google-cloud-pipeline-components 2.15.0__py3-none-any.whl → 2.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +11 -1
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +14 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +11 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +6 -1
- google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
- google_cloud_pipeline_components/preview/starry_net/component.py +60 -34
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +17 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -17
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +58 -58
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
|
@@ -54,7 +54,7 @@ def create_custom_training_job_from_component(
|
|
|
54
54
|
display_name: str = '',
|
|
55
55
|
replica_count: int = 1,
|
|
56
56
|
machine_type: str = 'n1-standard-4',
|
|
57
|
-
accelerator_type: str = '',
|
|
57
|
+
accelerator_type: str = 'ACCELERATOR_TYPE_UNSPECIFIED',
|
|
58
58
|
accelerator_count: int = 1,
|
|
59
59
|
boot_disk_type: str = 'pd-ssd',
|
|
60
60
|
boot_disk_size_gb: int = 100,
|
|
@@ -83,7 +83,7 @@ def create_custom_training_job_from_component(
|
|
|
83
83
|
replica_count: The count of instances in the cluster. One replica always counts towards the master in worker_pool_spec[0] and the remaining replicas will be allocated in worker_pool_spec[1]. See [more information.](https://cloud.google.com/vertex-ai/docs/training/distributed-training#configure_a_distributed_training_job)
|
|
84
84
|
machine_type: The type of the machine to run the CustomJob. The default value is "n1-standard-4". See [more information](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types).
|
|
85
85
|
accelerator_type: The type of accelerator(s) that may be attached to the machine per `accelerator_count`. See [more information](https://cloud.google.com/vertex-ai/docs/reference/rest/v1/MachineSpec#acceleratortype).
|
|
86
|
-
accelerator_count: The number of accelerators to attach to the machine. Defaults to 1 if `accelerator_type` is set.
|
|
86
|
+
accelerator_count: The number of accelerators to attach to the machine. Defaults to 1 if `accelerator_type` is set statically.
|
|
87
87
|
boot_disk_type: Type of the boot disk (default is "pd-ssd"). Valid values: "pd-ssd" (Persistent Disk Solid State Drive) or "pd-standard" (Persistent Disk Hard Disk Drive). boot_disk_type is set as a static value and cannot be changed as a pipeline parameter.
|
|
88
88
|
boot_disk_size_gb: Size in GB of the boot disk (default is 100GB). `boot_disk_size_gb` is set as a static value and cannot be changed as a pipeline parameter.
|
|
89
89
|
timeout: The maximum job running time. The default is 7 days. A duration in seconds with up to nine fractional digits, terminated by 's', for example: "3.5s".
|
|
@@ -148,7 +148,11 @@ def create_custom_training_job_from_component(
|
|
|
148
148
|
)[0]['container']
|
|
149
149
|
|
|
150
150
|
worker_pool_spec = {
|
|
151
|
-
'machine_spec': {
|
|
151
|
+
'machine_spec': {
|
|
152
|
+
'machine_type': "{{$.inputs.parameters['machine_type']}}",
|
|
153
|
+
'accelerator_type': "{{$.inputs.parameters['accelerator_type']}}",
|
|
154
|
+
'accelerator_count': "{{$.inputs.parameters['accelerator_count']}}",
|
|
155
|
+
},
|
|
152
156
|
'replica_count': 1,
|
|
153
157
|
'container_spec': {
|
|
154
158
|
'image_uri': user_component_container['image'],
|
|
@@ -161,9 +165,6 @@ def create_custom_training_job_from_component(
|
|
|
161
165
|
'env': env or [],
|
|
162
166
|
},
|
|
163
167
|
}
|
|
164
|
-
if accelerator_type:
|
|
165
|
-
worker_pool_spec['machine_spec']['accelerator_type'] = accelerator_type
|
|
166
|
-
worker_pool_spec['machine_spec']['accelerator_count'] = accelerator_count
|
|
167
168
|
if boot_disk_type:
|
|
168
169
|
worker_pool_spec['disk_spec'] = {
|
|
169
170
|
'boot_disk_type': boot_disk_type,
|
|
@@ -210,6 +211,43 @@ def create_custom_training_job_from_component(
|
|
|
210
211
|
'defaultValue'
|
|
211
212
|
] = default_value
|
|
212
213
|
|
|
214
|
+
# add machine parameters into the customjob component
|
|
215
|
+
if accelerator_type == 'ACCELERATOR_TYPE_UNSPECIFIED':
|
|
216
|
+
accelerator_count = 0
|
|
217
|
+
|
|
218
|
+
cj_component_spec['inputDefinitions']['parameters']['machine_type'] = {
|
|
219
|
+
'parameterType': 'STRING',
|
|
220
|
+
'defaultValue': machine_type,
|
|
221
|
+
'isOptional': True,
|
|
222
|
+
}
|
|
223
|
+
cj_component_spec['inputDefinitions']['parameters']['accelerator_type'] = {
|
|
224
|
+
'parameterType': 'STRING',
|
|
225
|
+
'defaultValue': accelerator_type,
|
|
226
|
+
'isOptional': True,
|
|
227
|
+
}
|
|
228
|
+
cj_component_spec['inputDefinitions']['parameters']['accelerator_count'] = {
|
|
229
|
+
'parameterType': 'NUMBER_INTEGER',
|
|
230
|
+
'defaultValue': accelerator_count,
|
|
231
|
+
'isOptional': True,
|
|
232
|
+
}
|
|
233
|
+
|
|
234
|
+
# check if user component has any input parameters that already exist in the
|
|
235
|
+
# custom job component
|
|
236
|
+
for param_name in user_component_spec.get('inputDefinitions', {}).get(
|
|
237
|
+
'parameters', {}
|
|
238
|
+
):
|
|
239
|
+
if param_name in cj_component_spec['inputDefinitions']['parameters']:
|
|
240
|
+
raise ValueError(
|
|
241
|
+
f'Input parameter {param_name} already exists in the CustomJob component.' # pylint: disable=line-too-long
|
|
242
|
+
)
|
|
243
|
+
for param_name in user_component_spec.get('outputDefinitions', {}).get(
|
|
244
|
+
'parameters', {}
|
|
245
|
+
):
|
|
246
|
+
if param_name in cj_component_spec['outputDefinitions']['parameters']:
|
|
247
|
+
raise ValueError(
|
|
248
|
+
f'Output parameter {param_name} already exists in the CustomJob component.' # pylint: disable=line-too-long
|
|
249
|
+
)
|
|
250
|
+
|
|
213
251
|
# merge parameters from user component into the customjob component
|
|
214
252
|
cj_component_spec['inputDefinitions']['parameters'].update(
|
|
215
253
|
user_component_spec.get('inputDefinitions', {}).get('parameters', {})
|
|
@@ -217,6 +255,7 @@ def create_custom_training_job_from_component(
|
|
|
217
255
|
cj_component_spec['outputDefinitions']['parameters'].update(
|
|
218
256
|
user_component_spec.get('outputDefinitions', {}).get('parameters', {})
|
|
219
257
|
)
|
|
258
|
+
|
|
220
259
|
# use artifacts from user component
|
|
221
260
|
## assign artifacts, not update, since customjob has no artifact outputs
|
|
222
261
|
cj_component_spec['inputDefinitions']['artifacts'] = user_component_spec.get(
|
|
@@ -57,6 +57,8 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
57
57
|
dataprep_target_column: str = '',
|
|
58
58
|
dataprep_static_covariate_columns: List[str] = [],
|
|
59
59
|
dataprep_previous_run_dir: str = '',
|
|
60
|
+
dataprep_nan_threshold: float = 0.2,
|
|
61
|
+
dataprep_zero_threshold: float = 0.2,
|
|
60
62
|
trainer_machine_type: str = 'n1-standard-4',
|
|
61
63
|
trainer_accelerator_type: str = 'NVIDIA_TESLA_V100',
|
|
62
64
|
trainer_num_epochs: int = 50,
|
|
@@ -84,7 +86,16 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
84
86
|
project: str = _placeholders.PROJECT_ID_PLACEHOLDER,
|
|
85
87
|
):
|
|
86
88
|
# fmt: off
|
|
87
|
-
"""
|
|
89
|
+
"""Starry Net is a state-of-the-art forecaster used internally by Google.
|
|
90
|
+
|
|
91
|
+
Starry Net is a glass-box neural network inspired by statistical time series
|
|
92
|
+
models, capable of cleaning step changes and spikes, modeling seasonality and
|
|
93
|
+
events, forecasting trend, and providing both point and prediction interval
|
|
94
|
+
forecasts in a single, lightweight model. Starry Net stands out among neural
|
|
95
|
+
network based forecasting models by providing the explainability,
|
|
96
|
+
interpretability and tunability of traditional statistical forecasters.
|
|
97
|
+
For example, it features time series feature decomposition and damped local
|
|
98
|
+
linear exponential smoothing model as the trend structure.
|
|
88
99
|
|
|
89
100
|
Args:
|
|
90
101
|
tensorboard_instance_id: The tensorboard instance ID. This must be in same
|
|
@@ -149,6 +160,13 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
149
160
|
dataprep_previous_run_dir: The dataprep dir from a previous run. Use this
|
|
150
161
|
to save time if you've already created TFRecords from your BigQuery
|
|
151
162
|
dataset with the same dataprep parameters as this run.
|
|
163
|
+
dataprep_nan_threshold: Series having more nan / missing values than
|
|
164
|
+
nan_threshold (inclusive) in percentage for either backtest or forecast
|
|
165
|
+
will not be sampled in the training set (including missing due to
|
|
166
|
+
train_start and train_end). All existing nans are replaced by zeros.
|
|
167
|
+
dataprep_zero_threshold: Series having more 0.0 values than zero_threshold
|
|
168
|
+
(inclusive) in percentage for either backtest or forecast will not be
|
|
169
|
+
sampled in the training set.
|
|
152
170
|
trainer_machine_type: The machine type for training. Must be compatible with
|
|
153
171
|
trainer_accelerator_type.
|
|
154
172
|
trainer_accelerator_type: The accelerator type for training.
|
|
@@ -221,39 +239,6 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
221
239
|
model_blocks=trainer_model_blocks,
|
|
222
240
|
static_covariates=dataprep_static_covariate_columns,
|
|
223
241
|
)
|
|
224
|
-
test_set_task = DataprepOp(
|
|
225
|
-
backcast_length=dataprep_backcast_length,
|
|
226
|
-
forecast_length=dataprep_forecast_length,
|
|
227
|
-
train_end_date=dataprep_train_end_date,
|
|
228
|
-
n_val_windows=dataprep_n_val_windows,
|
|
229
|
-
n_test_windows=dataprep_n_test_windows,
|
|
230
|
-
test_set_stride=dataprep_test_set_stride,
|
|
231
|
-
model_blocks=create_dataprep_args_task.outputs['model_blocks'],
|
|
232
|
-
bigquery_source=dataprep_bigquery_data_path,
|
|
233
|
-
ts_identifier_columns=create_dataprep_args_task.outputs[
|
|
234
|
-
'ts_identifier_columns'],
|
|
235
|
-
time_column=dataprep_time_column,
|
|
236
|
-
static_covariate_columns=create_dataprep_args_task.outputs[
|
|
237
|
-
'static_covariate_columns'],
|
|
238
|
-
target_column=dataprep_target_column,
|
|
239
|
-
machine_type=dataflow_machine_type,
|
|
240
|
-
docker_region=create_dataprep_args_task.outputs['docker_region'],
|
|
241
|
-
location=location,
|
|
242
|
-
project=project,
|
|
243
|
-
job_id=job_id,
|
|
244
|
-
job_name_prefix='test-set',
|
|
245
|
-
num_workers=dataflow_starting_replica_count,
|
|
246
|
-
max_num_workers=dataflow_max_replica_count,
|
|
247
|
-
disk_size_gb=dataflow_disk_size_gb,
|
|
248
|
-
test_set_only=True,
|
|
249
|
-
bigquery_output=dataprep_test_set_bigquery_dataset,
|
|
250
|
-
gcs_source=dataprep_csv_data_path,
|
|
251
|
-
gcs_static_covariate_source=dataprep_csv_static_covariates_path,
|
|
252
|
-
encryption_spec_key_name=encryption_spec_key_name
|
|
253
|
-
)
|
|
254
|
-
test_set_task.set_display_name('create-test-set')
|
|
255
|
-
set_test_set_task = SetTestSetOp(
|
|
256
|
-
dataprep_dir=test_set_task.outputs['dataprep_dir'])
|
|
257
242
|
with dsl.If(create_dataprep_args_task.outputs['create_tf_records'] == True, # pylint: disable=singleton-comparison
|
|
258
243
|
'create-tf-records'):
|
|
259
244
|
create_tf_records_task = DataprepOp(
|
|
@@ -270,6 +255,7 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
270
255
|
time_column=dataprep_time_column,
|
|
271
256
|
static_covariate_columns=create_dataprep_args_task.outputs[
|
|
272
257
|
'static_covariate_columns'],
|
|
258
|
+
static_covariates_vocab_path='',
|
|
273
259
|
target_column=dataprep_target_column,
|
|
274
260
|
machine_type=dataflow_machine_type,
|
|
275
261
|
docker_region=create_dataprep_args_task.outputs['docker_region'],
|
|
@@ -282,6 +268,8 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
282
268
|
disk_size_gb=dataflow_disk_size_gb,
|
|
283
269
|
test_set_only=False,
|
|
284
270
|
bigquery_output=dataprep_test_set_bigquery_dataset,
|
|
271
|
+
nan_threshold=dataprep_nan_threshold,
|
|
272
|
+
zero_threshold=dataprep_zero_threshold,
|
|
285
273
|
gcs_source=dataprep_csv_data_path,
|
|
286
274
|
gcs_static_covariate_source=dataprep_csv_static_covariates_path,
|
|
287
275
|
encryption_spec_key_name=encryption_spec_key_name
|
|
@@ -303,6 +291,42 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
303
291
|
'static_covariates_vocab_path'],
|
|
304
292
|
set_tfrecord_args_this_run_task.outputs['static_covariates_vocab_path']
|
|
305
293
|
)
|
|
294
|
+
test_set_task = DataprepOp(
|
|
295
|
+
backcast_length=dataprep_backcast_length,
|
|
296
|
+
forecast_length=dataprep_forecast_length,
|
|
297
|
+
train_end_date=dataprep_train_end_date,
|
|
298
|
+
n_val_windows=dataprep_n_val_windows,
|
|
299
|
+
n_test_windows=dataprep_n_test_windows,
|
|
300
|
+
test_set_stride=dataprep_test_set_stride,
|
|
301
|
+
model_blocks=create_dataprep_args_task.outputs['model_blocks'],
|
|
302
|
+
bigquery_source=dataprep_bigquery_data_path,
|
|
303
|
+
ts_identifier_columns=create_dataprep_args_task.outputs[
|
|
304
|
+
'ts_identifier_columns'],
|
|
305
|
+
time_column=dataprep_time_column,
|
|
306
|
+
static_covariate_columns=create_dataprep_args_task.outputs[
|
|
307
|
+
'static_covariate_columns'],
|
|
308
|
+
static_covariates_vocab_path=static_covariates_vocab_path,
|
|
309
|
+
target_column=dataprep_target_column,
|
|
310
|
+
machine_type=dataflow_machine_type,
|
|
311
|
+
docker_region=create_dataprep_args_task.outputs['docker_region'],
|
|
312
|
+
location=location,
|
|
313
|
+
project=project,
|
|
314
|
+
job_id=job_id,
|
|
315
|
+
job_name_prefix='test-set',
|
|
316
|
+
num_workers=dataflow_starting_replica_count,
|
|
317
|
+
max_num_workers=dataflow_max_replica_count,
|
|
318
|
+
disk_size_gb=dataflow_disk_size_gb,
|
|
319
|
+
test_set_only=True,
|
|
320
|
+
bigquery_output=dataprep_test_set_bigquery_dataset,
|
|
321
|
+
nan_threshold=dataprep_nan_threshold,
|
|
322
|
+
zero_threshold=dataprep_zero_threshold,
|
|
323
|
+
gcs_source=dataprep_csv_data_path,
|
|
324
|
+
gcs_static_covariate_source=dataprep_csv_static_covariates_path,
|
|
325
|
+
encryption_spec_key_name=encryption_spec_key_name
|
|
326
|
+
)
|
|
327
|
+
test_set_task.set_display_name('create-test-set')
|
|
328
|
+
set_test_set_task = SetTestSetOp(
|
|
329
|
+
dataprep_dir=test_set_task.outputs['dataprep_dir'])
|
|
306
330
|
train_tf_record_patterns = dsl.OneOf(
|
|
307
331
|
set_tfrecord_args_previous_run_task.outputs['train_tf_record_patterns'],
|
|
308
332
|
set_tfrecord_args_this_run_task.outputs['train_tf_record_patterns']
|
|
@@ -330,6 +354,8 @@ def starry_net( # pylint: disable=dangerous-default-value
|
|
|
330
354
|
n_val_windows=dataprep_n_val_windows,
|
|
331
355
|
n_test_windows=dataprep_n_test_windows,
|
|
332
356
|
test_set_stride=dataprep_test_set_stride,
|
|
357
|
+
nan_threshold=dataprep_nan_threshold,
|
|
358
|
+
zero_threshold=dataprep_zero_threshold,
|
|
333
359
|
cleaning_activation_regularizer_coeff=trainer_cleaning_activation_regularizer_coeff,
|
|
334
360
|
change_point_activation_regularizer_coeff=trainer_change_point_activation_regularizer_coeff,
|
|
335
361
|
change_point_output_regularizer_coeff=trainer_change_point_output_regularizer_coeff,
|
|
@@ -658,7 +658,7 @@ deploymentSpec:
|
|
|
658
658
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
659
659
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
660
660
|
\ ref.project, ref.dataset_id)\n\n"
|
|
661
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
661
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
662
662
|
exec-bigquery-create-dataset-2:
|
|
663
663
|
container:
|
|
664
664
|
args:
|
|
@@ -693,7 +693,7 @@ deploymentSpec:
|
|
|
693
693
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
694
694
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
695
695
|
\ ref.project, ref.dataset_id)\n\n"
|
|
696
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
696
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
697
697
|
exec-bigquery-delete-dataset-with-prefix:
|
|
698
698
|
container:
|
|
699
699
|
args:
|
|
@@ -727,7 +727,7 @@ deploymentSpec:
|
|
|
727
727
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
728
728
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
729
729
|
\n"
|
|
730
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
730
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
731
731
|
exec-bigquery-query-job:
|
|
732
732
|
container:
|
|
733
733
|
args:
|
|
@@ -788,7 +788,7 @@ deploymentSpec:
|
|
|
788
788
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
789
789
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
790
790
|
\ return config\n\n"
|
|
791
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
791
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
792
792
|
exec-get-first-valid:
|
|
793
793
|
container:
|
|
794
794
|
args:
|
|
@@ -812,7 +812,7 @@ deploymentSpec:
|
|
|
812
812
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
813
813
|
\n for value in json.loads(values):\n if value:\n return value\n\
|
|
814
814
|
\ raise ValueError('No valid values.')\n\n"
|
|
815
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
815
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
816
816
|
exec-get-model-metadata:
|
|
817
817
|
container:
|
|
818
818
|
args:
|
|
@@ -851,7 +851,7 @@ deploymentSpec:
|
|
|
851
851
|
\ 'forecast_horizon',\n ],\n )(\n options.time_series_timestamp_column,\n\
|
|
852
852
|
\ options.time_series_id_column,\n options.time_series_data_column,\n\
|
|
853
853
|
\ options.horizon,\n )\n\n"
|
|
854
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
854
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
855
855
|
exec-get-table-location:
|
|
856
856
|
container:
|
|
857
857
|
args:
|
|
@@ -887,7 +887,7 @@ deploymentSpec:
|
|
|
887
887
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
888
888
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
889
889
|
\ return client.get_table(table).location\n\n"
|
|
890
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
891
891
|
exec-load-table-from-uri:
|
|
892
892
|
container:
|
|
893
893
|
args:
|
|
@@ -928,7 +928,7 @@ deploymentSpec:
|
|
|
928
928
|
\ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n\
|
|
929
929
|
\ destination=destination,\n project=project,\n location=location,\n\
|
|
930
930
|
\ job_config=job_config).result()\n return destination\n\n"
|
|
931
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
931
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
932
932
|
exec-maybe-replace-with-default:
|
|
933
933
|
container:
|
|
934
934
|
args:
|
|
@@ -950,7 +950,7 @@ deploymentSpec:
|
|
|
950
950
|
\ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
|
|
951
951
|
\ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
|
|
952
952
|
\n return default if not value else value\n\n"
|
|
953
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
953
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
954
954
|
exec-validate-inputs:
|
|
955
955
|
container:
|
|
956
956
|
args:
|
|
@@ -1046,7 +1046,7 @@ deploymentSpec:
|
|
|
1046
1046
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
1047
1047
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
1048
1048
|
\n"
|
|
1049
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
1049
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
1050
1050
|
pipelineInfo:
|
|
1051
1051
|
description: Forecasts using a BQML ARIMA_PLUS model.
|
|
1052
1052
|
name: automl-tabular-bqml-arima-prediction
|
|
@@ -3399,7 +3399,7 @@ deploymentSpec:
|
|
|
3399
3399
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
3400
3400
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
3401
3401
|
\ ref.project, ref.dataset_id)\n\n"
|
|
3402
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3402
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3403
3403
|
exec-bigquery-create-dataset-2:
|
|
3404
3404
|
container:
|
|
3405
3405
|
args:
|
|
@@ -3434,7 +3434,7 @@ deploymentSpec:
|
|
|
3434
3434
|
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
|
|
3435
3435
|
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
|
|
3436
3436
|
\ ref.project, ref.dataset_id)\n\n"
|
|
3437
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3437
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3438
3438
|
exec-bigquery-create-model-job:
|
|
3439
3439
|
container:
|
|
3440
3440
|
args:
|
|
@@ -3494,7 +3494,7 @@ deploymentSpec:
|
|
|
3494
3494
|
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n\
|
|
3495
3495
|
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n\
|
|
3496
3496
|
\n"
|
|
3497
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3497
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3498
3498
|
exec-bigquery-list-rows:
|
|
3499
3499
|
container:
|
|
3500
3500
|
args:
|
|
@@ -3532,7 +3532,7 @@ deploymentSpec:
|
|
|
3532
3532
|
\ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
|
|
3533
3533
|
\ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
|
|
3534
3534
|
\ return result\n\n"
|
|
3535
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3535
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3536
3536
|
exec-bigquery-list-rows-2:
|
|
3537
3537
|
container:
|
|
3538
3538
|
args:
|
|
@@ -3570,7 +3570,7 @@ deploymentSpec:
|
|
|
3570
3570
|
\ metadata['datasetId'], metadata['tableId']]))\n result = []\n for row\
|
|
3571
3571
|
\ in rows:\n result.append({col: str(value) for col, value in dict(row).items()})\n\
|
|
3572
3572
|
\ return result\n\n"
|
|
3573
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3573
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3574
3574
|
exec-bigquery-query-job:
|
|
3575
3575
|
container:
|
|
3576
3576
|
args:
|
|
@@ -3739,7 +3739,7 @@ deploymentSpec:
|
|
|
3739
3739
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3740
3740
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3741
3741
|
\ return config\n\n"
|
|
3742
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3742
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3743
3743
|
exec-build-job-configuration-query-2:
|
|
3744
3744
|
container:
|
|
3745
3745
|
args:
|
|
@@ -3773,7 +3773,7 @@ deploymentSpec:
|
|
|
3773
3773
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3774
3774
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3775
3775
|
\ return config\n\n"
|
|
3776
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3776
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3777
3777
|
exec-build-job-configuration-query-3:
|
|
3778
3778
|
container:
|
|
3779
3779
|
args:
|
|
@@ -3807,7 +3807,7 @@ deploymentSpec:
|
|
|
3807
3807
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3808
3808
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3809
3809
|
\ return config\n\n"
|
|
3810
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3810
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3811
3811
|
exec-build-job-configuration-query-4:
|
|
3812
3812
|
container:
|
|
3813
3813
|
args:
|
|
@@ -3841,7 +3841,7 @@ deploymentSpec:
|
|
|
3841
3841
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3842
3842
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3843
3843
|
\ return config\n\n"
|
|
3844
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3844
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3845
3845
|
exec-build-job-configuration-query-5:
|
|
3846
3846
|
container:
|
|
3847
3847
|
args:
|
|
@@ -3875,7 +3875,7 @@ deploymentSpec:
|
|
|
3875
3875
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3876
3876
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3877
3877
|
\ return config\n\n"
|
|
3878
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3878
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3879
3879
|
exec-build-job-configuration-query-6:
|
|
3880
3880
|
container:
|
|
3881
3881
|
args:
|
|
@@ -3909,7 +3909,7 @@ deploymentSpec:
|
|
|
3909
3909
|
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n\
|
|
3910
3910
|
\ if write_disposition:\n config['write_disposition'] = write_disposition\n\
|
|
3911
3911
|
\ return config\n\n"
|
|
3912
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3912
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3913
3913
|
exec-build-serialized-query-parameters:
|
|
3914
3914
|
container:
|
|
3915
3915
|
args:
|
|
@@ -3980,7 +3980,7 @@ deploymentSpec:
|
|
|
3980
3980
|
\ 'name': 'start_time',\n 'parameterType': {\n 'type':\
|
|
3981
3981
|
\ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
|
|
3982
3982
|
\ },\n })\n return query_parameters\n\n"
|
|
3983
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3983
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3984
3984
|
exec-build-serialized-query-parameters-2:
|
|
3985
3985
|
container:
|
|
3986
3986
|
args:
|
|
@@ -4051,7 +4051,7 @@ deploymentSpec:
|
|
|
4051
4051
|
\ 'name': 'start_time',\n 'parameterType': {\n 'type':\
|
|
4052
4052
|
\ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
|
|
4053
4053
|
\ },\n })\n return query_parameters\n\n"
|
|
4054
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4054
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4055
4055
|
exec-build-serialized-query-parameters-3:
|
|
4056
4056
|
container:
|
|
4057
4057
|
args:
|
|
@@ -4122,7 +4122,7 @@ deploymentSpec:
|
|
|
4122
4122
|
\ 'name': 'start_time',\n 'parameterType': {\n 'type':\
|
|
4123
4123
|
\ 'TIMESTAMP'\n },\n 'parameterValue': {\n 'value': start_time\n\
|
|
4124
4124
|
\ },\n })\n return query_parameters\n\n"
|
|
4125
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4125
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4126
4126
|
exec-cond:
|
|
4127
4127
|
container:
|
|
4128
4128
|
args:
|
|
@@ -4144,7 +4144,7 @@ deploymentSpec:
|
|
|
4144
4144
|
\ *\n\ndef cond(predicate: bool, true_str: str, false_str: str) -> str:\n\
|
|
4145
4145
|
\ \"\"\"Returns true_str if predicate is true, else false_str.\"\"\"\n\
|
|
4146
4146
|
\ return true_str if predicate else false_str\n\n"
|
|
4147
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4147
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4148
4148
|
exec-create-metrics-artifact:
|
|
4149
4149
|
container:
|
|
4150
4150
|
args:
|
|
@@ -4170,7 +4170,7 @@ deploymentSpec:
|
|
|
4170
4170
|
\ 'MAPE': 'meanAbsolutePercentageError',\n }\n metrics = {metric_name_map[k]:\
|
|
4171
4171
|
\ v for k, v in dict(metrics_rows[0]).items()}\n evaluation_metrics.metadata\
|
|
4172
4172
|
\ = metrics\n\n"
|
|
4173
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4173
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4174
4174
|
exec-feature-transform-engine:
|
|
4175
4175
|
container:
|
|
4176
4176
|
args:
|
|
@@ -4255,8 +4255,8 @@ deploymentSpec:
|
|
|
4255
4255
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
4256
4256
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
4257
4257
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
4258
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
4259
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
4258
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
4259
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
4260
4260
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
4261
4261
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
4262
4262
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -4273,7 +4273,7 @@ deploymentSpec:
|
|
|
4273
4273
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
4274
4274
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
4275
4275
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
4276
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
4276
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
4277
4277
|
exec-get-fte-suffix:
|
|
4278
4278
|
container:
|
|
4279
4279
|
args:
|
|
@@ -4301,7 +4301,7 @@ deploymentSpec:
|
|
|
4301
4301
|
\ table.table_id.startswith(fte_table):\n return table.table_id[len(fte_table)\
|
|
4302
4302
|
\ + 1:]\n raise ValueError(\n f'No FTE output tables found in {bigquery_staging_full_dataset_id}.')\n\
|
|
4303
4303
|
\n"
|
|
4304
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4304
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4305
4305
|
exec-get-table-location:
|
|
4306
4306
|
container:
|
|
4307
4307
|
args:
|
|
@@ -4337,7 +4337,7 @@ deploymentSpec:
|
|
|
4337
4337
|
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
|
|
4338
4338
|
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n\
|
|
4339
4339
|
\ return client.get_table(table).location\n\n"
|
|
4340
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4340
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4341
4341
|
exec-get-value:
|
|
4342
4342
|
container:
|
|
4343
4343
|
args:
|
|
@@ -4358,7 +4358,7 @@ deploymentSpec:
|
|
|
4358
4358
|
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
|
4359
4359
|
\ *\n\ndef get_value(d: Dict[str, str], key: str) -> str:\n return d[key]\n\
|
|
4360
4360
|
\n"
|
|
4361
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4361
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4362
4362
|
exec-get-window-query-priority:
|
|
4363
4363
|
container:
|
|
4364
4364
|
args:
|
|
@@ -4382,7 +4382,7 @@ deploymentSpec:
|
|
|
4382
4382
|
\ depending on the window number.\"\"\"\n if int(window['window_number'])\
|
|
4383
4383
|
\ <= max_interactive:\n return 'INTERACTIVE'\n else:\n return 'BATCH'\n\
|
|
4384
4384
|
\n"
|
|
4385
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4385
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4386
4386
|
exec-maybe-replace-with-default:
|
|
4387
4387
|
container:
|
|
4388
4388
|
args:
|
|
@@ -4404,7 +4404,7 @@ deploymentSpec:
|
|
|
4404
4404
|
\ *\n\ndef maybe_replace_with_default(value: str, default: str = '') ->\
|
|
4405
4405
|
\ str:\n \"\"\"Replaces string with another value if it is a dash.\"\"\"\
|
|
4406
4406
|
\n return default if not value else value\n\n"
|
|
4407
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4407
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4408
4408
|
exec-query-with-retry:
|
|
4409
4409
|
container:
|
|
4410
4410
|
args:
|
|
@@ -4458,7 +4458,7 @@ deploymentSpec:
|
|
|
4458
4458
|
\ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
|
|
4459
4459
|
\ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
|
|
4460
4460
|
\n"
|
|
4461
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4461
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4462
4462
|
exec-query-with-retry-2:
|
|
4463
4463
|
container:
|
|
4464
4464
|
args:
|
|
@@ -4512,7 +4512,7 @@ deploymentSpec:
|
|
|
4512
4512
|
\ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
|
|
4513
4513
|
\ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
|
|
4514
4514
|
\n"
|
|
4515
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4515
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4516
4516
|
exec-query-with-retry-3:
|
|
4517
4517
|
container:
|
|
4518
4518
|
args:
|
|
@@ -4566,7 +4566,7 @@ deploymentSpec:
|
|
|
4566
4566
|
\ 'Query failed with %s. Retrying after %d seconds.', e, wait_time)\n\
|
|
4567
4567
|
\ time.sleep(wait_time)\n retry_count += 1\n return destination_uri\n\
|
|
4568
4568
|
\n"
|
|
4569
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4569
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4570
4570
|
exec-table-to-uri:
|
|
4571
4571
|
container:
|
|
4572
4572
|
args:
|
|
@@ -4596,7 +4596,7 @@ deploymentSpec:
|
|
|
4596
4596
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
4597
4597
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
4598
4598
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
4599
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4599
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4600
4600
|
exec-table-to-uri-2:
|
|
4601
4601
|
container:
|
|
4602
4602
|
args:
|
|
@@ -4626,7 +4626,7 @@ deploymentSpec:
|
|
|
4626
4626
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
4627
4627
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
4628
4628
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
4629
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4629
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4630
4630
|
exec-validate-inputs:
|
|
4631
4631
|
container:
|
|
4632
4632
|
args:
|
|
@@ -4722,7 +4722,7 @@ deploymentSpec:
|
|
|
4722
4722
|
\ raise ValueError(\n 'Granularity unit should be one of the\
|
|
4723
4723
|
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n\
|
|
4724
4724
|
\n"
|
|
4725
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4725
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4726
4726
|
exec-wrapped-in-list:
|
|
4727
4727
|
container:
|
|
4728
4728
|
args:
|
|
@@ -4743,7 +4743,7 @@ deploymentSpec:
|
|
|
4743
4743
|
- "\nimport kfp\nfrom kfp import dsl\nfrom kfp.dsl import *\nfrom typing import\
|
|
4744
4744
|
\ *\n\ndef wrapped_in_list(value: str) -> List[str]:\n \"\"\"Wraps a string\
|
|
4745
4745
|
\ in a list.\"\"\"\n return [value]\n\n"
|
|
4746
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
4746
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
4747
4747
|
pipelineInfo:
|
|
4748
4748
|
description: Trains a BQML ARIMA_PLUS model.
|
|
4749
4749
|
name: automl-tabular-bqml-arima-train
|