google-cloud-pipeline-components 2.14.1__py3-none-any.whl → 2.16.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (88) hide show
  1. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  2. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +24 -0
  3. google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
  4. google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
  5. google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +173 -0
  6. google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
  7. google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
  8. google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
  9. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
  10. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
  11. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
  12. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
  13. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
  14. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
  15. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
  16. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
  17. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
  18. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
  19. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
  20. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
  21. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
  22. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
  23. google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
  24. google_cloud_pipeline_components/_implementation/starry_net/train/component.py +220 -0
  25. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
  26. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +64 -0
  27. google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
  28. google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
  29. google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
  30. google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
  31. google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
  32. google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
  33. google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
  34. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  35. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  36. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  37. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
  38. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
  39. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
  40. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
  41. google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
  42. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  43. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  44. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  45. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  46. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  47. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  48. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  49. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  50. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  51. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  52. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  53. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  54. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  55. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  56. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  57. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  58. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  59. google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
  60. google_cloud_pipeline_components/preview/llm/rlhf/component.py +3 -6
  61. google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
  62. google_cloud_pipeline_components/preview/starry_net/component.py +469 -0
  63. google_cloud_pipeline_components/proto/task_error_pb2.py +0 -1
  64. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  65. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  66. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  67. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  68. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  69. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  70. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  71. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  72. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  73. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  74. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  75. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  76. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  77. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  78. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  79. google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
  80. google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
  81. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +21 -0
  82. google_cloud_pipeline_components/version.py +1 -1
  83. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -20
  84. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +87 -58
  85. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
  86. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
  87. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
  88. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
@@ -13,6 +13,20 @@ _RETAIL_MODEL_DISABLED_OPTIONS = frozenset([
13
13
  ])
14
14
 
15
15
 
16
+ def _validate_start_max_parameters(
17
+ starting_worker_count: int,
18
+ max_worker_count: int,
19
+ starting_count_name: str,
20
+ max_count_name: str,
21
+ ):
22
+ if starting_worker_count > max_worker_count:
23
+ raise ValueError(
24
+ 'Starting count must be less than or equal to max count.'
25
+ f' {starting_count_name}: {starting_worker_count}, {max_count_name}:'
26
+ f' {max_worker_count}'
27
+ )
28
+
29
+
16
30
  def _get_base_forecasting_parameters(
17
31
  *,
18
32
  project: str,
@@ -59,6 +73,7 @@ def _get_base_forecasting_parameters(
59
73
  evaluation_batch_predict_max_replica_count: int = 25,
60
74
  evaluation_dataflow_machine_type: str = 'n1-standard-16',
61
75
  evaluation_dataflow_max_num_workers: int = 25,
76
+ evaluation_dataflow_starting_num_workers: int = 22,
62
77
  evaluation_dataflow_disk_size_gb: int = 50,
63
78
  study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
64
79
  stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
@@ -91,6 +106,20 @@ def _get_base_forecasting_parameters(
91
106
  )
92
107
  time_series_identifier_columns = [time_series_identifier_column]
93
108
 
109
+ _validate_start_max_parameters(
110
+ starting_worker_count=evaluation_batch_predict_starting_replica_count,
111
+ max_worker_count=evaluation_batch_predict_max_replica_count,
112
+ starting_count_name='evaluation_batch_predict_starting_replica_count',
113
+ max_count_name='evaluation_batch_predict_max_replica_count',
114
+ )
115
+
116
+ _validate_start_max_parameters(
117
+ starting_worker_count=evaluation_dataflow_starting_num_workers,
118
+ max_worker_count=evaluation_dataflow_max_num_workers,
119
+ starting_count_name='evaluation_dataflow_starting_num_workers',
120
+ max_count_name='evaluation_dataflow_max_num_workers',
121
+ )
122
+
94
123
  parameter_values = {}
95
124
  parameters = {
96
125
  'project': project,
@@ -152,6 +181,9 @@ def _get_base_forecasting_parameters(
152
181
  'evaluation_dataflow_max_num_workers': (
153
182
  evaluation_dataflow_max_num_workers
154
183
  ),
184
+ 'evaluation_dataflow_starting_num_workers': (
185
+ evaluation_dataflow_starting_num_workers
186
+ ),
155
187
  'evaluation_dataflow_disk_size_gb': evaluation_dataflow_disk_size_gb,
156
188
  'study_spec_parameters_override': study_spec_parameters_override,
157
189
  'stage_1_tuner_worker_pool_specs_override': (
@@ -174,13 +206,11 @@ def _get_base_forecasting_parameters(
174
206
 
175
207
  # Filter out empty values and those excluded from the particular pipeline.
176
208
  # (example: TFT and Seq2Seq don't support `quantiles`.)
177
- parameter_values.update(
178
- {
179
- param: value
180
- for param, value in parameters.items()
181
- if value is not None and param not in fields_to_exclude
182
- }
183
- )
209
+ parameter_values.update({
210
+ param: value
211
+ for param, value in parameters.items()
212
+ if value is not None and param not in fields_to_exclude
213
+ })
184
214
  return parameter_values
185
215
 
186
216
 
@@ -229,6 +259,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
229
259
  evaluation_batch_predict_max_replica_count: int = 25,
230
260
  evaluation_dataflow_machine_type: str = 'n1-standard-16',
231
261
  evaluation_dataflow_max_num_workers: int = 25,
262
+ evaluation_dataflow_starting_num_workers: int = 22,
232
263
  evaluation_dataflow_disk_size_gb: int = 50,
233
264
  study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
234
265
  stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
@@ -291,6 +322,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
291
322
  evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
292
323
  evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
293
324
  evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
325
+ evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
294
326
  evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
295
327
  study_spec_parameters_override: The list for overriding study spec.
296
328
  stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
@@ -354,6 +386,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
354
386
  evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
355
387
  evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
356
388
  evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
389
+ evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
357
390
  evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
358
391
  study_spec_parameters_override=study_spec_parameters_override,
359
392
  stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
@@ -423,6 +456,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
423
456
  evaluation_batch_predict_max_replica_count: int = 25,
424
457
  evaluation_dataflow_machine_type: str = 'n1-standard-16',
425
458
  evaluation_dataflow_max_num_workers: int = 25,
459
+ evaluation_dataflow_starting_num_workers: int = 22,
426
460
  evaluation_dataflow_disk_size_gb: int = 50,
427
461
  study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
428
462
  stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
@@ -485,6 +519,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
485
519
  evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
486
520
  evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
487
521
  evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
522
+ evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
488
523
  evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
489
524
  study_spec_parameters_override: The list for overriding study spec.
490
525
  stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
@@ -548,6 +583,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
548
583
  evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
549
584
  evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
550
585
  evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
586
+ evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
551
587
  evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
552
588
  study_spec_parameters_override=study_spec_parameters_override,
553
589
  stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
@@ -616,6 +652,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
616
652
  evaluation_batch_predict_max_replica_count: int = 25,
617
653
  evaluation_dataflow_machine_type: str = 'n1-standard-16',
618
654
  evaluation_dataflow_max_num_workers: int = 25,
655
+ evaluation_dataflow_starting_num_workers: int = 22,
619
656
  evaluation_dataflow_disk_size_gb: int = 50,
620
657
  study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
621
658
  stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
@@ -671,6 +708,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
671
708
  evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
672
709
  evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
673
710
  evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
711
+ evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
674
712
  evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
675
713
  study_spec_parameters_override: The list for overriding study spec.
676
714
  stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
@@ -731,6 +769,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
731
769
  evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
732
770
  evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
733
771
  evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
772
+ evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
734
773
  evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
735
774
  study_spec_parameters_override=study_spec_parameters_override,
736
775
  stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
@@ -795,6 +834,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
795
834
  evaluation_batch_predict_max_replica_count: int = 25,
796
835
  evaluation_dataflow_machine_type: str = 'n1-standard-16',
797
836
  evaluation_dataflow_max_num_workers: int = 25,
837
+ evaluation_dataflow_starting_num_workers: int = 22,
798
838
  evaluation_dataflow_disk_size_gb: int = 50,
799
839
  study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
800
840
  stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
@@ -851,6 +891,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
851
891
  evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
852
892
  evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
853
893
  evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
894
+ evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
854
895
  evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
855
896
  study_spec_parameters_override: The list for overriding study spec.
856
897
  stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
@@ -908,6 +949,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
908
949
  evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
909
950
  evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
910
951
  evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
952
+ evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
911
953
  evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
912
954
  study_spec_parameters_override=study_spec_parameters_override,
913
955
  stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
@@ -65,7 +65,7 @@ def automated_feature_engineering(
65
65
  ' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
66
66
  ' "container_spec": {"image_uri":"'
67
67
  ),
68
- 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625',
68
+ 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625',
69
69
  '", "args": ["feature_engineering", "--project=', project,
70
70
  '", "--location=', location, '", "--data_source_bigquery_table_path=',
71
71
  data_source_bigquery_table_path,
@@ -8622,9 +8622,9 @@ deploymentSpec:
8622
8622
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8623
8623
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8624
8624
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8625
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8625
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8626
8626
  \"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8627
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625",
8627
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
8628
8628
  "\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
8629
8629
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
8630
8630
  \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -8665,9 +8665,9 @@ deploymentSpec:
8665
8665
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8666
8666
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8667
8667
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8668
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8668
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8669
8669
  \"args\": [\"l2l_cv_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8670
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625",
8670
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
8671
8671
  "\", \"--component_id={{$.pipeline_task_uuid}}\", \"--training_base_dir=",
8672
8672
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train\",
8673
8673
  \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -8708,7 +8708,7 @@ deploymentSpec:
8708
8708
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8709
8709
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8710
8710
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
8711
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8711
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8712
8712
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8713
8713
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
8714
8714
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -8720,7 +8720,7 @@ deploymentSpec:
8720
8720
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
8721
8721
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
8722
8722
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
8723
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240419_0625",
8723
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
8724
8724
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
8725
8725
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
8726
8726
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -8749,7 +8749,7 @@ deploymentSpec:
8749
8749
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8750
8750
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8751
8751
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
8752
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8752
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8753
8753
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8754
8754
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
8755
8755
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -8761,7 +8761,7 @@ deploymentSpec:
8761
8761
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
8762
8762
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
8763
8763
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
8764
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240419_0625",
8764
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
8765
8765
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
8766
8766
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
8767
8767
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -8790,7 +8790,7 @@ deploymentSpec:
8790
8790
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8791
8791
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8792
8792
  {\"machine_type\": \"n1-highmem-8\"}, \"container_spec\": {\"image_uri\":\"",
8793
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8793
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8794
8794
  \"args\": [\"ensemble\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8795
8795
  "\", \"--model_output_path=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/model\",
8796
8796
  \"--custom_model_output_path=", "{{$.inputs.parameters[''root_dir'']}}",
@@ -8802,7 +8802,7 @@ deploymentSpec:
8802
8802
  "\", \"--tuning_result_input_path=", "{{$.inputs.artifacts[''tuning_result_input''].uri}}",
8803
8803
  "\", \"--instance_baseline_path=", "{{$.inputs.artifacts[''instance_baseline''].uri}}",
8804
8804
  "\", \"--warmup_data=", "{{$.inputs.artifacts[''warmup_data''].uri}}", "\",
8805
- \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240419_0625",
8805
+ \"--prediction_docker_uri=", "us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625",
8806
8806
  "\", \"--model_path=", "{{$.outputs.artifacts[''model''].uri}}", "\", \"--custom_model_path=",
8807
8807
  "{{$.outputs.artifacts[''model_without_custom_ops''].uri}}", "\", \"--explanation_metadata_path=",
8808
8808
  "{{$.outputs.parameters[''explanation_metadata''].output_file}}", ",", "{{$.outputs.artifacts[''explanation_metadata_artifact''].uri}}",
@@ -8831,7 +8831,7 @@ deploymentSpec:
8831
8831
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8832
8832
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8833
8833
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8834
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8834
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8835
8835
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
8836
8836
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
8837
8837
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -8846,7 +8846,7 @@ deploymentSpec:
8846
8846
  args:
8847
8847
  - --executor_input
8848
8848
  - '{{$}}'
8849
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240419_0625
8849
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
8850
8850
  resources:
8851
8851
  cpuLimit: 8.0
8852
8852
  memoryLimit: 52.0
@@ -8855,7 +8855,7 @@ deploymentSpec:
8855
8855
  args:
8856
8856
  - --executor_input
8857
8857
  - '{{$}}'
8858
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240419_0625
8858
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
8859
8859
  resources:
8860
8860
  cpuLimit: 8.0
8861
8861
  memoryLimit: 52.0
@@ -8864,7 +8864,7 @@ deploymentSpec:
8864
8864
  args:
8865
8865
  - --executor_input
8866
8866
  - '{{$}}'
8867
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240419_0625
8867
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server:20240710_0625
8868
8868
  resources:
8869
8869
  cpuLimit: 8.0
8870
8870
  memoryLimit: 52.0
@@ -8884,9 +8884,9 @@ deploymentSpec:
8884
8884
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8885
8885
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8886
8886
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8887
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8887
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8888
8888
  \"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8889
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625",
8889
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
8890
8890
  "\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
8891
8891
  "\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
8892
8892
  "\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
@@ -8931,9 +8931,9 @@ deploymentSpec:
8931
8931
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8932
8932
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8933
8933
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8934
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8934
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8935
8935
  \"args\": [\"l2l_stage_1_tuner\", \"--transform_output_path=", "{{$.inputs.artifacts[''transform_output''].uri}}",
8936
- "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625",
8936
+ "\", \"--training_docker_uri=", "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625",
8937
8937
  "\", \"--feature_selection_result_path=", "{{$.inputs.artifacts[''feature_ranking''].uri}}",
8938
8938
  "\", \"--disable_early_stopping=", "{{$.inputs.parameters[''disable_early_stopping'']}}",
8939
8939
  "\", \"--tune_feature_selection_rate=", "{{$.inputs.parameters[''tune_feature_selection_rate'']}}",
@@ -8978,7 +8978,7 @@ deploymentSpec:
8978
8978
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
8979
8979
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
8980
8980
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
8981
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
8981
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
8982
8982
  \"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
8983
8983
  "{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
8984
8984
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
@@ -8999,7 +8999,7 @@ deploymentSpec:
8999
8999
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
9000
9000
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
9001
9001
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
9002
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625",
9002
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
9003
9003
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
9004
9004
  "\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
9005
9005
  "\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
@@ -9030,7 +9030,7 @@ deploymentSpec:
9030
9030
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
9031
9031
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
9032
9032
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
9033
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
9033
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
9034
9034
  \"args\": [\"transform\", \"--is_mp=true\", \"--transform_output_artifact_path=",
9035
9035
  "{{$.outputs.artifacts[''transform_output''].uri}}", "\", \"--transform_output_path=",
9036
9036
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/transform\",
@@ -9051,7 +9051,7 @@ deploymentSpec:
9051
9051
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
9052
9052
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
9053
9053
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
9054
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625",
9054
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
9055
9055
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
9056
9056
  "\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
9057
9057
  "\", \"--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}",
@@ -9087,7 +9087,7 @@ deploymentSpec:
9087
9087
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9088
9088
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9089
9089
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9090
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
9090
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
9091
9091
  exec-bool-identity-2:
9092
9092
  container:
9093
9093
  args:
@@ -9109,7 +9109,7 @@ deploymentSpec:
9109
9109
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9110
9110
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9111
9111
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9112
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
9112
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
9113
9113
  exec-bool-identity-3:
9114
9114
  container:
9115
9115
  args:
@@ -9131,7 +9131,7 @@ deploymentSpec:
9131
9131
  \ *\n\ndef _bool_identity(value: bool) -> str:\n \"\"\"Returns boolean\
9132
9132
  \ value.\n\n Args:\n value: Boolean value to return\n\n Returns:\n\
9133
9133
  \ Boolean value.\n \"\"\"\n return 'true' if value else 'false'\n\n"
9134
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
9134
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
9135
9135
  exec-calculate-training-parameters:
9136
9136
  container:
9137
9137
  args:
@@ -9223,7 +9223,7 @@ deploymentSpec:
9223
9223
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
9224
9224
  \ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
9225
9225
  \ reduce_search_space_mode,\n )\n\n"
9226
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
9226
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
9227
9227
  exec-calculate-training-parameters-2:
9228
9228
  container:
9229
9229
  args:
@@ -9315,7 +9315,7 @@ deploymentSpec:
9315
9315
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
9316
9316
  \ stage_2_single_run_max_secs,\n distill_stage_1_deadline_hours,\n\
9317
9317
  \ reduce_search_space_mode,\n )\n\n"
9318
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
9318
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
9319
9319
  exec-check-if-binary-classification:
9320
9320
  container:
9321
9321
  args:
@@ -9343,7 +9343,7 @@ deploymentSpec:
9343
9343
  \ with open(example_gen_metadata, 'r') as f:\n metadata_path = f.read()\n\
9344
9344
  \ metadata = json.loads(metadata_path)\n return str(metadata['objective']\
9345
9345
  \ == 'binary_classification').lower()\n\n"
9346
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
9346
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
9347
9347
  exec-feature-attribution:
9348
9348
  container:
9349
9349
  args:
@@ -9536,7 +9536,7 @@ deploymentSpec:
9536
9536
  \ 'r') as f:\n split_0_content = f.read()\n with open(split_1, 'r')\
9537
9537
  \ as f:\n split_1_content = f.read()\n with open(splits, 'w') as f:\n\
9538
9538
  \ f.write(','.join([split_0_content, split_1_content]))\n\n"
9539
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
9539
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
9540
9540
  exec-model-batch-explanation:
9541
9541
  container:
9542
9542
  args:
@@ -10383,7 +10383,7 @@ deploymentSpec:
10383
10383
  \n train_spec['transformations'] = purged_transformation_list\n metadata['train_spec']\
10384
10384
  \ = train_spec\n\n with open(output_metadata, 'w') as f:\n f.write(json.dumps(metadata))\n\
10385
10385
  \n"
10386
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
10386
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
10387
10387
  exec-read-input-uri:
10388
10388
  container:
10389
10389
  args:
@@ -10411,7 +10411,7 @@ deploymentSpec:
10411
10411
  \ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
10412
10412
  \ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
10413
10413
  \ return data_source['tf_record_data_source']['file_patterns']\n\n"
10414
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
10414
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
10415
10415
  exec-read-input-uri-2:
10416
10416
  container:
10417
10417
  args:
@@ -10439,7 +10439,7 @@ deploymentSpec:
10439
10439
  \ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n\
10440
10440
  \ with open(split_uri, 'r') as f:\n data_source = json.loads(f.read())\n\
10441
10441
  \ return data_source['tf_record_data_source']['file_patterns']\n\n"
10442
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
10442
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
10443
10443
  exec-string-not-empty:
10444
10444
  container:
10445
10445
  args:
@@ -10463,7 +10463,7 @@ deploymentSpec:
10463
10463
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
10464
10464
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
10465
10465
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
10466
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
10466
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
10467
10467
  exec-tabular-feature-ranking-and-selection:
10468
10468
  container:
10469
10469
  args:
@@ -10480,7 +10480,7 @@ deploymentSpec:
10480
10480
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
10481
10481
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
10482
10482
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
10483
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
10483
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
10484
10484
  \"args\": [\"feature_selection\", \"--data_source=", "{{$.inputs.artifacts[''data_source''].uri}}",
10485
10485
  "\", \"--target_column=", "{{$.inputs.parameters[''target_column_name'']}}",
10486
10486
  "\", \"--prediction_type=", "{{$.inputs.parameters[''prediction_type'']}}",
@@ -10493,7 +10493,7 @@ deploymentSpec:
10493
10493
  \"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
10494
10494
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
10495
10495
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
10496
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625",
10496
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
10497
10497
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
10498
10498
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
10499
10499
  "\", \"--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}",
@@ -10526,7 +10526,7 @@ deploymentSpec:
10526
10526
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
10527
10527
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
10528
10528
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
10529
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
10529
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
10530
10530
  \"args\": [\"stats_generator\",", "\"--train_spec={\\\"prediction_type\\\":
10531
10531
  \\\"", "{{$.inputs.parameters[''prediction_type'']}}", "\\\", \\\"target_column\\\":
10532
10532
  \\\"", "{{$.inputs.parameters[''target_column_name'']}}", "\\\", \\\"optimization_objective\\\":
@@ -10559,7 +10559,7 @@ deploymentSpec:
10559
10559
  \"--dataflow_staging_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_staging\",
10560
10560
  \"--dataflow_tmp_dir=", "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp\",
10561
10561
  \"--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}",
10562
- "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625",
10562
+ "\", \"--dataflow_worker_container_image=", "us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625",
10563
10563
  "\", \"--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}",
10564
10564
  "\", \"--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}",
10565
10565
  "\", \"--dataflow_kms_key=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
@@ -10614,7 +10614,7 @@ deploymentSpec:
10614
10614
  \ f'{directory}/prediction.results-*',\n ],\n 'coder':\
10615
10615
  \ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
10616
10616
  \n"
10617
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
10617
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
10618
10618
  exec-write-bp-result-path-2:
10619
10619
  container:
10620
10620
  args:
@@ -10644,7 +10644,7 @@ deploymentSpec:
10644
10644
  \ f'{directory}/prediction.results-*',\n ],\n 'coder':\
10645
10645
  \ 'PROTO_VALUE',\n },\n }\n with open(result, 'w') as f:\n f.write(json.dumps(data_source))\n\
10646
10646
  \n"
10647
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
10647
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
10648
10648
  pipelineInfo:
10649
10649
  description: The AutoML Tabular pipeline.
10650
10650
  name: automl-tabular-feature-selection-pipeline