google-cloud-pipeline-components 2.14.1__py3-none-any.whl → 2.16.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of google-cloud-pipeline-components might be problematic. Click here for more details.

Files changed (88) hide show
  1. google_cloud_pipeline_components/_implementation/llm/generated/refined_image_versions.py +1 -1
  2. google_cloud_pipeline_components/_implementation/model_evaluation/llm_evaluation_preprocessor/component.py +24 -0
  3. google_cloud_pipeline_components/_implementation/starry_net/__init__.py +41 -0
  4. google_cloud_pipeline_components/_implementation/{model_evaluation/import_evaluation → starry_net/dataprep}/__init__.py +1 -2
  5. google_cloud_pipeline_components/_implementation/starry_net/dataprep/component.py +173 -0
  6. google_cloud_pipeline_components/_implementation/starry_net/evaluation/__init__.py +13 -0
  7. google_cloud_pipeline_components/_implementation/starry_net/evaluation/component.py +23 -0
  8. google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml +197 -0
  9. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/__init__.py +13 -0
  10. google_cloud_pipeline_components/_implementation/starry_net/get_training_artifacts/component.py +62 -0
  11. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/__init__.py +13 -0
  12. google_cloud_pipeline_components/_implementation/starry_net/maybe_set_tfrecord_args/component.py +77 -0
  13. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/__init__.py +13 -0
  14. google_cloud_pipeline_components/_implementation/starry_net/set_dataprep_args/component.py +97 -0
  15. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/__init__.py +13 -0
  16. google_cloud_pipeline_components/_implementation/starry_net/set_eval_args/component.py +76 -0
  17. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/__init__.py +13 -0
  18. google_cloud_pipeline_components/_implementation/starry_net/set_test_set/component.py +48 -0
  19. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/__init__.py +13 -0
  20. google_cloud_pipeline_components/_implementation/starry_net/set_tfrecord_args/component.py +70 -0
  21. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/__init__.py +13 -0
  22. google_cloud_pipeline_components/_implementation/starry_net/set_train_args/component.py +90 -0
  23. google_cloud_pipeline_components/_implementation/starry_net/train/__init__.py +13 -0
  24. google_cloud_pipeline_components/_implementation/starry_net/train/component.py +220 -0
  25. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/__init__.py +13 -0
  26. google_cloud_pipeline_components/_implementation/starry_net/upload_decomposition_plots/component.py +64 -0
  27. google_cloud_pipeline_components/_implementation/starry_net/upload_model/__init__.py +13 -0
  28. google_cloud_pipeline_components/_implementation/starry_net/upload_model/component.py +23 -0
  29. google_cloud_pipeline_components/_implementation/starry_net/upload_model/upload_model.yaml +37 -0
  30. google_cloud_pipeline_components/_implementation/starry_net/version.py +18 -0
  31. google_cloud_pipeline_components/container/preview/custom_job/remote_runner.py +22 -0
  32. google_cloud_pipeline_components/container/utils/error_surfacing.py +45 -0
  33. google_cloud_pipeline_components/container/v1/model/get_model/remote_runner.py +36 -7
  34. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_ensemble.py +1 -1
  35. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_1_tuner.py +2 -2
  36. google_cloud_pipeline_components/preview/automl/forecasting/forecasting_stage_2_tuner.py +2 -2
  37. google_cloud_pipeline_components/preview/automl/forecasting/learn_to_learn_forecasting_pipeline.yaml +38 -34
  38. google_cloud_pipeline_components/preview/automl/forecasting/sequence_to_sequence_forecasting_pipeline.yaml +38 -34
  39. google_cloud_pipeline_components/preview/automl/forecasting/temporal_fusion_transformer_forecasting_pipeline.yaml +38 -34
  40. google_cloud_pipeline_components/preview/automl/forecasting/time_series_dense_encoder_forecasting_pipeline.yaml +38 -34
  41. google_cloud_pipeline_components/preview/automl/forecasting/utils.py +49 -7
  42. google_cloud_pipeline_components/preview/automl/tabular/auto_feature_engineering.py +1 -1
  43. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_feature_selection_pipeline.yaml +39 -39
  44. google_cloud_pipeline_components/preview/automl/tabular/automl_tabular_v2_pipeline.yaml +41 -41
  45. google_cloud_pipeline_components/preview/automl/tabular/distillation_stage_feature_transform_engine.py +2 -2
  46. google_cloud_pipeline_components/preview/automl/tabular/feature_selection.py +2 -2
  47. google_cloud_pipeline_components/preview/automl/tabular/feature_selection_pipeline.yaml +4 -4
  48. google_cloud_pipeline_components/preview/automl/tabular/feature_transform_engine.py +3 -3
  49. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job.py +2 -2
  50. google_cloud_pipeline_components/preview/automl/tabular/tabnet_hyperparameter_tuning_job_pipeline.yaml +15 -15
  51. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer.py +2 -2
  52. google_cloud_pipeline_components/preview/automl/tabular/tabnet_trainer_pipeline.yaml +13 -13
  53. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job.py +2 -2
  54. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_hyperparameter_tuning_job_pipeline.yaml +14 -14
  55. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer.py +2 -2
  56. google_cloud_pipeline_components/preview/automl/tabular/wide_and_deep_trainer_pipeline.yaml +13 -13
  57. google_cloud_pipeline_components/preview/automl/tabular/xgboost_hyperparameter_tuning_job_pipeline.yaml +14 -14
  58. google_cloud_pipeline_components/preview/automl/tabular/xgboost_trainer_pipeline.yaml +13 -13
  59. google_cloud_pipeline_components/preview/custom_job/utils.py +45 -6
  60. google_cloud_pipeline_components/preview/llm/rlhf/component.py +3 -6
  61. google_cloud_pipeline_components/preview/starry_net/__init__.py +19 -0
  62. google_cloud_pipeline_components/preview/starry_net/component.py +469 -0
  63. google_cloud_pipeline_components/proto/task_error_pb2.py +0 -1
  64. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_predict_pipeline.yaml +10 -10
  65. google_cloud_pipeline_components/v1/automl/forecasting/bqml_arima_train_pipeline.yaml +31 -31
  66. google_cloud_pipeline_components/v1/automl/forecasting/prophet_predict_pipeline.yaml +13 -13
  67. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer.py +3 -3
  68. google_cloud_pipeline_components/v1/automl/forecasting/prophet_trainer_pipeline.yaml +14 -14
  69. google_cloud_pipeline_components/v1/automl/tabular/automl_tabular_pipeline.yaml +37 -37
  70. google_cloud_pipeline_components/v1/automl/tabular/cv_trainer.py +2 -2
  71. google_cloud_pipeline_components/v1/automl/tabular/ensemble.py +2 -2
  72. google_cloud_pipeline_components/v1/automl/tabular/finalizer.py +1 -1
  73. google_cloud_pipeline_components/v1/automl/tabular/infra_validator.py +1 -1
  74. google_cloud_pipeline_components/v1/automl/tabular/split_materialized_data.py +1 -1
  75. google_cloud_pipeline_components/v1/automl/tabular/stage_1_tuner.py +2 -2
  76. google_cloud_pipeline_components/v1/automl/tabular/stats_and_example_gen.py +2 -2
  77. google_cloud_pipeline_components/v1/automl/tabular/training_configurator_and_validator.py +1 -1
  78. google_cloud_pipeline_components/v1/automl/tabular/transform.py +2 -2
  79. google_cloud_pipeline_components/v1/custom_job/component.py +3 -0
  80. google_cloud_pipeline_components/v1/custom_job/utils.py +4 -0
  81. google_cloud_pipeline_components/v1/model_evaluation/evaluation_llm_text_generation_pipeline.py +21 -0
  82. google_cloud_pipeline_components/version.py +1 -1
  83. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/METADATA +17 -20
  84. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/RECORD +87 -58
  85. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/WHEEL +1 -1
  86. google_cloud_pipeline_components/_implementation/model_evaluation/import_evaluation/component.py +0 -208
  87. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/LICENSE +0 -0
  88. {google_cloud_pipeline_components-2.14.1.dist-info → google_cloud_pipeline_components-2.16.0.dist-info}/top_level.txt +0 -0
@@ -1074,6 +1074,8 @@ components:
1074
1074
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1075
1075
  dataflow_use_public_ips:
1076
1076
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1077
+ dataflow_workers_num:
1078
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1077
1079
  encryption_spec_key_name:
1078
1080
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1079
1081
  forecasting_quantiles:
@@ -1795,6 +1797,8 @@ components:
1795
1797
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1796
1798
  dataflow_use_public_ips:
1797
1799
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1800
+ dataflow_workers_num:
1801
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1798
1802
  encryption_spec_key_name:
1799
1803
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1800
1804
  forecasting_quantiles:
@@ -5573,7 +5577,7 @@ deploymentSpec:
5573
5577
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5574
5578
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5575
5579
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5576
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5580
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5577
5581
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5578
5582
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5579
5583
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5607,7 +5611,7 @@ deploymentSpec:
5607
5611
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5608
5612
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5609
5613
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5610
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5614
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5611
5615
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5612
5616
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5613
5617
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5642,11 +5646,11 @@ deploymentSpec:
5642
5646
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5643
5647
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5644
5648
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5645
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5649
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5646
5650
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5647
5651
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5648
5652
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5649
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5653
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5650
5654
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5651
5655
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5652
5656
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5685,11 +5689,11 @@ deploymentSpec:
5685
5689
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5686
5690
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5687
5691
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5688
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5692
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5689
5693
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5690
5694
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5691
5695
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5692
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5696
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5693
5697
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5694
5698
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5695
5699
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5728,7 +5732,7 @@ deploymentSpec:
5728
5732
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5729
5733
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5730
5734
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5731
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5735
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5732
5736
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5733
5737
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5734
5738
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5793,7 +5797,7 @@ deploymentSpec:
5793
5797
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5794
5798
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5795
5799
  \ stage_2_single_run_max_secs,\n )\n\n"
5796
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5800
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5797
5801
  exec-calculate-training-parameters-2:
5798
5802
  container:
5799
5803
  args:
@@ -5849,7 +5853,7 @@ deploymentSpec:
5849
5853
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5850
5854
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5851
5855
  \ stage_2_single_run_max_secs,\n )\n\n"
5852
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5856
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5853
5857
  exec-feature-attribution:
5854
5858
  container:
5855
5859
  args:
@@ -6040,8 +6044,8 @@ deploymentSpec:
6040
6044
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6041
6045
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6042
6046
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6043
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6044
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6047
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6048
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6045
6049
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6046
6050
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6047
6051
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6058,7 +6062,7 @@ deploymentSpec:
6058
6062
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6059
6063
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6060
6064
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6061
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6065
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6062
6066
  resources:
6063
6067
  cpuLimit: 8.0
6064
6068
  memoryLimit: 30.0
@@ -6089,7 +6093,7 @@ deploymentSpec:
6089
6093
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6090
6094
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6091
6095
  \ ),\n )(forecasting_type, quantiles)\n\n"
6092
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6096
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6093
6097
  exec-finalize-eval-quantile-parameters-2:
6094
6098
  container:
6095
6099
  args:
@@ -6117,7 +6121,7 @@ deploymentSpec:
6117
6121
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6118
6122
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6119
6123
  \ ),\n )(forecasting_type, quantiles)\n\n"
6120
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6124
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6121
6125
  exec-get-or-create-model-description:
6122
6126
  container:
6123
6127
  args:
@@ -6146,7 +6150,7 @@ deploymentSpec:
6146
6150
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6147
6151
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6148
6152
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6149
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6153
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6150
6154
  exec-get-or-create-model-description-2:
6151
6155
  container:
6152
6156
  args:
@@ -6175,7 +6179,7 @@ deploymentSpec:
6175
6179
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6176
6180
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6177
6181
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6178
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6182
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6179
6183
  exec-get-prediction-image-uri:
6180
6184
  container:
6181
6185
  args:
@@ -6198,14 +6202,14 @@ deploymentSpec:
6198
6202
  Returns the prediction image corresponding to the given model type.\"\"\"\
6199
6203
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6200
6204
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6201
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6202
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6203
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6204
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6205
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6206
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6207
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6208
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6205
6209
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6206
6210
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6207
6211
  \ )\n return images[model_type]\n\n"
6208
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6212
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6209
6213
  exec-get-prediction-image-uri-2:
6210
6214
  container:
6211
6215
  args:
@@ -6228,14 +6232,14 @@ deploymentSpec:
6228
6232
  Returns the prediction image corresponding to the given model type.\"\"\"\
6229
6233
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6230
6234
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6231
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6232
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6233
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6234
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6235
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6236
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6237
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6238
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6235
6239
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6236
6240
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6237
6241
  \ )\n return images[model_type]\n\n"
6238
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6242
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6239
6243
  exec-get-predictions-column:
6240
6244
  container:
6241
6245
  args:
@@ -6258,7 +6262,7 @@ deploymentSpec:
6258
6262
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6259
6263
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6260
6264
  \ return f'predicted_{target_column}.value'\n\n"
6261
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6265
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6262
6266
  exec-get-predictions-column-2:
6263
6267
  container:
6264
6268
  args:
@@ -6281,7 +6285,7 @@ deploymentSpec:
6281
6285
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6282
6286
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6283
6287
  \ return f'predicted_{target_column}.value'\n\n"
6284
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6288
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6285
6289
  exec-importer:
6286
6290
  importer:
6287
6291
  artifactUri:
@@ -6813,7 +6817,7 @@ deploymentSpec:
6813
6817
  \ 'model_display_name',\n 'transformations',\n ],\n\
6814
6818
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6815
6819
  \ model_display_name,\n transformations,\n )\n\n"
6816
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6820
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6817
6821
  exec-split-materialized-data:
6818
6822
  container:
6819
6823
  args:
@@ -6859,7 +6863,7 @@ deploymentSpec:
6859
6863
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6860
6864
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6861
6865
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6862
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6866
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6863
6867
  exec-string-not-empty:
6864
6868
  container:
6865
6869
  args:
@@ -6883,7 +6887,7 @@ deploymentSpec:
6883
6887
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6884
6888
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6885
6889
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6886
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6890
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6887
6891
  exec-table-to-uri:
6888
6892
  container:
6889
6893
  args:
@@ -6913,7 +6917,7 @@ deploymentSpec:
6913
6917
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6914
6918
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6915
6919
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6916
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6920
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6917
6921
  exec-table-to-uri-2:
6918
6922
  container:
6919
6923
  args:
@@ -6943,7 +6947,7 @@ deploymentSpec:
6943
6947
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6944
6948
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6945
6949
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6946
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6950
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6947
6951
  exec-training-configurator-and-validator:
6948
6952
  container:
6949
6953
  args:
@@ -6988,7 +6992,7 @@ deploymentSpec:
6988
6992
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6989
6993
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6990
6994
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6991
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6995
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6992
6996
  pipelineInfo:
6993
6997
  description: The AutoML Forecasting pipeline.
6994
6998
  name: learn-to-learn-forecasting
@@ -1069,6 +1069,8 @@ components:
1069
1069
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1070
1070
  dataflow_use_public_ips:
1071
1071
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1072
+ dataflow_workers_num:
1073
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1072
1074
  encryption_spec_key_name:
1073
1075
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1074
1076
  forecasting_quantiles:
@@ -1785,6 +1787,8 @@ components:
1785
1787
  componentInputParameter: pipelinechannel--dataflow_subnetwork
1786
1788
  dataflow_use_public_ips:
1787
1789
  componentInputParameter: pipelinechannel--dataflow_use_public_ips
1790
+ dataflow_workers_num:
1791
+ componentInputParameter: pipelinechannel--evaluation_dataflow_starting_num_workers
1788
1792
  encryption_spec_key_name:
1789
1793
  componentInputParameter: pipelinechannel--encryption_spec_key_name
1790
1794
  forecasting_quantiles:
@@ -5555,7 +5559,7 @@ deploymentSpec:
5555
5559
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5556
5560
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5557
5561
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5558
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5562
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5559
5563
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5560
5564
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5561
5565
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5589,7 +5593,7 @@ deploymentSpec:
5589
5593
  - '{"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5590
5594
  "encryption_spec": {"kms_key_name": "{{$.inputs.parameters[''encryption_spec_key_name'']}}"},
5591
5595
  "job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5592
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5596
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5593
5597
  "args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts[''transform_output''].uri}}",
5594
5598
  "--error_file_path={{$.inputs.parameters[''root_dir'']}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5595
5599
  "--metadata_path={{$.inputs.artifacts[''metadata''].uri}}", "--tuning_result_input_path={{$.inputs.artifacts[''tuning_result_input''].uri}}",
@@ -5624,11 +5628,11 @@ deploymentSpec:
5624
5628
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5625
5629
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5626
5630
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5627
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5631
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5628
5632
  "\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5629
5633
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5630
5634
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5631
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5635
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5632
5636
  "\", \"--reduce_search_space_mode=", "{{$.inputs.parameters[''reduce_search_space_mode'']}}",
5633
5637
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5634
5638
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5667,11 +5671,11 @@ deploymentSpec:
5667
5671
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5668
5672
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5669
5673
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5670
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5674
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5671
5675
  "\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5672
5676
  "{{$.inputs.parameters[''location'']}}", "\", \"--transform_output_path=",
5673
5677
  "{{$.inputs.artifacts[''transform_output''].uri}}", "\", \"--training_docker_uri=",
5674
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625",
5678
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625",
5675
5679
  "\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5676
5680
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5677
5681
  "\", \"--num_parallel_trial=", "{{$.inputs.parameters[''num_parallel_trials'']}}",
@@ -5710,7 +5714,7 @@ deploymentSpec:
5710
5714
  \"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters[''encryption_spec_key_name'']}}",
5711
5715
  "\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5712
5716
  {\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5713
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625", "\",
5717
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625", "\",
5714
5718
  \"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters[''root_dir'']}}",
5715
5719
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5716
5720
  "{{$.inputs.parameters[''root_dir'']}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -5775,7 +5779,7 @@ deploymentSpec:
5775
5779
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5776
5780
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5777
5781
  \ stage_2_single_run_max_secs,\n )\n\n"
5778
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5782
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5779
5783
  exec-calculate-training-parameters-2:
5780
5784
  container:
5781
5785
  args:
@@ -5831,7 +5835,7 @@ deploymentSpec:
5831
5835
  \ 'stage_2_single_run_max_secs',\n ],\n )(\n stage_1_deadline_hours,\n\
5832
5836
  \ stage_1_single_run_max_secs,\n stage_2_deadline_hours,\n \
5833
5837
  \ stage_2_single_run_max_secs,\n )\n\n"
5834
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
5838
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
5835
5839
  exec-feature-attribution:
5836
5840
  container:
5837
5841
  args:
@@ -6022,8 +6026,8 @@ deploymentSpec:
6022
6026
  "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6023
6027
  - '{"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters[''dataflow_max_num_workers'']}}"]}'
6024
6028
  - '{"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters[''dataflow_machine_type'']}}"]}'
6025
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6026
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6029
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6030
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6027
6031
  - '{"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters[''dataflow_disk_size_gb'']}}"]}'
6028
6032
  - '{"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters[''dataflow_subnetwork'']}}"]}'
6029
6033
  - '{"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters[''dataflow_use_public_ips'']}}"]}'
@@ -6040,7 +6044,7 @@ deploymentSpec:
6040
6044
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6041
6045
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6042
6046
  - '{"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters[''encryption_spec_key_name'']}}"]}'
6043
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6047
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6044
6048
  resources:
6045
6049
  cpuLimit: 8.0
6046
6050
  memoryLimit: 30.0
@@ -6071,7 +6075,7 @@ deploymentSpec:
6071
6075
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6072
6076
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6073
6077
  \ ),\n )(forecasting_type, quantiles)\n\n"
6074
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6078
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6075
6079
  exec-finalize-eval-quantile-parameters-2:
6076
6080
  container:
6077
6081
  args:
@@ -6099,7 +6103,7 @@ deploymentSpec:
6099
6103
  \ = 'point'\n else:\n forecasting_type = 'quantile'\n\n return collections.namedtuple(\n\
6100
6104
  \ 'Outputs',\n (\n 'forecasting_type',\n 'quantiles',\n\
6101
6105
  \ ),\n )(forecasting_type, quantiles)\n\n"
6102
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6106
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6103
6107
  exec-get-or-create-model-description:
6104
6108
  container:
6105
6109
  args:
@@ -6128,7 +6132,7 @@ deploymentSpec:
6128
6132
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6129
6133
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6130
6134
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6131
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6135
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6132
6136
  exec-get-or-create-model-description-2:
6133
6137
  container:
6134
6138
  args:
@@ -6157,7 +6161,7 @@ deploymentSpec:
6157
6161
  \ return f'{original_description} From: {pipeline_url}'\n\n # The pipeline\
6158
6162
  \ url contains KFP placeholders injected at runtime.\n return f'Vertex\
6159
6163
  \ forecasting model trained in the pipeline: {pipeline_url}'\n\n"
6160
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6164
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6161
6165
  exec-get-prediction-image-uri:
6162
6166
  container:
6163
6167
  args:
@@ -6180,14 +6184,14 @@ deploymentSpec:
6180
6184
  Returns the prediction image corresponding to the given model type.\"\"\"\
6181
6185
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6182
6186
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6183
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6184
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6185
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6186
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6187
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6188
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6189
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6190
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6187
6191
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6188
6192
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6189
6193
  \ )\n return images[model_type]\n\n"
6190
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6194
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6191
6195
  exec-get-prediction-image-uri-2:
6192
6196
  container:
6193
6197
  args:
@@ -6210,14 +6214,14 @@ deploymentSpec:
6210
6214
  Returns the prediction image corresponding to the given model type.\"\"\"\
6211
6215
  \n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6212
6216
  \ must be hardcoded without any breaks in the code so string\n # replacement\
6213
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240419_0625',\n\
6214
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240419_0625',\n\
6215
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240419_0625',\n\
6216
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240419_0625',\n\
6217
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240710_0625',\n\
6218
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240710_0625',\n\
6219
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240710_0625',\n\
6220
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240710_0625',\n\
6217
6221
  \ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6218
6222
  \ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n\
6219
6223
  \ )\n return images[model_type]\n\n"
6220
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6224
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6221
6225
  exec-get-predictions-column:
6222
6226
  container:
6223
6227
  args:
@@ -6240,7 +6244,7 @@ deploymentSpec:
6240
6244
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6241
6245
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6242
6246
  \ return f'predicted_{target_column}.value'\n\n"
6243
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6247
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6244
6248
  exec-get-predictions-column-2:
6245
6249
  container:
6246
6250
  args:
@@ -6263,7 +6267,7 @@ deploymentSpec:
6263
6267
  \ str) -> str:\n \"\"\"Generates the BP output's target column name.\"\"\
6264
6268
  \"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n\
6265
6269
  \ return f'predicted_{target_column}.value'\n\n"
6266
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6270
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6267
6271
  exec-importer:
6268
6272
  importer:
6269
6273
  artifactUri:
@@ -6795,7 +6799,7 @@ deploymentSpec:
6795
6799
  \ 'model_display_name',\n 'transformations',\n ],\n\
6796
6800
  \ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n\
6797
6801
  \ model_display_name,\n transformations,\n )\n\n"
6798
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6802
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6799
6803
  exec-split-materialized-data:
6800
6804
  container:
6801
6805
  args:
@@ -6841,7 +6845,7 @@ deploymentSpec:
6841
6845
  \ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
6842
6846
  \ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
6843
6847
  \ 'w') as f:\n f.write(file_patterns[2])\n\n"
6844
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240419_0625
6848
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240710_0625
6845
6849
  exec-string-not-empty:
6846
6850
  container:
6847
6851
  args:
@@ -6865,7 +6869,7 @@ deploymentSpec:
6865
6869
  \n Returns:\n Boolean value. -> 'true' if empty, 'false' if not empty.\
6866
6870
  \ We need to use str\n instead of bool due to a limitation in KFP compiler.\n\
6867
6871
  \ \"\"\"\n return 'true' if value else 'false'\n\n"
6868
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6872
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6869
6873
  exec-table-to-uri:
6870
6874
  container:
6871
6875
  args:
@@ -6895,7 +6899,7 @@ deploymentSpec:
6895
6899
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6896
6900
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6897
6901
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6898
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6902
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6899
6903
  exec-table-to-uri-2:
6900
6904
  container:
6901
6905
  args:
@@ -6925,7 +6929,7 @@ deploymentSpec:
6925
6929
  \ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n\
6926
6930
  \ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
6927
6931
  \ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n"
6928
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
6932
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240710_0625
6929
6933
  exec-training-configurator-and-validator:
6930
6934
  container:
6931
6935
  args:
@@ -6970,7 +6974,7 @@ deploymentSpec:
6970
6974
  ["--temporal_total_weight=", "{{$.inputs.parameters[''temporal_total_weight'']}}"]}}}'
6971
6975
  - '{"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6972
6976
  ["--group_temporal_total_weight=", "{{$.inputs.parameters[''group_temporal_total_weight'']}}"]}}}'
6973
- image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240419_0625
6977
+ image: us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240710_0625
6974
6978
  pipelineInfo:
6975
6979
  description: The Sequence to Sequence (Seq2Seq) Forecasting pipeline.
6976
6980
  name: sequence-to-sequence-forecasting