fbgemm-gpu-genai-nightly 2025.12.19__cp310-cp310-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fbgemm-gpu-genai-nightly might be problematic. Click here for more details.
- fbgemm_gpu/__init__.py +186 -0
- fbgemm_gpu/asmjit.so +0 -0
- fbgemm_gpu/batched_unary_embeddings_ops.py +87 -0
- fbgemm_gpu/config/__init__.py +9 -0
- fbgemm_gpu/config/feature_list.py +88 -0
- fbgemm_gpu/docs/__init__.py +18 -0
- fbgemm_gpu/docs/common.py +9 -0
- fbgemm_gpu/docs/examples.py +73 -0
- fbgemm_gpu/docs/jagged_tensor_ops.py +259 -0
- fbgemm_gpu/docs/merge_pooled_embedding_ops.py +36 -0
- fbgemm_gpu/docs/permute_pooled_embedding_ops.py +108 -0
- fbgemm_gpu/docs/quantize_ops.py +41 -0
- fbgemm_gpu/docs/sparse_ops.py +616 -0
- fbgemm_gpu/docs/target.genai.json.py +6 -0
- fbgemm_gpu/enums.py +24 -0
- fbgemm_gpu/experimental/example/__init__.py +29 -0
- fbgemm_gpu/experimental/example/fbgemm_gpu_experimental_example_py.so +0 -0
- fbgemm_gpu/experimental/example/utils.py +20 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/__init__.py +15 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp4_quantize.py +5654 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py +4422 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/grouped_gemm.py +1192 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/matmul_perf_model.py +232 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/utils.py +130 -0
- fbgemm_gpu/experimental/gen_ai/__init__.py +56 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/__init__.py +46 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py +333 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_interface.py +552 -0
- fbgemm_gpu/experimental/gen_ai/bench/__init__.py +13 -0
- fbgemm_gpu/experimental/gen_ai/bench/comm_bench.py +257 -0
- fbgemm_gpu/experimental/gen_ai/bench/gather_scatter_bench.py +348 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_bench.py +707 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_ops.py +3483 -0
- fbgemm_gpu/experimental/gen_ai/fbgemm_gpu_experimental_gen_ai.so +0 -0
- fbgemm_gpu/experimental/gen_ai/moe/README.md +15 -0
- fbgemm_gpu/experimental/gen_ai/moe/__init__.py +66 -0
- fbgemm_gpu/experimental/gen_ai/moe/activation.py +292 -0
- fbgemm_gpu/experimental/gen_ai/moe/gather_scatter.py +740 -0
- fbgemm_gpu/experimental/gen_ai/moe/layers.py +1272 -0
- fbgemm_gpu/experimental/gen_ai/moe/shuffling.py +421 -0
- fbgemm_gpu/experimental/gen_ai/quantize.py +307 -0
- fbgemm_gpu/fbgemm.so +0 -0
- fbgemm_gpu/metrics.py +160 -0
- fbgemm_gpu/permute_pooled_embedding_modules.py +142 -0
- fbgemm_gpu/permute_pooled_embedding_modules_split.py +85 -0
- fbgemm_gpu/quantize/__init__.py +43 -0
- fbgemm_gpu/quantize/quantize_ops.py +64 -0
- fbgemm_gpu/quantize_comm.py +315 -0
- fbgemm_gpu/quantize_utils.py +246 -0
- fbgemm_gpu/runtime_monitor.py +237 -0
- fbgemm_gpu/sll/__init__.py +189 -0
- fbgemm_gpu/sll/cpu/__init__.py +80 -0
- fbgemm_gpu/sll/cpu/cpu_sll.py +1001 -0
- fbgemm_gpu/sll/meta/__init__.py +35 -0
- fbgemm_gpu/sll/meta/meta_sll.py +337 -0
- fbgemm_gpu/sll/triton/__init__.py +127 -0
- fbgemm_gpu/sll/triton/common.py +38 -0
- fbgemm_gpu/sll/triton/triton_dense_jagged_cat_jagged_out.py +72 -0
- fbgemm_gpu/sll/triton/triton_jagged2_to_padded_dense.py +221 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm.py +418 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm_jagged_out.py +553 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_add.py +52 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_mul_jagged_out.py +175 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_flash_attention.py +861 -0
- fbgemm_gpu/sll/triton/triton_jagged_flash_attention_basic.py +667 -0
- fbgemm_gpu/sll/triton/triton_jagged_self_substraction_jagged_out.py +73 -0
- fbgemm_gpu/sll/triton/triton_jagged_softmax.py +463 -0
- fbgemm_gpu/sll/triton/triton_multi_head_jagged_flash_attention.py +751 -0
- fbgemm_gpu/sparse_ops.py +1455 -0
- fbgemm_gpu/split_embedding_configs.py +452 -0
- fbgemm_gpu/split_embedding_inference_converter.py +175 -0
- fbgemm_gpu/split_embedding_optimizer_ops.py +21 -0
- fbgemm_gpu/split_embedding_utils.py +29 -0
- fbgemm_gpu/split_table_batched_embeddings_ops.py +73 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_common.py +484 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_inference.py +2042 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training.py +4600 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py +146 -0
- fbgemm_gpu/ssd_split_table_batched_embeddings_ops.py +26 -0
- fbgemm_gpu/tbe/__init__.py +6 -0
- fbgemm_gpu/tbe/bench/__init__.py +55 -0
- fbgemm_gpu/tbe/bench/bench_config.py +156 -0
- fbgemm_gpu/tbe/bench/bench_runs.py +709 -0
- fbgemm_gpu/tbe/bench/benchmark_click_interface.py +187 -0
- fbgemm_gpu/tbe/bench/eeg_cli.py +137 -0
- fbgemm_gpu/tbe/bench/embedding_ops_common_config.py +149 -0
- fbgemm_gpu/tbe/bench/eval_compression.py +119 -0
- fbgemm_gpu/tbe/bench/reporter.py +35 -0
- fbgemm_gpu/tbe/bench/tbe_data_config.py +137 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_bench_helper.py +323 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_loader.py +289 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_param_models.py +170 -0
- fbgemm_gpu/tbe/bench/utils.py +48 -0
- fbgemm_gpu/tbe/cache/__init__.py +11 -0
- fbgemm_gpu/tbe/cache/kv_embedding_ops_inference.py +385 -0
- fbgemm_gpu/tbe/cache/split_embeddings_cache_ops.py +48 -0
- fbgemm_gpu/tbe/ssd/__init__.py +15 -0
- fbgemm_gpu/tbe/ssd/common.py +46 -0
- fbgemm_gpu/tbe/ssd/inference.py +586 -0
- fbgemm_gpu/tbe/ssd/training.py +4908 -0
- fbgemm_gpu/tbe/ssd/utils/__init__.py +7 -0
- fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py +273 -0
- fbgemm_gpu/tbe/stats/__init__.py +10 -0
- fbgemm_gpu/tbe/stats/bench_params_reporter.py +339 -0
- fbgemm_gpu/tbe/utils/__init__.py +13 -0
- fbgemm_gpu/tbe/utils/common.py +42 -0
- fbgemm_gpu/tbe/utils/offsets.py +65 -0
- fbgemm_gpu/tbe/utils/quantize.py +251 -0
- fbgemm_gpu/tbe/utils/requests.py +556 -0
- fbgemm_gpu/tbe_input_multiplexer.py +108 -0
- fbgemm_gpu/triton/__init__.py +22 -0
- fbgemm_gpu/triton/common.py +77 -0
- fbgemm_gpu/triton/jagged/__init__.py +8 -0
- fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py +824 -0
- fbgemm_gpu/triton/quantize.py +647 -0
- fbgemm_gpu/triton/quantize_ref.py +286 -0
- fbgemm_gpu/utils/__init__.py +11 -0
- fbgemm_gpu/utils/filestore.py +211 -0
- fbgemm_gpu/utils/loader.py +36 -0
- fbgemm_gpu/utils/torch_library.py +132 -0
- fbgemm_gpu/uvm.py +40 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/METADATA +62 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/RECORD +127 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/WHEEL +5 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/top_level.txt +2 -0
- list_versions/__init__.py +12 -0
- list_versions/cli_run.py +163 -0
|
@@ -0,0 +1,667 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
# pyre-unsafe
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
import triton
|
|
12
|
+
import triton.language as tl
|
|
13
|
+
|
|
14
|
+
from .common import expect_contiguous
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@triton.jit
|
|
18
|
+
def jagged_flash_attention_basic_kernel(
|
|
19
|
+
q_ptr,
|
|
20
|
+
k_ptr,
|
|
21
|
+
v_ptr,
|
|
22
|
+
offset_ptr,
|
|
23
|
+
o_ptr,
|
|
24
|
+
lse_i_ptr,
|
|
25
|
+
stride_qm,
|
|
26
|
+
stride_qd,
|
|
27
|
+
stride_kd,
|
|
28
|
+
stride_kn,
|
|
29
|
+
stride_vn,
|
|
30
|
+
stride_vd,
|
|
31
|
+
stride_om,
|
|
32
|
+
stride_od,
|
|
33
|
+
max_seq_len,
|
|
34
|
+
D: tl.constexpr,
|
|
35
|
+
NEXT_D: tl.constexpr,
|
|
36
|
+
use_mask: tl.constexpr,
|
|
37
|
+
allow_tf32: tl.constexpr,
|
|
38
|
+
BLOCK_SIZE_M: tl.constexpr,
|
|
39
|
+
BLOCK_SIZE_N: tl.constexpr,
|
|
40
|
+
BLOCK_SIZE_D: tl.constexpr,
|
|
41
|
+
):
|
|
42
|
+
pid_m = tl.program_id(axis=0)
|
|
43
|
+
pid_batch = tl.program_id(axis=1)
|
|
44
|
+
|
|
45
|
+
begin = tl.load(offset_ptr + pid_batch)
|
|
46
|
+
end = tl.load(offset_ptr + pid_batch + 1)
|
|
47
|
+
|
|
48
|
+
seqlen = end - begin
|
|
49
|
+
seqlen = tl.minimum(seqlen, max_seq_len)
|
|
50
|
+
|
|
51
|
+
if pid_m * BLOCK_SIZE_M >= seqlen:
|
|
52
|
+
return
|
|
53
|
+
|
|
54
|
+
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
55
|
+
offs_d = tl.arange(0, BLOCK_SIZE_D)
|
|
56
|
+
# Offset till next power of 2 for D
|
|
57
|
+
offs_nextd = tl.arange(0, NEXT_D)
|
|
58
|
+
|
|
59
|
+
acc = tl.zeros([BLOCK_SIZE_M, NEXT_D], dtype=tl.float32)
|
|
60
|
+
|
|
61
|
+
m_i = tl.zeros([BLOCK_SIZE_M], dtype=tl.float32) - float("inf")
|
|
62
|
+
l_i = tl.zeros([BLOCK_SIZE_M], dtype=tl.float32)
|
|
63
|
+
for j in range(0, seqlen, BLOCK_SIZE_N):
|
|
64
|
+
offs_n = tl.arange(0, BLOCK_SIZE_N) + j
|
|
65
|
+
q_ptrs = (
|
|
66
|
+
q_ptr
|
|
67
|
+
+ (offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd)
|
|
68
|
+
+ begin * stride_qm
|
|
69
|
+
)
|
|
70
|
+
|
|
71
|
+
k_ptrs = (
|
|
72
|
+
k_ptr
|
|
73
|
+
+ (offs_d[:, None] * stride_kd + offs_n[None, :] * stride_kn)
|
|
74
|
+
+ begin * stride_kn
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
qk = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
78
|
+
|
|
79
|
+
for d in range(0, D, BLOCK_SIZE_D):
|
|
80
|
+
updated_offset = d + offs_d
|
|
81
|
+
q = tl.load(
|
|
82
|
+
q_ptrs,
|
|
83
|
+
# pyre-fixme[16]: `int` has no attribute `__getitem__`.
|
|
84
|
+
mask=((updated_offset[None, :] < D) & (offs_m[:, None] < seqlen)),
|
|
85
|
+
other=0.0,
|
|
86
|
+
)
|
|
87
|
+
k = tl.load(
|
|
88
|
+
k_ptrs,
|
|
89
|
+
mask=((updated_offset[:, None] < D) & (offs_n[None, :] < seqlen)),
|
|
90
|
+
other=0.0,
|
|
91
|
+
)
|
|
92
|
+
qk += tl.dot(q, k, allow_tf32=allow_tf32)
|
|
93
|
+
|
|
94
|
+
q_ptrs += BLOCK_SIZE_D * stride_qd
|
|
95
|
+
k_ptrs += BLOCK_SIZE_D * stride_kd
|
|
96
|
+
|
|
97
|
+
m_ij = tl.maximum(tl.max(qk, axis=1), m_i)
|
|
98
|
+
# Add the correct mask here
|
|
99
|
+
mn_mask = (offs_m[:, None] < seqlen) & (offs_n[None, :] < seqlen)
|
|
100
|
+
|
|
101
|
+
p = tl.exp(qk - m_ij[:, None])
|
|
102
|
+
p = tl.where(mn_mask, p, 0.0)
|
|
103
|
+
|
|
104
|
+
l_ij = tl.sum(p, axis=1)
|
|
105
|
+
alpha = tl.exp(m_i - m_ij)
|
|
106
|
+
|
|
107
|
+
l_i = l_i * alpha + l_ij
|
|
108
|
+
acc = acc * alpha[:, None]
|
|
109
|
+
|
|
110
|
+
# Load V
|
|
111
|
+
v_ptrs = (
|
|
112
|
+
v_ptr
|
|
113
|
+
+ (offs_nextd[None, :] * stride_vd + offs_n[:, None] * stride_vn)
|
|
114
|
+
+ begin * stride_vn
|
|
115
|
+
)
|
|
116
|
+
v = tl.load(
|
|
117
|
+
v_ptrs,
|
|
118
|
+
mask=((offs_nextd[None, :] < D) & (offs_n[:, None] < seqlen)),
|
|
119
|
+
other=0.0,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
p /= max_seq_len
|
|
123
|
+
|
|
124
|
+
if use_mask:
|
|
125
|
+
attn_mask = offs_m[:, None] - offs_n[None, :]
|
|
126
|
+
attn_mask = tl.where(mn_mask, attn_mask, 0.0)
|
|
127
|
+
attn_mask = tl.where(attn_mask > 0, 0.0, 1.0)
|
|
128
|
+
p = tl.where(attn_mask > 0, p, 0.0)
|
|
129
|
+
|
|
130
|
+
p = p.to(v_ptr.dtype.element_ty)
|
|
131
|
+
acc_j = tl.dot(p, v, allow_tf32=allow_tf32)
|
|
132
|
+
acc += acc_j
|
|
133
|
+
m_i = m_ij
|
|
134
|
+
|
|
135
|
+
lse_i = m_i + tl.math.log(l_i)
|
|
136
|
+
lse_i_offsets = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
137
|
+
lse_i_ptrs = lse_i_ptr + lse_i_offsets + begin
|
|
138
|
+
|
|
139
|
+
tl.store(lse_i_ptrs, lse_i, mask=lse_i_offsets < seqlen)
|
|
140
|
+
|
|
141
|
+
acc = acc / l_i[:, None]
|
|
142
|
+
|
|
143
|
+
# Store O
|
|
144
|
+
o_ptrs = o_ptr + (
|
|
145
|
+
offs_m[:, None] * stride_om
|
|
146
|
+
+ offs_nextd[None, :] * stride_od
|
|
147
|
+
+ begin * stride_om
|
|
148
|
+
)
|
|
149
|
+
o_mask = (offs_m[:, None] < seqlen) & (offs_nextd[None, :] < D)
|
|
150
|
+
tl.store(o_ptrs, acc, mask=o_mask)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
def jagged_flash_attention_basic_fwd(
|
|
154
|
+
jagged_Q,
|
|
155
|
+
jagged_K,
|
|
156
|
+
jagged_V,
|
|
157
|
+
offsets,
|
|
158
|
+
max_seq_len,
|
|
159
|
+
use_mask,
|
|
160
|
+
allow_tf32=False,
|
|
161
|
+
):
|
|
162
|
+
assert jagged_Q.size(1) == jagged_K.size(0), "incompatible dimensions"
|
|
163
|
+
|
|
164
|
+
B = offsets.size(0) - 1
|
|
165
|
+
D = jagged_Q.size(1)
|
|
166
|
+
|
|
167
|
+
jagged_O = torch.zeros_like(jagged_Q)
|
|
168
|
+
lse = torch.empty((jagged_Q.size(0)), device=jagged_Q.device, dtype=jagged_Q.dtype)
|
|
169
|
+
|
|
170
|
+
BLOCK_SIZE_M = 32
|
|
171
|
+
BLOCK_SIZE_N = 32
|
|
172
|
+
BLOCK_SIZE_D = 32
|
|
173
|
+
|
|
174
|
+
grid = (triton.cdiv(max_seq_len, BLOCK_SIZE_M), B)
|
|
175
|
+
|
|
176
|
+
jagged_flash_attention_basic_kernel[grid](
|
|
177
|
+
jagged_Q,
|
|
178
|
+
jagged_K,
|
|
179
|
+
jagged_V,
|
|
180
|
+
offsets,
|
|
181
|
+
jagged_O,
|
|
182
|
+
lse,
|
|
183
|
+
jagged_Q.stride(0),
|
|
184
|
+
jagged_Q.stride(1),
|
|
185
|
+
jagged_K.stride(0),
|
|
186
|
+
jagged_K.stride(1),
|
|
187
|
+
jagged_V.stride(0),
|
|
188
|
+
jagged_V.stride(1),
|
|
189
|
+
jagged_O.stride(0),
|
|
190
|
+
jagged_O.stride(1),
|
|
191
|
+
max_seq_len,
|
|
192
|
+
D,
|
|
193
|
+
triton.next_power_of_2(D),
|
|
194
|
+
use_mask,
|
|
195
|
+
allow_tf32,
|
|
196
|
+
BLOCK_SIZE_M=BLOCK_SIZE_M,
|
|
197
|
+
BLOCK_SIZE_N=BLOCK_SIZE_N,
|
|
198
|
+
BLOCK_SIZE_D=BLOCK_SIZE_D,
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
return jagged_O, lse
|
|
202
|
+
|
|
203
|
+
|
|
204
|
+
# Similar to fwd kernel, this one is using a grid of
|
|
205
|
+
# (num_blocks_m, B) where num_blocks_m is seq_len / BLOCK_SIZE_M
|
|
206
|
+
@triton.jit
|
|
207
|
+
def _jagged_flash_attention_bwd_preprocess_basic_kernel(
|
|
208
|
+
o_ptr,
|
|
209
|
+
o_offset_ptr,
|
|
210
|
+
do_ptr,
|
|
211
|
+
delta_ptr,
|
|
212
|
+
stride_om,
|
|
213
|
+
stride_od,
|
|
214
|
+
max_seq_len,
|
|
215
|
+
D: tl.constexpr,
|
|
216
|
+
BLOCK_SIZE_M: tl.constexpr,
|
|
217
|
+
BLOCK_SIZE_D: tl.constexpr,
|
|
218
|
+
):
|
|
219
|
+
pid_m = tl.program_id(axis=0)
|
|
220
|
+
pid_batch = tl.program_id(axis=1)
|
|
221
|
+
|
|
222
|
+
begin_o = tl.load(o_offset_ptr + pid_batch)
|
|
223
|
+
end_o = tl.load(o_offset_ptr + pid_batch + 1)
|
|
224
|
+
|
|
225
|
+
M = end_o - begin_o
|
|
226
|
+
M = tl.minimum(M, max_seq_len)
|
|
227
|
+
|
|
228
|
+
offs_om = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
229
|
+
offs_od = tl.arange(0, BLOCK_SIZE_D)
|
|
230
|
+
|
|
231
|
+
o_offsets = (
|
|
232
|
+
offs_om[:, None] * stride_om
|
|
233
|
+
+ offs_od[None, :] * stride_od
|
|
234
|
+
+ begin_o * stride_om
|
|
235
|
+
)
|
|
236
|
+
o_ptrs = o_ptr + o_offsets
|
|
237
|
+
do_ptrs = do_ptr + o_offsets
|
|
238
|
+
o_mask = (offs_om[:, None] < M) & (offs_od[None, :] < D)
|
|
239
|
+
|
|
240
|
+
# Load O
|
|
241
|
+
o = tl.load(o_ptrs, mask=o_mask)
|
|
242
|
+
do = tl.load(do_ptrs, mask=o_mask)
|
|
243
|
+
|
|
244
|
+
delta = tl.sum(o * do, axis=1)
|
|
245
|
+
|
|
246
|
+
tl.store(delta_ptr + begin_o + offs_om, delta, mask=offs_om < M)
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
@triton.jit
|
|
250
|
+
def _jagged_flash_attention_bwd_basic_kernel(
|
|
251
|
+
q_ptr,
|
|
252
|
+
k_ptr,
|
|
253
|
+
v_ptr,
|
|
254
|
+
o_ptr,
|
|
255
|
+
offset_ptr,
|
|
256
|
+
dq_ptr,
|
|
257
|
+
dk_ptr,
|
|
258
|
+
dv_ptr,
|
|
259
|
+
do_ptr,
|
|
260
|
+
delta_ptr,
|
|
261
|
+
lse_ptr,
|
|
262
|
+
stride_qm,
|
|
263
|
+
stride_qd,
|
|
264
|
+
stride_kn,
|
|
265
|
+
stride_kd,
|
|
266
|
+
stride_vn,
|
|
267
|
+
stride_vd,
|
|
268
|
+
stride_om,
|
|
269
|
+
stride_od,
|
|
270
|
+
stride_dqm,
|
|
271
|
+
stride_dqd,
|
|
272
|
+
stride_dkn,
|
|
273
|
+
stride_dkd,
|
|
274
|
+
stride_dvn,
|
|
275
|
+
stride_dvd,
|
|
276
|
+
stride_dom,
|
|
277
|
+
stride_dod,
|
|
278
|
+
max_seq_len,
|
|
279
|
+
D: tl.constexpr,
|
|
280
|
+
use_mask: tl.constexpr,
|
|
281
|
+
allow_tf32: tl.constexpr,
|
|
282
|
+
BLOCK_SIZE_M: tl.constexpr,
|
|
283
|
+
BLOCK_SIZE_N: tl.constexpr,
|
|
284
|
+
BLOCK_SIZE_D: tl.constexpr,
|
|
285
|
+
):
|
|
286
|
+
pid_batch = tl.program_id(axis=1)
|
|
287
|
+
|
|
288
|
+
begin = tl.load(offset_ptr + pid_batch)
|
|
289
|
+
end = tl.load(offset_ptr + pid_batch + 1)
|
|
290
|
+
|
|
291
|
+
M = tl.minimum(end - begin, max_seq_len)
|
|
292
|
+
|
|
293
|
+
pid_n = tl.program_id(axis=0)
|
|
294
|
+
offs_d = tl.arange(0, BLOCK_SIZE_D)
|
|
295
|
+
|
|
296
|
+
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
297
|
+
offs_m = tl.arange(0, BLOCK_SIZE_M)
|
|
298
|
+
|
|
299
|
+
q_ptrs = (
|
|
300
|
+
q_ptr
|
|
301
|
+
+ begin * stride_qm
|
|
302
|
+
+ (offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd)
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
k_ptrs = (
|
|
306
|
+
k_ptr
|
|
307
|
+
+ begin * stride_kn
|
|
308
|
+
+ (offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd)
|
|
309
|
+
)
|
|
310
|
+
|
|
311
|
+
v_ptrs = (
|
|
312
|
+
v_ptr
|
|
313
|
+
+ begin * stride_vn
|
|
314
|
+
+ (offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd)
|
|
315
|
+
)
|
|
316
|
+
|
|
317
|
+
do_ptrs = (
|
|
318
|
+
do_ptr
|
|
319
|
+
+ begin * stride_dom
|
|
320
|
+
+ (offs_m[:, None] * stride_dom + offs_d[None, :] * stride_dod)
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
# Load K and V
|
|
324
|
+
k = tl.load(k_ptrs, mask=((offs_d[None, :] < D) & (offs_n[:, None] < M)))
|
|
325
|
+
v = tl.load(v_ptrs, mask=((offs_d[None, :] < D) & (offs_n[:, None] < M)))
|
|
326
|
+
|
|
327
|
+
# Initialize dv and dk
|
|
328
|
+
dv = tl.zeros([BLOCK_SIZE_N, BLOCK_SIZE_D], dtype=tl.float32)
|
|
329
|
+
dk = tl.zeros([BLOCK_SIZE_N, BLOCK_SIZE_D], dtype=tl.float32)
|
|
330
|
+
|
|
331
|
+
for begin_m in range(0, M, BLOCK_SIZE_M):
|
|
332
|
+
offs_m_temp = begin_m + offs_m
|
|
333
|
+
|
|
334
|
+
# Load Q
|
|
335
|
+
# pyre-fixme[16]: `int` has no attribute `__getitem__`.
|
|
336
|
+
q = tl.load(q_ptrs, mask=((offs_d[None, :] < D) & (offs_m_temp[:, None] < M)))
|
|
337
|
+
qk = tl.dot(q, tl.trans(k), allow_tf32=allow_tf32)
|
|
338
|
+
|
|
339
|
+
mn_mask = (offs_m_temp[:, None] < M) & (offs_n[None, :] < M)
|
|
340
|
+
|
|
341
|
+
# Load lse_i
|
|
342
|
+
lse_i = tl.load(lse_ptr + offs_m_temp + begin, mask=offs_m_temp < M)
|
|
343
|
+
|
|
344
|
+
p = tl.exp(qk - lse_i[:, None])
|
|
345
|
+
p = tl.where(mn_mask, p, 0.0)
|
|
346
|
+
p /= max_seq_len
|
|
347
|
+
p_masked = p
|
|
348
|
+
|
|
349
|
+
attn_mask = None
|
|
350
|
+
if use_mask:
|
|
351
|
+
attn_mask = offs_m_temp[:, None] - offs_n[None, :]
|
|
352
|
+
attn_mask = tl.where(mn_mask, attn_mask, 0.0)
|
|
353
|
+
attn_mask = tl.where(attn_mask > 0, 0.0, 1.0)
|
|
354
|
+
p_masked = tl.where(attn_mask > 0, p, 0.0)
|
|
355
|
+
|
|
356
|
+
p_masked = p_masked.to(do_ptr.dtype.element_ty)
|
|
357
|
+
do = tl.load(do_ptrs, mask=((offs_d[None, :] < D) & (offs_m_temp[:, None] < M)))
|
|
358
|
+
dv += tl.dot(tl.trans(p_masked), do, allow_tf32=allow_tf32)
|
|
359
|
+
dp = tl.dot(do, tl.trans(v), allow_tf32=allow_tf32)
|
|
360
|
+
|
|
361
|
+
# compute ds = p * (dp - delta[:, None])
|
|
362
|
+
Di = tl.load(delta_ptr + offs_m_temp + begin, mask=offs_m_temp < M)
|
|
363
|
+
dp_masked = dp
|
|
364
|
+
if use_mask:
|
|
365
|
+
dp_masked = tl.where(attn_mask > 0, dp, 0.0)
|
|
366
|
+
|
|
367
|
+
ds = p * (dp_masked - Di[:, None] * max_seq_len)
|
|
368
|
+
|
|
369
|
+
# compute dk = dot(ds.T, q)
|
|
370
|
+
ds = ds.to(q_ptr.dtype.element_ty)
|
|
371
|
+
dk += tl.dot(tl.trans(ds), q, allow_tf32=allow_tf32)
|
|
372
|
+
|
|
373
|
+
q_ptrs += BLOCK_SIZE_M * stride_qm
|
|
374
|
+
do_ptrs += BLOCK_SIZE_M * stride_dom
|
|
375
|
+
|
|
376
|
+
# store back dk and dv
|
|
377
|
+
dk_ptrs = (
|
|
378
|
+
dk_ptr
|
|
379
|
+
+ begin * stride_dkn
|
|
380
|
+
+ (offs_n[:, None] * stride_dkn + offs_d[None, :] * stride_dkd)
|
|
381
|
+
)
|
|
382
|
+
|
|
383
|
+
dv_ptrs = (
|
|
384
|
+
dv_ptr
|
|
385
|
+
+ begin * stride_dvn
|
|
386
|
+
+ (offs_n[:, None] * stride_dvn + offs_d[None, :] * stride_dvd)
|
|
387
|
+
)
|
|
388
|
+
|
|
389
|
+
tl.store(dk_ptrs, dk, mask=((offs_d[None, :] < D) & (offs_n[:, None] < M)))
|
|
390
|
+
tl.store(dv_ptrs, dv, mask=((offs_d[None, :] < D) & (offs_n[:, None] < M)))
|
|
391
|
+
|
|
392
|
+
start_m = tl.program_id(axis=0) * BLOCK_SIZE_N
|
|
393
|
+
offs_m_curr = start_m + tl.arange(0, BLOCK_SIZE_N)
|
|
394
|
+
|
|
395
|
+
dq_ptrs_curr = (
|
|
396
|
+
dq_ptr
|
|
397
|
+
+ begin * stride_dqm
|
|
398
|
+
+ (offs_m_curr[:, None] * stride_dqm + offs_d[None, :] * stride_dqd)
|
|
399
|
+
)
|
|
400
|
+
|
|
401
|
+
dq_curr = tl.zeros([BLOCK_SIZE_N, BLOCK_SIZE_D], dtype=tl.float32)
|
|
402
|
+
|
|
403
|
+
q_ptrs_curr = (
|
|
404
|
+
q_ptr
|
|
405
|
+
+ begin * stride_qm
|
|
406
|
+
+ (offs_m_curr[:, None] * stride_qm + offs_d[None, :] * stride_qd)
|
|
407
|
+
)
|
|
408
|
+
|
|
409
|
+
q_curr = tl.load(
|
|
410
|
+
q_ptrs_curr, mask=((offs_d[None, :] < D) & (offs_m_curr[:, None] < M))
|
|
411
|
+
)
|
|
412
|
+
|
|
413
|
+
# Load lse_i
|
|
414
|
+
lse_i_curr = tl.load(lse_ptr + offs_m_curr + begin, mask=offs_m_curr < M)
|
|
415
|
+
|
|
416
|
+
do_ptrs_curr = (
|
|
417
|
+
do_ptr
|
|
418
|
+
+ begin * stride_dom
|
|
419
|
+
+ (offs_m_curr[:, None] * stride_dom + offs_d[None, :] * stride_dod)
|
|
420
|
+
)
|
|
421
|
+
|
|
422
|
+
# Load do
|
|
423
|
+
do_curr = tl.load(
|
|
424
|
+
do_ptrs_curr, mask=((offs_d[None, :] < D) & (offs_m_curr[:, None] < M))
|
|
425
|
+
)
|
|
426
|
+
Di_curr = tl.load(delta_ptr + offs_m_curr + begin, mask=offs_m_curr < M)
|
|
427
|
+
|
|
428
|
+
# When computing dV, we want to compute [BLOCK_SIZE_N] rows of dV.
|
|
429
|
+
# Therefore, the loop's block size is BLOCK_SIZE_M instead of BLOCK_SIZE_N.
|
|
430
|
+
block_start = 0
|
|
431
|
+
while block_start < M:
|
|
432
|
+
offs_n_curr = block_start + tl.arange(0, BLOCK_SIZE_M)
|
|
433
|
+
|
|
434
|
+
k_ptrs_curr = (
|
|
435
|
+
k_ptr
|
|
436
|
+
+ begin * stride_kn
|
|
437
|
+
+ (offs_n_curr[:, None] * stride_kn + offs_d[None, :] * stride_kd)
|
|
438
|
+
)
|
|
439
|
+
v_ptrs_curr = (
|
|
440
|
+
v_ptr
|
|
441
|
+
+ begin * stride_vn
|
|
442
|
+
+ (offs_n_curr[:, None] * stride_vn + offs_d[None, :] * stride_vd)
|
|
443
|
+
)
|
|
444
|
+
|
|
445
|
+
k_curr = tl.load(
|
|
446
|
+
k_ptrs_curr, mask=((offs_d[None, :] < D) & (offs_n_curr[:, None] < M))
|
|
447
|
+
)
|
|
448
|
+
v_curr = tl.load(
|
|
449
|
+
v_ptrs_curr, mask=((offs_d[None, :] < D) & (offs_n_curr[:, None] < M))
|
|
450
|
+
)
|
|
451
|
+
|
|
452
|
+
qk_curr = tl.dot(q_curr, tl.trans(k_curr), allow_tf32=allow_tf32)
|
|
453
|
+
mn_mask_curr = (offs_m_curr[:, None] < M) & (offs_n_curr[None, :] < M)
|
|
454
|
+
|
|
455
|
+
p_curr = tl.exp(qk_curr - lse_i_curr[:, None])
|
|
456
|
+
p_curr = tl.where(mn_mask_curr, p_curr, 0.0)
|
|
457
|
+
p_curr /= max_seq_len
|
|
458
|
+
|
|
459
|
+
# compute dp = dot(v, do)
|
|
460
|
+
dp_curr = tl.dot(do_curr, tl.trans(v_curr), allow_tf32=allow_tf32)
|
|
461
|
+
dp_curr_masked = dp_curr
|
|
462
|
+
|
|
463
|
+
# compute ds = p * (dp - delta[:, None])
|
|
464
|
+
if use_mask:
|
|
465
|
+
attn_mask = offs_m_curr[:, None] - offs_n_curr[None, :]
|
|
466
|
+
attn_mask = tl.where(mn_mask_curr, attn_mask, 0.0)
|
|
467
|
+
attn_mask = tl.where(attn_mask > 0, 0.0, 1.0)
|
|
468
|
+
dp_curr_masked = tl.where(attn_mask > 0, dp_curr, 0.0)
|
|
469
|
+
|
|
470
|
+
ds_curr = p_curr * (dp_curr_masked - Di_curr[:, None] * max_seq_len)
|
|
471
|
+
|
|
472
|
+
ds_curr = ds_curr.to(k_ptr.dtype.element_ty)
|
|
473
|
+
dq_curr += tl.dot(ds_curr, k_curr, allow_tf32=allow_tf32)
|
|
474
|
+
block_start += BLOCK_SIZE_M
|
|
475
|
+
|
|
476
|
+
tl.store(
|
|
477
|
+
dq_ptrs_curr, dq_curr, mask=((offs_d[None, :] < D) & (offs_m_curr[:, None] < M))
|
|
478
|
+
)
|
|
479
|
+
|
|
480
|
+
|
|
481
|
+
def jagged_flash_attention_basic_backward(
|
|
482
|
+
jagged_Q,
|
|
483
|
+
# K is non-transposed
|
|
484
|
+
jagged_K,
|
|
485
|
+
jagged_V,
|
|
486
|
+
jagged_O,
|
|
487
|
+
offsets,
|
|
488
|
+
dO,
|
|
489
|
+
lse,
|
|
490
|
+
max_seq_len,
|
|
491
|
+
use_mask,
|
|
492
|
+
allow_tf32=False,
|
|
493
|
+
):
|
|
494
|
+
BLOCK_SIZE_M = 32
|
|
495
|
+
BLOCK_SIZE_N = 32
|
|
496
|
+
|
|
497
|
+
B = offsets.size(0) - 1
|
|
498
|
+
num_blocks_m = triton.cdiv(max_seq_len, BLOCK_SIZE_M)
|
|
499
|
+
pre_grid = (num_blocks_m, B)
|
|
500
|
+
|
|
501
|
+
BLOCK_SIZE_D = max(triton.next_power_of_2(jagged_Q.size(1)), 16)
|
|
502
|
+
|
|
503
|
+
delta = torch.empty_like(lse)
|
|
504
|
+
if not dO.is_contiguous():
|
|
505
|
+
dO = dO.contiguous()
|
|
506
|
+
|
|
507
|
+
_jagged_flash_attention_bwd_preprocess_basic_kernel[pre_grid](
|
|
508
|
+
jagged_O,
|
|
509
|
+
offsets,
|
|
510
|
+
dO,
|
|
511
|
+
delta,
|
|
512
|
+
jagged_O.stride(0),
|
|
513
|
+
jagged_O.stride(1),
|
|
514
|
+
max_seq_len,
|
|
515
|
+
jagged_O.size(1),
|
|
516
|
+
BLOCK_SIZE_M,
|
|
517
|
+
BLOCK_SIZE_D,
|
|
518
|
+
)
|
|
519
|
+
|
|
520
|
+
grid = (triton.cdiv(max_seq_len, BLOCK_SIZE_N), B)
|
|
521
|
+
|
|
522
|
+
dq = torch.zeros_like(jagged_Q)
|
|
523
|
+
dk = torch.zeros_like(jagged_K)
|
|
524
|
+
dv = torch.zeros_like(jagged_V)
|
|
525
|
+
|
|
526
|
+
D = jagged_Q.size(1)
|
|
527
|
+
_jagged_flash_attention_bwd_basic_kernel[grid](
|
|
528
|
+
jagged_Q,
|
|
529
|
+
jagged_K,
|
|
530
|
+
jagged_V,
|
|
531
|
+
jagged_O,
|
|
532
|
+
offsets,
|
|
533
|
+
dq,
|
|
534
|
+
dk,
|
|
535
|
+
dv,
|
|
536
|
+
dO,
|
|
537
|
+
delta,
|
|
538
|
+
lse,
|
|
539
|
+
jagged_Q.stride(0),
|
|
540
|
+
jagged_Q.stride(1),
|
|
541
|
+
jagged_K.stride(0),
|
|
542
|
+
jagged_K.stride(1),
|
|
543
|
+
jagged_V.stride(0),
|
|
544
|
+
jagged_V.stride(1),
|
|
545
|
+
jagged_O.stride(0),
|
|
546
|
+
jagged_O.stride(1),
|
|
547
|
+
dq.stride(0),
|
|
548
|
+
dq.stride(1),
|
|
549
|
+
dk.stride(0),
|
|
550
|
+
dk.stride(1),
|
|
551
|
+
dv.stride(0),
|
|
552
|
+
dv.stride(1),
|
|
553
|
+
dO.stride(0),
|
|
554
|
+
dO.stride(1),
|
|
555
|
+
max_seq_len,
|
|
556
|
+
D,
|
|
557
|
+
use_mask=use_mask,
|
|
558
|
+
allow_tf32=allow_tf32,
|
|
559
|
+
BLOCK_SIZE_M=BLOCK_SIZE_M,
|
|
560
|
+
BLOCK_SIZE_N=BLOCK_SIZE_N,
|
|
561
|
+
BLOCK_SIZE_D=BLOCK_SIZE_D,
|
|
562
|
+
)
|
|
563
|
+
|
|
564
|
+
return dq, dk, dv
|
|
565
|
+
|
|
566
|
+
|
|
567
|
+
class JaggedFlashAttentionBasic(torch.autograd.Function):
|
|
568
|
+
@staticmethod
|
|
569
|
+
# pyre-fixme
|
|
570
|
+
def forward(
|
|
571
|
+
ctx,
|
|
572
|
+
jagged_Q: torch.Tensor,
|
|
573
|
+
jagged_K: torch.Tensor,
|
|
574
|
+
jagged_V: torch.Tensor,
|
|
575
|
+
offsets: torch.Tensor,
|
|
576
|
+
max_seq_len: int,
|
|
577
|
+
use_mask: bool = True,
|
|
578
|
+
allow_tf32: bool = False,
|
|
579
|
+
) -> torch.Tensor:
|
|
580
|
+
ctx.allow_tf32 = allow_tf32
|
|
581
|
+
ctx.max_seq_len = max_seq_len
|
|
582
|
+
ctx.use_mask = use_mask
|
|
583
|
+
|
|
584
|
+
jagged_O, lse = jagged_flash_attention_basic_fwd(
|
|
585
|
+
jagged_Q,
|
|
586
|
+
jagged_K.T,
|
|
587
|
+
jagged_V,
|
|
588
|
+
offsets,
|
|
589
|
+
max_seq_len,
|
|
590
|
+
use_mask,
|
|
591
|
+
allow_tf32,
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
ctx.save_for_backward(
|
|
595
|
+
jagged_Q,
|
|
596
|
+
jagged_K,
|
|
597
|
+
jagged_V,
|
|
598
|
+
offsets,
|
|
599
|
+
jagged_O,
|
|
600
|
+
lse,
|
|
601
|
+
)
|
|
602
|
+
|
|
603
|
+
return jagged_O
|
|
604
|
+
|
|
605
|
+
@staticmethod
|
|
606
|
+
# pyre-fixme
|
|
607
|
+
def backward(
|
|
608
|
+
ctx, grad_output: torch.Tensor
|
|
609
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, None, None, None, None]:
|
|
610
|
+
(
|
|
611
|
+
jagged_Q,
|
|
612
|
+
jagged_K,
|
|
613
|
+
jagged_V,
|
|
614
|
+
offsets,
|
|
615
|
+
jagged_O,
|
|
616
|
+
lse,
|
|
617
|
+
) = ctx.saved_tensors
|
|
618
|
+
|
|
619
|
+
dq, dk, dv = jagged_flash_attention_basic_backward(
|
|
620
|
+
jagged_Q=jagged_Q,
|
|
621
|
+
jagged_K=jagged_K,
|
|
622
|
+
jagged_V=jagged_V,
|
|
623
|
+
jagged_O=jagged_O,
|
|
624
|
+
offsets=offsets,
|
|
625
|
+
dO=grad_output,
|
|
626
|
+
lse=lse,
|
|
627
|
+
max_seq_len=ctx.max_seq_len,
|
|
628
|
+
use_mask=ctx.use_mask,
|
|
629
|
+
allow_tf32=ctx.allow_tf32,
|
|
630
|
+
)
|
|
631
|
+
|
|
632
|
+
return (
|
|
633
|
+
dq,
|
|
634
|
+
dk,
|
|
635
|
+
dv,
|
|
636
|
+
None,
|
|
637
|
+
None,
|
|
638
|
+
None,
|
|
639
|
+
None,
|
|
640
|
+
)
|
|
641
|
+
|
|
642
|
+
|
|
643
|
+
def jagged_flash_attention_basic(
|
|
644
|
+
q_weights: torch.Tensor,
|
|
645
|
+
k_weights: torch.Tensor,
|
|
646
|
+
v_weights: torch.Tensor,
|
|
647
|
+
offsets: torch.Tensor,
|
|
648
|
+
max_seq_len: int,
|
|
649
|
+
use_mask: bool = False,
|
|
650
|
+
allow_tf32: bool = True,
|
|
651
|
+
) -> torch.Tensor:
|
|
652
|
+
q_weights = expect_contiguous(q_weights)
|
|
653
|
+
k_weights = expect_contiguous(k_weights)
|
|
654
|
+
v_weights = expect_contiguous(v_weights)
|
|
655
|
+
jagged_offsets = expect_contiguous(offsets)
|
|
656
|
+
|
|
657
|
+
jagged_O = JaggedFlashAttentionBasic.apply(
|
|
658
|
+
q_weights,
|
|
659
|
+
k_weights,
|
|
660
|
+
v_weights,
|
|
661
|
+
jagged_offsets,
|
|
662
|
+
max_seq_len,
|
|
663
|
+
use_mask,
|
|
664
|
+
allow_tf32,
|
|
665
|
+
)
|
|
666
|
+
|
|
667
|
+
return jagged_O
|