google-cloud-pipeline-components 2.14.1__py3-none-any.whl → 2.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +24 -0
- google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
- google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +173 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +220 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +64 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
- google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
- google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
- google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
- google_cloud_pipeline_components/preview/llm/rlhf/component.py +3 -6
- google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
- google_cloud_pipeline_components/preview/starry_net/component.py +469 -0
- google_cloud_pipeline_components/proto/task_error_pb2.py +0 -1
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +21 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -20
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +87 -58
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
|
@@ -1068,6 +1068,8 @@ components:
|
|
|
1068
1068
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1069
1069
|
dataflow_use_public_ips:
|
|
1070
1070
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1071
|
+
dataflow_workers_num:
|
|
1072
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1071
1073
|
encryption_spec_key_name:
|
|
1072
1074
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1073
1075
|
forecasting_quantiles:
|
|
@@ -1784,6 +1786,8 @@ components:
|
|
|
1784
1786
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1785
1787
|
dataflow_use_public_ips:
|
|
1786
1788
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1789
|
+
dataflow_workers_num:
|
|
1790
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1787
1791
|
encryption_spec_key_name:
|
|
1788
1792
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1789
1793
|
forecasting_quantiles:
|
|
@@ -5548,7 +5552,7 @@ deploymentSpec:
|
|
|
5548
5552
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5549
5553
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5550
5554
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5551
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5555
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5552
5556
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5553
5557
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5554
5558
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5582,7 +5586,7 @@ deploymentSpec:
|
|
|
5582
5586
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5583
5587
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5584
5588
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5585
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5589
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5586
5590
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5587
5591
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5588
5592
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5617,11 +5621,11 @@ deploymentSpec:
|
|
|
5617
5621
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5618
5622
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5619
5623
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5620
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5624
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5621
5625
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5622
5626
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5623
5627
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5624
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5628
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5625
5629
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5626
5630
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5627
5631
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5660,11 +5664,11 @@ deploymentSpec:
|
|
|
5660
5664
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5661
5665
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5662
5666
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5663
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5667
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5664
5668
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5665
5669
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5666
5670
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5667
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5671
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5668
5672
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5669
5673
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5670
5674
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5703,7 +5707,7 @@ deploymentSpec:
|
|
|
5703
5707
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5704
5708
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5705
5709
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5706
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5710
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
5707
5711
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5708
5712
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5709
5713
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5768,7 +5772,7 @@ deploymentSpec:
|
|
|
5768
5772
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5769
5773
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5770
5774
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5771
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5775
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5772
5776
|
exec-calculate-training-parameters-2:
|
|
5773
5777
|
container:
|
|
5774
5778
|
args:
|
|
@@ -5824,7 +5828,7 @@ deploymentSpec:
|
|
|
5824
5828
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5825
5829
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5826
5830
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5827
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5831
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5828
5832
|
exec-feature-attribution:
|
|
5829
5833
|
container:
|
|
5830
5834
|
args:
|
|
@@ -6015,8 +6019,8 @@ deploymentSpec:
|
|
|
6015
6019
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6016
6020
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6017
6021
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6018
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6019
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6022
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6023
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6020
6024
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6021
6025
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6022
6026
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6033,7 +6037,7 @@ deploymentSpec:
|
|
|
6033
6037
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6034
6038
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6035
6039
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6036
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6040
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6037
6041
|
resources:
|
|
6038
6042
|
cpuLimit: 8.0
|
|
6039
6043
|
memoryLimit: 30.0
|
|
@@ -6064,7 +6068,7 @@ deploymentSpec:
|
|
|
6064
6068
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6065
6069
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6066
6070
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6067
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6071
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6068
6072
|
exec-finalize-eval-quantile-parameters-2:
|
|
6069
6073
|
container:
|
|
6070
6074
|
args:
|
|
@@ -6092,7 +6096,7 @@ deploymentSpec:
|
|
|
6092
6096
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6093
6097
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6094
6098
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6095
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6099
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6096
6100
|
exec-get-or-create-model-description:
|
|
6097
6101
|
container:
|
|
6098
6102
|
args:
|
|
@@ -6121,7 +6125,7 @@ deploymentSpec:
|
|
|
6121
6125
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6122
6126
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6123
6127
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6124
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6128
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6125
6129
|
exec-get-or-create-model-description-2:
|
|
6126
6130
|
container:
|
|
6127
6131
|
args:
|
|
@@ -6150,7 +6154,7 @@ deploymentSpec:
|
|
|
6150
6154
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6151
6155
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6152
6156
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6153
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6157
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6154
6158
|
exec-get-prediction-image-uri:
|
|
6155
6159
|
container:
|
|
6156
6160
|
args:
|
|
@@ -6173,14 +6177,14 @@ deploymentSpec:
|
|
|
6173
6177
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6174
6178
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6175
6179
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6176
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6177
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6178
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6179
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6180
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6181
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6182
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6183
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6180
6184
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6181
6185
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6182
6186
|
\ )\n return images[model_type]\n\n"
|
|
6183
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6187
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6184
6188
|
exec-get-prediction-image-uri-2:
|
|
6185
6189
|
container:
|
|
6186
6190
|
args:
|
|
@@ -6203,14 +6207,14 @@ deploymentSpec:
|
|
|
6203
6207
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6204
6208
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6205
6209
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6206
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6207
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6208
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6209
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6210
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6211
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6212
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6213
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6210
6214
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6211
6215
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6212
6216
|
\ )\n return images[model_type]\n\n"
|
|
6213
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6217
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6214
6218
|
exec-get-predictions-column:
|
|
6215
6219
|
container:
|
|
6216
6220
|
args:
|
|
@@ -6233,7 +6237,7 @@ deploymentSpec:
|
|
|
6233
6237
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6234
6238
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6235
6239
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6236
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6240
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6237
6241
|
exec-get-predictions-column-2:
|
|
6238
6242
|
container:
|
|
6239
6243
|
args:
|
|
@@ -6256,7 +6260,7 @@ deploymentSpec:
|
|
|
6256
6260
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6257
6261
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6258
6262
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6259
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6263
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6260
6264
|
exec-importer:
|
|
6261
6265
|
importer:
|
|
6262
6266
|
artifactUri:
|
|
@@ -6788,7 +6792,7 @@ deploymentSpec:
|
|
|
6788
6792
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6789
6793
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6790
6794
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6791
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6795
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6792
6796
|
exec-split-materialized-data:
|
|
6793
6797
|
container:
|
|
6794
6798
|
args:
|
|
@@ -6834,7 +6838,7 @@ deploymentSpec:
|
|
|
6834
6838
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6835
6839
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6836
6840
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6837
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6841
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6838
6842
|
exec-string-not-empty:
|
|
6839
6843
|
container:
|
|
6840
6844
|
args:
|
|
@@ -6858,7 +6862,7 @@ deploymentSpec:
|
|
|
6858
6862
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6859
6863
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6860
6864
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6861
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6865
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6862
6866
|
exec-table-to-uri:
|
|
6863
6867
|
container:
|
|
6864
6868
|
args:
|
|
@@ -6888,7 +6892,7 @@ deploymentSpec:
|
|
|
6888
6892
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6889
6893
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6890
6894
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6891
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6895
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6892
6896
|
exec-table-to-uri-2:
|
|
6893
6897
|
container:
|
|
6894
6898
|
args:
|
|
@@ -6918,7 +6922,7 @@ deploymentSpec:
|
|
|
6918
6922
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6919
6923
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6920
6924
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6921
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6925
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6922
6926
|
exec-training-configurator-and-validator:
|
|
6923
6927
|
container:
|
|
6924
6928
|
args:
|
|
@@ -6963,7 +6967,7 @@ deploymentSpec:
|
|
|
6963
6967
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6964
6968
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6965
6969
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6966
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6970
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6967
6971
|
pipelineInfo:
|
|
6968
6972
|
description: The Temporal Fusion Transformer (TFT) Forecasting pipeline.
|
|
6969
6973
|
name: temporal-fusion-transformer-forecasting
|
|
@@ -1074,6 +1074,8 @@ components:
|
|
|
1074
1074
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1075
1075
|
dataflow_use_public_ips:
|
|
1076
1076
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1077
|
+
dataflow_workers_num:
|
|
1078
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1077
1079
|
encryption_spec_key_name:
|
|
1078
1080
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1079
1081
|
forecasting_quantiles:
|
|
@@ -1795,6 +1797,8 @@ components:
|
|
|
1795
1797
|
componentInputParameter: pipelinechannel--dataflow_subnetwork
|
|
1796
1798
|
dataflow_use_public_ips:
|
|
1797
1799
|
componentInputParameter: pipelinechannel--dataflow_use_public_ips
|
|
1800
|
+
dataflow_workers_num:
|
|
1801
|
+
componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
|
|
1798
1802
|
encryption_spec_key_name:
|
|
1799
1803
|
componentInputParameter: pipelinechannel--encryption_spec_key_name
|
|
1800
1804
|
forecasting_quantiles:
|
|
@@ -5573,7 +5577,7 @@ deploymentSpec:
|
|
|
5573
5577
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5574
5578
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5575
5579
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5576
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5580
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5577
5581
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5578
5582
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5579
5583
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5607,7 +5611,7 @@ deploymentSpec:
|
|
|
5607
5611
|
- '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
|
|
5608
5612
|
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
|
|
5609
5613
|
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
|
|
5610
|
-
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5614
|
+
{"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5611
5615
|
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
|
|
5612
5616
|
"--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
|
|
5613
5617
|
"--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
@@ -5642,11 +5646,11 @@ deploymentSpec:
|
|
|
5642
5646
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5643
5647
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5644
5648
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5645
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5649
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5646
5650
|
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
|
|
5647
5651
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5648
5652
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5649
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5653
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5650
5654
|
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
|
|
5651
5655
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5652
5656
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
@@ -5685,11 +5689,11 @@ deploymentSpec:
|
|
|
5685
5689
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5686
5690
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5687
5691
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5688
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5692
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5689
5693
|
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
|
|
5690
5694
|
"{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
|
|
5691
5695
|
"{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
|
|
5692
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:
|
|
5696
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
|
|
5693
5697
|
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
|
|
5694
5698
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
|
|
5695
5699
|
"\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -5728,7 +5732,7 @@ deploymentSpec:
|
|
|
5728
5732
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
5729
5733
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
5730
5734
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
5731
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
5735
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
5732
5736
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
5733
5737
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
5734
5738
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -5793,7 +5797,7 @@ deploymentSpec:
|
|
|
5793
5797
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5794
5798
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5795
5799
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5796
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5800
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5797
5801
|
exec-calculate-training-parameters-2:
|
|
5798
5802
|
container:
|
|
5799
5803
|
args:
|
|
@@ -5849,7 +5853,7 @@ deploymentSpec:
|
|
|
5849
5853
|
\ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
|
|
5850
5854
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
5851
5855
|
\ stage_2_single_run_max_secs,\n )\n\n"
|
|
5852
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
5856
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
5853
5857
|
exec-feature-attribution:
|
|
5854
5858
|
container:
|
|
5855
5859
|
args:
|
|
@@ -6040,8 +6044,8 @@ deploymentSpec:
|
|
|
6040
6044
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
|
|
6041
6045
|
- '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
|
|
6042
6046
|
- '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
|
|
6043
|
-
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6044
|
-
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6047
|
+
- --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6048
|
+
- --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6045
6049
|
- '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
|
|
6046
6050
|
- '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
|
|
6047
6051
|
- '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
|
|
@@ -6058,7 +6062,7 @@ deploymentSpec:
|
|
|
6058
6062
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6059
6063
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6060
6064
|
- '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
|
|
6061
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6065
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6062
6066
|
resources:
|
|
6063
6067
|
cpuLimit: 8.0
|
|
6064
6068
|
memoryLimit: 30.0
|
|
@@ -6089,7 +6093,7 @@ deploymentSpec:
|
|
|
6089
6093
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6090
6094
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6091
6095
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6092
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6096
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6093
6097
|
exec-finalize-eval-quantile-parameters-2:
|
|
6094
6098
|
container:
|
|
6095
6099
|
args:
|
|
@@ -6117,7 +6121,7 @@ deploymentSpec:
|
|
|
6117
6121
|
\ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
|
|
6118
6122
|
\ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
|
|
6119
6123
|
\ ),\n )(forecasting_type, quantiles)\n\n"
|
|
6120
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6124
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6121
6125
|
exec-get-or-create-model-description:
|
|
6122
6126
|
container:
|
|
6123
6127
|
args:
|
|
@@ -6146,7 +6150,7 @@ deploymentSpec:
|
|
|
6146
6150
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6147
6151
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6148
6152
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6149
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6153
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6150
6154
|
exec-get-or-create-model-description-2:
|
|
6151
6155
|
container:
|
|
6152
6156
|
args:
|
|
@@ -6175,7 +6179,7 @@ deploymentSpec:
|
|
|
6175
6179
|
\ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
|
|
6176
6180
|
\ url contains KFP placeholders injected at runtime.\n return f'Vertex\
|
|
6177
6181
|
\ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
|
|
6178
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6182
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6179
6183
|
exec-get-prediction-image-uri:
|
|
6180
6184
|
container:
|
|
6181
6185
|
args:
|
|
@@ -6198,14 +6202,14 @@ deploymentSpec:
|
|
|
6198
6202
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6199
6203
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6200
6204
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6201
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6202
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6203
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6204
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6205
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6206
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6207
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6208
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6205
6209
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6206
6210
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6207
6211
|
\ )\n return images[model_type]\n\n"
|
|
6208
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6212
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6209
6213
|
exec-get-prediction-image-uri-2:
|
|
6210
6214
|
container:
|
|
6211
6215
|
args:
|
|
@@ -6228,14 +6232,14 @@ deploymentSpec:
|
|
|
6228
6232
|
Returns the prediction image corresponding to the given model type.\"\"\"\
|
|
6229
6233
|
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
|
|
6230
6234
|
\ must be hardcoded without any breaks in the code so string\n # replacement\
|
|
6231
|
-
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:
|
|
6232
|
-
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:
|
|
6233
|
-
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:
|
|
6234
|
-
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:
|
|
6235
|
+
\ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
|
|
6236
|
+
\ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
|
|
6237
|
+
\ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
|
|
6238
|
+
\ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
|
|
6235
6239
|
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
|
|
6236
6240
|
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
|
|
6237
6241
|
\ )\n return images[model_type]\n\n"
|
|
6238
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6242
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6239
6243
|
exec-get-predictions-column:
|
|
6240
6244
|
container:
|
|
6241
6245
|
args:
|
|
@@ -6258,7 +6262,7 @@ deploymentSpec:
|
|
|
6258
6262
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6259
6263
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6260
6264
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6261
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6265
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6262
6266
|
exec-get-predictions-column-2:
|
|
6263
6267
|
container:
|
|
6264
6268
|
args:
|
|
@@ -6281,7 +6285,7 @@ deploymentSpec:
|
|
|
6281
6285
|
\ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
|
|
6282
6286
|
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
|
|
6283
6287
|
\ return f'predicted_{target_column}.value'\n\n"
|
|
6284
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6288
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6285
6289
|
exec-importer:
|
|
6286
6290
|
importer:
|
|
6287
6291
|
artifactUri:
|
|
@@ -6813,7 +6817,7 @@ deploymentSpec:
|
|
|
6813
6817
|
\ 'model_display_name',\n 'transformations',\n ],\n\
|
|
6814
6818
|
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
|
|
6815
6819
|
\ model_display_name,\n transformations,\n )\n\n"
|
|
6816
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6820
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6817
6821
|
exec-split-materialized-data:
|
|
6818
6822
|
container:
|
|
6819
6823
|
args:
|
|
@@ -6859,7 +6863,7 @@ deploymentSpec:
|
|
|
6859
6863
|
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
|
|
6860
6864
|
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
|
|
6861
6865
|
\ 'w') as f:\n f.write(file_patterns[2])\n\n"
|
|
6862
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
6866
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
|
|
6863
6867
|
exec-string-not-empty:
|
|
6864
6868
|
container:
|
|
6865
6869
|
args:
|
|
@@ -6883,7 +6887,7 @@ deploymentSpec:
|
|
|
6883
6887
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
6884
6888
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
6885
6889
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
6886
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6890
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6887
6891
|
exec-table-to-uri:
|
|
6888
6892
|
container:
|
|
6889
6893
|
args:
|
|
@@ -6913,7 +6917,7 @@ deploymentSpec:
|
|
|
6913
6917
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6914
6918
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6915
6919
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6916
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6920
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6917
6921
|
exec-table-to-uri-2:
|
|
6918
6922
|
container:
|
|
6919
6923
|
args:
|
|
@@ -6943,7 +6947,7 @@ deploymentSpec:
|
|
|
6943
6947
|
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
|
|
6944
6948
|
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
|
|
6945
6949
|
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
|
|
6946
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
6950
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
6947
6951
|
exec-training-configurator-and-validator:
|
|
6948
6952
|
container:
|
|
6949
6953
|
args:
|
|
@@ -6988,7 +6992,7 @@ deploymentSpec:
|
|
|
6988
6992
|
["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
|
|
6989
6993
|
- '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
|
|
6990
6994
|
["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
|
|
6991
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:
|
|
6995
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
|
|
6992
6996
|
pipelineInfo:
|
|
6993
6997
|
description: The Timeseries Dense Encoder (TiDE) Forecasting pipeline.
|
|
6994
6998
|
name: time-series-dense-encoder-forecasting
|