google-cloud-pipeline-components 2.14.1__py3-none-any.whl → 2.16.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (88) hide show
  1. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  2. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +24 -0
  3. google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
  4. google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
  5. google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +173 -0
  6. google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
  7. google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
  8. google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
  9. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
  10. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
  11. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
  12. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
  13. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
  14. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
  15. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
  16. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
  17. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
  18. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
  19. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
  20. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
  21. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
  22. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
  23. google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
  24. google_cloud_pipeline_components/_implementation/starry_net/train/component.py +220 -0
  25. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
  26. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +64 -0
  27. google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
  28. google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
  29. google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
  30. google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
  31. google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
  32. google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
  33. google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
  34. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  35. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  36. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  37. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
  38. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
  39. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
  40. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
  41. google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
  42. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  43. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  44. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  45. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  46. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  47. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  48. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  49. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  50. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  51. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  52. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  53. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  54. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  55. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  56. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  57. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  58. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  59. google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
  60. google_cloud_pipeline_components/preview/llm/rlhf/component.py +3 -6
  61. google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
  62. google_cloud_pipeline_components/preview/starry_net/component.py +469 -0
  63. google_cloud_pipeline_components/proto/task_error_pb2.py +0 -1
  64. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  65. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  66. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  67. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  68. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  69. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  70. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  71. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  72. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  73. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  74. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  75. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  76. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  77. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  78. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  79. google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
  80. google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
  81. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +21 -0
  82. google_cloud_pipeline_components/version.py +1 -1
  83. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -20
  84. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +87 -58
  85. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
  86. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
  87. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
  88. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
@@ -1068,6 +1068,8 @@ components:
1068
1068
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1069
1069
  dataflow_use_public_ips:
1070
1070
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1071
+ dataflow_workers_num:
1072
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1071
1073
  encryption_spec_key_name:
1072
1074
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1073
1075
  forecasting_quantiles:
@@ -1784,6 +1786,8 @@ components:
1784
1786
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1785
1787
  dataflow_use_public_ips:
1786
1788
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1789
+ dataflow_workers_num:
1790
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1787
1791
  encryption_spec_key_name:
1788
1792
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1789
1793
  forecasting_quantiles:
@@ -5548,7 +5552,7 @@ deploymentSpec:
5548
5552
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5549
5553
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5550
5554
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5551
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5555
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5552
5556
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5553
5557
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5554
5558
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5582,7 +5586,7 @@ deploymentSpec:
5582
5586
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5583
5587
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5584
5588
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5585
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5589
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5586
5590
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5587
5591
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5588
5592
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5617,11 +5621,11 @@ deploymentSpec:
5617
5621
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5618
5622
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5619
5623
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5620
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5624
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5621
5625
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5622
5626
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5623
5627
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5624
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5628
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5625
5629
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5626
5630
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5627
5631
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5660,11 +5664,11 @@ deploymentSpec:
5660
5664
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5661
5665
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5662
5666
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5663
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5667
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5664
5668
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5665
5669
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5666
5670
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5667
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5671
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5668
5672
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5669
5673
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5670
5674
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5703,7 +5707,7 @@ deploymentSpec:
5703
5707
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5704
5708
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5705
5709
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5706
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5710
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5707
5711
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5708
5712
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5709
5713
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5768,7 +5772,7 @@ deploymentSpec:
5768
5772
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5769
5773
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5770
5774
  \ stage_2_single_run_max_secs,\n )\n\n"
5771
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5775
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5772
5776
  exec-calculate-training-parameters-2:
5773
5777
  container:
5774
5778
  args:
@@ -5824,7 +5828,7 @@ deploymentSpec:
5824
5828
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5825
5829
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5826
5830
  \ stage_2_single_run_max_secs,\n )\n\n"
5827
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5831
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5828
5832
  exec-feature-attribution:
5829
5833
  container:
5830
5834
  args:
@@ -6015,8 +6019,8 @@ deploymentSpec:
6015
6019
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6016
6020
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6017
6021
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6018
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6019
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6022
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6023
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6020
6024
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6021
6025
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6022
6026
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6033,7 +6037,7 @@ deploymentSpec:
6033
6037
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6034
6038
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6035
6039
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6036
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6040
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6037
6041
  resources:
6038
6042
  cpuLimit: 8.0
6039
6043
  memoryLimit: 30.0
@@ -6064,7 +6068,7 @@ deploymentSpec:
6064
6068
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6065
6069
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6066
6070
  \ ),\n )(forecasting_type, quantiles)\n\n"
6067
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6071
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6068
6072
  exec-finalize-eval-quantile-parameters-2:
6069
6073
  container:
6070
6074
  args:
@@ -6092,7 +6096,7 @@ deploymentSpec:
6092
6096
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6093
6097
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6094
6098
  \ ),\n )(forecasting_type, quantiles)\n\n"
6095
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6099
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6096
6100
  exec-get-or-create-model-description:
6097
6101
  container:
6098
6102
  args:
@@ -6121,7 +6125,7 @@ deploymentSpec:
6121
6125
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6122
6126
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6123
6127
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6124
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6128
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6125
6129
  exec-get-or-create-model-description-2:
6126
6130
  container:
6127
6131
  args:
@@ -6150,7 +6154,7 @@ deploymentSpec:
6150
6154
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6151
6155
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6152
6156
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6153
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6157
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6154
6158
  exec-get-prediction-image-uri:
6155
6159
  container:
6156
6160
  args:
@@ -6173,14 +6177,14 @@ deploymentSpec:
6173
6177
  Returns the prediction image corresponding to the given model type.\"\"\"\
6174
6178
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6175
6179
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6176
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6177
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6178
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6179
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6180
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6181
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6182
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6183
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6180
6184
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6181
6185
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6182
6186
  \ )\n return images[model_type]\n\n"
6183
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6187
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6184
6188
  exec-get-prediction-image-uri-2:
6185
6189
  container:
6186
6190
  args:
@@ -6203,14 +6207,14 @@ deploymentSpec:
6203
6207
  Returns the prediction image corresponding to the given model type.\"\"\"\
6204
6208
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6205
6209
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6206
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6207
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6208
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6209
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6210
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6211
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6212
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6213
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6210
6214
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6211
6215
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6212
6216
  \ )\n return images[model_type]\n\n"
6213
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6217
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6214
6218
  exec-get-predictions-column:
6215
6219
  container:
6216
6220
  args:
@@ -6233,7 +6237,7 @@ deploymentSpec:
6233
6237
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6234
6238
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6235
6239
  \ return f'predicted_{target_column}.value'\n\n"
6236
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6240
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6237
6241
  exec-get-predictions-column-2:
6238
6242
  container:
6239
6243
  args:
@@ -6256,7 +6260,7 @@ deploymentSpec:
6256
6260
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6257
6261
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6258
6262
  \ return f'predicted_{target_column}.value'\n\n"
6259
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6263
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6260
6264
  exec-importer:
6261
6265
  importer:
6262
6266
  artifactUri:
@@ -6788,7 +6792,7 @@ deploymentSpec:
6788
6792
  \ 'model_display_name',\n 'transformations',\n ],\n\
6789
6793
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6790
6794
  \ model_display_name,\n transformations,\n )\n\n"
6791
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6795
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6792
6796
  exec-split-materialized-data:
6793
6797
  container:
6794
6798
  args:
@@ -6834,7 +6838,7 @@ deploymentSpec:
6834
6838
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6835
6839
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6836
6840
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6837
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6841
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6838
6842
  exec-string-not-empty:
6839
6843
  container:
6840
6844
  args:
@@ -6858,7 +6862,7 @@ deploymentSpec:
6858
6862
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6859
6863
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6860
6864
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6861
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6865
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6862
6866
  exec-table-to-uri:
6863
6867
  container:
6864
6868
  args:
@@ -6888,7 +6892,7 @@ deploymentSpec:
6888
6892
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6889
6893
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6890
6894
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6891
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6895
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6892
6896
  exec-table-to-uri-2:
6893
6897
  container:
6894
6898
  args:
@@ -6918,7 +6922,7 @@ deploymentSpec:
6918
6922
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6919
6923
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6920
6924
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6921
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6925
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6922
6926
  exec-training-configurator-and-validator:
6923
6927
  container:
6924
6928
  args:
@@ -6963,7 +6967,7 @@ deploymentSpec:
6963
6967
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6964
6968
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6965
6969
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6966
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6970
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6967
6971
  pipelineInfo:
6968
6972
  description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
6969
6973
  name: temporal-fusion-transformer-forecasting
@@ -1074,6 +1074,8 @@ components:
1074
1074
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1075
1075
  dataflow_use_public_ips:
1076
1076
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1077
+ dataflow_workers_num:
1078
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1077
1079
  encryption_spec_key_name:
1078
1080
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1079
1081
  forecasting_quantiles:
@@ -1795,6 +1797,8 @@ components:
1795
1797
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1796
1798
  dataflow_use_public_ips:
1797
1799
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1800
+ dataflow_workers_num:
1801
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1798
1802
  encryption_spec_key_name:
1799
1803
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1800
1804
  forecasting_quantiles:
@@ -5573,7 +5577,7 @@ deploymentSpec:
5573
5577
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5574
5578
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5575
5579
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5576
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5580
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5577
5581
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5578
5582
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5579
5583
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5607,7 +5611,7 @@ deploymentSpec:
5607
5611
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5608
5612
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5609
5613
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5610
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5614
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5611
5615
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5612
5616
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5613
5617
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5642,11 +5646,11 @@ deploymentSpec:
5642
5646
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5643
5647
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5644
5648
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5645
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5646
5650
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5647
5651
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5648
5652
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5653
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5650
5654
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5651
5655
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5652
5656
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5685,11 +5689,11 @@ deploymentSpec:
5685
5689
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5686
5690
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5687
5691
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5688
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5689
5693
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5690
5694
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5691
5695
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5696
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5693
5697
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5694
5698
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5695
5699
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5728,7 +5732,7 @@ deploymentSpec:
5728
5732
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5729
5733
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5730
5734
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5731
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5735
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5732
5736
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5733
5737
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5734
5738
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5793,7 +5797,7 @@ deploymentSpec:
5793
5797
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5794
5798
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5795
5799
  \ stage_2_single_run_max_secs,\n )\n\n"
5796
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5800
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5797
5801
  exec-calculate-training-parameters-2:
5798
5802
  container:
5799
5803
  args:
@@ -5849,7 +5853,7 @@ deploymentSpec:
5849
5853
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5850
5854
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5851
5855
  \ stage_2_single_run_max_secs,\n )\n\n"
5852
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5856
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5853
5857
  exec-feature-attribution:
5854
5858
  container:
5855
5859
  args:
@@ -6040,8 +6044,8 @@ deploymentSpec:
6040
6044
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6041
6045
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6042
6046
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6043
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6044
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6047
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6048
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6045
6049
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6046
6050
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6047
6051
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6058,7 +6062,7 @@ deploymentSpec:
6058
6062
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6059
6063
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6060
6064
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6061
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6065
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6062
6066
  resources:
6063
6067
  cpuLimit: 8.0
6064
6068
  memoryLimit: 30.0
@@ -6089,7 +6093,7 @@ deploymentSpec:
6089
6093
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6090
6094
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6091
6095
  \ ),\n )(forecasting_type, quantiles)\n\n"
6092
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6096
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6093
6097
  exec-finalize-eval-quantile-parameters-2:
6094
6098
  container:
6095
6099
  args:
@@ -6117,7 +6121,7 @@ deploymentSpec:
6117
6121
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6118
6122
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6119
6123
  \ ),\n )(forecasting_type, quantiles)\n\n"
6120
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6124
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6121
6125
  exec-get-or-create-model-description:
6122
6126
  container:
6123
6127
  args:
@@ -6146,7 +6150,7 @@ deploymentSpec:
6146
6150
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6147
6151
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6148
6152
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6149
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6153
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6150
6154
  exec-get-or-create-model-description-2:
6151
6155
  container:
6152
6156
  args:
@@ -6175,7 +6179,7 @@ deploymentSpec:
6175
6179
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6176
6180
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6177
6181
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6178
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6182
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6179
6183
  exec-get-prediction-image-uri:
6180
6184
  container:
6181
6185
  args:
@@ -6198,14 +6202,14 @@ deploymentSpec:
6198
6202
  Returns the prediction image corresponding to the given model type.\"\"\"\
6199
6203
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6200
6204
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6201
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6202
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6203
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6204
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6205
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6206
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6207
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6208
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6205
6209
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6206
6210
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6207
6211
  \ )\n return images[model_type]\n\n"
6208
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6212
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6209
6213
  exec-get-prediction-image-uri-2:
6210
6214
  container:
6211
6215
  args:
@@ -6228,14 +6232,14 @@ deploymentSpec:
6228
6232
  Returns the prediction image corresponding to the given model type.\"\"\"\
6229
6233
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6230
6234
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6231
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6232
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6233
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6234
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6235
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6236
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6237
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6238
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6235
6239
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6236
6240
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6237
6241
  \ )\n return images[model_type]\n\n"
6238
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6242
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6239
6243
  exec-get-predictions-column:
6240
6244
  container:
6241
6245
  args:
@@ -6258,7 +6262,7 @@ deploymentSpec:
6258
6262
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6259
6263
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6260
6264
  \ return f'predicted_{target_column}.value'\n\n"
6261
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6265
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6262
6266
  exec-get-predictions-column-2:
6263
6267
  container:
6264
6268
  args:
@@ -6281,7 +6285,7 @@ deploymentSpec:
6281
6285
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6282
6286
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6283
6287
  \ return f'predicted_{target_column}.value'\n\n"
6284
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6288
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6285
6289
  exec-importer:
6286
6290
  importer:
6287
6291
  artifactUri:
@@ -6813,7 +6817,7 @@ deploymentSpec:
6813
6817
  \ 'model_display_name',\n 'transformations',\n ],\n\
6814
6818
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6815
6819
  \ model_display_name,\n transformations,\n )\n\n"
6816
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6820
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6817
6821
  exec-split-materialized-data:
6818
6822
  container:
6819
6823
  args:
@@ -6859,7 +6863,7 @@ deploymentSpec:
6859
6863
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6860
6864
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6861
6865
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6862
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6866
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6863
6867
  exec-string-not-empty:
6864
6868
  container:
6865
6869
  args:
@@ -6883,7 +6887,7 @@ deploymentSpec:
6883
6887
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6884
6888
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6885
6889
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6886
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6890
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6887
6891
  exec-table-to-uri:
6888
6892
  container:
6889
6893
  args:
@@ -6913,7 +6917,7 @@ deploymentSpec:
6913
6917
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6914
6918
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6915
6919
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6916
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6920
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6917
6921
  exec-table-to-uri-2:
6918
6922
  container:
6919
6923
  args:
@@ -6943,7 +6947,7 @@ deploymentSpec:
6943
6947
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6944
6948
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6945
6949
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6946
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6950
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6947
6951
  exec-training-configurator-and-validator:
6948
6952
  container:
6949
6953
  args:
@@ -6988,7 +6992,7 @@ deploymentSpec:
6988
6992
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6989
6993
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6990
6994
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6991
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6995
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6992
6996
  pipelineInfo:
6993
6997
  description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
6994
6998
  name: time-series-dense-encoder-forecasting