google-cloud-pipeline-components 2.15.0__py3-none-any.whl → 2.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +11 -1
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +14 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +1 -1
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +11 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +6 -1
- google_cloud_pipeline_components/_implementation/starry_net/version.py +3 -3
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
- google_cloud_pipeline_components/preview/starry_net/component.py +60 -34
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +17 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -17
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +58 -58
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.15.0.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
|
@@ -1069,6 +1069,8 @@ components:
|
|
|
1069
1069
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1070
1070
|
dataflow_use_public_ips:
|
|
1071
1071
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1072
|
+
dataflow_workers_num:
|
|
1073
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1072
1074
|
encryption_spec_key_name:
|
|
1073
1075
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1074
1076
|
forecasting_quantiles:
|
|
@@ -1785,6 +1787,8 @@ components:
|
|
|
1785
1787
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1786
1788
|
dataflow_use_public_ips:
|
|
1787
1789
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1790
|
+
dataflow_workers_num:
|
|
1791
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1788
1792
|
encryption_spec_key_name:
|
|
1789
1793
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1790
1794
|
forecasting_quantiles:
|
|
@@ -5555,7 +5559,7 @@ deploymentSpec:
|
|
|
5555
5559
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5556
5560
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5557
5561
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5558
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5562
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5559
5563
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5560
5564
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5561
5565
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5589,7 +5593,7 @@ deploymentSpec:
|
|
|
5589
5593
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5590
5594
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5591
5595
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5592
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5596
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5593
5597
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5594
5598
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5595
5599
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5624,11 +5628,11 @@ deploymentSpec:
|
|
|
5624
5628
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5625
5629
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5626
5630
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5627
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5631
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5628
5632
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5629
5633
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5630
5634
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5631
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5635
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5632
5636
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5633
5637
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5634
5638
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5667,11 +5671,11 @@ deploymentSpec:
|
|
|
5667
5671
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5668
5672
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5669
5673
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5670
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5674
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5671
5675
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5672
5676
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5673
5677
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5674
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5678
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5675
5679
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5676
5680
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5677
5681
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5710,7 +5714,7 @@ deploymentSpec:
|
|
|
5710
5714
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5711
5715
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5712
5716
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5713
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5717
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
5714
5718
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5715
5719
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5716
5720
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5775,7 +5779,7 @@ deploymentSpec:
|
|
|
5775
5779
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5776
5780
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5777
5781
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5778
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5782
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5779
5783
|
exec-calculate-training-parameters-2:
|
|
5780
5784
|
container:
|
|
5781
5785
|
args:
|
|
@@ -5831,7 +5835,7 @@ deploymentSpec:
|
|
|
5831
5835
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5832
5836
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5833
5837
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5834
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5838
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5835
5839
|
exec-feature-attribution:
|
|
5836
5840
|
container:
|
|
5837
5841
|
args:
|
|
@@ -6022,8 +6026,8 @@ deploymentSpec:
|
|
|
6022
6026
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6023
6027
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6024
6028
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6025
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6026
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6029
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6030
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6027
6031
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6028
6032
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6029
6033
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6040,7 +6044,7 @@ deploymentSpec:
|
|
|
6040
6044
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6041
6045
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6042
6046
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6043
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6044
6048
|
resources:
|
|
6045
6049
|
cpuLimit: 8.0
|
|
6046
6050
|
memoryLimit: 30.0
|
|
@@ -6071,7 +6075,7 @@ deploymentSpec:
|
|
|
6071
6075
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6072
6076
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6073
6077
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6074
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6078
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6075
6079
|
exec-finalize-eval-quantile-parameters-2:
|
|
6076
6080
|
container:
|
|
6077
6081
|
args:
|
|
@@ -6099,7 +6103,7 @@ deploymentSpec:
|
|
|
6099
6103
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6100
6104
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6101
6105
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6102
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6106
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6103
6107
|
exec-get-or-create-model-description:
|
|
6104
6108
|
container:
|
|
6105
6109
|
args:
|
|
@@ -6128,7 +6132,7 @@ deploymentSpec:
|
|
|
6128
6132
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6129
6133
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6130
6134
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6131
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6135
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6132
6136
|
exec-get-or-create-model-description-2:
|
|
6133
6137
|
container:
|
|
6134
6138
|
args:
|
|
@@ -6157,7 +6161,7 @@ deploymentSpec:
|
|
|
6157
6161
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6158
6162
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6159
6163
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6160
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6164
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6161
6165
|
exec-get-prediction-image-uri:
|
|
6162
6166
|
container:
|
|
6163
6167
|
args:
|
|
@@ -6180,14 +6184,14 @@ deploymentSpec:
|
|
|
6180
6184
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6181
6185
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6182
6186
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6183
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6184
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6185
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6186
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6187
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6188
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6189
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6190
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6187
6191
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6188
6192
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6189
6193
|
\ )\n return images[model_type]\n\n"
|
|
6190
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6194
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6191
6195
|
exec-get-prediction-image-uri-2:
|
|
6192
6196
|
container:
|
|
6193
6197
|
args:
|
|
@@ -6210,14 +6214,14 @@ deploymentSpec:
|
|
|
6210
6214
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6211
6215
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6212
6216
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6213
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6214
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6215
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6216
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6217
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6218
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6219
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6220
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6217
6221
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6218
6222
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6219
6223
|
\ )\n return images[model_type]\n\n"
|
|
6220
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6224
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6221
6225
|
exec-get-predictions-column:
|
|
6222
6226
|
container:
|
|
6223
6227
|
args:
|
|
@@ -6240,7 +6244,7 @@ deploymentSpec:
|
|
|
6240
6244
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6241
6245
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6242
6246
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6243
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6247
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6244
6248
|
exec-get-predictions-column-2:
|
|
6245
6249
|
container:
|
|
6246
6250
|
args:
|
|
@@ -6263,7 +6267,7 @@ deploymentSpec:
|
|
|
6263
6267
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6264
6268
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6265
6269
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6266
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6270
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6267
6271
|
exec-importer:
|
|
6268
6272
|
importer:
|
|
6269
6273
|
artifactUri:
|
|
@@ -6795,7 +6799,7 @@ deploymentSpec:
|
|
|
6795
6799
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6796
6800
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6797
6801
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6798
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6802
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6799
6803
|
exec-split-materialized-data:
|
|
6800
6804
|
container:
|
|
6801
6805
|
args:
|
|
@@ -6841,7 +6845,7 @@ deploymentSpec:
|
|
|
6841
6845
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6842
6846
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6843
6847
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6844
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6848
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6845
6849
|
exec-string-not-empty:
|
|
6846
6850
|
container:
|
|
6847
6851
|
args:
|
|
@@ -6865,7 +6869,7 @@ deploymentSpec:
|
|
|
6865
6869
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6866
6870
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6867
6871
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6868
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6872
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6869
6873
|
exec-table-to-uri:
|
|
6870
6874
|
container:
|
|
6871
6875
|
args:
|
|
@@ -6895,7 +6899,7 @@ deploymentSpec:
|
|
|
6895
6899
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6896
6900
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6897
6901
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6898
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6902
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6899
6903
|
exec-table-to-uri-2:
|
|
6900
6904
|
container:
|
|
6901
6905
|
args:
|
|
@@ -6925,7 +6929,7 @@ deploymentSpec:
|
|
|
6925
6929
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6926
6930
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6927
6931
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6928
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6932
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6929
6933
|
exec-training-configurator-and-validator:
|
|
6930
6934
|
container:
|
|
6931
6935
|
args:
|
|
@@ -6970,7 +6974,7 @@ deploymentSpec:
|
|
|
6970
6974
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6971
6975
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6972
6976
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6973
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6977
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6974
6978
|
pipelineInfo:
|
|
6975
6979
|
description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
|
|
6976
6980
|
name: sequence-to-sequence-forecasting
|
|
@@ -1068,6 +1068,8 @@ components:
|
|
|
1068
1068
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1069
1069
|
dataflow_use_public_ips:
|
|
1070
1070
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1071
|
+
dataflow_workers_num:
|
|
1072
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1071
1073
|
encryption_spec_key_name:
|
|
1072
1074
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1073
1075
|
forecasting_quantiles:
|
|
@@ -1784,6 +1786,8 @@ components:
|
|
|
1784
1786
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1785
1787
|
dataflow_use_public_ips:
|
|
1786
1788
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1789
|
+
dataflow_workers_num:
|
|
1790
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1787
1791
|
encryption_spec_key_name:
|
|
1788
1792
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1789
1793
|
forecasting_quantiles:
|
|
@@ -5548,7 +5552,7 @@ deploymentSpec:
|
|
|
5548
5552
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5549
5553
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5550
5554
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5551
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5555
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5552
5556
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5553
5557
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5554
5558
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5582,7 +5586,7 @@ deploymentSpec:
|
|
|
5582
5586
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5583
5587
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5584
5588
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5585
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5589
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5586
5590
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5587
5591
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5588
5592
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5617,11 +5621,11 @@ deploymentSpec:
|
|
|
5617
5621
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5618
5622
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5619
5623
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5620
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5624
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5621
5625
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5622
5626
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5623
5627
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5624
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5628
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5625
5629
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5626
5630
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5627
5631
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5660,11 +5664,11 @@ deploymentSpec:
|
|
|
5660
5664
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5661
5665
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5662
5666
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5663
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5667
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5664
5668
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5665
5669
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5666
5670
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5667
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5671
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5668
5672
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5669
5673
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5670
5674
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5703,7 +5707,7 @@ deploymentSpec:
|
|
|
5703
5707
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5704
5708
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5705
5709
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5706
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5710
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
5707
5711
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5708
5712
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5709
5713
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5768,7 +5772,7 @@ deploymentSpec:
|
|
|
5768
5772
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5769
5773
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5770
5774
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5771
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5775
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5772
5776
|
exec-calculate-training-parameters-2:
|
|
5773
5777
|
container:
|
|
5774
5778
|
args:
|
|
@@ -5824,7 +5828,7 @@ deploymentSpec:
|
|
|
5824
5828
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5825
5829
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5826
5830
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5827
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5831
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5828
5832
|
exec-feature-attribution:
|
|
5829
5833
|
container:
|
|
5830
5834
|
args:
|
|
@@ -6015,8 +6019,8 @@ deploymentSpec:
|
|
|
6015
6019
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6016
6020
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6017
6021
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6018
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6019
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6022
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6023
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6020
6024
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6021
6025
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6022
6026
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6033,7 +6037,7 @@ deploymentSpec:
|
|
|
6033
6037
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6034
6038
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6035
6039
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6036
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6040
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6037
6041
|
resources:
|
|
6038
6042
|
cpuLimit: 8.0
|
|
6039
6043
|
memoryLimit: 30.0
|
|
@@ -6064,7 +6068,7 @@ deploymentSpec:
|
|
|
6064
6068
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6065
6069
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6066
6070
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6067
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6071
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6068
6072
|
exec-finalize-eval-quantile-parameters-2:
|
|
6069
6073
|
container:
|
|
6070
6074
|
args:
|
|
@@ -6092,7 +6096,7 @@ deploymentSpec:
|
|
|
6092
6096
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6093
6097
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6094
6098
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6095
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6099
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6096
6100
|
exec-get-or-create-model-description:
|
|
6097
6101
|
container:
|
|
6098
6102
|
args:
|
|
@@ -6121,7 +6125,7 @@ deploymentSpec:
|
|
|
6121
6125
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6122
6126
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6123
6127
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6124
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6128
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6125
6129
|
exec-get-or-create-model-description-2:
|
|
6126
6130
|
container:
|
|
6127
6131
|
args:
|
|
@@ -6150,7 +6154,7 @@ deploymentSpec:
|
|
|
6150
6154
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6151
6155
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6152
6156
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6153
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6157
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6154
6158
|
exec-get-prediction-image-uri:
|
|
6155
6159
|
container:
|
|
6156
6160
|
args:
|
|
@@ -6173,14 +6177,14 @@ deploymentSpec:
|
|
|
6173
6177
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6174
6178
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6175
6179
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6176
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6177
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6178
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6179
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6180
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6181
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6182
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6183
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6180
6184
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6181
6185
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6182
6186
|
\ )\n return images[model_type]\n\n"
|
|
6183
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6187
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6184
6188
|
exec-get-prediction-image-uri-2:
|
|
6185
6189
|
container:
|
|
6186
6190
|
args:
|
|
@@ -6203,14 +6207,14 @@ deploymentSpec:
|
|
|
6203
6207
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6204
6208
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6205
6209
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6206
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6207
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6208
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6209
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6210
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6211
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6212
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6213
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6210
6214
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6211
6215
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6212
6216
|
\ )\n return images[model_type]\n\n"
|
|
6213
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6217
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6214
6218
|
exec-get-predictions-column:
|
|
6215
6219
|
container:
|
|
6216
6220
|
args:
|
|
@@ -6233,7 +6237,7 @@ deploymentSpec:
|
|
|
6233
6237
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6234
6238
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6235
6239
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6236
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6240
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6237
6241
|
exec-get-predictions-column-2:
|
|
6238
6242
|
container:
|
|
6239
6243
|
args:
|
|
@@ -6256,7 +6260,7 @@ deploymentSpec:
|
|
|
6256
6260
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6257
6261
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6258
6262
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6259
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6263
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6260
6264
|
exec-importer:
|
|
6261
6265
|
importer:
|
|
6262
6266
|
artifactUri:
|
|
@@ -6788,7 +6792,7 @@ deploymentSpec:
|
|
|
6788
6792
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6789
6793
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6790
6794
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6791
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6795
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6792
6796
|
exec-split-materialized-data:
|
|
6793
6797
|
container:
|
|
6794
6798
|
args:
|
|
@@ -6834,7 +6838,7 @@ deploymentSpec:
|
|
|
6834
6838
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6835
6839
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6836
6840
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6837
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6841
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6838
6842
|
exec-string-not-empty:
|
|
6839
6843
|
container:
|
|
6840
6844
|
args:
|
|
@@ -6858,7 +6862,7 @@ deploymentSpec:
|
|
|
6858
6862
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6859
6863
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6860
6864
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6861
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6865
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6862
6866
|
exec-table-to-uri:
|
|
6863
6867
|
container:
|
|
6864
6868
|
args:
|
|
@@ -6888,7 +6892,7 @@ deploymentSpec:
|
|
|
6888
6892
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6889
6893
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6890
6894
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6891
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6895
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6892
6896
|
exec-table-to-uri-2:
|
|
6893
6897
|
container:
|
|
6894
6898
|
args:
|
|
@@ -6918,7 +6922,7 @@ deploymentSpec:
|
|
|
6918
6922
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6919
6923
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6920
6924
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6921
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6925
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6922
6926
|
exec-training-configurator-and-validator:
|
|
6923
6927
|
container:
|
|
6924
6928
|
args:
|
|
@@ -6963,7 +6967,7 @@ deploymentSpec:
|
|
|
6963
6967
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6964
6968
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6965
6969
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6966
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6970
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6967
6971
|
pipelineInfo:
|
|
6968
6972
|
description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
|
|
6969
6973
|
name: temporal-fusion-transformer-forecasting
|