google-cloud-pipeline-components 2.15.0__py3-none-any.whl → 2.16.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (58) hide show
  1. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +11 -1
  2. google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +14 -0
  3. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +1 -1
  4. google_cloud_pipeline_components/_implementation/starry_net/train/component.py +11 -0
  5. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +6 -1
  6. google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
  7. google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
  8. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  9. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  10. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  11. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
  12. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
  13. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
  14. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
  15. google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
  16. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  17. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  18. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  19. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  20. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  21. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  22. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  23. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  24. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  25. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  26. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  27. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  28. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  29. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  30. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  31. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  32. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  33. google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
  34. google_cloud_pipeline_components/preview/starry_net/component.py +60 -34
  35. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  36. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  37. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  38. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  39. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  40. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  41. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  42. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  43. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  44. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  45. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  46. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  47. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  48. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  49. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  50. google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
  51. google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
  52. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +17 -0
  53. google_cloud_pipeline_components/version.py +1 -1
  54. {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -17
  55. {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +58 -58
  56. {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
  57. {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
  58. {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
@@ -1069,6 +1069,8 @@ components:
1069
1069
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1070
1070
  dataflow_use_public_ips:
1071
1071
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1072
+ dataflow_workers_num:
1073
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1072
1074
  encryption_spec_key_name:
1073
1075
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1074
1076
  forecasting_quantiles:
@@ -1785,6 +1787,8 @@ components:
1785
1787
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1786
1788
  dataflow_use_public_ips:
1787
1789
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1790
+ dataflow_workers_num:
1791
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1788
1792
  encryption_spec_key_name:
1789
1793
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1790
1794
  forecasting_quantiles:
@@ -5555,7 +5559,7 @@ deploymentSpec:
5555
5559
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5556
5560
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5557
5561
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5558
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5562
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5559
5563
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5560
5564
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5561
5565
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5589,7 +5593,7 @@ deploymentSpec:
5589
5593
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5590
5594
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5591
5595
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5592
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5596
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5593
5597
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5594
5598
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5595
5599
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5624,11 +5628,11 @@ deploymentSpec:
5624
5628
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5625
5629
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5626
5630
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5627
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5631
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5628
5632
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5629
5633
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5630
5634
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5631
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5635
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5632
5636
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5633
5637
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5634
5638
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5667,11 +5671,11 @@ deploymentSpec:
5667
5671
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5668
5672
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5669
5673
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5670
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5674
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5671
5675
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5672
5676
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5673
5677
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5674
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5678
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5675
5679
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5676
5680
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5677
5681
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5710,7 +5714,7 @@ deploymentSpec:
5710
5714
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5711
5715
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5712
5716
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5713
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5717
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5714
5718
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5715
5719
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5716
5720
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5775,7 +5779,7 @@ deploymentSpec:
5775
5779
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5776
5780
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5777
5781
  \ stage_2_single_run_max_secs,\n )\n\n"
5778
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5782
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5779
5783
  exec-calculate-training-parameters-2:
5780
5784
  container:
5781
5785
  args:
@@ -5831,7 +5835,7 @@ deploymentSpec:
5831
5835
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5832
5836
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5833
5837
  \ stage_2_single_run_max_secs,\n )\n\n"
5834
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5838
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5835
5839
  exec-feature-attribution:
5836
5840
  container:
5837
5841
  args:
@@ -6022,8 +6026,8 @@ deploymentSpec:
6022
6026
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6023
6027
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6024
6028
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6025
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6026
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6029
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6030
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6027
6031
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6028
6032
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6029
6033
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6040,7 +6044,7 @@ deploymentSpec:
6040
6044
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6041
6045
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6042
6046
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6043
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6047
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6044
6048
  resources:
6045
6049
  cpuLimit: 8.0
6046
6050
  memoryLimit: 30.0
@@ -6071,7 +6075,7 @@ deploymentSpec:
6071
6075
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6072
6076
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6073
6077
  \ ),\n )(forecasting_type, quantiles)\n\n"
6074
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6078
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6075
6079
  exec-finalize-eval-quantile-parameters-2:
6076
6080
  container:
6077
6081
  args:
@@ -6099,7 +6103,7 @@ deploymentSpec:
6099
6103
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6100
6104
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6101
6105
  \ ),\n )(forecasting_type, quantiles)\n\n"
6102
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6106
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6103
6107
  exec-get-or-create-model-description:
6104
6108
  container:
6105
6109
  args:
@@ -6128,7 +6132,7 @@ deploymentSpec:
6128
6132
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6129
6133
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6130
6134
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6131
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6135
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6132
6136
  exec-get-or-create-model-description-2:
6133
6137
  container:
6134
6138
  args:
@@ -6157,7 +6161,7 @@ deploymentSpec:
6157
6161
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6158
6162
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6159
6163
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6160
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6164
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6161
6165
  exec-get-prediction-image-uri:
6162
6166
  container:
6163
6167
  args:
@@ -6180,14 +6184,14 @@ deploymentSpec:
6180
6184
  Returns the prediction image corresponding to the given model type.\"\"\"\
6181
6185
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6182
6186
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6183
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6184
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6185
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6186
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6187
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6188
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6189
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6190
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6187
6191
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6188
6192
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6189
6193
  \ )\n return images[model_type]\n\n"
6190
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6194
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6191
6195
  exec-get-prediction-image-uri-2:
6192
6196
  container:
6193
6197
  args:
@@ -6210,14 +6214,14 @@ deploymentSpec:
6210
6214
  Returns the prediction image corresponding to the given model type.\"\"\"\
6211
6215
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6212
6216
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6213
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6214
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6215
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6216
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6217
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6218
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6219
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6220
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6217
6221
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6218
6222
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6219
6223
  \ )\n return images[model_type]\n\n"
6220
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6224
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6221
6225
  exec-get-predictions-column:
6222
6226
  container:
6223
6227
  args:
@@ -6240,7 +6244,7 @@ deploymentSpec:
6240
6244
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6241
6245
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6242
6246
  \ return f'predicted_{target_column}.value'\n\n"
6243
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6247
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6244
6248
  exec-get-predictions-column-2:
6245
6249
  container:
6246
6250
  args:
@@ -6263,7 +6267,7 @@ deploymentSpec:
6263
6267
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6264
6268
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6265
6269
  \ return f'predicted_{target_column}.value'\n\n"
6266
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6270
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6267
6271
  exec-importer:
6268
6272
  importer:
6269
6273
  artifactUri:
@@ -6795,7 +6799,7 @@ deploymentSpec:
6795
6799
  \ 'model_display_name',\n 'transformations',\n ],\n\
6796
6800
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6797
6801
  \ model_display_name,\n transformations,\n )\n\n"
6798
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6802
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6799
6803
  exec-split-materialized-data:
6800
6804
  container:
6801
6805
  args:
@@ -6841,7 +6845,7 @@ deploymentSpec:
6841
6845
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6842
6846
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6843
6847
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6844
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6848
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6845
6849
  exec-string-not-empty:
6846
6850
  container:
6847
6851
  args:
@@ -6865,7 +6869,7 @@ deploymentSpec:
6865
6869
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6866
6870
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6867
6871
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6868
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6872
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6869
6873
  exec-table-to-uri:
6870
6874
  container:
6871
6875
  args:
@@ -6895,7 +6899,7 @@ deploymentSpec:
6895
6899
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6896
6900
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6897
6901
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6898
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6902
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6899
6903
  exec-table-to-uri-2:
6900
6904
  container:
6901
6905
  args:
@@ -6925,7 +6929,7 @@ deploymentSpec:
6925
6929
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6926
6930
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6927
6931
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6928
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6932
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6929
6933
  exec-training-configurator-and-validator:
6930
6934
  container:
6931
6935
  args:
@@ -6970,7 +6974,7 @@ deploymentSpec:
6970
6974
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6971
6975
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6972
6976
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6973
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6977
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6974
6978
  pipelineInfo:
6975
6979
  description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
6976
6980
  name: sequence-to-sequence-forecasting
@@ -1068,6 +1068,8 @@ components:
1068
1068
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1069
1069
  dataflow_use_public_ips:
1070
1070
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1071
+ dataflow_workers_num:
1072
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1071
1073
  encryption_spec_key_name:
1072
1074
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1073
1075
  forecasting_quantiles:
@@ -1784,6 +1786,8 @@ components:
1784
1786
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1785
1787
  dataflow_use_public_ips:
1786
1788
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1789
+ dataflow_workers_num:
1790
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1787
1791
  encryption_spec_key_name:
1788
1792
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1789
1793
  forecasting_quantiles:
@@ -5548,7 +5552,7 @@ deploymentSpec:
5548
5552
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5549
5553
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5550
5554
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5551
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5555
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5552
5556
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5553
5557
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5554
5558
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5582,7 +5586,7 @@ deploymentSpec:
5582
5586
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5583
5587
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5584
5588
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5585
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5589
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5586
5590
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5587
5591
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5588
5592
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5617,11 +5621,11 @@ deploymentSpec:
5617
5621
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5618
5622
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5619
5623
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5620
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5624
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5621
5625
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5622
5626
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5623
5627
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5624
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5628
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5625
5629
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5626
5630
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5627
5631
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5660,11 +5664,11 @@ deploymentSpec:
5660
5664
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5661
5665
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5662
5666
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5663
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5667
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5664
5668
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5665
5669
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5666
5670
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5667
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5671
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5668
5672
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5669
5673
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5670
5674
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5703,7 +5707,7 @@ deploymentSpec:
5703
5707
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5704
5708
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5705
5709
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5706
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5710
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5707
5711
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5708
5712
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5709
5713
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5768,7 +5772,7 @@ deploymentSpec:
5768
5772
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5769
5773
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5770
5774
  \ stage_2_single_run_max_secs,\n )\n\n"
5771
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5775
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5772
5776
  exec-calculate-training-parameters-2:
5773
5777
  container:
5774
5778
  args:
@@ -5824,7 +5828,7 @@ deploymentSpec:
5824
5828
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5825
5829
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5826
5830
  \ stage_2_single_run_max_secs,\n )\n\n"
5827
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5831
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5828
5832
  exec-feature-attribution:
5829
5833
  container:
5830
5834
  args:
@@ -6015,8 +6019,8 @@ deploymentSpec:
6015
6019
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6016
6020
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6017
6021
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6018
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6019
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6022
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6023
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6020
6024
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6021
6025
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6022
6026
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6033,7 +6037,7 @@ deploymentSpec:
6033
6037
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6034
6038
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6035
6039
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6036
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6040
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6037
6041
  resources:
6038
6042
  cpuLimit: 8.0
6039
6043
  memoryLimit: 30.0
@@ -6064,7 +6068,7 @@ deploymentSpec:
6064
6068
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6065
6069
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6066
6070
  \ ),\n )(forecasting_type, quantiles)\n\n"
6067
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6071
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6068
6072
  exec-finalize-eval-quantile-parameters-2:
6069
6073
  container:
6070
6074
  args:
@@ -6092,7 +6096,7 @@ deploymentSpec:
6092
6096
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6093
6097
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6094
6098
  \ ),\n )(forecasting_type, quantiles)\n\n"
6095
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6099
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6096
6100
  exec-get-or-create-model-description:
6097
6101
  container:
6098
6102
  args:
@@ -6121,7 +6125,7 @@ deploymentSpec:
6121
6125
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6122
6126
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6123
6127
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6124
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6128
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6125
6129
  exec-get-or-create-model-description-2:
6126
6130
  container:
6127
6131
  args:
@@ -6150,7 +6154,7 @@ deploymentSpec:
6150
6154
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6151
6155
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6152
6156
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6153
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6157
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6154
6158
  exec-get-prediction-image-uri:
6155
6159
  container:
6156
6160
  args:
@@ -6173,14 +6177,14 @@ deploymentSpec:
6173
6177
  Returns the prediction image corresponding to the given model type.\"\"\"\
6174
6178
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6175
6179
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6176
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6177
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6178
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6179
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6180
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6181
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6182
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6183
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6180
6184
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6181
6185
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6182
6186
  \ )\n return images[model_type]\n\n"
6183
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6187
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6184
6188
  exec-get-prediction-image-uri-2:
6185
6189
  container:
6186
6190
  args:
@@ -6203,14 +6207,14 @@ deploymentSpec:
6203
6207
  Returns the prediction image corresponding to the given model type.\"\"\"\
6204
6208
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6205
6209
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6206
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6207
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6208
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6209
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6210
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6211
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6212
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6213
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6210
6214
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6211
6215
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6212
6216
  \ )\n return images[model_type]\n\n"
6213
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6217
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6214
6218
  exec-get-predictions-column:
6215
6219
  container:
6216
6220
  args:
@@ -6233,7 +6237,7 @@ deploymentSpec:
6233
6237
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6234
6238
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6235
6239
  \ return f'predicted_{target_column}.value'\n\n"
6236
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6240
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6237
6241
  exec-get-predictions-column-2:
6238
6242
  container:
6239
6243
  args:
@@ -6256,7 +6260,7 @@ deploymentSpec:
6256
6260
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6257
6261
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6258
6262
  \ return f'predicted_{target_column}.value'\n\n"
6259
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6263
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6260
6264
  exec-importer:
6261
6265
  importer:
6262
6266
  artifactUri:
@@ -6788,7 +6792,7 @@ deploymentSpec:
6788
6792
  \ 'model_display_name',\n 'transformations',\n ],\n\
6789
6793
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6790
6794
  \ model_display_name,\n transformations,\n )\n\n"
6791
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6795
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6792
6796
  exec-split-materialized-data:
6793
6797
  container:
6794
6798
  args:
@@ -6834,7 +6838,7 @@ deploymentSpec:
6834
6838
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6835
6839
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6836
6840
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6837
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6841
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6838
6842
  exec-string-not-empty:
6839
6843
  container:
6840
6844
  args:
@@ -6858,7 +6862,7 @@ deploymentSpec:
6858
6862
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6859
6863
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6860
6864
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6861
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6865
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6862
6866
  exec-table-to-uri:
6863
6867
  container:
6864
6868
  args:
@@ -6888,7 +6892,7 @@ deploymentSpec:
6888
6892
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6889
6893
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6890
6894
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6891
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6895
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6892
6896
  exec-table-to-uri-2:
6893
6897
  container:
6894
6898
  args:
@@ -6918,7 +6922,7 @@ deploymentSpec:
6918
6922
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6919
6923
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6920
6924
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6921
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6925
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6922
6926
  exec-training-configurator-and-validator:
6923
6927
  container:
6924
6928
  args:
@@ -6963,7 +6967,7 @@ deploymentSpec:
6963
6967
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6964
6968
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6965
6969
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6966
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6970
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6967
6971
  pipelineInfo:
6968
6972
  description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
6969
6973
  name: temporal-fusion-transformer-forecasting