg/LightGBM/LightGBM_Hyperparameters.py +77 -0
- gpbench/method_reg/LightGBM/__init__.py +5 -0
- gpbench/method_reg/MVP/MVP.py +182 -0
- gpbench/method_reg/MVP/MVP_Hyperparameters.py +126 -0
- gpbench/method_reg/MVP/__init__.py +5 -0
- gpbench/method_reg/MVP/base_MVP.py +113 -0
- gpbench/method_reg/RF/RF_GPU.py +174 -0
- gpbench/method_reg/RF/RF_Hyperparameters.py +163 -0
- gpbench/method_reg/RF/__init__.py +5 -0
- gpbench/method_reg/SVC/SVC_GPU.py +194 -0
- gpbench/method_reg/SVC/SVC_Hyperparameters.py +107 -0
- gpbench/method_reg/SVC/__init__.py +5 -0
- gpbench/method_reg/SoyDNGP/AlexNet_206.py +185 -0
- gpbench/method_reg/SoyDNGP/SoyDNGP.py +179 -0
- gpbench/method_reg/SoyDNGP/SoyDNGP_Hyperparameters.py +105 -0
- gpbench/method_reg/SoyDNGP/__init__.py +5 -0
- gpbench/method_reg/XGBoost/XGboost_GPU.py +188 -0
- gpbench/method_reg/XGBoost/XGboost_Hyperparameters.py +167 -0
- gpbench/method_reg/XGBoost/__init__.py +5 -0
- gpbench/method_reg/__init__.py +55 -0
- gpbench/method_reg/rrBLUP/__init__.py +5 -0
- gpbench/method_reg/rrBLUP/rrBLUP.py +123 -0
- gpbench-1.0.0.dist-info/METADATA +379 -0
- gpbench-1.0.0.dist-info/RECORD +188 -0
- gpbench-1.0.0.dist-info/WHEEL +5 -0
- gpbench-1.0.0.dist-info/entry_points.txt +2 -0
- gpbench-1.0.0.dist-info/top_level.txt +3 -0
- tests/test_import.py +80 -0
- tests/test_method.py +232 -0
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
import gc
|
|
2
|
+
import random
|
|
3
|
+
import time
|
|
4
|
+
import numpy as np
|
|
5
|
+
import optuna
|
|
6
|
+
from sklearn.model_selection import StratifiedKFold
|
|
7
|
+
from sklearn.linear_model import LogisticRegression
|
|
8
|
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
|
9
|
+
from optuna.exceptions import TrialPruned
|
|
10
|
+
|
|
11
|
+
def run_nested_cv_with_early_stopping(data, label, outer_cv, C, l1_ratio):
|
|
12
|
+
best_accs, best_precs, best_recs, best_f1s = [], [], [], []
|
|
13
|
+
time_star = time.time()
|
|
14
|
+
|
|
15
|
+
for fold, (train_idx, test_idx) in enumerate(outer_cv.split(data, label)):
|
|
16
|
+
x_train = data[train_idx]
|
|
17
|
+
x_test = data[test_idx]
|
|
18
|
+
y_train = label[train_idx]
|
|
19
|
+
y_test = label[test_idx]
|
|
20
|
+
|
|
21
|
+
model = LogisticRegression(
|
|
22
|
+
penalty='elasticnet',
|
|
23
|
+
C=C,
|
|
24
|
+
l1_ratio=l1_ratio,
|
|
25
|
+
solver='saga',
|
|
26
|
+
max_iter=1000,
|
|
27
|
+
random_state=42,
|
|
28
|
+
n_jobs=-1
|
|
29
|
+
)
|
|
30
|
+
model.fit(x_train, y_train)
|
|
31
|
+
y_test_preds = model.predict(x_test)
|
|
32
|
+
|
|
33
|
+
acc = accuracy_score(y_test, y_test_preds)
|
|
34
|
+
prec, rec, f1, _ = precision_recall_fscore_support(
|
|
35
|
+
y_test, y_test_preds, average="macro", zero_division=0
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
best_accs.append(acc)
|
|
39
|
+
best_precs.append(prec)
|
|
40
|
+
best_recs.append(rec)
|
|
41
|
+
best_f1s.append(f1)
|
|
42
|
+
|
|
43
|
+
print(f'Fold {fold + 1}: ACC={acc:.4f}, PREC={prec:.4f}, REC={rec:.4f}, F1={f1:.4f}')
|
|
44
|
+
del model, y_test_preds, x_train, x_test, y_train, y_test
|
|
45
|
+
|
|
46
|
+
print("==== Final Results ====")
|
|
47
|
+
print(f"ACC: {np.mean(best_accs):.4f} ± {np.std(best_accs):.4f}")
|
|
48
|
+
print(f"PREC: {np.mean(best_precs):.4f} ± {np.std(best_precs):.4f}")
|
|
49
|
+
print(f"REC: {np.mean(best_recs):.4f} ± {np.std(best_recs):.4f}")
|
|
50
|
+
print(f"F1: {np.mean(best_f1s):.4f} ± {np.std(best_f1s):.4f}")
|
|
51
|
+
|
|
52
|
+
print(f"Time: {time.time() - time_star:.2f}s")
|
|
53
|
+
gc.collect()
|
|
54
|
+
|
|
55
|
+
mean_f1 = float(np.mean(best_f1s)) if best_f1s else 0.0
|
|
56
|
+
if np.isnan(mean_f1) or mean_f1 <= 0:
|
|
57
|
+
raise TrialPruned()
|
|
58
|
+
|
|
59
|
+
return mean_f1
|
|
60
|
+
|
|
61
|
+
def set_seed(seed=42):
|
|
62
|
+
random.seed(seed)
|
|
63
|
+
np.random.seed(seed)
|
|
64
|
+
|
|
65
|
+
def Hyperparameter(data, label):
|
|
66
|
+
set_seed(42)
|
|
67
|
+
|
|
68
|
+
def objective(trial):
|
|
69
|
+
C = trial.suggest_float("C", 1e-4, 100.0, log=True)
|
|
70
|
+
l1_ratio = trial.suggest_categorical("l1_ratio", [0.1, 0.3, 0.5, 0.7, 0.9])
|
|
71
|
+
|
|
72
|
+
outer_cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
|
|
73
|
+
|
|
74
|
+
try:
|
|
75
|
+
f1_score = run_nested_cv_with_early_stopping(
|
|
76
|
+
data=data,
|
|
77
|
+
label=label,
|
|
78
|
+
outer_cv=outer_cv,
|
|
79
|
+
C=C,
|
|
80
|
+
l1_ratio=l1_ratio
|
|
81
|
+
)
|
|
82
|
+
except TrialPruned:
|
|
83
|
+
return float("-inf")
|
|
84
|
+
return f1_score
|
|
85
|
+
|
|
86
|
+
study = optuna.create_study(direction="maximize")
|
|
87
|
+
study.optimize(objective, n_trials=20)
|
|
88
|
+
|
|
89
|
+
print("best params:", study.best_params)
|
|
90
|
+
print("successfully")
|
|
91
|
+
return study.best_params
|
|
@@ -0,0 +1,217 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import time
|
|
3
|
+
import psutil
|
|
4
|
+
import random
|
|
5
|
+
import torch
|
|
6
|
+
import numpy as np
|
|
7
|
+
import optuna
|
|
8
|
+
from sklearn.model_selection import StratifiedKFold, train_test_split
|
|
9
|
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
|
10
|
+
from torch.utils.data import DataLoader, TensorDataset
|
|
11
|
+
from optuna.exceptions import TrialPruned
|
|
12
|
+
from .base_G2PDeep_class import G2PDeep, ModelHyperparams
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def train_model(model, train_loader, valid_loader, optimizer, criterion, num_epochs, patience, device):
|
|
16
|
+
model.to(device)
|
|
17
|
+
best_loss = float('inf')
|
|
18
|
+
best_state = None
|
|
19
|
+
trigger_times = 0
|
|
20
|
+
|
|
21
|
+
use_amp = device.type == 'cuda'
|
|
22
|
+
scaler = torch.amp.GradScaler('cuda') if use_amp else None
|
|
23
|
+
|
|
24
|
+
for epoch in range(num_epochs):
|
|
25
|
+
model.train()
|
|
26
|
+
train_loss = 0.0
|
|
27
|
+
for inputs, labels in train_loader:
|
|
28
|
+
inputs = inputs.to(device, non_blocking=True)
|
|
29
|
+
labels = labels.to(device, non_blocking=True)
|
|
30
|
+
|
|
31
|
+
optimizer.zero_grad()
|
|
32
|
+
|
|
33
|
+
if use_amp:
|
|
34
|
+
with torch.amp.autocast('cuda'):
|
|
35
|
+
outputs = model(inputs)
|
|
36
|
+
loss = criterion(outputs, labels)
|
|
37
|
+
scaler.scale(loss).backward()
|
|
38
|
+
scaler.step(optimizer)
|
|
39
|
+
scaler.update()
|
|
40
|
+
else:
|
|
41
|
+
outputs = model(inputs)
|
|
42
|
+
loss = criterion(outputs, labels)
|
|
43
|
+
loss.backward()
|
|
44
|
+
optimizer.step()
|
|
45
|
+
|
|
46
|
+
train_loss += loss.item() * inputs.size(0)
|
|
47
|
+
train_loss /= len(train_loader.dataset)
|
|
48
|
+
|
|
49
|
+
model.eval()
|
|
50
|
+
valid_loss = 0.0
|
|
51
|
+
with torch.no_grad():
|
|
52
|
+
for inputs, labels in valid_loader:
|
|
53
|
+
inputs = inputs.to(device, non_blocking=True)
|
|
54
|
+
labels = labels.to(device, non_blocking=True)
|
|
55
|
+
|
|
56
|
+
if use_amp:
|
|
57
|
+
with torch.amp.autocast('cuda'):
|
|
58
|
+
outputs = model(inputs)
|
|
59
|
+
loss = criterion(outputs, labels)
|
|
60
|
+
else:
|
|
61
|
+
outputs = model(inputs)
|
|
62
|
+
loss = criterion(outputs, labels)
|
|
63
|
+
|
|
64
|
+
valid_loss += loss.item() * inputs.size(0)
|
|
65
|
+
valid_loss /= len(valid_loader.dataset)
|
|
66
|
+
|
|
67
|
+
if valid_loss < best_loss:
|
|
68
|
+
best_loss = valid_loss
|
|
69
|
+
best_state = {k: v.cpu().clone() for k, v in model.state_dict().items()}
|
|
70
|
+
trigger_times = 0
|
|
71
|
+
else:
|
|
72
|
+
trigger_times += 1
|
|
73
|
+
if trigger_times >= patience:
|
|
74
|
+
print(f"Early stopping at epoch {epoch+1}")
|
|
75
|
+
break
|
|
76
|
+
|
|
77
|
+
if best_state is not None:
|
|
78
|
+
cur_device = next(model.parameters()).device
|
|
79
|
+
best_state = {k: v.to(cur_device) for k, v in best_state.items()}
|
|
80
|
+
model.load_state_dict(best_state)
|
|
81
|
+
return best_loss
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def predict(model, test_loader, device):
|
|
85
|
+
model.eval()
|
|
86
|
+
model.to(device)
|
|
87
|
+
y_pred_list = []
|
|
88
|
+
use_amp = device.type == 'cuda'
|
|
89
|
+
with torch.no_grad():
|
|
90
|
+
for inputs, _ in test_loader:
|
|
91
|
+
inputs = inputs.to(device, non_blocking=True)
|
|
92
|
+
if use_amp:
|
|
93
|
+
with torch.amp.autocast('cuda'):
|
|
94
|
+
outputs = model(inputs)
|
|
95
|
+
else:
|
|
96
|
+
outputs = model(inputs)
|
|
97
|
+
preds = torch.argmax(outputs, dim=1)
|
|
98
|
+
y_pred_list.append(preds.cpu())
|
|
99
|
+
y_pred = torch.cat(y_pred_list, dim=0).numpy()
|
|
100
|
+
return y_pred
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def run_nested_cv_with_early_stopping(data, label, nsnp, num_classes, learning_rate, patience, batch_size, epochs=1000):
|
|
104
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
105
|
+
print("Starting 10-fold cross-validation...")
|
|
106
|
+
kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
|
|
107
|
+
all_acc, all_prec, all_rec, all_f1 = [], [], [], []
|
|
108
|
+
|
|
109
|
+
for fold, (train_index, test_index) in enumerate(kf.split(data, label)):
|
|
110
|
+
print(f"Running fold {fold}...")
|
|
111
|
+
process = psutil.Process(os.getpid())
|
|
112
|
+
fold_start_time = time.time()
|
|
113
|
+
|
|
114
|
+
X_train, X_test = data[train_index], data[test_index]
|
|
115
|
+
y_train, y_test = label[train_index], label[test_index]
|
|
116
|
+
|
|
117
|
+
X_train_sub, X_valid, y_train_sub, y_valid = train_test_split(
|
|
118
|
+
X_train, y_train, test_size=0.1, stratify=y_train, random_state=42
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
x_train_tensor = torch.from_numpy(X_train_sub).float()
|
|
122
|
+
y_train_tensor = torch.from_numpy(y_train_sub).long()
|
|
123
|
+
x_valid_tensor = torch.from_numpy(X_valid).float()
|
|
124
|
+
y_valid_tensor = torch.from_numpy(y_valid).long()
|
|
125
|
+
x_test_tensor = torch.from_numpy(X_test).float()
|
|
126
|
+
y_test_tensor = torch.from_numpy(y_test).long()
|
|
127
|
+
|
|
128
|
+
train_data = TensorDataset(x_train_tensor, y_train_tensor)
|
|
129
|
+
valid_data = TensorDataset(x_valid_tensor, y_valid_tensor)
|
|
130
|
+
test_data = TensorDataset(x_test_tensor, y_test_tensor)
|
|
131
|
+
|
|
132
|
+
train_loader = DataLoader(
|
|
133
|
+
train_data, batch_size, shuffle=True,
|
|
134
|
+
num_workers=4, pin_memory=True, persistent_workers=True
|
|
135
|
+
)
|
|
136
|
+
valid_loader = DataLoader(
|
|
137
|
+
valid_data, batch_size, shuffle=False,
|
|
138
|
+
num_workers=4, pin_memory=True, persistent_workers=True
|
|
139
|
+
)
|
|
140
|
+
test_loader = DataLoader(
|
|
141
|
+
test_data, batch_size, shuffle=False,
|
|
142
|
+
num_workers=4, pin_memory=True, persistent_workers=True
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
hp = ModelHyperparams()
|
|
146
|
+
model = G2PDeep(nsnp=nsnp, num_classes=num_classes, hyperparams=hp).to(device)
|
|
147
|
+
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
|
|
148
|
+
loss_fn = torch.nn.CrossEntropyLoss()
|
|
149
|
+
|
|
150
|
+
train_model(model, train_loader, valid_loader, optimizer, loss_fn, epochs, patience, device)
|
|
151
|
+
y_pred = predict(model, test_loader, device)
|
|
152
|
+
|
|
153
|
+
acc = accuracy_score(y_test, y_pred)
|
|
154
|
+
prec, rec, f1, _ = precision_recall_fscore_support(
|
|
155
|
+
y_test, y_pred, average="macro", zero_division=0
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
if np.isnan(f1) or f1 <= 0:
|
|
159
|
+
print(f"Fold {fold} resulted in NaN or zero F1, pruning the trial...")
|
|
160
|
+
raise TrialPruned()
|
|
161
|
+
|
|
162
|
+
all_acc.append(acc)
|
|
163
|
+
all_prec.append(prec)
|
|
164
|
+
all_rec.append(rec)
|
|
165
|
+
all_f1.append(f1)
|
|
166
|
+
|
|
167
|
+
fold_time = time.time() - fold_start_time
|
|
168
|
+
fold_cpu_mem = process.memory_info().rss / 1024**2
|
|
169
|
+
print(f'Fold {fold}: ACC={acc:.4f}, PREC={prec:.4f}, REC={rec:.4f}, F1={f1:.4f}, '
|
|
170
|
+
f'Time={fold_time:.2f}s, CPU={fold_cpu_mem:.2f}MB')
|
|
171
|
+
|
|
172
|
+
print("\n===== Cross-validation summary =====")
|
|
173
|
+
print(f"Average ACC: {np.mean(all_acc):.4f} ± {np.std(all_acc):.4f}")
|
|
174
|
+
print(f"Average PREC: {np.mean(all_prec):.4f} ± {np.std(all_prec):.4f}")
|
|
175
|
+
print(f"Average REC: {np.mean(all_rec):.4f} ± {np.std(all_rec):.4f}")
|
|
176
|
+
print(f"Average F1 : {np.mean(all_f1):.4f} ± {np.std(all_f1):.4f}")
|
|
177
|
+
|
|
178
|
+
return float(np.mean(all_f1)) if all_f1 else 0.0
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
def set_seed(seed=42):
|
|
182
|
+
random.seed(seed)
|
|
183
|
+
np.random.seed(seed)
|
|
184
|
+
torch.manual_seed(seed)
|
|
185
|
+
if torch.cuda.is_available():
|
|
186
|
+
torch.cuda.manual_seed_all(seed)
|
|
187
|
+
torch.backends.cudnn.deterministic = True
|
|
188
|
+
torch.backends.cudnn.benchmark = False
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def Hyperparameter(data, label, nsnp, num_classes):
|
|
192
|
+
set_seed(42)
|
|
193
|
+
|
|
194
|
+
def objective(trial):
|
|
195
|
+
learning_rate = trial.suggest_float("learning_rate", 1e-4, 0.1, log=True)
|
|
196
|
+
batch_size = trial.suggest_categorical("batch_size", [32, 64, 128])
|
|
197
|
+
patience = trial.suggest_int("patience", 10, 100, step=10)
|
|
198
|
+
try:
|
|
199
|
+
f1_score = run_nested_cv_with_early_stopping(
|
|
200
|
+
data=data,
|
|
201
|
+
label=label,
|
|
202
|
+
nsnp=nsnp,
|
|
203
|
+
num_classes=num_classes,
|
|
204
|
+
learning_rate=learning_rate,
|
|
205
|
+
patience=patience,
|
|
206
|
+
batch_size=batch_size
|
|
207
|
+
)
|
|
208
|
+
except TrialPruned:
|
|
209
|
+
return float("-inf")
|
|
210
|
+
return f1_score
|
|
211
|
+
|
|
212
|
+
study = optuna.create_study(direction="maximize")
|
|
213
|
+
study.optimize(objective, n_trials=20)
|
|
214
|
+
|
|
215
|
+
print("best params:", study.best_params)
|
|
216
|
+
print("successfully")
|
|
217
|
+
return study.best_params
|
|
@@ -0,0 +1,205 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import time
|
|
3
|
+
import psutil
|
|
4
|
+
import swanlab
|
|
5
|
+
import argparse
|
|
6
|
+
import random
|
|
7
|
+
import torch
|
|
8
|
+
import numpy as np
|
|
9
|
+
import pandas as pd
|
|
10
|
+
from sklearn.model_selection import StratifiedKFold, train_test_split
|
|
11
|
+
from sklearn.preprocessing import LabelEncoder
|
|
12
|
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
|
13
|
+
from .base_G2PDeep_class import G2PDeep, ModelHyperparams
|
|
14
|
+
from torch.utils.data import DataLoader, TensorDataset
|
|
15
|
+
from . import G2PDeep_he_class
|
|
16
|
+
import pynvml
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def parse_args():
|
|
20
|
+
parser = argparse.ArgumentParser(description="G2PDeep classification")
|
|
21
|
+
parser.add_argument('--methods', type=str, default='G2PDeep/')
|
|
22
|
+
parser.add_argument('--species', type=str, default='')
|
|
23
|
+
parser.add_argument('--phe', type=str, default='')
|
|
24
|
+
parser.add_argument('--data_dir', type=str, default='../../data/')
|
|
25
|
+
parser.add_argument('--result_dir', type=str, default='result/')
|
|
26
|
+
parser.add_argument('--epoch', type=int, default=1000)
|
|
27
|
+
parser.add_argument('--batch_size', type=int, default=64)
|
|
28
|
+
parser.add_argument('--lr', type=float, default=0.001)
|
|
29
|
+
parser.add_argument('--patience', type=int, default=10)
|
|
30
|
+
return parser.parse_args()
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def process_snp_data(data: np.array) -> np.array:
|
|
34
|
+
nb_classes = 4
|
|
35
|
+
onehot_x = np.empty(
|
|
36
|
+
shape=(data.shape[0], data.shape[1], nb_classes),
|
|
37
|
+
dtype=np.float32
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
for i in range(data.shape[0]):
|
|
41
|
+
_data = pd.to_numeric(data[i], errors='coerce')
|
|
42
|
+
_targets = np.array(_data).reshape(-1).astype(np.int64)
|
|
43
|
+
onehot_x[i] = np.eye(nb_classes)[_targets]
|
|
44
|
+
|
|
45
|
+
return onehot_x
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def load_data(args):
|
|
49
|
+
xData = np.load(os.path.join(args.data_dir, args.species, 'genotype.npz'))["arr_0"]
|
|
50
|
+
yData = np.load(os.path.join(args.data_dir, args.species, 'phenotype.npz'))["arr_0"]
|
|
51
|
+
names = np.load(os.path.join(args.data_dir, args.species, 'phenotype.npz'))["arr_1"]
|
|
52
|
+
|
|
53
|
+
xData[xData == -9] = 0
|
|
54
|
+
xData = process_snp_data(xData)
|
|
55
|
+
nsample = xData.shape[0]
|
|
56
|
+
nsnp = xData.shape[1]
|
|
57
|
+
print("Number of samples: ", nsample)
|
|
58
|
+
print("Number of SNPs: ", nsnp)
|
|
59
|
+
return xData, yData, nsample, nsnp, names
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def set_seed(seed=42):
|
|
63
|
+
random.seed(seed)
|
|
64
|
+
np.random.seed(seed)
|
|
65
|
+
torch.manual_seed(seed)
|
|
66
|
+
torch.cuda.manual_seed_all(seed)
|
|
67
|
+
torch.backends.cudnn.deterministic = True
|
|
68
|
+
torch.backends.cudnn.benchmark = False
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def get_gpu_mem_by_pid(pid, handle=None):
|
|
72
|
+
if handle is None:
|
|
73
|
+
return 0.0
|
|
74
|
+
try:
|
|
75
|
+
procs = pynvml.nvmlDeviceGetComputeRunningProcesses(handle)
|
|
76
|
+
for p in procs:
|
|
77
|
+
if p.pid == pid:
|
|
78
|
+
return p.usedGpuMemory / 1024**2
|
|
79
|
+
return 0.0
|
|
80
|
+
except Exception:
|
|
81
|
+
return 0.0
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def run_nested_cv(args, data, label, nsnp, num_classes, device, gpu_handle=None):
|
|
85
|
+
result_dir = os.path.join(args.result_dir, args.methods + args.species + args.phe)
|
|
86
|
+
os.makedirs(result_dir, exist_ok=True)
|
|
87
|
+
print("Starting 10-fold cross-validation...")
|
|
88
|
+
kf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
|
|
89
|
+
|
|
90
|
+
all_acc, all_prec, all_rec, all_f1 = [], [], [], []
|
|
91
|
+
time_star = time.time()
|
|
92
|
+
|
|
93
|
+
for fold, (train_index, test_index) in enumerate(kf.split(data, label)):
|
|
94
|
+
print(f"Running fold {fold}...")
|
|
95
|
+
process = psutil.Process(os.getpid())
|
|
96
|
+
fold_start_time = time.time()
|
|
97
|
+
|
|
98
|
+
X_train, X_test = data[train_index], data[test_index]
|
|
99
|
+
y_train, y_test = label[train_index], label[test_index]
|
|
100
|
+
|
|
101
|
+
X_train_sub, X_valid, y_train_sub, y_valid = train_test_split(
|
|
102
|
+
X_train, y_train, test_size=0.1, stratify=y_train, random_state=42
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
x_train_tensor = torch.from_numpy(X_train_sub).float()
|
|
106
|
+
y_train_tensor = torch.from_numpy(y_train_sub).long()
|
|
107
|
+
x_valid_tensor = torch.from_numpy(X_valid).float()
|
|
108
|
+
y_valid_tensor = torch.from_numpy(y_valid).long()
|
|
109
|
+
x_test_tensor = torch.from_numpy(X_test).float()
|
|
110
|
+
y_test_tensor = torch.from_numpy(y_test).long()
|
|
111
|
+
|
|
112
|
+
train_data = TensorDataset(x_train_tensor, y_train_tensor)
|
|
113
|
+
valid_data = TensorDataset(x_valid_tensor, y_valid_tensor)
|
|
114
|
+
test_data = TensorDataset(x_test_tensor, y_test_tensor)
|
|
115
|
+
|
|
116
|
+
train_loader = DataLoader(
|
|
117
|
+
train_data, args.batch_size, shuffle=True,
|
|
118
|
+
num_workers=4, pin_memory=True, persistent_workers=True
|
|
119
|
+
)
|
|
120
|
+
valid_loader = DataLoader(
|
|
121
|
+
valid_data, args.batch_size, shuffle=False,
|
|
122
|
+
num_workers=4, pin_memory=True, persistent_workers=True
|
|
123
|
+
)
|
|
124
|
+
test_loader = DataLoader(
|
|
125
|
+
test_data, args.batch_size, shuffle=False,
|
|
126
|
+
num_workers=4, pin_memory=True, persistent_workers=True
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
hp = ModelHyperparams()
|
|
130
|
+
model = G2PDeep(nsnp=nsnp, num_classes=num_classes, hyperparams=hp).to(device)
|
|
131
|
+
model.train_model(train_loader, valid_loader, args.epoch, args.lr, args.patience, device)
|
|
132
|
+
y_pred = model.predict(test_loader, device)
|
|
133
|
+
|
|
134
|
+
acc = accuracy_score(y_test, y_pred)
|
|
135
|
+
prec, rec, f1, _ = precision_recall_fscore_support(
|
|
136
|
+
y_test, y_pred, average="macro", zero_division=0
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
all_acc.append(acc)
|
|
140
|
+
all_prec.append(prec)
|
|
141
|
+
all_rec.append(rec)
|
|
142
|
+
all_f1.append(f1)
|
|
143
|
+
|
|
144
|
+
fold_time = time.time() - fold_start_time
|
|
145
|
+
fold_gpu_mem = get_gpu_mem_by_pid(os.getpid(), gpu_handle)
|
|
146
|
+
fold_cpu_mem = process.memory_info().rss / 1024**2
|
|
147
|
+
print(f'Fold {fold}: ACC={acc:.4f}, PREC={prec:.4f}, REC={rec:.4f}, F1={f1:.4f}, '
|
|
148
|
+
f'Time={fold_time:.2f}s, GPU={fold_gpu_mem:.2f}MB, CPU={fold_cpu_mem:.2f}MB')
|
|
149
|
+
|
|
150
|
+
if torch.cuda.is_available():
|
|
151
|
+
torch.cuda.empty_cache()
|
|
152
|
+
torch.cuda.reset_peak_memory_stats()
|
|
153
|
+
results_df = pd.DataFrame({'Y_test': y_test, 'Y_pred': y_pred})
|
|
154
|
+
results_df.to_csv(os.path.join(result_dir, f"fold{fold}.csv"), index=False)
|
|
155
|
+
|
|
156
|
+
print("\n===== Cross-validation summary =====")
|
|
157
|
+
print(f"Average ACC: {np.mean(all_acc):.4f} ± {np.std(all_acc):.4f}")
|
|
158
|
+
print(f"Average PREC: {np.mean(all_prec):.4f} ± {np.std(all_prec):.4f}")
|
|
159
|
+
print(f"Average REC: {np.mean(all_rec):.4f} ± {np.std(all_rec):.4f}")
|
|
160
|
+
print(f"Average F1 : {np.mean(all_f1):.4f} ± {np.std(all_f1):.4f}")
|
|
161
|
+
print(f"Time: {time.time() - time_star:.2f}s")
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def G2PDeep_class():
|
|
165
|
+
set_seed(42)
|
|
166
|
+
gpu_handle = None
|
|
167
|
+
try:
|
|
168
|
+
if torch.cuda.is_available():
|
|
169
|
+
pynvml.nvmlInit()
|
|
170
|
+
gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(0)
|
|
171
|
+
except Exception as e:
|
|
172
|
+
print(f"Warning: GPU monitoring initialization failed: {e}")
|
|
173
|
+
gpu_handle = None
|
|
174
|
+
|
|
175
|
+
args = parse_args()
|
|
176
|
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
177
|
+
|
|
178
|
+
all_species = ["Human/Sim/"]
|
|
179
|
+
for species in all_species:
|
|
180
|
+
args.species = species
|
|
181
|
+
X, Y, nsamples, nsnp, names = load_data(args)
|
|
182
|
+
|
|
183
|
+
print("Starting:", args.methods + args.species)
|
|
184
|
+
label_raw = np.nan_to_num(Y[:, 0])
|
|
185
|
+
le = LabelEncoder()
|
|
186
|
+
label = le.fit_transform(label_raw)
|
|
187
|
+
num_classes = len(le.classes_)
|
|
188
|
+
|
|
189
|
+
best_params = G2PDeep_he_class.Hyperparameter(X, label, nsnp, num_classes)
|
|
190
|
+
args.lr = best_params['learning_rate']
|
|
191
|
+
args.patience = best_params['patience']
|
|
192
|
+
args.batch_size = best_params['batch_size']
|
|
193
|
+
|
|
194
|
+
start_time = time.time()
|
|
195
|
+
if torch.cuda.is_available():
|
|
196
|
+
torch.cuda.reset_peak_memory_stats()
|
|
197
|
+
process = psutil.Process(os.getpid())
|
|
198
|
+
run_nested_cv(args, data=X, label=label, nsnp=nsnp, num_classes=num_classes, device=device, gpu_handle=gpu_handle)
|
|
199
|
+
|
|
200
|
+
elapsed_time = time.time() - start_time
|
|
201
|
+
print(f"Running time: {elapsed_time:.2f}s")
|
|
202
|
+
print("successfully")
|
|
203
|
+
|
|
204
|
+
if __name__ == "__main__":
|
|
205
|
+
G2PDeep_class()
|