google-cloud-pipeline-components 2.15.0__py3-none-any.whl → 2.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +11 -1
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +14 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +11 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +6 -1
- google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
- google_cloud_pipeline_components/preview/starry_net/component.py +60 -34
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +17 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -17
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +58 -58
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
|
@@ -39,6 +39,7 @@ def evaluation_dataset_preprocessor_internal(
|
|
|
39
39
|
gcp_resources: dsl.OutputPath(str),
|
|
40
40
|
input_field_name: str = 'input_text',
|
|
41
41
|
role_field_name: str = 'role',
|
|
42
|
+
target_field_name: str = 'ground_truth',
|
|
42
43
|
model_name: str = 'publishers/google/model/text-bison@002',
|
|
43
44
|
display_name: str = 'llm_evaluation_dataset_preprocessor_component',
|
|
44
45
|
machine_type: str = 'e2-highmem-16',
|
|
@@ -60,6 +61,8 @@ def evaluation_dataset_preprocessor_internal(
|
|
|
60
61
|
contains the input prompts to the LLM.
|
|
61
62
|
role_field_name: The field name of the role for input eval dataset instances
|
|
62
63
|
that contains the input prompts to the LLM.
|
|
64
|
+
target_field_name: The field name of the target for input eval dataset
|
|
65
|
+
instances.
|
|
63
66
|
model_name: Name of the model being used to create model-specific schemas.
|
|
64
67
|
machine_type: The machine type of this custom job. If not set, defaulted
|
|
65
68
|
to `e2-highmem-16`. More details:
|
|
@@ -98,7 +101,10 @@ def evaluation_dataset_preprocessor_internal(
|
|
|
98
101
|
f'--gcs_source_uris={gcs_source_uris}',
|
|
99
102
|
f'--input_field_name={input_field_name}',
|
|
100
103
|
f'--role_field_name={role_field_name}',
|
|
101
|
-
|
|
104
|
+
(
|
|
105
|
+
f'--target_field_name={target_field_name}'
|
|
106
|
+
f'--model_name={model_name}'
|
|
107
|
+
),
|
|
102
108
|
f'--output_dirs={output_dirs}',
|
|
103
109
|
'--executor_input={{$.json_escape[1]}}',
|
|
104
110
|
],
|
|
@@ -117,6 +123,7 @@ def llm_evaluation_dataset_preprocessor_graph_component(
|
|
|
117
123
|
gcs_source_uris: List[str],
|
|
118
124
|
input_field_name: str = 'input_text',
|
|
119
125
|
role_field_name: str = 'role',
|
|
126
|
+
target_field_name: str = 'ground_truth',
|
|
120
127
|
model_name: str = 'publishers/google/model/text-bison@002',
|
|
121
128
|
display_name: str = 'llm_evaluation_dataset_preprocessor_component',
|
|
122
129
|
machine_type: str = 'e2-standard-4',
|
|
@@ -137,6 +144,8 @@ def llm_evaluation_dataset_preprocessor_graph_component(
|
|
|
137
144
|
contains the input prompts to the LLM.
|
|
138
145
|
role_field_name: The field name of the role for input eval dataset
|
|
139
146
|
instances that contains the input prompts to the LLM.
|
|
147
|
+
target_field_name: The field name of the target for input eval dataset
|
|
148
|
+
instances.
|
|
140
149
|
model_name: Name of the model being used to create model-specific schemas.
|
|
141
150
|
display_name: The name of the Evaluation job.
|
|
142
151
|
machine_type: The machine type of this custom job. If not set, defaulted
|
|
@@ -176,6 +185,7 @@ def llm_evaluation_dataset_preprocessor_graph_component(
|
|
|
176
185
|
).output,
|
|
177
186
|
input_field_name=input_field_name,
|
|
178
187
|
role_field_name=role_field_name,
|
|
188
|
+
target_field_name=target_field_name,
|
|
179
189
|
model_name=model_name,
|
|
180
190
|
display_name=display_name,
|
|
181
191
|
machine_type=machine_type,
|
|
@@ -33,6 +33,7 @@ def dataprep(
|
|
|
33
33
|
ts_identifier_columns: str,
|
|
34
34
|
time_column: str,
|
|
35
35
|
static_covariate_columns: str,
|
|
36
|
+
static_covariates_vocab_path: str, # pytype: disable=unused-argument
|
|
36
37
|
target_column: str,
|
|
37
38
|
machine_type: str,
|
|
38
39
|
docker_region: str,
|
|
@@ -45,6 +46,8 @@ def dataprep(
|
|
|
45
46
|
disk_size_gb: int,
|
|
46
47
|
test_set_only: bool,
|
|
47
48
|
bigquery_output: str,
|
|
49
|
+
nan_threshold: float,
|
|
50
|
+
zero_threshold: float,
|
|
48
51
|
gcs_source: str,
|
|
49
52
|
gcs_static_covariate_source: str,
|
|
50
53
|
encryption_spec_key_name: str,
|
|
@@ -76,6 +79,8 @@ def dataprep(
|
|
|
76
79
|
data source.
|
|
77
80
|
time_column: The column with timestamps in the BigQuery source.
|
|
78
81
|
static_covariate_columns: The names of the staic covariates.
|
|
82
|
+
static_covariates_vocab_path: The path to the master static covariates vocab
|
|
83
|
+
json.
|
|
79
84
|
target_column: The target column in the Big Query data source.
|
|
80
85
|
machine_type: The machine type of the dataflow workers.
|
|
81
86
|
docker_region: The docker region, used to determine which image to use.
|
|
@@ -90,6 +95,13 @@ def dataprep(
|
|
|
90
95
|
to create TFRecords for traiing and validation.
|
|
91
96
|
bigquery_output: The BigQuery dataset where the test set is written in the
|
|
92
97
|
form bq://project.dataset.
|
|
98
|
+
nan_threshold: Series having more nan / missing values than
|
|
99
|
+
nan_threshold (inclusive) in percentage for either backtest or forecast
|
|
100
|
+
will not be sampled in the training set (including missing due to
|
|
101
|
+
train_start and train_end). All existing nans are replaced by zeros.
|
|
102
|
+
zero_threshold: Series having more 0.0 values than zero_threshold
|
|
103
|
+
(inclusive) in percentage for either backtest or forecast will not be
|
|
104
|
+
sampled in the training set.
|
|
93
105
|
gcs_source: The path the csv file of the data source.
|
|
94
106
|
gcs_static_covariate_source: The path to the csv file of static covariates.
|
|
95
107
|
encryption_spec_key_name: Customer-managed encryption key options for the
|
|
@@ -129,6 +141,8 @@ def dataprep(
|
|
|
129
141
|
f'--config.datasets.val_rolling_window_size={test_set_stride}',
|
|
130
142
|
f'--config.datasets.n_test_windows={n_test_windows}',
|
|
131
143
|
f'--config.datasets.test_rolling_window_size={test_set_stride}',
|
|
144
|
+
f'--config.datasets.nan_threshold={nan_threshold}',
|
|
145
|
+
f'--config.datasets.zero_threshold={zero_threshold}',
|
|
132
146
|
f'--config.model.static_cov_names={static_covariate_columns}',
|
|
133
147
|
f'--config.model.blocks_list={model_blocks}',
|
|
134
148
|
f'--bigquery_source={bigquery_source}',
|
google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py
CHANGED
|
@@ -55,7 +55,7 @@ def get_training_artifacts(
|
|
|
55
55
|
instance_schema_uri=str,
|
|
56
56
|
)
|
|
57
57
|
return outputs(
|
|
58
|
-
f'{docker_region}-docker.pkg.dev/vertex-ai/starryn/predictor:
|
|
58
|
+
f'{docker_region}-docker.pkg.dev/vertex-ai/starryn/predictor:20240723_0542_RC00', # pylint: disable=too-many-function-args
|
|
59
59
|
private_dir, # pylint: disable=too-many-function-args
|
|
60
60
|
os.path.join(private_dir, 'predict_schema.yaml'), # pylint: disable=too-many-function-args
|
|
61
61
|
os.path.join(private_dir, 'instance_schema.yaml'), # pylint: disable=too-many-function-args
|
|
@@ -38,6 +38,8 @@ def train(
|
|
|
38
38
|
n_val_windows: int,
|
|
39
39
|
n_test_windows: int,
|
|
40
40
|
test_set_stride: int,
|
|
41
|
+
nan_threshold: float,
|
|
42
|
+
zero_threshold: float,
|
|
41
43
|
cleaning_activation_regularizer_coeff: float,
|
|
42
44
|
change_point_activation_regularizer_coeff: float,
|
|
43
45
|
change_point_output_regularizer_coeff: float,
|
|
@@ -88,6 +90,13 @@ def train(
|
|
|
88
90
|
n_test_windows: The number of windows to use for the test set. Must be >= 1.
|
|
89
91
|
test_set_stride: The number of timestamps to roll forward when
|
|
90
92
|
constructing the val and test sets.
|
|
93
|
+
nan_threshold: Series having more nan / missing values than
|
|
94
|
+
nan_threshold (inclusive) in percentage for either backtest or forecast
|
|
95
|
+
will not be sampled in the training set (including missing due to
|
|
96
|
+
train_start and train_end). All existing nans are replaced by zeros.
|
|
97
|
+
zero_threshold: Series having more 0.0 values than zero_threshold
|
|
98
|
+
(inclusive) in percentage for either backtest or forecast will not be
|
|
99
|
+
sampled in the training set.
|
|
91
100
|
cleaning_activation_regularizer_coeff: The regularization coefficient for
|
|
92
101
|
the cleaning param estimator's final layer's activation in the cleaning
|
|
93
102
|
block.
|
|
@@ -182,6 +191,8 @@ def train(
|
|
|
182
191
|
f'--config.datasets.val_rolling_window_size={test_set_stride}',
|
|
183
192
|
f'--config.datasets.n_test_windows={n_test_windows}',
|
|
184
193
|
f'--config.datasets.test_rolling_window_size={test_set_stride}',
|
|
194
|
+
f'--config.datasets.nan_threshold={nan_threshold}',
|
|
195
|
+
f'--config.datasets.zero_threshold={zero_threshold}',
|
|
185
196
|
f'--config.model.regularizer_coeff={cleaning_activation_regularizer_coeff}',
|
|
186
197
|
f'--config.model.activation_regularizer_coeff={change_point_activation_regularizer_coeff}',
|
|
187
198
|
f'--config.model.output_regularizer_coeff={change_point_output_regularizer_coeff}',
|
google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py
CHANGED
|
@@ -16,7 +16,12 @@
|
|
|
16
16
|
from kfp import dsl
|
|
17
17
|
|
|
18
18
|
|
|
19
|
-
@dsl.component(
|
|
19
|
+
@dsl.component(
|
|
20
|
+
packages_to_install=[
|
|
21
|
+
'google-cloud-aiplatform[tensorboard]',
|
|
22
|
+
'protobuf==3.20.*',
|
|
23
|
+
]
|
|
24
|
+
)
|
|
20
25
|
def upload_decomposition_plots(
|
|
21
26
|
project: str,
|
|
22
27
|
location: str,
|
|
@@ -13,6 +13,6 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
"""Version constants for starry net components."""
|
|
15
15
|
|
|
16
|
-
DATAPREP_VERSION = '
|
|
17
|
-
PREDICTOR_VERSION = '
|
|
18
|
-
TRAINER_VERSION = '
|
|
16
|
+
DATAPREP_VERSION = '20240722_2225_RC00'
|
|
17
|
+
PREDICTOR_VERSION = '20240723_0542_RC00'
|
|
18
|
+
TRAINER_VERSION = '20240723_0542_RC00'
|
|
@@ -32,6 +32,27 @@ def insert_system_labels_into_payload(payload):
|
|
|
32
32
|
return json.dumps(job_spec)
|
|
33
33
|
|
|
34
34
|
|
|
35
|
+
def cast_accelerator_count_to_int(payload):
|
|
36
|
+
"""Casts accelerator_count from string to an int."""
|
|
37
|
+
|
|
38
|
+
job_spec = json.loads(payload)
|
|
39
|
+
# TODO(b/353577594): accelerator_count placeholder is not resolved to int.
|
|
40
|
+
# Need to typecast to int to avoid type mismatch error. Can remove when fix
|
|
41
|
+
# placeholder resolution.
|
|
42
|
+
if (
|
|
43
|
+
'accelerator_count'
|
|
44
|
+
in job_spec['job_spec']['worker_pool_specs'][0]['machine_spec']
|
|
45
|
+
):
|
|
46
|
+
job_spec['job_spec']['worker_pool_specs'][0]['machine_spec'][
|
|
47
|
+
'accelerator_count'
|
|
48
|
+
] = int(
|
|
49
|
+
job_spec['job_spec']['worker_pool_specs'][0]['machine_spec'][
|
|
50
|
+
'accelerator_count'
|
|
51
|
+
]
|
|
52
|
+
)
|
|
53
|
+
return json.dumps(job_spec)
|
|
54
|
+
|
|
55
|
+
|
|
35
56
|
def create_custom_job_with_client(job_client, parent, job_spec):
|
|
36
57
|
create_custom_job_fn = None
|
|
37
58
|
try:
|
|
@@ -86,6 +107,7 @@ def create_custom_job(
|
|
|
86
107
|
# Create custom job if it does not exist
|
|
87
108
|
job_name = remote_runner.check_if_job_exists()
|
|
88
109
|
if job_name is None:
|
|
110
|
+
payload = cast_accelerator_count_to_int(payload)
|
|
89
111
|
job_name = remote_runner.create_job(
|
|
90
112
|
create_custom_job_with_client,
|
|
91
113
|
insert_system_labels_into_payload(payload),
|
|
@@ -72,7 +72,7 @@ def automl_forecasting_ensemble(
|
|
|
72
72
|
# fmt: on
|
|
73
73
|
job_id = dsl.PIPELINE_JOB_ID_PLACEHOLDER
|
|
74
74
|
task_id = dsl.PIPELINE_TASK_ID_PLACEHOLDER
|
|
75
|
-
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
75
|
+
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625'
|
|
76
76
|
display_name = f'automl-forecasting-ensemble-{job_id}-{task_id}'
|
|
77
77
|
|
|
78
78
|
error_file_path = f'{root_dir}/{job_id}/{task_id}/error.pb'
|
|
@@ -99,14 +99,14 @@ def automl_forecasting_stage_1_tuner(
|
|
|
99
99
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
100
100
|
' "container_spec": {"image_uri":"'
|
|
101
101
|
),
|
|
102
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
102
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
|
|
103
103
|
'", "args": ["forecasting_mp_l2l_stage_1_tuner',
|
|
104
104
|
'", "--region=',
|
|
105
105
|
location,
|
|
106
106
|
'", "--transform_output_path=',
|
|
107
107
|
transform_output.uri,
|
|
108
108
|
'", "--training_docker_uri=',
|
|
109
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
109
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
|
|
110
110
|
'", "--reduce_search_space_mode=',
|
|
111
111
|
reduce_search_space_mode,
|
|
112
112
|
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
|
|
@@ -97,14 +97,14 @@ def automl_forecasting_stage_2_tuner(
|
|
|
97
97
|
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
|
|
98
98
|
' "container_spec": {"image_uri":"'
|
|
99
99
|
),
|
|
100
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
100
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
|
|
101
101
|
'", "args": ["forecasting_mp_l2l_stage_2_tuner',
|
|
102
102
|
'", "--region=',
|
|
103
103
|
location,
|
|
104
104
|
'", "--transform_output_path=',
|
|
105
105
|
transform_output.uri,
|
|
106
106
|
'", "--training_docker_uri=',
|
|
107
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
107
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
|
|
108
108
|
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
|
|
109
109
|
'", "--training_base_dir=',
|
|
110
110
|
root_dir,
|
google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml
CHANGED
|
@@ -1074,6 +1074,8 @@ components:
|
|
|
1074
1074
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1075
1075
|
dataflow_use_public_ips:
|
|
1076
1076
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1077
|
+
dataflow_workers_num:
|
|
1078
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1077
1079
|
encryption_spec_key_name:
|
|
1078
1080
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1079
1081
|
forecasting_quantiles:
|
|
@@ -1795,6 +1797,8 @@ components:
|
|
|
1795
1797
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1796
1798
|
dataflow_use_public_ips:
|
|
1797
1799
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1800
|
+
dataflow_workers_num:
|
|
1801
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1798
1802
|
encryption_spec_key_name:
|
|
1799
1803
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1800
1804
|
forecasting_quantiles:
|
|
@@ -5573,7 +5577,7 @@ deploymentSpec:
|
|
|
5573
5577
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5574
5578
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5575
5579
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5576
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5580
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5577
5581
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5578
5582
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5579
5583
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5607,7 +5611,7 @@ deploymentSpec:
|
|
|
5607
5611
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5608
5612
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5609
5613
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5610
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5614
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5611
5615
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5612
5616
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5613
5617
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5642,11 +5646,11 @@ deploymentSpec:
|
|
|
5642
5646
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5643
5647
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5644
5648
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5645
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5646
5650
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5647
5651
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5648
5652
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5653
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5650
5654
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5651
5655
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5652
5656
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5685,11 +5689,11 @@ deploymentSpec:
|
|
|
5685
5689
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5686
5690
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5687
5691
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5688
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5689
5693
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5690
5694
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5691
5695
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5696
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5693
5697
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5694
5698
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5695
5699
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5728,7 +5732,7 @@ deploymentSpec:
|
|
|
5728
5732
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5729
5733
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5730
5734
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5731
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5735
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
5732
5736
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5733
5737
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5734
5738
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5793,7 +5797,7 @@ deploymentSpec:
|
|
|
5793
5797
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5794
5798
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5795
5799
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5796
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5800
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5797
5801
|
exec-calculate-training-parameters-2:
|
|
5798
5802
|
container:
|
|
5799
5803
|
args:
|
|
@@ -5849,7 +5853,7 @@ deploymentSpec:
|
|
|
5849
5853
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5850
5854
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5851
5855
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5852
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5856
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5853
5857
|
exec-feature-attribution:
|
|
5854
5858
|
container:
|
|
5855
5859
|
args:
|
|
@@ -6040,8 +6044,8 @@ deploymentSpec:
|
|
|
6040
6044
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6041
6045
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6042
6046
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6043
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6044
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6048
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6045
6049
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6046
6050
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6047
6051
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6058,7 +6062,7 @@ deploymentSpec:
|
|
|
6058
6062
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6059
6063
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6060
6064
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6061
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6065
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6062
6066
|
resources:
|
|
6063
6067
|
cpuLimit: 8.0
|
|
6064
6068
|
memoryLimit: 30.0
|
|
@@ -6089,7 +6093,7 @@ deploymentSpec:
|
|
|
6089
6093
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6090
6094
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6091
6095
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6092
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6096
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6093
6097
|
exec-finalize-eval-quantile-parameters-2:
|
|
6094
6098
|
container:
|
|
6095
6099
|
args:
|
|
@@ -6117,7 +6121,7 @@ deploymentSpec:
|
|
|
6117
6121
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6118
6122
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6119
6123
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6120
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6121
6125
|
exec-get-or-create-model-description:
|
|
6122
6126
|
container:
|
|
6123
6127
|
args:
|
|
@@ -6146,7 +6150,7 @@ deploymentSpec:
|
|
|
6146
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6147
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6148
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6149
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6150
6154
|
exec-get-or-create-model-description-2:
|
|
6151
6155
|
container:
|
|
6152
6156
|
args:
|
|
@@ -6175,7 +6179,7 @@ deploymentSpec:
|
|
|
6175
6179
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6176
6180
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6177
6181
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6178
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6179
6183
|
exec-get-prediction-image-uri:
|
|
6180
6184
|
container:
|
|
6181
6185
|
args:
|
|
@@ -6198,14 +6202,14 @@ deploymentSpec:
|
|
|
6198
6202
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6199
6203
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6200
6204
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6201
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6202
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6203
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6204
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6205
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6206
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6207
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6208
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6205
6209
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6206
6210
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6207
6211
|
\ )\n return images[model_type]\n\n"
|
|
6208
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6212
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6209
6213
|
exec-get-prediction-image-uri-2:
|
|
6210
6214
|
container:
|
|
6211
6215
|
args:
|
|
@@ -6228,14 +6232,14 @@ deploymentSpec:
|
|
|
6228
6232
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6229
6233
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6230
6234
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6231
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6232
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6233
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6234
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6235
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6236
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6237
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6238
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6235
6239
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6236
6240
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6237
6241
|
\ )\n return images[model_type]\n\n"
|
|
6238
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6242
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6239
6243
|
exec-get-predictions-column:
|
|
6240
6244
|
container:
|
|
6241
6245
|
args:
|
|
@@ -6258,7 +6262,7 @@ deploymentSpec:
|
|
|
6258
6262
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6259
6263
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6260
6264
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6261
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6265
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6262
6266
|
exec-get-predictions-column-2:
|
|
6263
6267
|
container:
|
|
6264
6268
|
args:
|
|
@@ -6281,7 +6285,7 @@ deploymentSpec:
|
|
|
6281
6285
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6282
6286
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6283
6287
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6284
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6288
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6285
6289
|
exec-importer:
|
|
6286
6290
|
importer:
|
|
6287
6291
|
artifactUri:
|
|
@@ -6813,7 +6817,7 @@ deploymentSpec:
|
|
|
6813
6817
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6814
6818
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6815
6819
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6816
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6817
6821
|
exec-split-materialized-data:
|
|
6818
6822
|
container:
|
|
6819
6823
|
args:
|
|
@@ -6859,7 +6863,7 @@ deploymentSpec:
|
|
|
6859
6863
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6860
6864
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6861
6865
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6862
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6866
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6863
6867
|
exec-string-not-empty:
|
|
6864
6868
|
container:
|
|
6865
6869
|
args:
|
|
@@ -6883,7 +6887,7 @@ deploymentSpec:
|
|
|
6883
6887
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6884
6888
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6885
6889
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6886
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6887
6891
|
exec-table-to-uri:
|
|
6888
6892
|
container:
|
|
6889
6893
|
args:
|
|
@@ -6913,7 +6917,7 @@ deploymentSpec:
|
|
|
6913
6917
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6914
6918
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6915
6919
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6916
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6920
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6917
6921
|
exec-table-to-uri-2:
|
|
6918
6922
|
container:
|
|
6919
6923
|
args:
|
|
@@ -6943,7 +6947,7 @@ deploymentSpec:
|
|
|
6943
6947
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6944
6948
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6945
6949
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6946
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6950
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6947
6951
|
exec-training-configurator-and-validator:
|
|
6948
6952
|
container:
|
|
6949
6953
|
args:
|
|
@@ -6988,7 +6992,7 @@ deploymentSpec:
|
|
|
6988
6992
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6989
6993
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6990
6994
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6991
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6995
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6992
6996
|
pipelineInfo:
|
|
6993
6997
|
description: The AutoML Forecasting pipeline.
|
|
6994
6998
|
name: learn-to-learn-forecasting
|