fbgemm-gpu-genai-nightly 2025.12.19__cp310-cp310-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fbgemm-gpu-genai-nightly might be problematic. Click here for more details.
- fbgemm_gpu/__init__.py +186 -0
- fbgemm_gpu/asmjit.so +0 -0
- fbgemm_gpu/batched_unary_embeddings_ops.py +87 -0
- fbgemm_gpu/config/__init__.py +9 -0
- fbgemm_gpu/config/feature_list.py +88 -0
- fbgemm_gpu/docs/__init__.py +18 -0
- fbgemm_gpu/docs/common.py +9 -0
- fbgemm_gpu/docs/examples.py +73 -0
- fbgemm_gpu/docs/jagged_tensor_ops.py +259 -0
- fbgemm_gpu/docs/merge_pooled_embedding_ops.py +36 -0
- fbgemm_gpu/docs/permute_pooled_embedding_ops.py +108 -0
- fbgemm_gpu/docs/quantize_ops.py +41 -0
- fbgemm_gpu/docs/sparse_ops.py +616 -0
- fbgemm_gpu/docs/target.genai.json.py +6 -0
- fbgemm_gpu/enums.py +24 -0
- fbgemm_gpu/experimental/example/__init__.py +29 -0
- fbgemm_gpu/experimental/example/fbgemm_gpu_experimental_example_py.so +0 -0
- fbgemm_gpu/experimental/example/utils.py +20 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/__init__.py +15 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp4_quantize.py +5654 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py +4422 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/grouped_gemm.py +1192 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/matmul_perf_model.py +232 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/utils.py +130 -0
- fbgemm_gpu/experimental/gen_ai/__init__.py +56 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/__init__.py +46 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py +333 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_interface.py +552 -0
- fbgemm_gpu/experimental/gen_ai/bench/__init__.py +13 -0
- fbgemm_gpu/experimental/gen_ai/bench/comm_bench.py +257 -0
- fbgemm_gpu/experimental/gen_ai/bench/gather_scatter_bench.py +348 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_bench.py +707 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_ops.py +3483 -0
- fbgemm_gpu/experimental/gen_ai/fbgemm_gpu_experimental_gen_ai.so +0 -0
- fbgemm_gpu/experimental/gen_ai/moe/README.md +15 -0
- fbgemm_gpu/experimental/gen_ai/moe/__init__.py +66 -0
- fbgemm_gpu/experimental/gen_ai/moe/activation.py +292 -0
- fbgemm_gpu/experimental/gen_ai/moe/gather_scatter.py +740 -0
- fbgemm_gpu/experimental/gen_ai/moe/layers.py +1272 -0
- fbgemm_gpu/experimental/gen_ai/moe/shuffling.py +421 -0
- fbgemm_gpu/experimental/gen_ai/quantize.py +307 -0
- fbgemm_gpu/fbgemm.so +0 -0
- fbgemm_gpu/metrics.py +160 -0
- fbgemm_gpu/permute_pooled_embedding_modules.py +142 -0
- fbgemm_gpu/permute_pooled_embedding_modules_split.py +85 -0
- fbgemm_gpu/quantize/__init__.py +43 -0
- fbgemm_gpu/quantize/quantize_ops.py +64 -0
- fbgemm_gpu/quantize_comm.py +315 -0
- fbgemm_gpu/quantize_utils.py +246 -0
- fbgemm_gpu/runtime_monitor.py +237 -0
- fbgemm_gpu/sll/__init__.py +189 -0
- fbgemm_gpu/sll/cpu/__init__.py +80 -0
- fbgemm_gpu/sll/cpu/cpu_sll.py +1001 -0
- fbgemm_gpu/sll/meta/__init__.py +35 -0
- fbgemm_gpu/sll/meta/meta_sll.py +337 -0
- fbgemm_gpu/sll/triton/__init__.py +127 -0
- fbgemm_gpu/sll/triton/common.py +38 -0
- fbgemm_gpu/sll/triton/triton_dense_jagged_cat_jagged_out.py +72 -0
- fbgemm_gpu/sll/triton/triton_jagged2_to_padded_dense.py +221 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm.py +418 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm_jagged_out.py +553 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_add.py +52 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_mul_jagged_out.py +175 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_flash_attention.py +861 -0
- fbgemm_gpu/sll/triton/triton_jagged_flash_attention_basic.py +667 -0
- fbgemm_gpu/sll/triton/triton_jagged_self_substraction_jagged_out.py +73 -0
- fbgemm_gpu/sll/triton/triton_jagged_softmax.py +463 -0
- fbgemm_gpu/sll/triton/triton_multi_head_jagged_flash_attention.py +751 -0
- fbgemm_gpu/sparse_ops.py +1455 -0
- fbgemm_gpu/split_embedding_configs.py +452 -0
- fbgemm_gpu/split_embedding_inference_converter.py +175 -0
- fbgemm_gpu/split_embedding_optimizer_ops.py +21 -0
- fbgemm_gpu/split_embedding_utils.py +29 -0
- fbgemm_gpu/split_table_batched_embeddings_ops.py +73 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_common.py +484 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_inference.py +2042 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training.py +4600 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py +146 -0
- fbgemm_gpu/ssd_split_table_batched_embeddings_ops.py +26 -0
- fbgemm_gpu/tbe/__init__.py +6 -0
- fbgemm_gpu/tbe/bench/__init__.py +55 -0
- fbgemm_gpu/tbe/bench/bench_config.py +156 -0
- fbgemm_gpu/tbe/bench/bench_runs.py +709 -0
- fbgemm_gpu/tbe/bench/benchmark_click_interface.py +187 -0
- fbgemm_gpu/tbe/bench/eeg_cli.py +137 -0
- fbgemm_gpu/tbe/bench/embedding_ops_common_config.py +149 -0
- fbgemm_gpu/tbe/bench/eval_compression.py +119 -0
- fbgemm_gpu/tbe/bench/reporter.py +35 -0
- fbgemm_gpu/tbe/bench/tbe_data_config.py +137 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_bench_helper.py +323 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_loader.py +289 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_param_models.py +170 -0
- fbgemm_gpu/tbe/bench/utils.py +48 -0
- fbgemm_gpu/tbe/cache/__init__.py +11 -0
- fbgemm_gpu/tbe/cache/kv_embedding_ops_inference.py +385 -0
- fbgemm_gpu/tbe/cache/split_embeddings_cache_ops.py +48 -0
- fbgemm_gpu/tbe/ssd/__init__.py +15 -0
- fbgemm_gpu/tbe/ssd/common.py +46 -0
- fbgemm_gpu/tbe/ssd/inference.py +586 -0
- fbgemm_gpu/tbe/ssd/training.py +4908 -0
- fbgemm_gpu/tbe/ssd/utils/__init__.py +7 -0
- fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py +273 -0
- fbgemm_gpu/tbe/stats/__init__.py +10 -0
- fbgemm_gpu/tbe/stats/bench_params_reporter.py +339 -0
- fbgemm_gpu/tbe/utils/__init__.py +13 -0
- fbgemm_gpu/tbe/utils/common.py +42 -0
- fbgemm_gpu/tbe/utils/offsets.py +65 -0
- fbgemm_gpu/tbe/utils/quantize.py +251 -0
- fbgemm_gpu/tbe/utils/requests.py +556 -0
- fbgemm_gpu/tbe_input_multiplexer.py +108 -0
- fbgemm_gpu/triton/__init__.py +22 -0
- fbgemm_gpu/triton/common.py +77 -0
- fbgemm_gpu/triton/jagged/__init__.py +8 -0
- fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py +824 -0
- fbgemm_gpu/triton/quantize.py +647 -0
- fbgemm_gpu/triton/quantize_ref.py +286 -0
- fbgemm_gpu/utils/__init__.py +11 -0
- fbgemm_gpu/utils/filestore.py +211 -0
- fbgemm_gpu/utils/loader.py +36 -0
- fbgemm_gpu/utils/torch_library.py +132 -0
- fbgemm_gpu/uvm.py +40 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/METADATA +62 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/RECORD +127 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/WHEEL +5 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/top_level.txt +2 -0
- list_versions/__init__.py +12 -0
- list_versions/cli_run.py +163 -0
|
@@ -0,0 +1,553 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
# pyre-unsafe
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import triton
|
|
11
|
+
import triton.language as tl
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@triton.jit
|
|
15
|
+
def array_jagged_bmm_kernel(
|
|
16
|
+
a_ptr, # 1D array
|
|
17
|
+
b_ptr, # jagged matrix
|
|
18
|
+
c_ptr, # output, jagged matrix
|
|
19
|
+
a_offsets_ptr,
|
|
20
|
+
b_offsets_ptr,
|
|
21
|
+
c_offsets_ptr,
|
|
22
|
+
D, # emb dimension
|
|
23
|
+
stride_bk,
|
|
24
|
+
stride_bn,
|
|
25
|
+
stride_cm,
|
|
26
|
+
stride_cn,
|
|
27
|
+
transpose, # one if a is transpose, otherwise zero
|
|
28
|
+
max_seq_len,
|
|
29
|
+
BLOCK_SIZE_M: tl.constexpr,
|
|
30
|
+
BLOCK_SIZE_N: tl.constexpr,
|
|
31
|
+
BLOCK_SIZE_K: tl.constexpr,
|
|
32
|
+
allow_tf32: tl.constexpr,
|
|
33
|
+
):
|
|
34
|
+
|
|
35
|
+
pid_batch = tl.program_id(2)
|
|
36
|
+
pid_m = tl.program_id(1)
|
|
37
|
+
pid_n = tl.program_id(0)
|
|
38
|
+
|
|
39
|
+
batch_offset_am = tl.load(a_offsets_ptr + pid_batch)
|
|
40
|
+
batch_offset_bk = tl.load(b_offsets_ptr + pid_batch)
|
|
41
|
+
batch_offset_cm = tl.load(c_offsets_ptr + pid_batch)
|
|
42
|
+
|
|
43
|
+
# calculate M, N, K
|
|
44
|
+
batch_K = tl.load(b_offsets_ptr + pid_batch + 1) - batch_offset_bk # b [batch_K, D]
|
|
45
|
+
batch_M = tl.load(c_offsets_ptr + pid_batch + 1) - batch_offset_cm
|
|
46
|
+
|
|
47
|
+
# use uncapped seq length to determine strides of a
|
|
48
|
+
stride_am = batch_M * (1 - transpose) + 1 * transpose
|
|
49
|
+
stride_ak = batch_M * transpose + 1 * (1 - transpose)
|
|
50
|
+
|
|
51
|
+
# truncate seq length
|
|
52
|
+
batch_K = tl.minimum(batch_K, max_seq_len)
|
|
53
|
+
batch_M = tl.minimum(batch_M, max_seq_len)
|
|
54
|
+
|
|
55
|
+
if batch_K == 0:
|
|
56
|
+
return
|
|
57
|
+
|
|
58
|
+
batch_N = D
|
|
59
|
+
|
|
60
|
+
# c [batch_M, D] boundary check
|
|
61
|
+
if pid_m * BLOCK_SIZE_M >= batch_M or pid_n * BLOCK_SIZE_N >= batch_N:
|
|
62
|
+
return
|
|
63
|
+
|
|
64
|
+
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % batch_M
|
|
65
|
+
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % batch_N
|
|
66
|
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
67
|
+
a_ptrs = (
|
|
68
|
+
a_ptr
|
|
69
|
+
+ batch_offset_am
|
|
70
|
+
+ (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
|
|
71
|
+
)
|
|
72
|
+
b_ptrs = (
|
|
73
|
+
b_ptr
|
|
74
|
+
+ batch_offset_bk * stride_bk
|
|
75
|
+
+ (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
79
|
+
for k in range(0, tl.cdiv(batch_K, BLOCK_SIZE_K)):
|
|
80
|
+
a = tl.load(
|
|
81
|
+
a_ptrs, mask=offs_k[None, :] < batch_K - k * BLOCK_SIZE_K, other=0.0
|
|
82
|
+
)
|
|
83
|
+
b = tl.load(
|
|
84
|
+
b_ptrs, mask=offs_k[:, None] < batch_K - k * BLOCK_SIZE_K, other=0.0
|
|
85
|
+
)
|
|
86
|
+
c += tl.dot(a, b, allow_tf32=allow_tf32)
|
|
87
|
+
a_ptrs += BLOCK_SIZE_K * stride_ak
|
|
88
|
+
b_ptrs += BLOCK_SIZE_K * stride_bk
|
|
89
|
+
|
|
90
|
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
91
|
+
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
92
|
+
c_ptrs = (
|
|
93
|
+
c_ptr
|
|
94
|
+
+ stride_cm * batch_offset_cm
|
|
95
|
+
+ stride_cm * offs_cm[:, None]
|
|
96
|
+
+ stride_cn * offs_cn[None, :]
|
|
97
|
+
)
|
|
98
|
+
c_mask = (offs_cm[:, None] < batch_M) & (offs_cn[None, :] < batch_N)
|
|
99
|
+
tl.store(c_ptrs, c, mask=c_mask)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
@triton.jit
|
|
103
|
+
def jagged_jagged_bmm_jagged_out_kernel(
|
|
104
|
+
a_ptr,
|
|
105
|
+
a_offset_ptr,
|
|
106
|
+
b_ptr,
|
|
107
|
+
b_offset_ptr,
|
|
108
|
+
c_ptr,
|
|
109
|
+
offsets_mn_ptr,
|
|
110
|
+
max_seq_len,
|
|
111
|
+
num_blocks_n,
|
|
112
|
+
K,
|
|
113
|
+
stride_am,
|
|
114
|
+
stride_ak,
|
|
115
|
+
stride_bk,
|
|
116
|
+
stride_bn,
|
|
117
|
+
allow_tf32: tl.constexpr,
|
|
118
|
+
BLOCK_SIZE_M: tl.constexpr,
|
|
119
|
+
BLOCK_SIZE_N: tl.constexpr,
|
|
120
|
+
BLOCK_SIZE_K: tl.constexpr,
|
|
121
|
+
):
|
|
122
|
+
"""
|
|
123
|
+
Kernel for computing C = A x B.
|
|
124
|
+
A has shape (sum_B(Mi), K), B has shape (K, sum_B(Ni))
|
|
125
|
+
and C has shape (sum_B(Mi * Ni))
|
|
126
|
+
"""
|
|
127
|
+
|
|
128
|
+
pid = tl.program_id(axis=0)
|
|
129
|
+
pid_batch = tl.program_id(axis=1)
|
|
130
|
+
|
|
131
|
+
begin_a = tl.load(a_offset_ptr + pid_batch)
|
|
132
|
+
end_a = tl.load(a_offset_ptr + pid_batch + 1)
|
|
133
|
+
|
|
134
|
+
begin_b = tl.load(b_offset_ptr + pid_batch)
|
|
135
|
+
end_b = tl.load(b_offset_ptr + pid_batch + 1)
|
|
136
|
+
|
|
137
|
+
offset_mn = tl.load(offsets_mn_ptr + pid_batch)
|
|
138
|
+
|
|
139
|
+
M = end_a - begin_a
|
|
140
|
+
M = tl.minimum(M, max_seq_len)
|
|
141
|
+
|
|
142
|
+
N = end_b - begin_b
|
|
143
|
+
N = tl.minimum(N, max_seq_len)
|
|
144
|
+
|
|
145
|
+
pid_m = pid // num_blocks_n
|
|
146
|
+
pid_n = pid % num_blocks_n
|
|
147
|
+
|
|
148
|
+
if pid_m * BLOCK_SIZE_M >= M or pid_n * BLOCK_SIZE_N >= N:
|
|
149
|
+
return
|
|
150
|
+
|
|
151
|
+
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
152
|
+
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
153
|
+
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
|
154
|
+
|
|
155
|
+
a_ptrs = (
|
|
156
|
+
a_ptr
|
|
157
|
+
+ (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
|
|
158
|
+
+ begin_a * stride_am
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
b_ptrs = (
|
|
162
|
+
b_ptr
|
|
163
|
+
+ (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
|
|
164
|
+
+ begin_b * stride_bn
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
c = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
|
168
|
+
|
|
169
|
+
for k in range(0, K, BLOCK_SIZE_K):
|
|
170
|
+
updated_offset = k + offs_k
|
|
171
|
+
a = tl.load(
|
|
172
|
+
a_ptrs,
|
|
173
|
+
# pyre-fixme[16]: `int` has no attribute `__getitem__`.
|
|
174
|
+
mask=((updated_offset[None, :] < K) & (offs_am[:, None] < M)),
|
|
175
|
+
other=0.0,
|
|
176
|
+
)
|
|
177
|
+
b = tl.load(
|
|
178
|
+
b_ptrs,
|
|
179
|
+
mask=((updated_offset[:, None] < K) & (offs_bn[None, :] < N)),
|
|
180
|
+
other=0.0,
|
|
181
|
+
)
|
|
182
|
+
c += tl.dot(a, b, allow_tf32=allow_tf32)
|
|
183
|
+
a_ptrs += BLOCK_SIZE_K * stride_ak
|
|
184
|
+
b_ptrs += BLOCK_SIZE_K * stride_bk
|
|
185
|
+
|
|
186
|
+
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
|
|
187
|
+
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
|
|
188
|
+
c_ptrs = c_ptr + offset_mn + N * offs_cm[:, None] + offs_cn[None, :]
|
|
189
|
+
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
|
|
190
|
+
tl.store(c_ptrs, c, mask=c_mask)
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
def triton_array_jagged_bmm_jagged_out(
|
|
194
|
+
array_A,
|
|
195
|
+
jagged_B,
|
|
196
|
+
lengths_am,
|
|
197
|
+
lengths_bk,
|
|
198
|
+
lengths_cm,
|
|
199
|
+
offsets_am,
|
|
200
|
+
offsets_bk,
|
|
201
|
+
offsets_cm,
|
|
202
|
+
max_seq_len,
|
|
203
|
+
allow_tf32=False,
|
|
204
|
+
transpose=0, # one if a is transpose, otherwise zero
|
|
205
|
+
):
|
|
206
|
+
B = lengths_am.size(0)
|
|
207
|
+
D = jagged_B.size(1)
|
|
208
|
+
L = jagged_B.size(0)
|
|
209
|
+
# gradients of the emb vectors beyond max_seq_len is set to zeros
|
|
210
|
+
jagged_C = torch.zeros((L, D), device=jagged_B.device, dtype=jagged_B.dtype)
|
|
211
|
+
|
|
212
|
+
BLOCK_SIZE_M = 32
|
|
213
|
+
BLOCK_SIZE_N = 32
|
|
214
|
+
BLOCK_SIZE_K = 32
|
|
215
|
+
|
|
216
|
+
num_blocks_m = triton.cdiv(max_seq_len, BLOCK_SIZE_M)
|
|
217
|
+
num_blocks_n = triton.cdiv(D, BLOCK_SIZE_N)
|
|
218
|
+
grid = (num_blocks_n, num_blocks_m, B)
|
|
219
|
+
|
|
220
|
+
array_jagged_bmm_kernel[grid](
|
|
221
|
+
array_A,
|
|
222
|
+
jagged_B,
|
|
223
|
+
jagged_C,
|
|
224
|
+
offsets_am,
|
|
225
|
+
offsets_bk,
|
|
226
|
+
offsets_cm,
|
|
227
|
+
D,
|
|
228
|
+
jagged_B.stride(0),
|
|
229
|
+
jagged_B.stride(1),
|
|
230
|
+
jagged_C.stride(0),
|
|
231
|
+
jagged_C.stride(1),
|
|
232
|
+
transpose,
|
|
233
|
+
max_seq_len,
|
|
234
|
+
BLOCK_SIZE_M,
|
|
235
|
+
BLOCK_SIZE_N,
|
|
236
|
+
BLOCK_SIZE_K,
|
|
237
|
+
allow_tf32,
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
return jagged_C
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
def triton_jagged_jagged_bmm_jagged_out(
|
|
244
|
+
jagged_A,
|
|
245
|
+
jagged_B,
|
|
246
|
+
max_seq_len,
|
|
247
|
+
lengths_m,
|
|
248
|
+
lengths_n,
|
|
249
|
+
lengths_mn,
|
|
250
|
+
offsets_m,
|
|
251
|
+
offsets_n,
|
|
252
|
+
offsets_mn,
|
|
253
|
+
allow_tf32=False,
|
|
254
|
+
):
|
|
255
|
+
assert jagged_A.size(1) == jagged_B.size(0), "incompatible dimensions"
|
|
256
|
+
assert offsets_mn.is_contiguous(), "mn offsets mush be contiguous"
|
|
257
|
+
assert offsets_m.is_contiguous(), "m offsets mush be contiguous"
|
|
258
|
+
assert offsets_n.is_contiguous(), "n offsets mush be contiguous"
|
|
259
|
+
|
|
260
|
+
B = lengths_m.size(0)
|
|
261
|
+
jagged_C = torch.zeros(
|
|
262
|
+
(lengths_mn.sum()), device=jagged_A.device, dtype=jagged_A.dtype
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
BLOCK_SIZE_M = 32
|
|
266
|
+
BLOCK_SIZE_N = 32
|
|
267
|
+
BLOCK_SIZE_K = 32
|
|
268
|
+
|
|
269
|
+
num_blocks_m = triton.cdiv(max_seq_len, BLOCK_SIZE_M)
|
|
270
|
+
num_blocks_n = triton.cdiv(max_seq_len, BLOCK_SIZE_N)
|
|
271
|
+
grid = (num_blocks_m * num_blocks_n, B)
|
|
272
|
+
|
|
273
|
+
jagged_jagged_bmm_jagged_out_kernel[grid](
|
|
274
|
+
jagged_A,
|
|
275
|
+
offsets_m,
|
|
276
|
+
jagged_B,
|
|
277
|
+
offsets_n,
|
|
278
|
+
jagged_C,
|
|
279
|
+
offsets_mn,
|
|
280
|
+
max_seq_len,
|
|
281
|
+
num_blocks_n,
|
|
282
|
+
jagged_A.size(1),
|
|
283
|
+
jagged_A.stride(0),
|
|
284
|
+
jagged_A.stride(1),
|
|
285
|
+
jagged_B.stride(0),
|
|
286
|
+
jagged_B.stride(1),
|
|
287
|
+
allow_tf32,
|
|
288
|
+
BLOCK_SIZE_M,
|
|
289
|
+
BLOCK_SIZE_N,
|
|
290
|
+
BLOCK_SIZE_K,
|
|
291
|
+
)
|
|
292
|
+
|
|
293
|
+
return jagged_C
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
class ArrayJaggedBmmNopadding(torch.autograd.Function):
|
|
297
|
+
"""
|
|
298
|
+
Compute batch matrix multiplication between JaggedTensor and JaggedTensor without padding.
|
|
299
|
+
z = X * Y
|
|
300
|
+
x: [Sum_B(N_i, N_i)]
|
|
301
|
+
y: [sum_B(N_i), D]
|
|
302
|
+
z: [sum_B(N_i), D]
|
|
303
|
+
"""
|
|
304
|
+
|
|
305
|
+
@staticmethod
|
|
306
|
+
# pyre-fixme
|
|
307
|
+
def forward(
|
|
308
|
+
ctx,
|
|
309
|
+
x: torch.Tensor,
|
|
310
|
+
y: torch.Tensor,
|
|
311
|
+
x_lengths: torch.Tensor,
|
|
312
|
+
x_offsets: torch.Tensor,
|
|
313
|
+
y_lengths: torch.Tensor,
|
|
314
|
+
y_offsets: torch.Tensor,
|
|
315
|
+
z_lengths: torch.Tensor,
|
|
316
|
+
z_offsets: torch.Tensor,
|
|
317
|
+
max_seq_len: int,
|
|
318
|
+
allow_tf32,
|
|
319
|
+
):
|
|
320
|
+
ctx.allow_tf32 = allow_tf32
|
|
321
|
+
ctx.max_seq_len = max_seq_len
|
|
322
|
+
|
|
323
|
+
ctx.save_for_backward(
|
|
324
|
+
x,
|
|
325
|
+
y,
|
|
326
|
+
x_lengths,
|
|
327
|
+
y_lengths,
|
|
328
|
+
z_lengths,
|
|
329
|
+
x_offsets,
|
|
330
|
+
y_offsets,
|
|
331
|
+
z_offsets,
|
|
332
|
+
)
|
|
333
|
+
|
|
334
|
+
return triton_array_jagged_bmm_jagged_out(
|
|
335
|
+
x,
|
|
336
|
+
y,
|
|
337
|
+
x_lengths,
|
|
338
|
+
y_lengths,
|
|
339
|
+
z_lengths,
|
|
340
|
+
x_offsets,
|
|
341
|
+
y_offsets,
|
|
342
|
+
z_offsets,
|
|
343
|
+
max_seq_len,
|
|
344
|
+
allow_tf32,
|
|
345
|
+
0,
|
|
346
|
+
)
|
|
347
|
+
|
|
348
|
+
@staticmethod
|
|
349
|
+
# pyre-fixme
|
|
350
|
+
def backward(ctx, grad_output: torch.Tensor):
|
|
351
|
+
"""
|
|
352
|
+
z = X * Y
|
|
353
|
+
dX = dZ * YT
|
|
354
|
+
dY = XT * dZ
|
|
355
|
+
|
|
356
|
+
dZ: [sum_B(N_i), D]
|
|
357
|
+
YT: [D, sum_B(N_i)] call Y.T
|
|
358
|
+
XT: transposed
|
|
359
|
+
Z: [sum_B(N_i), D]
|
|
360
|
+
"""
|
|
361
|
+
|
|
362
|
+
(
|
|
363
|
+
x,
|
|
364
|
+
y,
|
|
365
|
+
x_lengths,
|
|
366
|
+
y_lengths,
|
|
367
|
+
z_lengths,
|
|
368
|
+
x_offsets,
|
|
369
|
+
y_offsets,
|
|
370
|
+
z_offsets,
|
|
371
|
+
) = ctx.saved_tensors
|
|
372
|
+
|
|
373
|
+
grad_x = triton_jagged_jagged_bmm_jagged_out(
|
|
374
|
+
grad_output,
|
|
375
|
+
y.T,
|
|
376
|
+
ctx.max_seq_len,
|
|
377
|
+
z_lengths,
|
|
378
|
+
y_lengths,
|
|
379
|
+
x_lengths,
|
|
380
|
+
z_offsets,
|
|
381
|
+
y_offsets,
|
|
382
|
+
x_offsets,
|
|
383
|
+
ctx.allow_tf32,
|
|
384
|
+
)
|
|
385
|
+
|
|
386
|
+
grad_y = triton_array_jagged_bmm_jagged_out(
|
|
387
|
+
x,
|
|
388
|
+
grad_output,
|
|
389
|
+
x_lengths,
|
|
390
|
+
y_lengths,
|
|
391
|
+
z_lengths,
|
|
392
|
+
x_offsets,
|
|
393
|
+
y_offsets,
|
|
394
|
+
z_offsets,
|
|
395
|
+
ctx.max_seq_len,
|
|
396
|
+
ctx.allow_tf32,
|
|
397
|
+
1,
|
|
398
|
+
)
|
|
399
|
+
return grad_x, grad_y, None, None, None, None, None, None, None, None
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
class JaggedJaggedBmmNoPadding(torch.autograd.Function):
|
|
403
|
+
"""
|
|
404
|
+
Compute batch matrix multiplication between JaggedTensor and JaggedTensor without padding.
|
|
405
|
+
z = x x y^T
|
|
406
|
+
x: [sum_B(M_i), D]
|
|
407
|
+
y: [sum_B(N_i), D]
|
|
408
|
+
z: [sum_B(M_i * N_i)], assuming M_i = N_i
|
|
409
|
+
"""
|
|
410
|
+
|
|
411
|
+
@staticmethod
|
|
412
|
+
# pyre-fixme
|
|
413
|
+
def forward(
|
|
414
|
+
ctx,
|
|
415
|
+
x: torch.Tensor,
|
|
416
|
+
y: torch.Tensor,
|
|
417
|
+
x_lengths: torch.Tensor,
|
|
418
|
+
x_offsets: torch.Tensor,
|
|
419
|
+
y_lengths: torch.Tensor,
|
|
420
|
+
y_offsets: torch.Tensor,
|
|
421
|
+
z_lengths: torch.Tensor,
|
|
422
|
+
z_offsets: torch.Tensor,
|
|
423
|
+
max_seq_len: int,
|
|
424
|
+
allow_tf32,
|
|
425
|
+
):
|
|
426
|
+
ctx.allow_tf32 = allow_tf32
|
|
427
|
+
ctx.max_seq_len = max_seq_len
|
|
428
|
+
|
|
429
|
+
ctx.save_for_backward(
|
|
430
|
+
x,
|
|
431
|
+
y,
|
|
432
|
+
x_lengths,
|
|
433
|
+
y_lengths,
|
|
434
|
+
z_lengths,
|
|
435
|
+
x_offsets,
|
|
436
|
+
y_offsets,
|
|
437
|
+
z_offsets,
|
|
438
|
+
)
|
|
439
|
+
|
|
440
|
+
return triton_jagged_jagged_bmm_jagged_out(
|
|
441
|
+
x,
|
|
442
|
+
y.T,
|
|
443
|
+
max_seq_len,
|
|
444
|
+
x_lengths,
|
|
445
|
+
y_lengths,
|
|
446
|
+
z_lengths,
|
|
447
|
+
x_offsets,
|
|
448
|
+
y_offsets,
|
|
449
|
+
z_offsets,
|
|
450
|
+
allow_tf32,
|
|
451
|
+
)
|
|
452
|
+
|
|
453
|
+
@staticmethod
|
|
454
|
+
# pyre-fixme
|
|
455
|
+
def backward(ctx, grad_output: torch.Tensor):
|
|
456
|
+
"""
|
|
457
|
+
z = x x y^T
|
|
458
|
+
x: [sum_B(M_i), D]
|
|
459
|
+
y: [sum_B(N_i), D]
|
|
460
|
+
z: [sum_B(M_i * N_i)], assuming M_i = N_i
|
|
461
|
+
dx = dz x (y^T)^T = > dx = dz x y
|
|
462
|
+
d(y^T) = x^T x dz => dy = dz^T x x
|
|
463
|
+
"""
|
|
464
|
+
(
|
|
465
|
+
x,
|
|
466
|
+
y,
|
|
467
|
+
x_lengths,
|
|
468
|
+
y_lengths,
|
|
469
|
+
z_lengths,
|
|
470
|
+
x_offsets,
|
|
471
|
+
y_offsets,
|
|
472
|
+
z_offsets,
|
|
473
|
+
) = ctx.saved_tensors
|
|
474
|
+
|
|
475
|
+
grad_x = triton_array_jagged_bmm_jagged_out(
|
|
476
|
+
grad_output,
|
|
477
|
+
y,
|
|
478
|
+
z_lengths,
|
|
479
|
+
y_lengths,
|
|
480
|
+
x_lengths,
|
|
481
|
+
z_offsets,
|
|
482
|
+
y_offsets,
|
|
483
|
+
x_offsets,
|
|
484
|
+
ctx.max_seq_len,
|
|
485
|
+
ctx.allow_tf32,
|
|
486
|
+
transpose=0,
|
|
487
|
+
)
|
|
488
|
+
grad_y = triton_array_jagged_bmm_jagged_out(
|
|
489
|
+
grad_output,
|
|
490
|
+
x,
|
|
491
|
+
z_lengths,
|
|
492
|
+
x_lengths,
|
|
493
|
+
y_lengths,
|
|
494
|
+
z_offsets,
|
|
495
|
+
x_offsets,
|
|
496
|
+
y_offsets,
|
|
497
|
+
ctx.max_seq_len,
|
|
498
|
+
ctx.allow_tf32,
|
|
499
|
+
transpose=1,
|
|
500
|
+
)
|
|
501
|
+
return grad_x, grad_y, None, None, None, None, None, None, None, None
|
|
502
|
+
|
|
503
|
+
|
|
504
|
+
def array_jagged_bmm_jagged_out(
|
|
505
|
+
x: torch.Tensor,
|
|
506
|
+
y: torch.Tensor,
|
|
507
|
+
x_lengths: torch.Tensor,
|
|
508
|
+
x_offsets: torch.Tensor,
|
|
509
|
+
y_lengths: torch.Tensor,
|
|
510
|
+
y_offsets: torch.Tensor,
|
|
511
|
+
z_lengths: torch.Tensor,
|
|
512
|
+
z_offsets: torch.Tensor,
|
|
513
|
+
max_seq_len: int,
|
|
514
|
+
allow_tf32: bool = True,
|
|
515
|
+
):
|
|
516
|
+
return ArrayJaggedBmmNopadding.apply(
|
|
517
|
+
x,
|
|
518
|
+
y,
|
|
519
|
+
x_lengths,
|
|
520
|
+
x_offsets,
|
|
521
|
+
y_lengths,
|
|
522
|
+
y_offsets,
|
|
523
|
+
z_lengths,
|
|
524
|
+
z_offsets,
|
|
525
|
+
max_seq_len,
|
|
526
|
+
allow_tf32,
|
|
527
|
+
)
|
|
528
|
+
|
|
529
|
+
|
|
530
|
+
def jagged_jagged_bmm_jagged_out(
|
|
531
|
+
x: torch.Tensor,
|
|
532
|
+
y: torch.Tensor,
|
|
533
|
+
x_lengths: torch.Tensor,
|
|
534
|
+
x_offsets: torch.Tensor,
|
|
535
|
+
y_lengths: torch.Tensor,
|
|
536
|
+
y_offsets: torch.Tensor,
|
|
537
|
+
z_lengths: torch.Tensor,
|
|
538
|
+
z_offsets: torch.Tensor,
|
|
539
|
+
max_seq_len: int,
|
|
540
|
+
allow_tf32: bool = True,
|
|
541
|
+
):
|
|
542
|
+
return JaggedJaggedBmmNoPadding.apply(
|
|
543
|
+
x,
|
|
544
|
+
y,
|
|
545
|
+
x_lengths,
|
|
546
|
+
x_offsets,
|
|
547
|
+
y_lengths,
|
|
548
|
+
y_offsets,
|
|
549
|
+
z_lengths,
|
|
550
|
+
z_offsets,
|
|
551
|
+
max_seq_len,
|
|
552
|
+
allow_tf32,
|
|
553
|
+
)
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
# pyre-unsafe
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
|
|
11
|
+
from fbgemm_gpu.triton.jagged.triton_jagged_tensor_ops import (
|
|
12
|
+
dense_to_jagged,
|
|
13
|
+
jagged_to_dense,
|
|
14
|
+
)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class JaggedDenseAdd(torch.autograd.Function):
|
|
18
|
+
@staticmethod
|
|
19
|
+
# pyre-fixme
|
|
20
|
+
def forward(
|
|
21
|
+
ctx, x: torch.Tensor, x_offsets: torch.Tensor, y: torch.Tensor, max_seq_len: int
|
|
22
|
+
):
|
|
23
|
+
ctx.save_for_backward(x_offsets)
|
|
24
|
+
ctx.max_seq_len = max_seq_len
|
|
25
|
+
# TODO: what should be the correct behavior when jagged values has length > max seq len?
|
|
26
|
+
# current behavior is to not truncate jagged values
|
|
27
|
+
# similar for backward grad_output
|
|
28
|
+
return dense_to_jagged(
|
|
29
|
+
y, [x_offsets], operation_function="add", operation_jagged_values=x
|
|
30
|
+
)[0]
|
|
31
|
+
|
|
32
|
+
@staticmethod
|
|
33
|
+
# pyre-fixme
|
|
34
|
+
def backward(ctx, grad_output: torch.Tensor):
|
|
35
|
+
(offsets,) = ctx.saved_tensors
|
|
36
|
+
grad_dense = jagged_to_dense(grad_output, [offsets], [ctx.max_seq_len])
|
|
37
|
+
return grad_output, None, grad_dense, None
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def jagged_dense_elementwise_add(
|
|
41
|
+
x: torch.Tensor,
|
|
42
|
+
x_offsets: torch.Tensor,
|
|
43
|
+
y: torch.Tensor,
|
|
44
|
+
max_seq_len: int,
|
|
45
|
+
use_fbgemm_kernel: bool = True,
|
|
46
|
+
):
|
|
47
|
+
if use_fbgemm_kernel:
|
|
48
|
+
return torch.ops.fbgemm.jagged_dense_elementwise_add_jagged_output(
|
|
49
|
+
x, [x_offsets], y
|
|
50
|
+
)[0]
|
|
51
|
+
else:
|
|
52
|
+
return JaggedDenseAdd.apply(x, x_offsets, y, max_seq_len)
|