google-cloud-pipeline-components 2.15.0__py3-none-any.whl → 2.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +11 -1
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +14 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +11 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +6 -1
- google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
- google_cloud_pipeline_components/preview/starry_net/component.py +60 -34
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +17 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -17
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +58 -58
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
|
@@ -1461,7 +1461,7 @@ deploymentSpec:
|
|
|
1461
1461
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
1462
1462
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
1463
1463
|
\ ref.project, ref.dataset_id)\n\n"
|
|
1464
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1464
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1465
1465
|
exec-bigquery-delete-dataset-with-prefix:
|
|
1466
1466
|
container:
|
|
1467
1467
|
args:
|
|
@@ -1495,7 +1495,7 @@ deploymentSpec:
|
|
|
1495
1495
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
1496
1496
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
1497
1497
|
\n"
|
|
1498
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1498
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1499
1499
|
exec-bigquery-query-job:
|
|
1500
1500
|
container:
|
|
1501
1501
|
args:
|
|
@@ -1583,7 +1583,7 @@ deploymentSpec:
|
|
|
1583
1583
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
1584
1584
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
1585
1585
|
\ return config\n\n"
|
|
1586
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1586
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1587
1587
|
exec-build-job-configuration-query-2:
|
|
1588
1588
|
container:
|
|
1589
1589
|
args:
|
|
@@ -1617,7 +1617,7 @@ deploymentSpec:
|
|
|
1617
1617
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
1618
1618
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
1619
1619
|
\ return config\n\n"
|
|
1620
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1620
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1621
1621
|
exec-get-first-valid:
|
|
1622
1622
|
container:
|
|
1623
1623
|
args:
|
|
@@ -1641,7 +1641,7 @@ deploymentSpec:
|
|
|
1641
1641
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
1642
1642
|
\n for value in json.loads(values):\n if value:\n return value\n\
|
|
1643
1643
|
\ raise ValueError('No valid values.')\n\n"
|
|
1644
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1644
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1645
1645
|
exec-get-table-location:
|
|
1646
1646
|
container:
|
|
1647
1647
|
args:
|
|
@@ -1677,7 +1677,7 @@ deploymentSpec:
|
|
|
1677
1677
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
1678
1678
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
1679
1679
|
\ return client.get_table(table).location\n\n"
|
|
1680
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1680
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1681
1681
|
exec-get-table-location-2:
|
|
1682
1682
|
container:
|
|
1683
1683
|
args:
|
|
@@ -1713,7 +1713,7 @@ deploymentSpec:
|
|
|
1713
1713
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
1714
1714
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
1715
1715
|
\ return client.get_table(table).location\n\n"
|
|
1716
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1716
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1717
1717
|
exec-load-table-from-uri:
|
|
1718
1718
|
container:
|
|
1719
1719
|
args:
|
|
@@ -1754,7 +1754,7 @@ deploymentSpec:
|
|
|
1754
1754
|
\ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n\
|
|
1755
1755
|
\ destination=destination,\n project=project,\n location=location,\n\
|
|
1756
1756
|
\ job_config=job_config).result()\n return destination\n\n"
|
|
1757
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1757
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1758
1758
|
exec-make-vertex-model-artifact:
|
|
1759
1759
|
container:
|
|
1760
1760
|
args:
|
|
@@ -1778,7 +1778,7 @@ deploymentSpec:
|
|
|
1778
1778
|
Creates a google.VertexModel artifact.\"\"\"\n vertex_model.metadata =\
|
|
1779
1779
|
\ {'resourceName': model_resource_name}\n vertex_model.uri = (f'https://{location}-aiplatform.googleapis.com'\n\
|
|
1780
1780
|
\ f'/v1/{model_resource_name}')\n\n"
|
|
1781
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1781
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1782
1782
|
exec-maybe-replace-with-default:
|
|
1783
1783
|
container:
|
|
1784
1784
|
args:
|
|
@@ -1800,7 +1800,7 @@ deploymentSpec:
|
|
|
1800
1800
|
\ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
|
|
1801
1801
|
\ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
|
|
1802
1802
|
\n return default if not value else value\n\n"
|
|
1803
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1803
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1804
1804
|
exec-model-batch-predict:
|
|
1805
1805
|
container:
|
|
1806
1806
|
args:
|
|
@@ -1879,7 +1879,7 @@ deploymentSpec:
|
|
|
1879
1879
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
1880
1880
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
1881
1881
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
1882
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1882
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1883
1883
|
exec-table-to-uri-2:
|
|
1884
1884
|
container:
|
|
1885
1885
|
args:
|
|
@@ -1909,7 +1909,7 @@ deploymentSpec:
|
|
|
1909
1909
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
1910
1910
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
1911
1911
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
1912
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1912
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1913
1913
|
exec-validate-inputs:
|
|
1914
1914
|
container:
|
|
1915
1915
|
args:
|
|
@@ -2005,7 +2005,7 @@ deploymentSpec:
|
|
|
2005
2005
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
2006
2006
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
2007
2007
|
\n"
|
|
2008
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2008
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2009
2009
|
pipelineInfo:
|
|
2010
2010
|
description: Creates a batch prediction using a Prophet model.
|
|
2011
2011
|
name: prophet-predict
|
|
@@ -108,17 +108,17 @@ def prophet_trainer(
|
|
|
108
108
|
'"machine_spec": {"machine_type": "n1-standard-4"}, ',
|
|
109
109
|
(
|
|
110
110
|
'"container_spec":'
|
|
111
|
-
' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
111
|
+
' {"image_uri":"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", '
|
|
112
112
|
),
|
|
113
113
|
'"args": ["prophet_trainer", "',
|
|
114
114
|
(
|
|
115
115
|
f'--job_name=dataflow-{dsl.PIPELINE_JOB_NAME_PLACEHOLDER}", "'
|
|
116
116
|
),
|
|
117
117
|
(
|
|
118
|
-
'--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
118
|
+
'--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625", "'
|
|
119
119
|
),
|
|
120
120
|
(
|
|
121
|
-
'--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:
|
|
121
|
+
'--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20240710_0625", "'
|
|
122
122
|
),
|
|
123
123
|
'--artifacts_dir=',
|
|
124
124
|
root_dir,
|
|
@@ -2021,7 +2021,7 @@ deploymentSpec:
|
|
|
2021
2021
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
2022
2022
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
2023
2023
|
\ ref.project, ref.dataset_id)\n\n"
|
|
2024
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2024
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2025
2025
|
exec-bigquery-delete-dataset-with-prefix:
|
|
2026
2026
|
container:
|
|
2027
2027
|
args:
|
|
@@ -2055,7 +2055,7 @@ deploymentSpec:
|
|
|
2055
2055
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
2056
2056
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
2057
2057
|
\n"
|
|
2058
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2058
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2059
2059
|
exec-bigquery-query-job:
|
|
2060
2060
|
container:
|
|
2061
2061
|
args:
|
|
@@ -2116,7 +2116,7 @@ deploymentSpec:
|
|
|
2116
2116
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
2117
2117
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
2118
2118
|
\ return config\n\n"
|
|
2119
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2119
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2120
2120
|
exec-feature-transform-engine:
|
|
2121
2121
|
container:
|
|
2122
2122
|
args:
|
|
@@ -2201,8 +2201,8 @@ deploymentSpec:
|
|
|
2201
2201
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
2202
2202
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
2203
2203
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
2204
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2205
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2204
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
2205
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2206
2206
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
2207
2207
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
2208
2208
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -2219,7 +2219,7 @@ deploymentSpec:
|
|
|
2219
2219
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
2220
2220
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
2221
2221
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
2222
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2222
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2223
2223
|
exec-get-fte-suffix:
|
|
2224
2224
|
container:
|
|
2225
2225
|
args:
|
|
@@ -2247,7 +2247,7 @@ deploymentSpec:
|
|
|
2247
2247
|
\ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
|
|
2248
2248
|
\ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
|
|
2249
2249
|
\n"
|
|
2250
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2250
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2251
2251
|
exec-get-table-location:
|
|
2252
2252
|
container:
|
|
2253
2253
|
args:
|
|
@@ -2283,7 +2283,7 @@ deploymentSpec:
|
|
|
2283
2283
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
2284
2284
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
2285
2285
|
\ return client.get_table(table).location\n\n"
|
|
2286
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2286
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2287
2287
|
exec-model-evaluation-regression:
|
|
2288
2288
|
container:
|
|
2289
2289
|
args:
|
|
@@ -2394,10 +2394,10 @@ deploymentSpec:
|
|
|
2394
2394
|
", "\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
2395
2395
|
"\"}, ", "\"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"1\",
|
|
2396
2396
|
", "\"machine_spec\": {\"machine_type\": \"n1-standard-4\"}, ", "\"container_spec\":
|
|
2397
|
-
{\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
2397
|
+
{\"image_uri\":\"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625\",
|
|
2398
2398
|
", "\"args\": [\"prophet_trainer\", \"", "--job_name=dataflow-{{$.pipeline_job_name}}\",
|
|
2399
|
-
\"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2400
|
-
\"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:
|
|
2399
|
+
\"", "--dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625\",
|
|
2400
|
+
\"", "--prediction_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/fte-prediction-server:20240710_0625\",
|
|
2401
2401
|
\"", "--artifacts_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/model/\",
|
|
2402
2402
|
\"", "--evaluated_examples_dir=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2403
2403
|
"/{{$.pipeline_job_uuid}}/eval/\", \"", "--region=", "{{$.inputs.parameters[''location'']}}",
|
|
@@ -2458,7 +2458,7 @@ deploymentSpec:
|
|
|
2458
2458
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
2459
2459
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
2460
2460
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
2461
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2461
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2462
2462
|
exec-validate-inputs:
|
|
2463
2463
|
container:
|
|
2464
2464
|
args:
|
|
@@ -2554,7 +2554,7 @@ deploymentSpec:
|
|
|
2554
2554
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
2555
2555
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
2556
2556
|
\n"
|
|
2557
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2557
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2558
2558
|
exec-wrapped-in-list:
|
|
2559
2559
|
container:
|
|
2560
2560
|
args:
|
|
@@ -2575,7 +2575,7 @@ deploymentSpec:
|
|
|
2575
2575
|
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
|
2576
2576
|
\ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
|
|
2577
2577
|
\ in a list.\"\"\"\n return [value]\n\n"
|
|
2578
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2578
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2579
2579
|
pipelineInfo:
|
|
2580
2580
|
description: Trains one Prophet model per time series.
|
|
2581
2581
|
name: prophet-train
|
|
@@ -8420,9 +8420,9 @@ deploymentSpec:
|
|
|
8420
8420
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8421
8421
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8422
8422
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8423
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8423
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8424
8424
|
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8425
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8425
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8426
8426
|
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
|
|
8427
8427
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
|
|
8428
8428
|
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -8463,9 +8463,9 @@ deploymentSpec:
|
|
|
8463
8463
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8464
8464
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8465
8465
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8466
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8466
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8467
8467
|
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8468
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8468
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8469
8469
|
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
|
|
8470
8470
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
|
|
8471
8471
|
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -8506,7 +8506,7 @@ deploymentSpec:
|
|
|
8506
8506
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8507
8507
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8508
8508
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8509
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8509
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8510
8510
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8511
8511
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8512
8512
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8518,7 +8518,7 @@ deploymentSpec:
|
|
|
8518
8518
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8519
8519
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8520
8520
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8521
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8521
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
8522
8522
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8523
8523
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8524
8524
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8547,7 +8547,7 @@ deploymentSpec:
|
|
|
8547
8547
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8548
8548
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8549
8549
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8550
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8550
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8551
8551
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8552
8552
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8553
8553
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8559,7 +8559,7 @@ deploymentSpec:
|
|
|
8559
8559
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8560
8560
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8561
8561
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8562
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8562
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
8563
8563
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8564
8564
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8565
8565
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8588,7 +8588,7 @@ deploymentSpec:
|
|
|
8588
8588
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8589
8589
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8590
8590
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8591
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8591
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8592
8592
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8593
8593
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8594
8594
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8600,7 +8600,7 @@ deploymentSpec:
|
|
|
8600
8600
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8601
8601
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8602
8602
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8603
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8603
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
8604
8604
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8605
8605
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8606
8606
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8629,7 +8629,7 @@ deploymentSpec:
|
|
|
8629
8629
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8630
8630
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8631
8631
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8632
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8632
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8633
8633
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
8634
8634
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
8635
8635
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -8644,7 +8644,7 @@ deploymentSpec:
|
|
|
8644
8644
|
args:
|
|
8645
8645
|
- --executor_input
|
|
8646
8646
|
- '{{$}}'
|
|
8647
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8647
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
8648
8648
|
resources:
|
|
8649
8649
|
cpuLimit: 8.0
|
|
8650
8650
|
memoryLimit: 52.0
|
|
@@ -8653,7 +8653,7 @@ deploymentSpec:
|
|
|
8653
8653
|
args:
|
|
8654
8654
|
- --executor_input
|
|
8655
8655
|
- '{{$}}'
|
|
8656
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8656
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
8657
8657
|
resources:
|
|
8658
8658
|
cpuLimit: 8.0
|
|
8659
8659
|
memoryLimit: 52.0
|
|
@@ -8662,7 +8662,7 @@ deploymentSpec:
|
|
|
8662
8662
|
args:
|
|
8663
8663
|
- --executor_input
|
|
8664
8664
|
- '{{$}}'
|
|
8665
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8665
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
8666
8666
|
resources:
|
|
8667
8667
|
cpuLimit: 8.0
|
|
8668
8668
|
memoryLimit: 52.0
|
|
@@ -8682,9 +8682,9 @@ deploymentSpec:
|
|
|
8682
8682
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8683
8683
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8684
8684
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8685
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8685
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8686
8686
|
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8687
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8687
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8688
8688
|
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
|
|
8689
8689
|
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
|
|
8690
8690
|
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
|
|
@@ -8729,9 +8729,9 @@ deploymentSpec:
|
|
|
8729
8729
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8730
8730
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8731
8731
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8732
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8732
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8733
8733
|
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8734
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8734
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8735
8735
|
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
|
|
8736
8736
|
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
|
|
8737
8737
|
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
|
|
@@ -8776,7 +8776,7 @@ deploymentSpec:
|
|
|
8776
8776
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8777
8777
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8778
8778
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8779
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8779
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8780
8780
|
\"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
|
|
8781
8781
|
"{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
|
|
8782
8782
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
|
|
@@ -8797,7 +8797,7 @@ deploymentSpec:
|
|
|
8797
8797
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
8798
8798
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
8799
8799
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
8800
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
8800
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
|
|
8801
8801
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
8802
8802
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
8803
8803
|
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
|
|
@@ -8828,7 +8828,7 @@ deploymentSpec:
|
|
|
8828
8828
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8829
8829
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8830
8830
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8831
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8831
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8832
8832
|
\"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
|
|
8833
8833
|
"{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
|
|
8834
8834
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
|
|
@@ -8849,7 +8849,7 @@ deploymentSpec:
|
|
|
8849
8849
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
8850
8850
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
8851
8851
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
8852
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
8852
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
|
|
8853
8853
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
8854
8854
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
8855
8855
|
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
|
|
@@ -8885,7 +8885,7 @@ deploymentSpec:
|
|
|
8885
8885
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
8886
8886
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
8887
8887
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
8888
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
8888
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
8889
8889
|
exec-bool-identity-2:
|
|
8890
8890
|
container:
|
|
8891
8891
|
args:
|
|
@@ -8907,7 +8907,7 @@ deploymentSpec:
|
|
|
8907
8907
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
8908
8908
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
8909
8909
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
8910
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
8910
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
8911
8911
|
exec-bool-identity-3:
|
|
8912
8912
|
container:
|
|
8913
8913
|
args:
|
|
@@ -8929,7 +8929,7 @@ deploymentSpec:
|
|
|
8929
8929
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
8930
8930
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
8931
8931
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
8932
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
8932
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
8933
8933
|
exec-calculate-training-parameters:
|
|
8934
8934
|
container:
|
|
8935
8935
|
args:
|
|
@@ -9021,7 +9021,7 @@ deploymentSpec:
|
|
|
9021
9021
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
9022
9022
|
\ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
|
|
9023
9023
|
\ reduce_search_space_mode,\n )\n\n"
|
|
9024
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9024
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9025
9025
|
exec-calculate-training-parameters-2:
|
|
9026
9026
|
container:
|
|
9027
9027
|
args:
|
|
@@ -9113,7 +9113,7 @@ deploymentSpec:
|
|
|
9113
9113
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
9114
9114
|
\ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
|
|
9115
9115
|
\ reduce_search_space_mode,\n )\n\n"
|
|
9116
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9116
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9117
9117
|
exec-feature-attribution:
|
|
9118
9118
|
container:
|
|
9119
9119
|
args:
|
|
@@ -9299,7 +9299,7 @@ deploymentSpec:
|
|
|
9299
9299
|
\n return collections.namedtuple(\n 'Outputs',\n [\n \
|
|
9300
9300
|
\ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
|
|
9301
9301
|
\n"
|
|
9302
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9302
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9303
9303
|
exec-importer:
|
|
9304
9304
|
importer:
|
|
9305
9305
|
artifactUri:
|
|
@@ -9333,7 +9333,7 @@ deploymentSpec:
|
|
|
9333
9333
|
\ 'r') as f:\n split_0_content = f.read()\n with open(split_1, 'r')\
|
|
9334
9334
|
\ as f:\n split_1_content = f.read()\n with open(splits, 'w') as f:\n\
|
|
9335
9335
|
\ f.write(','.join([split_0_content, split_1_content]))\n\n"
|
|
9336
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9336
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9337
9337
|
exec-model-batch-explanation:
|
|
9338
9338
|
container:
|
|
9339
9339
|
args:
|
|
@@ -10158,7 +10158,7 @@ deploymentSpec:
|
|
|
10158
10158
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
10159
10159
|
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
|
|
10160
10160
|
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
|
|
10161
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10161
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10162
10162
|
exec-read-input-uri-2:
|
|
10163
10163
|
container:
|
|
10164
10164
|
args:
|
|
@@ -10186,7 +10186,7 @@ deploymentSpec:
|
|
|
10186
10186
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
10187
10187
|
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
|
|
10188
10188
|
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
|
|
10189
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10189
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10190
10190
|
exec-set-optional-inputs:
|
|
10191
10191
|
container:
|
|
10192
10192
|
args:
|
|
@@ -10234,7 +10234,7 @@ deploymentSpec:
|
|
|
10234
10234
|
\ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
|
|
10235
10235
|
\ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
10236
10236
|
\ )\n\n"
|
|
10237
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10237
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10238
10238
|
exec-string-not-empty:
|
|
10239
10239
|
container:
|
|
10240
10240
|
args:
|
|
@@ -10258,7 +10258,7 @@ deploymentSpec:
|
|
|
10258
10258
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
10259
10259
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
10260
10260
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
10261
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10261
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10262
10262
|
exec-tabular-stats-and-example-gen:
|
|
10263
10263
|
container:
|
|
10264
10264
|
args:
|
|
@@ -10275,7 +10275,7 @@ deploymentSpec:
|
|
|
10275
10275
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
10276
10276
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
10277
10277
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
10278
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
10278
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
10279
10279
|
\"args\": [\"stats_generator\",", "\"--train_spec={\\\"prediction_type\\\":
|
|
10280
10280
|
\\\"", "{{$.inputs.parameters[''prediction_type'']}}", "\\\", \\\"target_column\\\":
|
|
10281
10281
|
\\\"", "{{$.inputs.parameters[''target_column_name'']}}", "\\\", \\\"optimization_objective\\\":
|
|
@@ -10308,7 +10308,7 @@ deploymentSpec:
|
|
|
10308
10308
|
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
|
|
10309
10309
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
10310
10310
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
10311
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
10311
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
|
|
10312
10312
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
10313
10313
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
10314
10314
|
"\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
@@ -10363,7 +10363,7 @@ deploymentSpec:
|
|
|
10363
10363
|
\ f'{directory}/prediction.results-*',\n ],\n 'coder':\
|
|
10364
10364
|
\ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
|
|
10365
10365
|
\n"
|
|
10366
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10366
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10367
10367
|
exec-write-bp-result-path-2:
|
|
10368
10368
|
container:
|
|
10369
10369
|
args:
|
|
@@ -10393,7 +10393,7 @@ deploymentSpec:
|
|
|
10393
10393
|
\ f'{directory}/prediction.results-*',\n ],\n 'coder':\
|
|
10394
10394
|
\ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
|
|
10395
10395
|
\n"
|
|
10396
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10396
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10397
10397
|
pipelineInfo:
|
|
10398
10398
|
description: 'Complete AutoML Tables pipeline.
|
|
10399
10399
|
|
|
@@ -99,11 +99,11 @@ def automl_tabular_cv_trainer(
|
|
|
99
99
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
100
100
|
' "container_spec": {"image_uri":"'
|
|
101
101
|
),
|
|
102
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
102
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625',
|
|
103
103
|
'", "args": ["l2l_cv_tuner", "--transform_output_path=',
|
|
104
104
|
transform_output.uri,
|
|
105
105
|
'", "--training_docker_uri=',
|
|
106
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
106
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625',
|
|
107
107
|
(
|
|
108
108
|
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}",'
|
|
109
109
|
' "--training_base_dir='
|
|
@@ -106,7 +106,7 @@ def automl_tabular_ensemble(
|
|
|
106
106
|
' 1, "machine_spec": {"machine_type": "n1-highmem-8"},'
|
|
107
107
|
' "container_spec": {"image_uri":"'
|
|
108
108
|
),
|
|
109
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
109
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625',
|
|
110
110
|
'", "args": ["ensemble", "--transform_output_path=',
|
|
111
111
|
transform_output.uri,
|
|
112
112
|
'", "--model_output_path=',
|
|
@@ -137,7 +137,7 @@ def automl_tabular_ensemble(
|
|
|
137
137
|
'", "--warmup_data=',
|
|
138
138
|
warmup_data.uri,
|
|
139
139
|
'", "--prediction_docker_uri=',
|
|
140
|
-
'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
140
|
+
'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625',
|
|
141
141
|
'", "--model_path=',
|
|
142
142
|
model.uri,
|
|
143
143
|
'", "--custom_model_path=',
|
|
@@ -72,7 +72,7 @@ def automl_tabular_finalizer(
|
|
|
72
72
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
73
73
|
' "container_spec": {"image_uri":"'
|
|
74
74
|
),
|
|
75
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
75
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625',
|
|
76
76
|
'", "args": ["cancel_l2l_tuner", "--error_file_path=',
|
|
77
77
|
root_dir,
|
|
78
78
|
(
|
|
@@ -32,7 +32,7 @@ def automl_tabular_infra_validator(
|
|
|
32
32
|
# fmt: on
|
|
33
33
|
|
|
34
34
|
return dsl.ContainerSpec(
|
|
35
|
-
image='us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
35
|
+
image='us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625',
|
|
36
36
|
command=[],
|
|
37
37
|
args=['--executor_input', '{{$}}'],
|
|
38
38
|
)
|
|
@@ -52,7 +52,7 @@ def split_materialized_data(
|
|
|
52
52
|
# fmt: on
|
|
53
53
|
|
|
54
54
|
return dsl.ContainerSpec(
|
|
55
|
-
image='us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
55
|
+
image='us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625',
|
|
56
56
|
command=[
|
|
57
57
|
'sh',
|
|
58
58
|
'-ec',
|