gpbench 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gp_agent_tool/compute_dataset_feature.py +67 -0
- gp_agent_tool/config.py +65 -0
- gp_agent_tool/experience/create_masked_dataset_summary.py +97 -0
- gp_agent_tool/experience/dataset_summary_info.py +13 -0
- gp_agent_tool/experience/experience_info.py +12 -0
- gp_agent_tool/experience/get_matched_experience.py +111 -0
- gp_agent_tool/llm_client.py +119 -0
- gp_agent_tool/logging_utils.py +24 -0
- gp_agent_tool/main.py +347 -0
- gp_agent_tool/read_agent/__init__.py +46 -0
- gp_agent_tool/read_agent/nodes.py +674 -0
- gp_agent_tool/read_agent/prompts.py +547 -0
- gp_agent_tool/read_agent/python_repl_tool.py +165 -0
- gp_agent_tool/read_agent/state.py +101 -0
- gp_agent_tool/read_agent/workflow.py +54 -0
- gpbench/__init__.py +25 -0
- gpbench/_selftest.py +104 -0
- gpbench/method_class/BayesA/BayesA_class.py +141 -0
- gpbench/method_class/BayesA/__init__.py +5 -0
- gpbench/method_class/BayesA/_bayesfromR.py +96 -0
- gpbench/method_class/BayesA/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesA/bayesAfromR.py +16 -0
- gpbench/method_class/BayesB/BayesB_class.py +140 -0
- gpbench/method_class/BayesB/__init__.py +5 -0
- gpbench/method_class/BayesB/_bayesfromR.py +96 -0
- gpbench/method_class/BayesB/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesB/bayesBfromR.py +16 -0
- gpbench/method_class/BayesC/BayesC_class.py +141 -0
- gpbench/method_class/BayesC/__init__.py +4 -0
- gpbench/method_class/BayesC/_bayesfromR.py +96 -0
- gpbench/method_class/BayesC/_param_free_base_model.py +84 -0
- gpbench/method_class/BayesC/bayesCfromR.py +16 -0
- gpbench/method_class/CropARNet/CropARNet_class.py +186 -0
- gpbench/method_class/CropARNet/CropARNet_he_class.py +154 -0
- gpbench/method_class/CropARNet/__init__.py +5 -0
- gpbench/method_class/CropARNet/base_CropARNet_class.py +178 -0
- gpbench/method_class/Cropformer/Cropformer_class.py +308 -0
- gpbench/method_class/Cropformer/__init__.py +5 -0
- gpbench/method_class/Cropformer/cropformer_he_class.py +221 -0
- gpbench/method_class/DL_GWAS/DL_GWAS_class.py +250 -0
- gpbench/method_class/DL_GWAS/DL_GWAS_he_class.py +169 -0
- gpbench/method_class/DL_GWAS/__init__.py +5 -0
- gpbench/method_class/DNNGP/DNNGP_class.py +163 -0
- gpbench/method_class/DNNGP/DNNGP_he_class.py +138 -0
- gpbench/method_class/DNNGP/__init__.py +5 -0
- gpbench/method_class/DNNGP/base_dnngp_class.py +116 -0
- gpbench/method_class/DeepCCR/DeepCCR_class.py +172 -0
- gpbench/method_class/DeepCCR/DeepCCR_he_class.py +161 -0
- gpbench/method_class/DeepCCR/__init__.py +5 -0
- gpbench/method_class/DeepCCR/base_DeepCCR_class.py +209 -0
- gpbench/method_class/DeepGS/DeepGS_class.py +184 -0
- gpbench/method_class/DeepGS/DeepGS_he_class.py +150 -0
- gpbench/method_class/DeepGS/__init__.py +5 -0
- gpbench/method_class/DeepGS/base_deepgs_class.py +153 -0
- gpbench/method_class/EIR/EIR_class.py +276 -0
- gpbench/method_class/EIR/EIR_he_class.py +184 -0
- gpbench/method_class/EIR/__init__.py +5 -0
- gpbench/method_class/EIR/utils/__init__.py +0 -0
- gpbench/method_class/EIR/utils/array_output_modules.py +97 -0
- gpbench/method_class/EIR/utils/common.py +65 -0
- gpbench/method_class/EIR/utils/lcl_layers.py +235 -0
- gpbench/method_class/EIR/utils/logging.py +59 -0
- gpbench/method_class/EIR/utils/mlp_layers.py +92 -0
- gpbench/method_class/EIR/utils/models_locally_connected.py +642 -0
- gpbench/method_class/EIR/utils/transformer_models.py +546 -0
- gpbench/method_class/ElasticNet/ElasticNet_class.py +133 -0
- gpbench/method_class/ElasticNet/ElasticNet_he_class.py +91 -0
- gpbench/method_class/ElasticNet/__init__.py +5 -0
- gpbench/method_class/G2PDeep/G2PDeep_he_class.py +217 -0
- gpbench/method_class/G2PDeep/G2Pdeep_class.py +205 -0
- gpbench/method_class/G2PDeep/__init__.py +5 -0
- gpbench/method_class/G2PDeep/base_G2PDeep_class.py +209 -0
- gpbench/method_class/GBLUP/GBLUP_class.py +183 -0
- gpbench/method_class/GBLUP/__init__.py +5 -0
- gpbench/method_class/GEFormer/GEFormer_class.py +169 -0
- gpbench/method_class/GEFormer/GEFormer_he_class.py +137 -0
- gpbench/method_class/GEFormer/__init__.py +5 -0
- gpbench/method_class/GEFormer/gMLP_class.py +357 -0
- gpbench/method_class/LightGBM/LightGBM_class.py +224 -0
- gpbench/method_class/LightGBM/LightGBM_he_class.py +121 -0
- gpbench/method_class/LightGBM/__init__.py +5 -0
- gpbench/method_class/RF/RF_GPU_class.py +165 -0
- gpbench/method_class/RF/RF_GPU_he_class.py +124 -0
- gpbench/method_class/RF/__init__.py +5 -0
- gpbench/method_class/SVC/SVC_GPU.py +181 -0
- gpbench/method_class/SVC/SVC_GPU_he.py +106 -0
- gpbench/method_class/SVC/__init__.py +5 -0
- gpbench/method_class/SoyDNGP/AlexNet_206_class.py +179 -0
- gpbench/method_class/SoyDNGP/SoyDNGP_class.py +189 -0
- gpbench/method_class/SoyDNGP/SoyDNGP_he_class.py +112 -0
- gpbench/method_class/SoyDNGP/__init__.py +5 -0
- gpbench/method_class/XGBoost/XGboost_GPU_class.py +198 -0
- gpbench/method_class/XGBoost/XGboost_GPU_he_class.py +178 -0
- gpbench/method_class/XGBoost/__init__.py +5 -0
- gpbench/method_class/__init__.py +52 -0
- gpbench/method_class/rrBLUP/__init__.py +5 -0
- gpbench/method_class/rrBLUP/rrBLUP_class.py +140 -0
- gpbench/method_reg/BayesA/BayesA.py +116 -0
- gpbench/method_reg/BayesA/__init__.py +5 -0
- gpbench/method_reg/BayesA/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesA/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesA/bayesAfromR.py +16 -0
- gpbench/method_reg/BayesB/BayesB.py +117 -0
- gpbench/method_reg/BayesB/__init__.py +5 -0
- gpbench/method_reg/BayesB/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesB/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesB/bayesBfromR.py +16 -0
- gpbench/method_reg/BayesC/BayesC.py +115 -0
- gpbench/method_reg/BayesC/__init__.py +5 -0
- gpbench/method_reg/BayesC/_bayesfromR.py +96 -0
- gpbench/method_reg/BayesC/_param_free_base_model.py +84 -0
- gpbench/method_reg/BayesC/bayesCfromR.py +16 -0
- gpbench/method_reg/CropARNet/CropARNet.py +159 -0
- gpbench/method_reg/CropARNet/CropARNet_Hyperparameters.py +109 -0
- gpbench/method_reg/CropARNet/__init__.py +5 -0
- gpbench/method_reg/CropARNet/base_CropARNet.py +137 -0
- gpbench/method_reg/Cropformer/Cropformer.py +313 -0
- gpbench/method_reg/Cropformer/Cropformer_Hyperparameters.py +250 -0
- gpbench/method_reg/Cropformer/__init__.py +5 -0
- gpbench/method_reg/DL_GWAS/DL_GWAS.py +186 -0
- gpbench/method_reg/DL_GWAS/DL_GWAS_Hyperparameters.py +125 -0
- gpbench/method_reg/DL_GWAS/__init__.py +5 -0
- gpbench/method_reg/DNNGP/DNNGP.py +157 -0
- gpbench/method_reg/DNNGP/DNNGP_Hyperparameters.py +118 -0
- gpbench/method_reg/DNNGP/__init__.py +5 -0
- gpbench/method_reg/DNNGP/base_dnngp.py +101 -0
- gpbench/method_reg/DeepCCR/DeepCCR.py +149 -0
- gpbench/method_reg/DeepCCR/DeepCCR_Hyperparameters.py +110 -0
- gpbench/method_reg/DeepCCR/__init__.py +5 -0
- gpbench/method_reg/DeepCCR/base_DeepCCR.py +171 -0
- gpbench/method_reg/DeepGS/DeepGS.py +165 -0
- gpbench/method_reg/DeepGS/DeepGS_Hyperparameters.py +114 -0
- gpbench/method_reg/DeepGS/__init__.py +5 -0
- gpbench/method_reg/DeepGS/base_deepgs.py +98 -0
- gpbench/method_reg/EIR/EIR.py +258 -0
- gpbench/method_reg/EIR/EIR_Hyperparameters.py +178 -0
- gpbench/method_reg/EIR/__init__.py +5 -0
- gpbench/method_reg/EIR/utils/__init__.py +0 -0
- gpbench/method_reg/EIR/utils/array_output_modules.py +97 -0
- gpbench/method_reg/EIR/utils/common.py +65 -0
- gpbench/method_reg/EIR/utils/lcl_layers.py +235 -0
- gpbench/method_reg/EIR/utils/logging.py +59 -0
- gpbench/method_reg/EIR/utils/mlp_layers.py +92 -0
- gpbench/method_reg/EIR/utils/models_locally_connected.py +642 -0
- gpbench/method_reg/EIR/utils/transformer_models.py +546 -0
- gpbench/method_reg/ElasticNet/ElasticNet.py +123 -0
- gpbench/method_reg/ElasticNet/ElasticNet_he.py +83 -0
- gpbench/method_reg/ElasticNet/__init__.py +5 -0
- gpbench/method_reg/G2PDeep/G2PDeep_Hyperparameters.py +107 -0
- gpbench/method_reg/G2PDeep/G2Pdeep.py +166 -0
- gpbench/method_reg/G2PDeep/__init__.py +5 -0
- gpbench/method_reg/G2PDeep/base_G2PDeep.py +209 -0
- gpbench/method_reg/GBLUP/GBLUP_R.py +182 -0
- gpbench/method_reg/GBLUP/__init__.py +5 -0
- gpbench/method_reg/GEFormer/GEFormer.py +164 -0
- gpbench/method_reg/GEFormer/GEFormer_Hyperparameters.py +106 -0
- gpbench/method_reg/GEFormer/__init__.py +5 -0
- gpbench/method_reg/GEFormer/gMLP.py +341 -0
- gpbench/method_reg/LightGBM/LightGBM.py +237 -0
- gpbench/method_reg/LightGBM/LightGBM_Hyperparameters.py +77 -0
- gpbench/method_reg/LightGBM/__init__.py +5 -0
- gpbench/method_reg/MVP/MVP.py +182 -0
- gpbench/method_reg/MVP/MVP_Hyperparameters.py +126 -0
- gpbench/method_reg/MVP/__init__.py +5 -0
- gpbench/method_reg/MVP/base_MVP.py +113 -0
- gpbench/method_reg/RF/RF_GPU.py +174 -0
- gpbench/method_reg/RF/RF_Hyperparameters.py +163 -0
- gpbench/method_reg/RF/__init__.py +5 -0
- gpbench/method_reg/SVC/SVC_GPU.py +194 -0
- gpbench/method_reg/SVC/SVC_Hyperparameters.py +107 -0
- gpbench/method_reg/SVC/__init__.py +5 -0
- gpbench/method_reg/SoyDNGP/AlexNet_206.py +185 -0
- gpbench/method_reg/SoyDNGP/SoyDNGP.py +179 -0
- gpbench/method_reg/SoyDNGP/SoyDNGP_Hyperparameters.py +105 -0
- gpbench/method_reg/SoyDNGP/__init__.py +5 -0
- gpbench/method_reg/XGBoost/XGboost_GPU.py +188 -0
- gpbench/method_reg/XGBoost/XGboost_Hyperparameters.py +167 -0
- gpbench/method_reg/XGBoost/__init__.py +5 -0
- gpbench/method_reg/__init__.py +55 -0
- gpbench/method_reg/rrBLUP/__init__.py +5 -0
- gpbench/method_reg/rrBLUP/rrBLUP.py +123 -0
- gpbench-1.0.0.dist-info/METADATA +379 -0
- gpbench-1.0.0.dist-info/RECORD +188 -0
- gpbench-1.0.0.dist-info/WHEEL +5 -0
- gpbench-1.0.0.dist-info/entry_points.txt +2 -0
- gpbench-1.0.0.dist-info/top_level.txt +3 -0
- tests/test_import.py +80 -0
- tests/test_method.py +232 -0
|
@@ -0,0 +1,341 @@
|
|
|
1
|
+
from random import randrange
|
|
2
|
+
import numpy as np
|
|
3
|
+
import torch
|
|
4
|
+
import torch.nn.functional as F
|
|
5
|
+
from torch import nn, einsum
|
|
6
|
+
|
|
7
|
+
from einops import rearrange, repeat
|
|
8
|
+
from einops.layers.torch import Rearrange, Reduce
|
|
9
|
+
|
|
10
|
+
# functions
|
|
11
|
+
|
|
12
|
+
def exists(val):
|
|
13
|
+
return val is not None
|
|
14
|
+
|
|
15
|
+
def pair(val):
|
|
16
|
+
return (val, val) if not isinstance(val, tuple) else val
|
|
17
|
+
|
|
18
|
+
def dropout_layers(layers, prob_survival):
|
|
19
|
+
if prob_survival == 1:
|
|
20
|
+
return layers
|
|
21
|
+
|
|
22
|
+
num_layers = len(layers)
|
|
23
|
+
to_drop = torch.zeros(num_layers).uniform_(0., 1.) > prob_survival
|
|
24
|
+
|
|
25
|
+
# make sure at least one layer makes it
|
|
26
|
+
if all(to_drop):
|
|
27
|
+
rand_index = randrange(num_layers)
|
|
28
|
+
to_drop[rand_index] = False
|
|
29
|
+
|
|
30
|
+
layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
|
|
31
|
+
return layers
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
# helper classes
|
|
35
|
+
|
|
36
|
+
class Residual(nn.Module):
|
|
37
|
+
def __init__(self, fn):
|
|
38
|
+
super().__init__()
|
|
39
|
+
self.fn = fn
|
|
40
|
+
|
|
41
|
+
def forward(self, x):
|
|
42
|
+
return self.fn(x) + x
|
|
43
|
+
|
|
44
|
+
class PreNorm(nn.Module):
|
|
45
|
+
def __init__(self, dim, fn):
|
|
46
|
+
super().__init__()
|
|
47
|
+
self.fn = fn
|
|
48
|
+
self.norm = nn.LayerNorm(dim)
|
|
49
|
+
|
|
50
|
+
def forward(self, x, **kwargs):
|
|
51
|
+
x = self.norm(x)
|
|
52
|
+
return self.fn(x, **kwargs)
|
|
53
|
+
|
|
54
|
+
class Attention(nn.Module):
|
|
55
|
+
def __init__(self, dim_in, dim_out, dim_inner, causal = False):
|
|
56
|
+
super().__init__()
|
|
57
|
+
self.scale = dim_inner ** -0.5
|
|
58
|
+
self.causal = causal
|
|
59
|
+
|
|
60
|
+
self.to_qkv = nn.Linear(dim_in, dim_inner * 3, bias = False)
|
|
61
|
+
self.to_out = nn.Linear(dim_inner, dim_out)
|
|
62
|
+
|
|
63
|
+
def forward(self, x):
|
|
64
|
+
device = x.device
|
|
65
|
+
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
|
|
66
|
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
|
67
|
+
|
|
68
|
+
if self.causal:
|
|
69
|
+
mask = torch.ones(sim.shape[-2:], device = device).triu(1).bool()
|
|
70
|
+
sim.masked_fill_(mask[None, ...], -torch.finfo(q.dtype).max)
|
|
71
|
+
|
|
72
|
+
attn = sim.softmax(dim = -1)
|
|
73
|
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
|
74
|
+
return self.to_out(out)
|
|
75
|
+
|
|
76
|
+
class SpatialGatingUnit(nn.Module):
|
|
77
|
+
def __init__(
|
|
78
|
+
self,
|
|
79
|
+
dim,
|
|
80
|
+
dim_seq,
|
|
81
|
+
causal = False,
|
|
82
|
+
act = nn.Identity(),
|
|
83
|
+
heads = 1,
|
|
84
|
+
init_eps = 1e-3,
|
|
85
|
+
circulant_matrix = False
|
|
86
|
+
):
|
|
87
|
+
super().__init__()
|
|
88
|
+
dim_out = dim // 2
|
|
89
|
+
self.heads = heads
|
|
90
|
+
self.causal = causal
|
|
91
|
+
self.norm = nn.LayerNorm(dim_out)
|
|
92
|
+
|
|
93
|
+
self.act = act
|
|
94
|
+
|
|
95
|
+
# parameters
|
|
96
|
+
|
|
97
|
+
if circulant_matrix:
|
|
98
|
+
self.circulant_pos_x = nn.Parameter(torch.ones(heads, dim_seq))
|
|
99
|
+
self.circulant_pos_y = nn.Parameter(torch.ones(heads, dim_seq))
|
|
100
|
+
|
|
101
|
+
self.circulant_matrix = circulant_matrix
|
|
102
|
+
shape = (heads, dim_seq,) if circulant_matrix else (heads, dim_seq, dim_seq)
|
|
103
|
+
weight = torch.zeros(shape)
|
|
104
|
+
|
|
105
|
+
self.weight = nn.Parameter(weight)
|
|
106
|
+
init_eps /= dim_seq
|
|
107
|
+
nn.init.uniform_(self.weight, -init_eps, init_eps)
|
|
108
|
+
|
|
109
|
+
self.bias = nn.Parameter(torch.ones(heads, dim_seq))
|
|
110
|
+
|
|
111
|
+
def forward(self, x, gate_res = None):
|
|
112
|
+
device, n, h = x.device, x.shape[1], self.heads
|
|
113
|
+
|
|
114
|
+
res, gate = x.chunk(2, dim = -1)
|
|
115
|
+
gate = self.norm(gate)
|
|
116
|
+
|
|
117
|
+
weight, bias = self.weight, self.bias
|
|
118
|
+
|
|
119
|
+
if self.circulant_matrix:
|
|
120
|
+
# build the circulant matrix
|
|
121
|
+
|
|
122
|
+
dim_seq = weight.shape[-1]
|
|
123
|
+
weight = F.pad(weight, (0, dim_seq), value = 0)
|
|
124
|
+
weight = repeat(weight, '... n -> ... (r n)', r = dim_seq)
|
|
125
|
+
weight = weight[:, :-dim_seq].reshape(h, dim_seq, 2 * dim_seq - 1)
|
|
126
|
+
weight = weight[:, :, (dim_seq - 1):]
|
|
127
|
+
|
|
128
|
+
# give circulant matrix absolute position awareness
|
|
129
|
+
|
|
130
|
+
pos_x, pos_y = self.circulant_pos_x, self.circulant_pos_y
|
|
131
|
+
weight = weight * rearrange(pos_x, 'h i -> h i ()') * rearrange(pos_y, 'h j -> h () j')
|
|
132
|
+
|
|
133
|
+
if self.causal:
|
|
134
|
+
weight, bias = weight[:, :n, :n], bias[:, :n]
|
|
135
|
+
mask = torch.ones(weight.shape[-2:], device = device).triu_(1).bool()
|
|
136
|
+
mask = rearrange(mask, 'i j -> () i j')
|
|
137
|
+
weight = weight.masked_fill(mask, 0.)
|
|
138
|
+
|
|
139
|
+
gate = rearrange(gate, 'b n (h d) -> b h n d', h = h)
|
|
140
|
+
|
|
141
|
+
gate = einsum('b h n d, h m n -> b h m d', gate, weight)
|
|
142
|
+
gate = gate + rearrange(bias, 'h n -> () h n ()')
|
|
143
|
+
|
|
144
|
+
gate = rearrange(gate, 'b h n d -> b n (h d)')
|
|
145
|
+
|
|
146
|
+
if exists(gate_res):
|
|
147
|
+
gate = gate + gate_res
|
|
148
|
+
|
|
149
|
+
return self.act(gate) * res
|
|
150
|
+
|
|
151
|
+
class gMLPBlock(nn.Module):
|
|
152
|
+
def __init__(
|
|
153
|
+
self,
|
|
154
|
+
*,
|
|
155
|
+
dim,
|
|
156
|
+
dim_ff,
|
|
157
|
+
seq_len,
|
|
158
|
+
heads = 1,
|
|
159
|
+
attn_dim = None,
|
|
160
|
+
causal = False,
|
|
161
|
+
act = nn.Identity(),
|
|
162
|
+
circulant_matrix = False
|
|
163
|
+
):
|
|
164
|
+
super().__init__()
|
|
165
|
+
self.proj_in = nn.Sequential(
|
|
166
|
+
nn.Linear(dim, dim_ff),
|
|
167
|
+
nn.GELU()
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
self.attn = Attention(dim, dim_ff // 2, attn_dim, causal) if exists(attn_dim) else None
|
|
171
|
+
|
|
172
|
+
self.sgu = SpatialGatingUnit(dim_ff, seq_len, causal, act, heads, circulant_matrix = circulant_matrix)
|
|
173
|
+
self.proj_out = nn.Linear(dim_ff // 2, dim)
|
|
174
|
+
|
|
175
|
+
def forward(self, x):
|
|
176
|
+
gate_res = self.attn(x) if exists(self.attn) else None
|
|
177
|
+
x = self.proj_in(x)
|
|
178
|
+
x = self.sgu(x, gate_res=gate_res)
|
|
179
|
+
x = self.proj_out(x)
|
|
180
|
+
return x
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
# main classes
|
|
184
|
+
class gMLPVision(nn.Module):
|
|
185
|
+
def __init__(
|
|
186
|
+
self,
|
|
187
|
+
*,
|
|
188
|
+
image_size,
|
|
189
|
+
patch_size,
|
|
190
|
+
num_classes,
|
|
191
|
+
dim,
|
|
192
|
+
depth,
|
|
193
|
+
snp_len,
|
|
194
|
+
heads = 1,
|
|
195
|
+
ff_mult = 4,
|
|
196
|
+
channels = 1,
|
|
197
|
+
attn_dim = None,
|
|
198
|
+
prob_survival = 1.
|
|
199
|
+
):
|
|
200
|
+
super().__init__()
|
|
201
|
+
assert (dim % heads) == 0, 'dimension must be divisible by number of heads'
|
|
202
|
+
|
|
203
|
+
image_height, image_width = pair(image_size)
|
|
204
|
+
patch_height, patch_width = pair(patch_size)
|
|
205
|
+
#assert (image_height % patch_height) == 0 and (image_width % patch_width) == 0, 'image height and width must be divisible by patch size'
|
|
206
|
+
#num_patches = (image_height[0] // patch_height[0]) * (image_width[1] // patch_width[1])
|
|
207
|
+
num_patches = 200
|
|
208
|
+
dim_ff = dim * ff_mult
|
|
209
|
+
|
|
210
|
+
self.to_patch_embed = nn.Sequential(
|
|
211
|
+
Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_height, p2 = patch_width),
|
|
212
|
+
nn.Linear(1*snp_len*1, dim)
|
|
213
|
+
)
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
self.prob_survival = prob_survival
|
|
217
|
+
|
|
218
|
+
self.layers = nn.ModuleList([Residual(PreNorm(dim, gMLPBlock(dim = dim, heads = heads, dim_ff = dim_ff, seq_len = num_patches, attn_dim = attn_dim))) for i in range(depth)])
|
|
219
|
+
|
|
220
|
+
self.to_logits = nn.Sequential(
|
|
221
|
+
nn.LayerNorm(dim),
|
|
222
|
+
Reduce('b n d -> b d', 'mean'),
|
|
223
|
+
nn.Linear(dim, num_classes)
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
def forward(self, x):
|
|
227
|
+
x = self.to_patch_embed(x)
|
|
228
|
+
layers = self.layers if not self.training else dropout_layers(self.layers, self.prob_survival)
|
|
229
|
+
x = nn.Sequential(*layers)(x)
|
|
230
|
+
return self.to_logits(x)
|
|
231
|
+
|
|
232
|
+
class EarlyStopping:
|
|
233
|
+
def __init__(self, patience=10, delta=0):
|
|
234
|
+
self.patience = patience
|
|
235
|
+
self.delta = delta
|
|
236
|
+
self.best_score = None
|
|
237
|
+
self.counter = 0
|
|
238
|
+
self.early_stop = False
|
|
239
|
+
|
|
240
|
+
def __call__(self, score):
|
|
241
|
+
if self.best_score is None:
|
|
242
|
+
self.best_score = score
|
|
243
|
+
elif score < self.best_score + self.delta:
|
|
244
|
+
self.counter += 1
|
|
245
|
+
if self.counter >= self.patience:
|
|
246
|
+
self.early_stop = True
|
|
247
|
+
else:
|
|
248
|
+
self.best_score = score
|
|
249
|
+
self.counter = 0
|
|
250
|
+
|
|
251
|
+
def exists(val):
|
|
252
|
+
return val is not None
|
|
253
|
+
class GEFormer(nn.Module):
|
|
254
|
+
def __init__(self,nsnp):
|
|
255
|
+
super(GEFormer, self).__init__()
|
|
256
|
+
self.gmlp = gMLPVision(image_size=(nsnp, 1),
|
|
257
|
+
patch_size=(nsnp, 1),
|
|
258
|
+
num_classes=126,
|
|
259
|
+
dim=126,
|
|
260
|
+
depth=1,
|
|
261
|
+
snp_len=nsnp
|
|
262
|
+
)
|
|
263
|
+
|
|
264
|
+
self.MLP = nn.Sequential(
|
|
265
|
+
nn.Linear(126, 128),
|
|
266
|
+
nn.LeakyReLU(),
|
|
267
|
+
nn.Dropout(0.4),
|
|
268
|
+
nn.Linear(128, 64),
|
|
269
|
+
nn.LeakyReLU(),
|
|
270
|
+
nn.Dropout(0.4),
|
|
271
|
+
nn.Linear(64, 1)
|
|
272
|
+
)
|
|
273
|
+
self.numsnp = nsnp
|
|
274
|
+
def forward(self, x):
|
|
275
|
+
x = x.view(x.size(0), 1,self.numsnp, 1)
|
|
276
|
+
x = self.gmlp(x)
|
|
277
|
+
predict = self.MLP(x)
|
|
278
|
+
return predict
|
|
279
|
+
|
|
280
|
+
def train_model(self, train_loader, valid_loader, num_epochs, learning_rate, patience, device):
|
|
281
|
+
optimizer = torch.optim.Adam(self.parameters(), lr=learning_rate, weight_decay=1e-4)
|
|
282
|
+
criterion = nn.MSELoss()
|
|
283
|
+
|
|
284
|
+
self.to(device)
|
|
285
|
+
|
|
286
|
+
best_loss = float('inf')
|
|
287
|
+
best_state = None
|
|
288
|
+
trigger_times = 0
|
|
289
|
+
|
|
290
|
+
for epoch in range(num_epochs):
|
|
291
|
+
self.train()
|
|
292
|
+
train_loss = 0.0
|
|
293
|
+
for inputs, labels in train_loader:
|
|
294
|
+
inputs, labels = inputs.to(device), labels.to(device)
|
|
295
|
+
optimizer.zero_grad()
|
|
296
|
+
outputs = self(inputs)
|
|
297
|
+
labels = labels.unsqueeze(1)
|
|
298
|
+
loss = criterion(outputs, labels)
|
|
299
|
+
loss.backward()
|
|
300
|
+
optimizer.step()
|
|
301
|
+
train_loss += loss.item() * inputs.size(0)
|
|
302
|
+
|
|
303
|
+
self.eval()
|
|
304
|
+
valid_loss = 0.0
|
|
305
|
+
with torch.no_grad():
|
|
306
|
+
for inputs, labels in valid_loader:
|
|
307
|
+
inputs, labels = inputs.to(device), labels.to(device)
|
|
308
|
+
outputs = self(inputs)
|
|
309
|
+
labels = labels.unsqueeze(1)
|
|
310
|
+
loss = criterion(outputs, labels)
|
|
311
|
+
valid_loss += loss.item() * inputs.size(0)
|
|
312
|
+
|
|
313
|
+
train_loss /= len(train_loader.dataset)
|
|
314
|
+
valid_loss /= len(valid_loader.dataset)
|
|
315
|
+
|
|
316
|
+
# ---------- Early stopping ----------
|
|
317
|
+
if valid_loss < best_loss:
|
|
318
|
+
best_loss = valid_loss
|
|
319
|
+
best_state = self.state_dict()
|
|
320
|
+
trigger_times = 0
|
|
321
|
+
else:
|
|
322
|
+
trigger_times += 1
|
|
323
|
+
if trigger_times >= patience:
|
|
324
|
+
print(f"Early stopping at epoch {epoch+1}")
|
|
325
|
+
break
|
|
326
|
+
|
|
327
|
+
if best_state is not None:
|
|
328
|
+
self.load_state_dict(best_state)
|
|
329
|
+
return best_loss
|
|
330
|
+
|
|
331
|
+
def predict(self, test_loader):
|
|
332
|
+
self.eval()
|
|
333
|
+
y_pred = []
|
|
334
|
+
with torch.no_grad():
|
|
335
|
+
for inputs, _ in test_loader:
|
|
336
|
+
outputs = self(inputs)
|
|
337
|
+
y_pred.append(outputs.cpu().numpy())
|
|
338
|
+
y_pred = np.concatenate(y_pred, axis=0)
|
|
339
|
+
y_pred = np.squeeze(y_pred)
|
|
340
|
+
return y_pred
|
|
341
|
+
|
|
@@ -0,0 +1,237 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import time
|
|
3
|
+
import psutil
|
|
4
|
+
import argparse
|
|
5
|
+
import random
|
|
6
|
+
import torch
|
|
7
|
+
import pandas as pd
|
|
8
|
+
import numpy as np
|
|
9
|
+
import lightgbm as lgb
|
|
10
|
+
from sklearn.model_selection import KFold
|
|
11
|
+
from scipy.stats import pearsonr
|
|
12
|
+
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
|
13
|
+
import subprocess
|
|
14
|
+
import threading
|
|
15
|
+
import queue
|
|
16
|
+
from . import LightGBM_Hyperparameters
|
|
17
|
+
|
|
18
|
+
class GPUMonitor:
|
|
19
|
+
def __init__(self, gpu_id=0, interval=0.5):
|
|
20
|
+
self.gpu_id = gpu_id
|
|
21
|
+
self.interval = interval
|
|
22
|
+
self.max_memory = 0
|
|
23
|
+
self.current_memory = 0
|
|
24
|
+
self.monitoring = False
|
|
25
|
+
self.pid = os.getpid()
|
|
26
|
+
self.queue = queue.Queue()
|
|
27
|
+
|
|
28
|
+
def _get_gpu_memory_by_pid(self):
|
|
29
|
+
try:
|
|
30
|
+
result = subprocess.check_output([
|
|
31
|
+
'nvidia-smi',
|
|
32
|
+
'--query-compute-apps=pid,used_memory,gpu_bus_id',
|
|
33
|
+
'--format=csv,nounits,noheader'
|
|
34
|
+
], timeout=5)
|
|
35
|
+
|
|
36
|
+
lines = result.decode('utf-8').strip().split('\n')
|
|
37
|
+
for line in lines:
|
|
38
|
+
if not line.strip():
|
|
39
|
+
continue
|
|
40
|
+
parts = line.split(',')
|
|
41
|
+
if len(parts) >= 2:
|
|
42
|
+
pid = int(parts[0].strip())
|
|
43
|
+
if pid == self.pid:
|
|
44
|
+
mem_str = parts[1].strip()
|
|
45
|
+
mem_value = ''.join(filter(str.isdigit, mem_str))
|
|
46
|
+
if mem_value:
|
|
47
|
+
return int(mem_value)
|
|
48
|
+
return 0
|
|
49
|
+
except Exception as e:
|
|
50
|
+
print(f"GPU memory query error: {e}")
|
|
51
|
+
return 0
|
|
52
|
+
|
|
53
|
+
def _monitor_loop(self):
|
|
54
|
+
while self.monitoring:
|
|
55
|
+
try:
|
|
56
|
+
mem = self._get_gpu_memory_by_pid()
|
|
57
|
+
self.current_memory = mem
|
|
58
|
+
if mem > self.max_memory:
|
|
59
|
+
self.max_memory = mem
|
|
60
|
+
time.sleep(self.interval)
|
|
61
|
+
except Exception as e:
|
|
62
|
+
print(f"Monitor loop error: {e}")
|
|
63
|
+
break
|
|
64
|
+
|
|
65
|
+
def start(self):
|
|
66
|
+
self.max_memory = 0
|
|
67
|
+
self.current_memory = 0
|
|
68
|
+
self.monitoring = True
|
|
69
|
+
self.thread = threading.Thread(target=self._monitor_loop)
|
|
70
|
+
self.thread.daemon = True
|
|
71
|
+
self.thread.start()
|
|
72
|
+
|
|
73
|
+
def stop(self):
|
|
74
|
+
self.monitoring = False
|
|
75
|
+
if hasattr(self, 'thread'):
|
|
76
|
+
self.thread.join(timeout=2)
|
|
77
|
+
return self.max_memory
|
|
78
|
+
|
|
79
|
+
gpu_monitor = GPUMonitor(gpu_id=0, interval=0.2)
|
|
80
|
+
|
|
81
|
+
def parse_args():
|
|
82
|
+
parser = argparse.ArgumentParser(description="LightGBM GPU Benchmark")
|
|
83
|
+
parser.add_argument('--methods', type=str, default='LightGBM/', help='Method name')
|
|
84
|
+
parser.add_argument('--species', type=str, default='', help='Dataset name')
|
|
85
|
+
parser.add_argument('--phe', type=str, default='', help='Phenotype')
|
|
86
|
+
parser.add_argument('--data_dir', type=str, default='../../data/')
|
|
87
|
+
parser.add_argument('--result_dir', type=str, default='result/')
|
|
88
|
+
|
|
89
|
+
parser.add_argument('--learning_rate', type=float, default=0.01)
|
|
90
|
+
parser.add_argument('--num_leaves', type=int, default=10)
|
|
91
|
+
parser.add_argument('--min_data_in_leaf', type=int, default=1)
|
|
92
|
+
parser.add_argument('--max_depth', type=int, default=1)
|
|
93
|
+
parser.add_argument('--lambda_l1', type=float, default=0.1)
|
|
94
|
+
parser.add_argument('--lambda_l2', type=float, default=0.1)
|
|
95
|
+
parser.add_argument('--min_gain_to_split', type=float, default=0.1)
|
|
96
|
+
parser.add_argument('--feature_fraction', type=float, default=0.9)
|
|
97
|
+
parser.add_argument('--bagging_fraction', type=float, default=0.9)
|
|
98
|
+
parser.add_argument('--bagging_freq', type=int, default=1)
|
|
99
|
+
parser.add_argument('--num_boost_round', type=int, default=100)
|
|
100
|
+
parser.add_argument('--objective', type=str, default='regression')
|
|
101
|
+
parser.add_argument('--device_type', type=str, default='gpu')
|
|
102
|
+
parser.add_argument('--early_stopping_rounds', type=int, default=50)
|
|
103
|
+
return parser.parse_args()
|
|
104
|
+
|
|
105
|
+
def load_data(args):
|
|
106
|
+
xData = np.load(os.path.join(args.data_dir, args.species, 'genotype.npz'))["arr_0"]
|
|
107
|
+
yData = np.load(os.path.join(args.data_dir, args.species, 'phenotype.npz'))["arr_0"]
|
|
108
|
+
names = np.load(os.path.join(args.data_dir, args.species, 'phenotype.npz'))["arr_1"]
|
|
109
|
+
|
|
110
|
+
nsample = xData.shape[0]
|
|
111
|
+
nsnp = xData.shape[1]
|
|
112
|
+
print(f"Number of samples: {nsample}, SNPs: {nsnp}")
|
|
113
|
+
return xData, yData, nsample, nsnp, names
|
|
114
|
+
|
|
115
|
+
def set_seed(seed=42):
|
|
116
|
+
random.seed(seed)
|
|
117
|
+
np.random.seed(seed)
|
|
118
|
+
torch.manual_seed(seed)
|
|
119
|
+
torch.cuda.manual_seed_all(seed)
|
|
120
|
+
torch.backends.cudnn.deterministic = True
|
|
121
|
+
torch.backends.cudnn.benchmark = False
|
|
122
|
+
|
|
123
|
+
def run_nested_cv(args, data, label):
|
|
124
|
+
result_dir = os.path.join(args.result_dir, args.methods + args.species + args.phe)
|
|
125
|
+
os.makedirs(result_dir, exist_ok=True)
|
|
126
|
+
print("Starting 10-fold cross-validation...")
|
|
127
|
+
kf = KFold(n_splits=10, shuffle=True, random_state=42)
|
|
128
|
+
all_mse, all_mae, all_r2, all_pcc = [], [], [], []
|
|
129
|
+
time_star = time.time()
|
|
130
|
+
|
|
131
|
+
params = {
|
|
132
|
+
'objective': args.objective,
|
|
133
|
+
'metric': 'rmse',
|
|
134
|
+
'learning_rate': args.learning_rate,
|
|
135
|
+
'num_leaves': args.num_leaves,
|
|
136
|
+
'min_data_in_leaf': args.min_data_in_leaf,
|
|
137
|
+
'max_depth': args.max_depth,
|
|
138
|
+
'lambda_l1': args.lambda_l1,
|
|
139
|
+
'lambda_l2': args.lambda_l2,
|
|
140
|
+
'min_gain_to_split': args.min_gain_to_split,
|
|
141
|
+
'feature_fraction': args.feature_fraction,
|
|
142
|
+
'bagging_fraction': args.bagging_fraction,
|
|
143
|
+
'bagging_freq': args.bagging_freq,
|
|
144
|
+
'num_boost_round': args.num_boost_round,
|
|
145
|
+
'device_type': 'gpu',
|
|
146
|
+
'gpu_platform_id': 0,
|
|
147
|
+
'gpu_device_id': 0,
|
|
148
|
+
'num_threads': 8,
|
|
149
|
+
'verbose': -1
|
|
150
|
+
}
|
|
151
|
+
|
|
152
|
+
for fold, (train_index, test_index) in enumerate(kf.split(data)):
|
|
153
|
+
print(f"\n===== Running fold {fold} =====")
|
|
154
|
+
process = psutil.Process(os.getpid())
|
|
155
|
+
fold_start_time = time.time()
|
|
156
|
+
|
|
157
|
+
gpu_monitor.start()
|
|
158
|
+
time.sleep(0.5)
|
|
159
|
+
|
|
160
|
+
cpu_mem_before = process.memory_info().rss / 1024**2
|
|
161
|
+
|
|
162
|
+
X_train, X_test = data[train_index], data[test_index]
|
|
163
|
+
y_train, y_test = label[train_index], label[test_index]
|
|
164
|
+
|
|
165
|
+
train_set = lgb.Dataset(X_train, label=y_train)
|
|
166
|
+
test_set = lgb.Dataset(X_test, label=y_test)
|
|
167
|
+
|
|
168
|
+
model = lgb.train(
|
|
169
|
+
params,
|
|
170
|
+
train_set,
|
|
171
|
+
num_boost_round=args.num_boost_round,
|
|
172
|
+
valid_sets=[test_set]
|
|
173
|
+
)
|
|
174
|
+
|
|
175
|
+
y_pred = model.predict(X_test)
|
|
176
|
+
mse = mean_squared_error(y_test, y_pred)
|
|
177
|
+
r2 = r2_score(y_test, y_pred)
|
|
178
|
+
mae = mean_absolute_error(y_test, y_pred)
|
|
179
|
+
pcc, _ = pearsonr(y_test, y_pred)
|
|
180
|
+
|
|
181
|
+
all_mse.append(mse)
|
|
182
|
+
all_r2.append(r2)
|
|
183
|
+
all_mae.append(mae)
|
|
184
|
+
all_pcc.append(pcc)
|
|
185
|
+
|
|
186
|
+
fold_time = time.time() - fold_start_time
|
|
187
|
+
fold_gpu_mem = gpu_monitor.stop()
|
|
188
|
+
fold_cpu_mem = process.memory_info().rss / 1024**2
|
|
189
|
+
print(f'Fold {fold}: Corr={pcc:.4f}, MAE={mae:.4f}, MSE={mse:.4f}, R2={r2:.4f}, Time={fold_time:.2f}s, '
|
|
190
|
+
f'GPU={fold_gpu_mem:.2f}MB, CPU={fold_cpu_mem:.2f}MB')
|
|
191
|
+
|
|
192
|
+
results_df = pd.DataFrame({'Y_test': y_test, 'Y_pred': y_pred})
|
|
193
|
+
results_df.to_csv(os.path.join(result_dir, f"fold{fold}.csv"), index=False)
|
|
194
|
+
|
|
195
|
+
print("\n===== Cross-validation summary =====")
|
|
196
|
+
print(f"Average PCC: {np.mean(all_pcc):.4f} ± {np.std(all_pcc):.4f}")
|
|
197
|
+
print(f"Average MAE: {np.mean(all_mae):.4f} ± {np.std(all_mae):.4f}")
|
|
198
|
+
print(f"Average MSE: {np.mean(all_mse):.4f} ± {np.std(all_mse):.4f}")
|
|
199
|
+
print(f"Average R2 : {np.mean(all_r2):.4f} ± {np.std(all_r2):.4f}")
|
|
200
|
+
print(f"Total Time : {time.time() - time_star:.2f}s")
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
def LightGBM_reg():
|
|
204
|
+
set_seed(42)
|
|
205
|
+
args = parse_args()
|
|
206
|
+
all_species =['Cotton/']
|
|
207
|
+
|
|
208
|
+
for i in range(len(all_species)):
|
|
209
|
+
args.species = all_species[i]
|
|
210
|
+
X, Y, nsamples, nsnp, names = load_data(args)
|
|
211
|
+
for j in range(len(names)):
|
|
212
|
+
args.phe = names[j]
|
|
213
|
+
print(f"Starting run: {args.methods}{args.species}{args.phe}")
|
|
214
|
+
label = Y[:, j]
|
|
215
|
+
label = np.nan_to_num(label, nan=np.nanmean(label))
|
|
216
|
+
|
|
217
|
+
best_params = LightGBM_Hyperparameters.Hyperparameter(X, label)
|
|
218
|
+
args.learning_rate = best_params['learning_rate']
|
|
219
|
+
args.num_leaves = best_params['num_leaves']
|
|
220
|
+
args.min_data_in_leaf = best_params['min_data_in_leaf']
|
|
221
|
+
args.max_depth = best_params['max_depth']
|
|
222
|
+
args.lambda_l1 = best_params['lambda_l1']
|
|
223
|
+
args.lambda_l2 = best_params['lambda_l2']
|
|
224
|
+
args.min_gain_to_split = best_params['min_gain_to_split']
|
|
225
|
+
args.feature_fraction = best_params['feature_fraction']
|
|
226
|
+
args.bagging_fraction = best_params['bagging_fraction']
|
|
227
|
+
args.bagging_freq = best_params['bagging_freq']
|
|
228
|
+
start_time = time.time()
|
|
229
|
+
run_nested_cv(args, data=X, label=label)
|
|
230
|
+
elapsed_time = time.time() - start_time
|
|
231
|
+
|
|
232
|
+
print(f"running time: {elapsed_time:.2f} s")
|
|
233
|
+
print("✅ Successfully finished.\n")
|
|
234
|
+
|
|
235
|
+
|
|
236
|
+
if __name__ == "__main__":
|
|
237
|
+
LightGBM_reg()
|
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
import random
|
|
2
|
+
import torch
|
|
3
|
+
import numpy as np
|
|
4
|
+
import lightgbm as lgb
|
|
5
|
+
import optuna
|
|
6
|
+
from sklearn.model_selection import KFold
|
|
7
|
+
from scipy.stats import pearsonr
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def set_seed(seed=42):
|
|
11
|
+
random.seed(seed)
|
|
12
|
+
np.random.seed(seed)
|
|
13
|
+
torch.manual_seed(seed)
|
|
14
|
+
torch.cuda.manual_seed_all(seed)
|
|
15
|
+
torch.backends.cudnn.deterministic = True
|
|
16
|
+
torch.backends.cudnn.benchmark = False
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def run_nested_cv(data, label, params):
|
|
20
|
+
print("Starting 10-fold cross-validation...")
|
|
21
|
+
kf = KFold(n_splits=10, shuffle=True, random_state=42)
|
|
22
|
+
all_corr = []
|
|
23
|
+
|
|
24
|
+
for train_idx, test_idx in kf.split(data):
|
|
25
|
+
X_train, X_test = data[train_idx], data[test_idx]
|
|
26
|
+
y_train, y_test = label[train_idx], label[test_idx]
|
|
27
|
+
|
|
28
|
+
train_set = lgb.Dataset(X_train, label=y_train)
|
|
29
|
+
test_set = lgb.Dataset(X_test, label=y_test)
|
|
30
|
+
|
|
31
|
+
model = lgb.train(
|
|
32
|
+
params,
|
|
33
|
+
train_set,
|
|
34
|
+
valid_sets=[test_set],
|
|
35
|
+
num_boost_round=100,
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
y_pred = model.predict(X_test)
|
|
39
|
+
corr, _ = pearsonr(y_test, y_pred)
|
|
40
|
+
all_corr.append(corr)
|
|
41
|
+
return np.mean(all_corr)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def Hyperparameter(X, label):
|
|
45
|
+
set_seed(42)
|
|
46
|
+
torch.cuda.empty_cache()
|
|
47
|
+
|
|
48
|
+
def objective(trial):
|
|
49
|
+
params = {
|
|
50
|
+
'objective': 'regression',
|
|
51
|
+
'metric': 'rmse',
|
|
52
|
+
'learning_rate': trial.suggest_float('learning_rate', 1e-3, 0.2, log=True),
|
|
53
|
+
'num_leaves': trial.suggest_int('num_leaves', 15, 255),
|
|
54
|
+
'min_data_in_leaf': trial.suggest_int('min_data_in_leaf', 10, 100),
|
|
55
|
+
'max_depth': trial.suggest_int('max_depth', 3, 10),
|
|
56
|
+
'lambda_l1': trial.suggest_float('lambda_l1', 0.0, 5.0),
|
|
57
|
+
'lambda_l2': trial.suggest_float('lambda_l2', 0.0, 5.0),
|
|
58
|
+
'min_gain_to_split': trial.suggest_float('min_gain_to_split', 0.0, 5.0),
|
|
59
|
+
'feature_fraction': trial.suggest_float('feature_fraction', 0.6, 1.0),
|
|
60
|
+
'bagging_fraction': trial.suggest_float('bagging_fraction', 0.6, 1.0),
|
|
61
|
+
'bagging_freq': trial.suggest_int('bagging_freq', 0, 10),
|
|
62
|
+
'num_boost_round':trial.suggest_int('num_boost_round', 100, 1000),
|
|
63
|
+
'device_type': 'gpu',
|
|
64
|
+
'gpu_device_id': 1,
|
|
65
|
+
'num_threads': 8,
|
|
66
|
+
'verbose':-1,
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
corr_scores = run_nested_cv(data=X, label=label, params=params)
|
|
70
|
+
return np.mean(corr_scores)
|
|
71
|
+
|
|
72
|
+
study = optuna.create_study(direction="maximize")
|
|
73
|
+
study.optimize(objective, n_trials=20)
|
|
74
|
+
|
|
75
|
+
print("best params:", study.best_params)
|
|
76
|
+
print("successfully")
|
|
77
|
+
return study.best_params
|