google-cloud-pipeline-components 2.14.1__py3-none-any.whl → 2.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of google-cloud-pipeline-components might be problematic. Click here for more details.
- google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +24 -0
- google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
- google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
- google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +173 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/train/component.py +220 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +64 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
- google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
- google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
- google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
- google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
- google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
- google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
- google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
- google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
- google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
- google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
- google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
- google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
- google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
- google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
- google_cloud_pipeline_components/preview/llm/rlhf/component.py +3 -6
- google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
- google_cloud_pipeline_components/preview/starry_net/component.py +469 -0
- google_cloud_pipeline_components/proto/task_error_pb2.py +0 -1
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
- google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
- google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
- google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
- google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
- google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
- google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
- google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
- google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
- google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +21 -0
- google_cloud_pipeline_components/version.py +1 -1
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -20
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +87 -58
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
- google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
- {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
|
@@ -13,6 +13,20 @@ _RETAIL_MODEL_DISABLED_OPTIONS = frozenset([
|
|
|
13
13
|
])
|
|
14
14
|
|
|
15
15
|
|
|
16
|
+
def _validate_start_max_parameters(
|
|
17
|
+
starting_worker_count: int,
|
|
18
|
+
max_worker_count: int,
|
|
19
|
+
starting_count_name: str,
|
|
20
|
+
max_count_name: str,
|
|
21
|
+
):
|
|
22
|
+
if starting_worker_count > max_worker_count:
|
|
23
|
+
raise ValueError(
|
|
24
|
+
'Starting count must be less than or equal to max count.'
|
|
25
|
+
f' {starting_count_name}: {starting_worker_count}, {max_count_name}:'
|
|
26
|
+
f' {max_worker_count}'
|
|
27
|
+
)
|
|
28
|
+
|
|
29
|
+
|
|
16
30
|
def _get_base_forecasting_parameters(
|
|
17
31
|
*,
|
|
18
32
|
project: str,
|
|
@@ -59,6 +73,7 @@ def _get_base_forecasting_parameters(
|
|
|
59
73
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
60
74
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
61
75
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
76
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
62
77
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
63
78
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
64
79
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -91,6 +106,20 @@ def _get_base_forecasting_parameters(
|
|
|
91
106
|
)
|
|
92
107
|
time_series_identifier_columns = [time_series_identifier_column]
|
|
93
108
|
|
|
109
|
+
_validate_start_max_parameters(
|
|
110
|
+
starting_worker_count=evaluation_batch_predict_starting_replica_count,
|
|
111
|
+
max_worker_count=evaluation_batch_predict_max_replica_count,
|
|
112
|
+
starting_count_name='evaluation_batch_predict_starting_replica_count',
|
|
113
|
+
max_count_name='evaluation_batch_predict_max_replica_count',
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
_validate_start_max_parameters(
|
|
117
|
+
starting_worker_count=evaluation_dataflow_starting_num_workers,
|
|
118
|
+
max_worker_count=evaluation_dataflow_max_num_workers,
|
|
119
|
+
starting_count_name='evaluation_dataflow_starting_num_workers',
|
|
120
|
+
max_count_name='evaluation_dataflow_max_num_workers',
|
|
121
|
+
)
|
|
122
|
+
|
|
94
123
|
parameter_values = {}
|
|
95
124
|
parameters = {
|
|
96
125
|
'project': project,
|
|
@@ -152,6 +181,9 @@ def _get_base_forecasting_parameters(
|
|
|
152
181
|
'evaluation_dataflow_max_num_workers': (
|
|
153
182
|
evaluation_dataflow_max_num_workers
|
|
154
183
|
),
|
|
184
|
+
'evaluation_dataflow_starting_num_workers': (
|
|
185
|
+
evaluation_dataflow_starting_num_workers
|
|
186
|
+
),
|
|
155
187
|
'evaluation_dataflow_disk_size_gb': evaluation_dataflow_disk_size_gb,
|
|
156
188
|
'study_spec_parameters_override': study_spec_parameters_override,
|
|
157
189
|
'stage_1_tuner_worker_pool_specs_override': (
|
|
@@ -174,13 +206,11 @@ def _get_base_forecasting_parameters(
|
|
|
174
206
|
|
|
175
207
|
# Filter out empty values and those excluded from the particular pipeline.
|
|
176
208
|
# (example: TFT and Seq2Seq don't support `quantiles`.)
|
|
177
|
-
parameter_values.update(
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
}
|
|
183
|
-
)
|
|
209
|
+
parameter_values.update({
|
|
210
|
+
param: value
|
|
211
|
+
for param, value in parameters.items()
|
|
212
|
+
if value is not None and param not in fields_to_exclude
|
|
213
|
+
})
|
|
184
214
|
return parameter_values
|
|
185
215
|
|
|
186
216
|
|
|
@@ -229,6 +259,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
|
|
|
229
259
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
230
260
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
231
261
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
262
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
232
263
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
233
264
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
234
265
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -291,6 +322,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
|
|
|
291
322
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
292
323
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
293
324
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
325
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
294
326
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
295
327
|
study_spec_parameters_override: The list for overriding study spec.
|
|
296
328
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -354,6 +386,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
|
|
|
354
386
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
355
387
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
356
388
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
389
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
357
390
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
358
391
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
359
392
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -423,6 +456,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
|
|
|
423
456
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
424
457
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
425
458
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
459
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
426
460
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
427
461
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
428
462
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -485,6 +519,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
|
|
|
485
519
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
486
520
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
487
521
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
522
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
488
523
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
489
524
|
study_spec_parameters_override: The list for overriding study spec.
|
|
490
525
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -548,6 +583,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
|
|
|
548
583
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
549
584
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
550
585
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
586
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
551
587
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
552
588
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
553
589
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -616,6 +652,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
|
|
|
616
652
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
617
653
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
618
654
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
655
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
619
656
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
620
657
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
621
658
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -671,6 +708,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
|
|
|
671
708
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
672
709
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
673
710
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
711
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
674
712
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
675
713
|
study_spec_parameters_override: The list for overriding study spec.
|
|
676
714
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -731,6 +769,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
|
|
|
731
769
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
732
770
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
733
771
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
772
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
734
773
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
735
774
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
736
775
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -795,6 +834,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
|
|
|
795
834
|
evaluation_batch_predict_max_replica_count: int = 25,
|
|
796
835
|
evaluation_dataflow_machine_type: str = 'n1-standard-16',
|
|
797
836
|
evaluation_dataflow_max_num_workers: int = 25,
|
|
837
|
+
evaluation_dataflow_starting_num_workers: int = 22,
|
|
798
838
|
evaluation_dataflow_disk_size_gb: int = 50,
|
|
799
839
|
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
|
|
800
840
|
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
|
|
@@ -851,6 +891,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
|
|
|
851
891
|
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
|
|
852
892
|
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
|
|
853
893
|
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
|
|
894
|
+
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
|
|
854
895
|
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
|
|
855
896
|
study_spec_parameters_override: The list for overriding study spec.
|
|
856
897
|
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
|
|
@@ -908,6 +949,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
|
|
|
908
949
|
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
|
|
909
950
|
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
|
|
910
951
|
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
|
|
952
|
+
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
|
|
911
953
|
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
|
|
912
954
|
study_spec_parameters_override=study_spec_parameters_override,
|
|
913
955
|
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
|
|
@@ -65,7 +65,7 @@ def automated_feature_engineering(
|
|
|
65
65
|
' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
|
|
66
66
|
' "container_spec": {"image_uri":"'
|
|
67
67
|
),
|
|
68
|
-
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
68
|
+
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625',
|
|
69
69
|
'", "args": ["feature_engineering", "--project=', project,
|
|
70
70
|
'", "--location=', location, '", "--data_source_bigquery_table_path=',
|
|
71
71
|
data_source_bigquery_table_path,
|
|
@@ -8622,9 +8622,9 @@ deploymentSpec:
|
|
|
8622
8622
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8623
8623
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8624
8624
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8625
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8625
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8626
8626
|
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8627
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8627
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8628
8628
|
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
|
|
8629
8629
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
|
|
8630
8630
|
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -8665,9 +8665,9 @@ deploymentSpec:
|
|
|
8665
8665
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8666
8666
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8667
8667
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8668
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8668
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8669
8669
|
\"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8670
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8670
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8671
8671
|
"\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
|
|
8672
8672
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
|
|
8673
8673
|
\"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
|
|
@@ -8708,7 +8708,7 @@ deploymentSpec:
|
|
|
8708
8708
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8709
8709
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8710
8710
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8711
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8711
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8712
8712
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8713
8713
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8714
8714
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8720,7 +8720,7 @@ deploymentSpec:
|
|
|
8720
8720
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8721
8721
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8722
8722
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8723
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8723
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
8724
8724
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8725
8725
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8726
8726
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8749,7 +8749,7 @@ deploymentSpec:
|
|
|
8749
8749
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8750
8750
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8751
8751
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8752
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8752
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8753
8753
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8754
8754
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8755
8755
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8761,7 +8761,7 @@ deploymentSpec:
|
|
|
8761
8761
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8762
8762
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8763
8763
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8764
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8764
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
8765
8765
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8766
8766
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8767
8767
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8790,7 +8790,7 @@ deploymentSpec:
|
|
|
8790
8790
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8791
8791
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8792
8792
|
{\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8793
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8793
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8794
8794
|
\"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8795
8795
|
"\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
|
|
8796
8796
|
\"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
@@ -8802,7 +8802,7 @@ deploymentSpec:
|
|
|
8802
8802
|
"\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
|
|
8803
8803
|
"\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
|
|
8804
8804
|
"\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
|
|
8805
|
-
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8805
|
+
\"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
|
|
8806
8806
|
"\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
|
|
8807
8807
|
"{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
|
|
8808
8808
|
"{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
|
|
@@ -8831,7 +8831,7 @@ deploymentSpec:
|
|
|
8831
8831
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8832
8832
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8833
8833
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8834
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8834
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8835
8835
|
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
|
|
8836
8836
|
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
|
|
8837
8837
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
|
|
@@ -8846,7 +8846,7 @@ deploymentSpec:
|
|
|
8846
8846
|
args:
|
|
8847
8847
|
- --executor_input
|
|
8848
8848
|
- '{{$}}'
|
|
8849
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8849
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
8850
8850
|
resources:
|
|
8851
8851
|
cpuLimit: 8.0
|
|
8852
8852
|
memoryLimit: 52.0
|
|
@@ -8855,7 +8855,7 @@ deploymentSpec:
|
|
|
8855
8855
|
args:
|
|
8856
8856
|
- --executor_input
|
|
8857
8857
|
- '{{$}}'
|
|
8858
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8858
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
8859
8859
|
resources:
|
|
8860
8860
|
cpuLimit: 8.0
|
|
8861
8861
|
memoryLimit: 52.0
|
|
@@ -8864,7 +8864,7 @@ deploymentSpec:
|
|
|
8864
8864
|
args:
|
|
8865
8865
|
- --executor_input
|
|
8866
8866
|
- '{{$}}'
|
|
8867
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:
|
|
8867
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
|
|
8868
8868
|
resources:
|
|
8869
8869
|
cpuLimit: 8.0
|
|
8870
8870
|
memoryLimit: 52.0
|
|
@@ -8884,9 +8884,9 @@ deploymentSpec:
|
|
|
8884
8884
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8885
8885
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8886
8886
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8887
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8887
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8888
8888
|
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8889
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8889
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8890
8890
|
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
|
|
8891
8891
|
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
|
|
8892
8892
|
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
|
|
@@ -8931,9 +8931,9 @@ deploymentSpec:
|
|
|
8931
8931
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8932
8932
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8933
8933
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8934
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8934
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8935
8935
|
\"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
|
|
8936
|
-
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8936
|
+
"\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
|
|
8937
8937
|
"\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
|
|
8938
8938
|
"\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
|
|
8939
8939
|
"\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
|
|
@@ -8978,7 +8978,7 @@ deploymentSpec:
|
|
|
8978
8978
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
8979
8979
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
8980
8980
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
8981
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
8981
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
8982
8982
|
\"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
|
|
8983
8983
|
"{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
|
|
8984
8984
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
|
|
@@ -8999,7 +8999,7 @@ deploymentSpec:
|
|
|
8999
8999
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
9000
9000
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
9001
9001
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
9002
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
9002
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
|
|
9003
9003
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
9004
9004
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
9005
9005
|
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
|
|
@@ -9030,7 +9030,7 @@ deploymentSpec:
|
|
|
9030
9030
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
9031
9031
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
9032
9032
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
9033
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
9033
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
9034
9034
|
\"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
|
|
9035
9035
|
"{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
|
|
9036
9036
|
"{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
|
|
@@ -9051,7 +9051,7 @@ deploymentSpec:
|
|
|
9051
9051
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
9052
9052
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
9053
9053
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
9054
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
9054
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
|
|
9055
9055
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
9056
9056
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
9057
9057
|
"\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
|
|
@@ -9087,7 +9087,7 @@ deploymentSpec:
|
|
|
9087
9087
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
9088
9088
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
9089
9089
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
9090
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9090
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9091
9091
|
exec-bool-identity-2:
|
|
9092
9092
|
container:
|
|
9093
9093
|
args:
|
|
@@ -9109,7 +9109,7 @@ deploymentSpec:
|
|
|
9109
9109
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
9110
9110
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
9111
9111
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
9112
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9112
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9113
9113
|
exec-bool-identity-3:
|
|
9114
9114
|
container:
|
|
9115
9115
|
args:
|
|
@@ -9131,7 +9131,7 @@ deploymentSpec:
|
|
|
9131
9131
|
\ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
|
|
9132
9132
|
\ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
|
|
9133
9133
|
\ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
9134
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9134
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9135
9135
|
exec-calculate-training-parameters:
|
|
9136
9136
|
container:
|
|
9137
9137
|
args:
|
|
@@ -9223,7 +9223,7 @@ deploymentSpec:
|
|
|
9223
9223
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
9224
9224
|
\ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
|
|
9225
9225
|
\ reduce_search_space_mode,\n )\n\n"
|
|
9226
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9226
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9227
9227
|
exec-calculate-training-parameters-2:
|
|
9228
9228
|
container:
|
|
9229
9229
|
args:
|
|
@@ -9315,7 +9315,7 @@ deploymentSpec:
|
|
|
9315
9315
|
\ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
|
|
9316
9316
|
\ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
|
|
9317
9317
|
\ reduce_search_space_mode,\n )\n\n"
|
|
9318
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9318
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9319
9319
|
exec-check-if-binary-classification:
|
|
9320
9320
|
container:
|
|
9321
9321
|
args:
|
|
@@ -9343,7 +9343,7 @@ deploymentSpec:
|
|
|
9343
9343
|
\ with open(example_gen_metadata, 'r') as f:\n metadata_path = f.read()\n\
|
|
9344
9344
|
\ metadata = json.loads(metadata_path)\n return str(metadata['objective']\
|
|
9345
9345
|
\ == 'binary_classification').lower()\n\n"
|
|
9346
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9346
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9347
9347
|
exec-feature-attribution:
|
|
9348
9348
|
container:
|
|
9349
9349
|
args:
|
|
@@ -9536,7 +9536,7 @@ deploymentSpec:
|
|
|
9536
9536
|
\ 'r') as f:\n split_0_content = f.read()\n with open(split_1, 'r')\
|
|
9537
9537
|
\ as f:\n split_1_content = f.read()\n with open(splits, 'w') as f:\n\
|
|
9538
9538
|
\ f.write(','.join([split_0_content, split_1_content]))\n\n"
|
|
9539
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
9539
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
9540
9540
|
exec-model-batch-explanation:
|
|
9541
9541
|
container:
|
|
9542
9542
|
args:
|
|
@@ -10383,7 +10383,7 @@ deploymentSpec:
|
|
|
10383
10383
|
\n train_spec['transformations'] = purged_transformation_list\n metadata['train_spec']\
|
|
10384
10384
|
\ = train_spec\n\n with open(output_metadata, 'w') as f:\n f.write(json.dumps(metadata))\n\
|
|
10385
10385
|
\n"
|
|
10386
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10386
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10387
10387
|
exec-read-input-uri:
|
|
10388
10388
|
container:
|
|
10389
10389
|
args:
|
|
@@ -10411,7 +10411,7 @@ deploymentSpec:
|
|
|
10411
10411
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
10412
10412
|
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
|
|
10413
10413
|
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
|
|
10414
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10414
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10415
10415
|
exec-read-input-uri-2:
|
|
10416
10416
|
container:
|
|
10417
10417
|
args:
|
|
@@ -10439,7 +10439,7 @@ deploymentSpec:
|
|
|
10439
10439
|
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
|
|
10440
10440
|
\ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
|
|
10441
10441
|
\ return data_source['tf_record_data_source']['file_patterns']\n\n"
|
|
10442
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10442
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10443
10443
|
exec-string-not-empty:
|
|
10444
10444
|
container:
|
|
10445
10445
|
args:
|
|
@@ -10463,7 +10463,7 @@ deploymentSpec:
|
|
|
10463
10463
|
\n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
|
|
10464
10464
|
\ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
|
|
10465
10465
|
\ \"\"\"\n return 'true' if value else 'false'\n\n"
|
|
10466
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10466
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10467
10467
|
exec-tabular-feature-ranking-and-selection:
|
|
10468
10468
|
container:
|
|
10469
10469
|
args:
|
|
@@ -10480,7 +10480,7 @@ deploymentSpec:
|
|
|
10480
10480
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
10481
10481
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
10482
10482
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
10483
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
10483
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
10484
10484
|
\"args\": [\"feature_selection\", \"--data_source=", "{{$.inputs.artifacts[''data_source''].uri}}",
|
|
10485
10485
|
"\", \"--target_column=", "{{$.inputs.parameters[''target_column_name'']}}",
|
|
10486
10486
|
"\", \"--prediction_type=", "{{$.inputs.parameters[''prediction_type'']}}",
|
|
@@ -10493,7 +10493,7 @@ deploymentSpec:
|
|
|
10493
10493
|
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
|
|
10494
10494
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
10495
10495
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
10496
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
10496
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
|
|
10497
10497
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
10498
10498
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
10499
10499
|
"\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
|
|
@@ -10526,7 +10526,7 @@ deploymentSpec:
|
|
|
10526
10526
|
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
10527
10527
|
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
|
|
10528
10528
|
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
|
|
10529
|
-
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:
|
|
10529
|
+
"us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
|
|
10530
10530
|
\"args\": [\"stats_generator\",", "\"--train_spec={\\\"prediction_type\\\":
|
|
10531
10531
|
\\\"", "{{$.inputs.parameters[''prediction_type'']}}", "\\\", \\\"target_column\\\":
|
|
10532
10532
|
\\\"", "{{$.inputs.parameters[''target_column_name'']}}", "\\\", \\\"optimization_objective\\\":
|
|
@@ -10559,7 +10559,7 @@ deploymentSpec:
|
|
|
10559
10559
|
\"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
|
|
10560
10560
|
\"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
|
|
10561
10561
|
\"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
|
|
10562
|
-
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:
|
|
10562
|
+
"\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
|
|
10563
10563
|
"\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
|
|
10564
10564
|
"\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
|
|
10565
10565
|
"\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
|
|
@@ -10614,7 +10614,7 @@ deploymentSpec:
|
|
|
10614
10614
|
\ f'{directory}/prediction.results-*',\n ],\n 'coder':\
|
|
10615
10615
|
\ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
|
|
10616
10616
|
\n"
|
|
10617
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10617
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10618
10618
|
exec-write-bp-result-path-2:
|
|
10619
10619
|
container:
|
|
10620
10620
|
args:
|
|
@@ -10644,7 +10644,7 @@ deploymentSpec:
|
|
|
10644
10644
|
\ f'{directory}/prediction.results-*',\n ],\n 'coder':\
|
|
10645
10645
|
\ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
|
|
10646
10646
|
\n"
|
|
10647
|
-
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:
|
|
10647
|
+
image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
|
|
10648
10648
|
pipelineInfo:
|
|
10649
10649
|
description: The AutoML Tabular pipeline.
|
|
10650
10650
|
name: automl-tabular-feature-selection-pipeline
|