google-cloud-pipeline-components 2.14.1__py3-none-any.whl → 2.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +24 -0
- google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
- google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +173 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +220 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +64 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
- google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
- google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
- google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
- google_cloud_pipeline_components/preview/llm/rlhf/component.py +3 -6
- google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
- google_cloud_pipeline_components/preview/starry_net/component.py +469 -0
- google_cloud_pipeline_components/proto/task_error_pb2.py +0 -1
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +21 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -20
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +87 -58
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
|
@@ -2875,7 +2875,7 @@ deploymentSpec:
|
|
|
2875
2875
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
2876
2876
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
2877
2877
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
2878
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
2878
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
2879
2879
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2880
2880
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
2881
2881
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -2890,7 +2890,7 @@ deploymentSpec:
|
|
|
2890
2890
|
args:
|
|
2891
2891
|
- --executor_input
|
|
2892
2892
|
- '{{$}}'
|
|
2893
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
2893
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
2894
2894
|
resources:
|
|
2895
2895
|
cpuLimit: 8.0
|
|
2896
2896
|
memoryLimit: 52.0
|
|
@@ -2915,7 +2915,7 @@ deploymentSpec:
|
|
|
2915
2915
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
2916
2916
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
2917
2917
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
2918
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2918
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2919
2919
|
exec-feature-transform-engine:
|
|
2920
2920
|
container:
|
|
2921
2921
|
args:
|
|
@@ -3000,8 +3000,8 @@ deploymentSpec:
|
|
|
3000
3000
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
3001
3001
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
3002
3002
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
3003
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
3004
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
3003
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
3004
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
3005
3005
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
3006
3006
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
3007
3007
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -3018,7 +3018,7 @@ deploymentSpec:
|
|
|
3018
3018
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
3019
3019
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
3020
3020
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
3021
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
3021
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
3022
3022
|
resources:
|
|
3023
3023
|
cpuLimit: 8.0
|
|
3024
3024
|
memoryLimit: 30.0
|
|
@@ -3048,7 +3048,7 @@ deploymentSpec:
|
|
|
3048
3048
|
\n return collections.namedtuple(\n 'Outputs',\n [\n \
|
|
3049
3049
|
\ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
|
|
3050
3050
|
\n"
|
|
3051
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3051
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3052
3052
|
exec-model-batch-predict:
|
|
3053
3053
|
container:
|
|
3054
3054
|
args:
|
|
@@ -3289,7 +3289,7 @@ deploymentSpec:
|
|
|
3289
3289
|
\ 'training_disk_spec',\n 'eval_machine_spec',\n 'eval_replica_count',\n\
|
|
3290
3290
|
\ ],\n )(\n training_machine_spec,\n training_disk_spec,\n\
|
|
3291
3291
|
\ eval_machine_spec,\n eval_replica_count,\n )\n\n"
|
|
3292
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3292
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3293
3293
|
exec-set-optional-inputs:
|
|
3294
3294
|
container:
|
|
3295
3295
|
args:
|
|
@@ -3337,7 +3337,7 @@ deploymentSpec:
|
|
|
3337
3337
|
\ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
|
|
3338
3338
|
\ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
3339
3339
|
\ )\n\n"
|
|
3340
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3340
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3341
3341
|
exec-split-materialized-data:
|
|
3342
3342
|
container:
|
|
3343
3343
|
args:
|
|
@@ -3383,7 +3383,7 @@ deploymentSpec:
|
|
|
3383
3383
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
3384
3384
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
3385
3385
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
3386
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
3386
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
3387
3387
|
exec-tabnet-trainer:
|
|
3388
3388
|
container:
|
|
3389
3389
|
args:
|
|
@@ -3401,11 +3401,11 @@ deploymentSpec:
|
|
|
3401
3401
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"", "1",
|
|
3402
3402
|
"\", \"machine_spec\": ", "{{$.inputs.parameters[''training_machine_spec'']}}",
|
|
3403
3403
|
", \"disk_spec\": ", "{{$.inputs.parameters[''training_disk_spec'']}}",
|
|
3404
|
-
", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:
|
|
3404
|
+
", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/tabnet-training:20240710_0625",
|
|
3405
3405
|
"\", \"args\": [\"--target_column=", "{{$.inputs.parameters[''target_column'']}}",
|
|
3406
3406
|
"\", \"--weight_column=", "{{$.inputs.parameters[''weight_column'']}}",
|
|
3407
3407
|
"\", \"--model_type=", "{{$.inputs.parameters[''prediction_type'']}}", "\",
|
|
3408
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
3408
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
3409
3409
|
"\", \"--baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
3410
3410
|
"\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
|
|
3411
3411
|
\"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
@@ -3492,7 +3492,7 @@ deploymentSpec:
|
|
|
3492
3492
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
3493
3493
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
3494
3494
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
3495
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
3495
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
3496
3496
|
pipelineInfo:
|
|
3497
3497
|
description: 'Train a model using the Tabular Workflow for TabNet pipelines.
|
|
3498
3498
|
|
google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py
CHANGED
|
@@ -158,7 +158,7 @@ def wide_and_deep_hyperparameter_tuning_job(
|
|
|
158
158
|
', "disk_spec": ',
|
|
159
159
|
training_disk_spec,
|
|
160
160
|
', "container_spec": {"image_uri":"',
|
|
161
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:
|
|
161
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20240710_0625',
|
|
162
162
|
'", "args": ["--target_column=',
|
|
163
163
|
target_column,
|
|
164
164
|
'", "--weight_column=',
|
|
@@ -166,7 +166,7 @@ def wide_and_deep_hyperparameter_tuning_job(
|
|
|
166
166
|
'", "--model_type=',
|
|
167
167
|
prediction_type,
|
|
168
168
|
'", "--prediction_docker_uri=',
|
|
169
|
-
'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
169
|
+
'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625',
|
|
170
170
|
'", "--prediction_docker_uri_artifact_path=',
|
|
171
171
|
prediction_docker_uri_output,
|
|
172
172
|
'", "--baseline_path=',
|
|
@@ -2632,7 +2632,7 @@ deploymentSpec:
|
|
|
2632
2632
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
2633
2633
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
2634
2634
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
2635
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
2635
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
2636
2636
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2637
2637
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
2638
2638
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -2647,7 +2647,7 @@ deploymentSpec:
|
|
|
2647
2647
|
args:
|
|
2648
2648
|
- --executor_input
|
|
2649
2649
|
- '{{$}}'
|
|
2650
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
2650
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
2651
2651
|
resources:
|
|
2652
2652
|
cpuLimit: 8.0
|
|
2653
2653
|
memoryLimit: 52.0
|
|
@@ -2672,7 +2672,7 @@ deploymentSpec:
|
|
|
2672
2672
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
2673
2673
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
2674
2674
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
2675
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2675
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2676
2676
|
exec-feature-transform-engine:
|
|
2677
2677
|
container:
|
|
2678
2678
|
args:
|
|
@@ -2757,8 +2757,8 @@ deploymentSpec:
|
|
|
2757
2757
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
2758
2758
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
2759
2759
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
2760
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2761
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2760
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
2761
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2762
2762
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
2763
2763
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
2764
2764
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -2775,7 +2775,7 @@ deploymentSpec:
|
|
|
2775
2775
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
2776
2776
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
2777
2777
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
2778
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2778
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2779
2779
|
resources:
|
|
2780
2780
|
cpuLimit: 8.0
|
|
2781
2781
|
memoryLimit: 30.0
|
|
@@ -2843,7 +2843,7 @@ deploymentSpec:
|
|
|
2843
2843
|
\ = {\n 'instanceSchemaUri': instance_schema_uri,\n 'predictionSchemaUri':\
|
|
2844
2844
|
\ prediction_schema_uri,\n }\n unmanaged_container_model.uri = os.path.join(\n\
|
|
2845
2845
|
\ trials_dir, 'trial_{}'.format(best_trial['id']), 'model'\n )\n\n"
|
|
2846
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2846
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2847
2847
|
exec-get-model-display-name:
|
|
2848
2848
|
container:
|
|
2849
2849
|
args:
|
|
@@ -2870,7 +2870,7 @@ deploymentSpec:
|
|
|
2870
2870
|
\n return collections.namedtuple(\n 'Outputs',\n [\n \
|
|
2871
2871
|
\ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
|
|
2872
2872
|
\n"
|
|
2873
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2873
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2874
2874
|
exec-get-wide-and-deep-study-spec-parameters:
|
|
2875
2875
|
container:
|
|
2876
2876
|
args:
|
|
@@ -3147,7 +3147,7 @@ deploymentSpec:
|
|
|
3147
3147
|
\ 'training_disk_spec',\n 'eval_machine_spec',\n 'eval_replica_count',\n\
|
|
3148
3148
|
\ ],\n )(\n training_machine_spec,\n training_disk_spec,\n\
|
|
3149
3149
|
\ eval_machine_spec,\n eval_replica_count,\n )\n\n"
|
|
3150
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3150
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3151
3151
|
exec-set-optional-inputs:
|
|
3152
3152
|
container:
|
|
3153
3153
|
args:
|
|
@@ -3195,7 +3195,7 @@ deploymentSpec:
|
|
|
3195
3195
|
\ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
|
|
3196
3196
|
\ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
3197
3197
|
\ )\n\n"
|
|
3198
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3198
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3199
3199
|
exec-split-materialized-data:
|
|
3200
3200
|
container:
|
|
3201
3201
|
args:
|
|
@@ -3241,7 +3241,7 @@ deploymentSpec:
|
|
|
3241
3241
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
3242
3242
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
3243
3243
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
3244
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
3244
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
3245
3245
|
exec-training-configurator-and-validator:
|
|
3246
3246
|
container:
|
|
3247
3247
|
args:
|
|
@@ -3286,7 +3286,7 @@ deploymentSpec:
|
|
|
3286
3286
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
3287
3287
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
3288
3288
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
3289
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
3289
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
3290
3290
|
exec-wide-and-deep-hyperparameter-tuning-job:
|
|
3291
3291
|
container:
|
|
3292
3292
|
args:
|
|
@@ -3314,11 +3314,11 @@ deploymentSpec:
|
|
|
3314
3314
|
", \"trial_job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"",
|
|
3315
3315
|
"1", "\", \"machine_spec\": ", "{{$.inputs.parameters[''training_machine_spec'']}}",
|
|
3316
3316
|
", \"disk_spec\": ", "{{$.inputs.parameters[''training_disk_spec'']}}",
|
|
3317
|
-
", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:
|
|
3317
|
+
", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20240710_0625",
|
|
3318
3318
|
"\", \"args\": [\"--target_column=", "{{$.inputs.parameters[''target_column'']}}",
|
|
3319
3319
|
"\", \"--weight_column=", "{{$.inputs.parameters[''weight_column'']}}",
|
|
3320
3320
|
"\", \"--model_type=", "{{$.inputs.parameters[''prediction_type'']}}", "\",
|
|
3321
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
3321
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
3322
3322
|
"\", \"--prediction_docker_uri_artifact_path=", "{{$.outputs.parameters[''prediction_docker_uri_output''].output_file}}",
|
|
3323
3323
|
"\", \"--baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
3324
3324
|
"\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
|
|
@@ -161,7 +161,7 @@ def wide_and_deep_trainer(
|
|
|
161
161
|
', "disk_spec": ',
|
|
162
162
|
training_disk_spec,
|
|
163
163
|
', "container_spec": {"image_uri":"',
|
|
164
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:
|
|
164
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20240710_0625',
|
|
165
165
|
'", "args": ["--target_column=',
|
|
166
166
|
target_column,
|
|
167
167
|
'", "--weight_column=',
|
|
@@ -169,7 +169,7 @@ def wide_and_deep_trainer(
|
|
|
169
169
|
'", "--model_type=',
|
|
170
170
|
prediction_type,
|
|
171
171
|
'", "--prediction_docker_uri=',
|
|
172
|
-
'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
172
|
+
'us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625',
|
|
173
173
|
'", "--baseline_path=',
|
|
174
174
|
instance_baseline.uri,
|
|
175
175
|
'", "--metadata_path=',
|
|
@@ -2674,7 +2674,7 @@ deploymentSpec:
|
|
|
2674
2674
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
2675
2675
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
2676
2676
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
2677
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
2677
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
2678
2678
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2679
2679
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
2680
2680
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -2689,7 +2689,7 @@ deploymentSpec:
|
|
|
2689
2689
|
args:
|
|
2690
2690
|
- --executor_input
|
|
2691
2691
|
- '{{$}}'
|
|
2692
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
2692
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
2693
2693
|
resources:
|
|
2694
2694
|
cpuLimit: 8.0
|
|
2695
2695
|
memoryLimit: 52.0
|
|
@@ -2714,7 +2714,7 @@ deploymentSpec:
|
|
|
2714
2714
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
2715
2715
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
2716
2716
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
2717
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2717
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2718
2718
|
exec-feature-transform-engine:
|
|
2719
2719
|
container:
|
|
2720
2720
|
args:
|
|
@@ -2799,8 +2799,8 @@ deploymentSpec:
|
|
|
2799
2799
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
2800
2800
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
2801
2801
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
2802
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2803
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2802
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
2803
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2804
2804
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
2805
2805
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
2806
2806
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -2817,7 +2817,7 @@ deploymentSpec:
|
|
|
2817
2817
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
2818
2818
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
2819
2819
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
2820
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2821
2821
|
resources:
|
|
2822
2822
|
cpuLimit: 8.0
|
|
2823
2823
|
memoryLimit: 30.0
|
|
@@ -2847,7 +2847,7 @@ deploymentSpec:
|
|
|
2847
2847
|
\n return collections.namedtuple(\n 'Outputs',\n [\n \
|
|
2848
2848
|
\ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
|
|
2849
2849
|
\n"
|
|
2850
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2850
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2851
2851
|
exec-model-batch-predict:
|
|
2852
2852
|
container:
|
|
2853
2853
|
args:
|
|
@@ -3040,7 +3040,7 @@ deploymentSpec:
|
|
|
3040
3040
|
\ 'training_disk_spec',\n 'eval_machine_spec',\n 'eval_replica_count',\n\
|
|
3041
3041
|
\ ],\n )(\n training_machine_spec,\n training_disk_spec,\n\
|
|
3042
3042
|
\ eval_machine_spec,\n eval_replica_count,\n )\n\n"
|
|
3043
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3043
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3044
3044
|
exec-set-optional-inputs:
|
|
3045
3045
|
container:
|
|
3046
3046
|
args:
|
|
@@ -3088,7 +3088,7 @@ deploymentSpec:
|
|
|
3088
3088
|
\ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
|
|
3089
3089
|
\ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
3090
3090
|
\ )\n\n"
|
|
3091
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3091
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3092
3092
|
exec-split-materialized-data:
|
|
3093
3093
|
container:
|
|
3094
3094
|
args:
|
|
@@ -3134,7 +3134,7 @@ deploymentSpec:
|
|
|
3134
3134
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
3135
3135
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
3136
3136
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
3137
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
3137
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
3138
3138
|
exec-training-configurator-and-validator:
|
|
3139
3139
|
container:
|
|
3140
3140
|
args:
|
|
@@ -3179,7 +3179,7 @@ deploymentSpec:
|
|
|
3179
3179
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
3180
3180
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
3181
3181
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
3182
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
3182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
3183
3183
|
exec-wide-and-deep-trainer:
|
|
3184
3184
|
container:
|
|
3185
3185
|
args:
|
|
@@ -3197,11 +3197,11 @@ deploymentSpec:
|
|
|
3197
3197
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\":\"", "1",
|
|
3198
3198
|
"\", \"machine_spec\": ", "{{$.inputs.parameters[''training_machine_spec'']}}",
|
|
3199
3199
|
", \"disk_spec\": ", "{{$.inputs.parameters[''training_disk_spec'']}}",
|
|
3200
|
-
", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:
|
|
3200
|
+
", \"container_spec\": {\"image_uri\":\"", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/wide-and-deep-training:20240710_0625",
|
|
3201
3201
|
"\", \"args\": [\"--target_column=", "{{$.inputs.parameters[''target_column'']}}",
|
|
3202
3202
|
"\", \"--weight_column=", "{{$.inputs.parameters[''weight_column'']}}",
|
|
3203
3203
|
"\", \"--model_type=", "{{$.inputs.parameters[''prediction_type'']}}", "\",
|
|
3204
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
3204
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
3205
3205
|
"\", \"--baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
3206
3206
|
"\", \"--metadata_path=", "{{$.inputs.artifacts[''metadata''].uri}}", "\",
|
|
3207
3207
|
\"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
@@ -2620,7 +2620,7 @@ deploymentSpec:
|
|
|
2620
2620
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
2621
2621
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
2622
2622
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
2623
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
2623
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
2624
2624
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2625
2625
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
2626
2626
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -2651,7 +2651,7 @@ deploymentSpec:
|
|
|
2651
2651
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
2652
2652
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
2653
2653
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
2654
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2654
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2655
2655
|
exec-feature-transform-engine:
|
|
2656
2656
|
container:
|
|
2657
2657
|
args:
|
|
@@ -2736,8 +2736,8 @@ deploymentSpec:
|
|
|
2736
2736
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
2737
2737
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
2738
2738
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
2739
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2740
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2739
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
2740
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2741
2741
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
2742
2742
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
2743
2743
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -2754,7 +2754,7 @@ deploymentSpec:
|
|
|
2754
2754
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
2755
2755
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
2756
2756
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
2757
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2757
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2758
2758
|
resources:
|
|
2759
2759
|
cpuLimit: 8.0
|
|
2760
2760
|
memoryLimit: 30.0
|
|
@@ -2818,7 +2818,7 @@ deploymentSpec:
|
|
|
2818
2818
|
\ return re.sub(r'^/gcs/', r'gs://', path)\n\n master_worker_pool_spec\
|
|
2819
2819
|
\ = {\n 'replica_count': 1,\n 'machine_spec': {\n 'machine_type':\
|
|
2820
2820
|
\ machine_type,\n },\n 'container_spec': {\n 'image_uri':\
|
|
2821
|
-
\ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:
|
|
2821
|
+
\ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:20240710_0625',\n\
|
|
2822
2822
|
\ 'args': [\n f'--job_dir={get_gcs_path(job_dir)}',\n\
|
|
2823
2823
|
\ f'--instance_schema_path={get_gcs_path(instance_schema_uri)}',\n\
|
|
2824
2824
|
\ f'--prediction_schema_path={get_gcs_path(prediction_schema_uri)}',\n\
|
|
@@ -2831,7 +2831,7 @@ deploymentSpec:
|
|
|
2831
2831
|
\ f'--baseline_path={get_gcs_path(instance_baseline)}',\n \
|
|
2832
2832
|
\ f'--eval_metric={eval_metric}',\n f'--disable_default_eval_metric={disable_default_eval_metric}',\n\
|
|
2833
2833
|
\ f'--seed={seed}',\n f'--seed_per_iteration={seed_per_iteration}',\n\
|
|
2834
|
-
\ '--prediction_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:
|
|
2834
|
+
\ '--prediction_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:20240710_0625',\n\
|
|
2835
2835
|
\ ],\n },\n }\n\n # Add optional arguments if set\n if\
|
|
2836
2836
|
\ weight_column:\n master_worker_pool_spec['container_spec']['args'].append(\n\
|
|
2837
2837
|
\ f'--weight_column={weight_column}'\n )\n\n # Add accelerator_type\
|
|
@@ -2850,7 +2850,7 @@ deploymentSpec:
|
|
|
2850
2850
|
\ ],\n )(\n worker_pool_specs_lst,\n get_gcs_path(instance_schema_uri),\n\
|
|
2851
2851
|
\ get_gcs_path(prediction_schema_uri),\n get_gcs_path(trials),\n\
|
|
2852
2852
|
\ get_gcs_path(prediction_docker_uri_output),\n )\n\n"
|
|
2853
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2853
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2854
2854
|
exec-get-best-hyperparameter-tuning-job-trial:
|
|
2855
2855
|
container:
|
|
2856
2856
|
args:
|
|
@@ -2915,7 +2915,7 @@ deploymentSpec:
|
|
|
2915
2915
|
\ = {\n 'instanceSchemaUri': instance_schema_uri,\n 'predictionSchemaUri':\
|
|
2916
2916
|
\ prediction_schema_uri,\n }\n unmanaged_container_model.uri = os.path.join(\n\
|
|
2917
2917
|
\ trials_dir, 'trial_{}'.format(best_trial['id']), 'model'\n )\n\n"
|
|
2918
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2918
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2919
2919
|
exec-get-model-display-name:
|
|
2920
2920
|
container:
|
|
2921
2921
|
args:
|
|
@@ -2942,7 +2942,7 @@ deploymentSpec:
|
|
|
2942
2942
|
\n return collections.namedtuple(\n 'Outputs',\n [\n \
|
|
2943
2943
|
\ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
|
|
2944
2944
|
\n"
|
|
2945
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2945
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2946
2946
|
exec-get-prediction-type-for-xgboost:
|
|
2947
2947
|
container:
|
|
2948
2948
|
args:
|
|
@@ -2971,7 +2971,7 @@ deploymentSpec:
|
|
|
2971
2971
|
\ Must be one of'\n ' [reg:squarederror, reg:squaredlogerror, reg:logistic,\
|
|
2972
2972
|
\ reg:gamma,'\n ' reg:tweedie, reg:pseudohubererror, binary:logistic,'\n\
|
|
2973
2973
|
\ ' multi:softprob].'\n )\n\n"
|
|
2974
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2974
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2975
2975
|
exec-get-xgboost-study-spec-parameters:
|
|
2976
2976
|
container:
|
|
2977
2977
|
args:
|
|
@@ -3546,7 +3546,7 @@ deploymentSpec:
|
|
|
3546
3546
|
\ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
|
|
3547
3547
|
\ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
3548
3548
|
\ )\n\n"
|
|
3549
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3549
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3550
3550
|
exec-split-materialized-data:
|
|
3551
3551
|
container:
|
|
3552
3552
|
args:
|
|
@@ -3592,7 +3592,7 @@ deploymentSpec:
|
|
|
3592
3592
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
3593
3593
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
3594
3594
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
3595
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
3595
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
3596
3596
|
exec-training-configurator-and-validator:
|
|
3597
3597
|
container:
|
|
3598
3598
|
args:
|
|
@@ -3637,7 +3637,7 @@ deploymentSpec:
|
|
|
3637
3637
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
3638
3638
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
3639
3639
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
3640
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
3640
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
3641
3641
|
exec-xgboost-hyperparameter-tuning-job:
|
|
3642
3642
|
container:
|
|
3643
3643
|
args:
|
|
@@ -2844,7 +2844,7 @@ deploymentSpec:
|
|
|
2844
2844
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
2845
2845
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
2846
2846
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
2847
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
2847
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
2848
2848
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
2849
2849
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
2850
2850
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -2875,7 +2875,7 @@ deploymentSpec:
|
|
|
2875
2875
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
2876
2876
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
2877
2877
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
2878
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
2878
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
2879
2879
|
exec-feature-transform-engine:
|
|
2880
2880
|
container:
|
|
2881
2881
|
args:
|
|
@@ -2960,8 +2960,8 @@ deploymentSpec:
|
|
|
2960
2960
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
2961
2961
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
2962
2962
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
2963
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
2964
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2963
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
2964
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2965
2965
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
2966
2966
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
2967
2967
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -2978,7 +2978,7 @@ deploymentSpec:
|
|
|
2978
2978
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
2979
2979
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
2980
2980
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
2981
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
2981
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
2982
2982
|
resources:
|
|
2983
2983
|
cpuLimit: 8.0
|
|
2984
2984
|
memoryLimit: 30.0
|
|
@@ -3098,10 +3098,10 @@ deploymentSpec:
|
|
|
3098
3098
|
\ worker pool specs.\n \"\"\"\n import copy\n import collections\n import\
|
|
3099
3099
|
\ os\n import re\n\n def get_gcs_path(path):\n return re.sub(r'/gcs/',\
|
|
3100
3100
|
\ 'gs://', path)\n\n formatted_job_dir = get_gcs_path(job_dir)\n prediction_docker_uri\
|
|
3101
|
-
\ = (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:
|
|
3101
|
+
\ = (\n 'us-docker.pkg.dev/vertex-ai/automl-tabular/xgboost-prediction-server:20240710_0625'\n\
|
|
3102
3102
|
\ )\n master_worker_pool_spec = {\n 'replica_count': 1,\n 'machine_spec':\
|
|
3103
3103
|
\ {\n 'machine_type': machine_type,\n },\n 'container_spec':\
|
|
3104
|
-
\ {\n 'image_uri': 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:
|
|
3104
|
+
\ {\n 'image_uri': 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/xgboost-training:20240710_0625',\n\
|
|
3105
3105
|
\ 'args': [\n f'--job_dir={formatted_job_dir}',\n\
|
|
3106
3106
|
\ f'--target_column={target_column}',\n f'--objective={objective}',\n\
|
|
3107
3107
|
\ f'--training_data_path={get_gcs_path(materialized_train_split)}',\n\
|
|
@@ -3159,7 +3159,7 @@ deploymentSpec:
|
|
|
3159
3159
|
\ 'predictionSchemaUri': os.path.join(model_dir, 'prediction_schema.yaml'),\n\
|
|
3160
3160
|
\ }\n unmanaged_container_model.uri = model_dir\n\n return collections.namedtuple('Outputs',\
|
|
3161
3161
|
\ ['worker_pool_specs'])(\n worker_pool_specs_lst\n )\n\n"
|
|
3162
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3162
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3163
3163
|
exec-get-model-display-name:
|
|
3164
3164
|
container:
|
|
3165
3165
|
args:
|
|
@@ -3186,7 +3186,7 @@ deploymentSpec:
|
|
|
3186
3186
|
\n return collections.namedtuple(\n 'Outputs',\n [\n \
|
|
3187
3187
|
\ 'model_display_name',\n ],\n )(\n model_display_name,\n )\n\
|
|
3188
3188
|
\n"
|
|
3189
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3189
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3190
3190
|
exec-get-prediction-type-for-xgboost:
|
|
3191
3191
|
container:
|
|
3192
3192
|
args:
|
|
@@ -3215,7 +3215,7 @@ deploymentSpec:
|
|
|
3215
3215
|
\ Must be one of'\n ' [reg:squarederror, reg:squaredlogerror, reg:logistic,\
|
|
3216
3216
|
\ reg:gamma,'\n ' reg:tweedie, reg:pseudohubererror, binary:logistic,'\n\
|
|
3217
3217
|
\ ' multi:softprob].'\n )\n\n"
|
|
3218
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3218
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3219
3219
|
exec-model-batch-predict:
|
|
3220
3220
|
container:
|
|
3221
3221
|
args:
|
|
@@ -3407,7 +3407,7 @@ deploymentSpec:
|
|
|
3407
3407
|
\ 'data_source_csv_filenames',\n 'data_source_bigquery_table_path',\n\
|
|
3408
3408
|
\ ],\n )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
3409
3409
|
\ )\n\n"
|
|
3410
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
3410
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
3411
3411
|
exec-split-materialized-data:
|
|
3412
3412
|
container:
|
|
3413
3413
|
args:
|
|
@@ -3453,7 +3453,7 @@ deploymentSpec:
|
|
|
3453
3453
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
3454
3454
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
3455
3455
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
3456
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
3456
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
3457
3457
|
exec-training-configurator-and-validator:
|
|
3458
3458
|
container:
|
|
3459
3459
|
args:
|
|
@@ -3498,7 +3498,7 @@ deploymentSpec:
|
|
|
3498
3498
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
3499
3499
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
3500
3500
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
3501
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
3501
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
3502
3502
|
exec-xgboost-trainer:
|
|
3503
3503
|
container:
|
|
3504
3504
|
args:
|