fbgemm-gpu-genai-nightly 2025.12.19__cp310-cp310-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fbgemm-gpu-genai-nightly might be problematic. Click here for more details.
- fbgemm_gpu/__init__.py +186 -0
- fbgemm_gpu/asmjit.so +0 -0
- fbgemm_gpu/batched_unary_embeddings_ops.py +87 -0
- fbgemm_gpu/config/__init__.py +9 -0
- fbgemm_gpu/config/feature_list.py +88 -0
- fbgemm_gpu/docs/__init__.py +18 -0
- fbgemm_gpu/docs/common.py +9 -0
- fbgemm_gpu/docs/examples.py +73 -0
- fbgemm_gpu/docs/jagged_tensor_ops.py +259 -0
- fbgemm_gpu/docs/merge_pooled_embedding_ops.py +36 -0
- fbgemm_gpu/docs/permute_pooled_embedding_ops.py +108 -0
- fbgemm_gpu/docs/quantize_ops.py +41 -0
- fbgemm_gpu/docs/sparse_ops.py +616 -0
- fbgemm_gpu/docs/target.genai.json.py +6 -0
- fbgemm_gpu/enums.py +24 -0
- fbgemm_gpu/experimental/example/__init__.py +29 -0
- fbgemm_gpu/experimental/example/fbgemm_gpu_experimental_example_py.so +0 -0
- fbgemm_gpu/experimental/example/utils.py +20 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/__init__.py +15 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp4_quantize.py +5654 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py +4422 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/grouped_gemm.py +1192 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/matmul_perf_model.py +232 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/utils.py +130 -0
- fbgemm_gpu/experimental/gen_ai/__init__.py +56 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/__init__.py +46 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py +333 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_interface.py +552 -0
- fbgemm_gpu/experimental/gen_ai/bench/__init__.py +13 -0
- fbgemm_gpu/experimental/gen_ai/bench/comm_bench.py +257 -0
- fbgemm_gpu/experimental/gen_ai/bench/gather_scatter_bench.py +348 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_bench.py +707 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_ops.py +3483 -0
- fbgemm_gpu/experimental/gen_ai/fbgemm_gpu_experimental_gen_ai.so +0 -0
- fbgemm_gpu/experimental/gen_ai/moe/README.md +15 -0
- fbgemm_gpu/experimental/gen_ai/moe/__init__.py +66 -0
- fbgemm_gpu/experimental/gen_ai/moe/activation.py +292 -0
- fbgemm_gpu/experimental/gen_ai/moe/gather_scatter.py +740 -0
- fbgemm_gpu/experimental/gen_ai/moe/layers.py +1272 -0
- fbgemm_gpu/experimental/gen_ai/moe/shuffling.py +421 -0
- fbgemm_gpu/experimental/gen_ai/quantize.py +307 -0
- fbgemm_gpu/fbgemm.so +0 -0
- fbgemm_gpu/metrics.py +160 -0
- fbgemm_gpu/permute_pooled_embedding_modules.py +142 -0
- fbgemm_gpu/permute_pooled_embedding_modules_split.py +85 -0
- fbgemm_gpu/quantize/__init__.py +43 -0
- fbgemm_gpu/quantize/quantize_ops.py +64 -0
- fbgemm_gpu/quantize_comm.py +315 -0
- fbgemm_gpu/quantize_utils.py +246 -0
- fbgemm_gpu/runtime_monitor.py +237 -0
- fbgemm_gpu/sll/__init__.py +189 -0
- fbgemm_gpu/sll/cpu/__init__.py +80 -0
- fbgemm_gpu/sll/cpu/cpu_sll.py +1001 -0
- fbgemm_gpu/sll/meta/__init__.py +35 -0
- fbgemm_gpu/sll/meta/meta_sll.py +337 -0
- fbgemm_gpu/sll/triton/__init__.py +127 -0
- fbgemm_gpu/sll/triton/common.py +38 -0
- fbgemm_gpu/sll/triton/triton_dense_jagged_cat_jagged_out.py +72 -0
- fbgemm_gpu/sll/triton/triton_jagged2_to_padded_dense.py +221 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm.py +418 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm_jagged_out.py +553 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_add.py +52 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_mul_jagged_out.py +175 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_flash_attention.py +861 -0
- fbgemm_gpu/sll/triton/triton_jagged_flash_attention_basic.py +667 -0
- fbgemm_gpu/sll/triton/triton_jagged_self_substraction_jagged_out.py +73 -0
- fbgemm_gpu/sll/triton/triton_jagged_softmax.py +463 -0
- fbgemm_gpu/sll/triton/triton_multi_head_jagged_flash_attention.py +751 -0
- fbgemm_gpu/sparse_ops.py +1455 -0
- fbgemm_gpu/split_embedding_configs.py +452 -0
- fbgemm_gpu/split_embedding_inference_converter.py +175 -0
- fbgemm_gpu/split_embedding_optimizer_ops.py +21 -0
- fbgemm_gpu/split_embedding_utils.py +29 -0
- fbgemm_gpu/split_table_batched_embeddings_ops.py +73 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_common.py +484 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_inference.py +2042 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training.py +4600 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py +146 -0
- fbgemm_gpu/ssd_split_table_batched_embeddings_ops.py +26 -0
- fbgemm_gpu/tbe/__init__.py +6 -0
- fbgemm_gpu/tbe/bench/__init__.py +55 -0
- fbgemm_gpu/tbe/bench/bench_config.py +156 -0
- fbgemm_gpu/tbe/bench/bench_runs.py +709 -0
- fbgemm_gpu/tbe/bench/benchmark_click_interface.py +187 -0
- fbgemm_gpu/tbe/bench/eeg_cli.py +137 -0
- fbgemm_gpu/tbe/bench/embedding_ops_common_config.py +149 -0
- fbgemm_gpu/tbe/bench/eval_compression.py +119 -0
- fbgemm_gpu/tbe/bench/reporter.py +35 -0
- fbgemm_gpu/tbe/bench/tbe_data_config.py +137 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_bench_helper.py +323 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_loader.py +289 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_param_models.py +170 -0
- fbgemm_gpu/tbe/bench/utils.py +48 -0
- fbgemm_gpu/tbe/cache/__init__.py +11 -0
- fbgemm_gpu/tbe/cache/kv_embedding_ops_inference.py +385 -0
- fbgemm_gpu/tbe/cache/split_embeddings_cache_ops.py +48 -0
- fbgemm_gpu/tbe/ssd/__init__.py +15 -0
- fbgemm_gpu/tbe/ssd/common.py +46 -0
- fbgemm_gpu/tbe/ssd/inference.py +586 -0
- fbgemm_gpu/tbe/ssd/training.py +4908 -0
- fbgemm_gpu/tbe/ssd/utils/__init__.py +7 -0
- fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py +273 -0
- fbgemm_gpu/tbe/stats/__init__.py +10 -0
- fbgemm_gpu/tbe/stats/bench_params_reporter.py +339 -0
- fbgemm_gpu/tbe/utils/__init__.py +13 -0
- fbgemm_gpu/tbe/utils/common.py +42 -0
- fbgemm_gpu/tbe/utils/offsets.py +65 -0
- fbgemm_gpu/tbe/utils/quantize.py +251 -0
- fbgemm_gpu/tbe/utils/requests.py +556 -0
- fbgemm_gpu/tbe_input_multiplexer.py +108 -0
- fbgemm_gpu/triton/__init__.py +22 -0
- fbgemm_gpu/triton/common.py +77 -0
- fbgemm_gpu/triton/jagged/__init__.py +8 -0
- fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py +824 -0
- fbgemm_gpu/triton/quantize.py +647 -0
- fbgemm_gpu/triton/quantize_ref.py +286 -0
- fbgemm_gpu/utils/__init__.py +11 -0
- fbgemm_gpu/utils/filestore.py +211 -0
- fbgemm_gpu/utils/loader.py +36 -0
- fbgemm_gpu/utils/torch_library.py +132 -0
- fbgemm_gpu/uvm.py +40 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/METADATA +62 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/RECORD +127 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/WHEEL +5 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/top_level.txt +2 -0
- list_versions/__init__.py +12 -0
- list_versions/cli_run.py +163 -0
|
@@ -0,0 +1,421 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
# pyre-unsafe
|
|
8
|
+
|
|
9
|
+
from typing import Optional, Union
|
|
10
|
+
|
|
11
|
+
import torch
|
|
12
|
+
import triton
|
|
13
|
+
import triton.language as tl
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
# Function APIs
|
|
17
|
+
def combine_shuffling(
|
|
18
|
+
tokens: torch.Tensor,
|
|
19
|
+
token_counts: torch.Tensor,
|
|
20
|
+
expert_start: Optional[int] = None,
|
|
21
|
+
expert_end: Optional[int] = None,
|
|
22
|
+
is_padded: bool = False,
|
|
23
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
24
|
+
# pyre-ignore
|
|
25
|
+
return _combine_or_split_shuffling(
|
|
26
|
+
tokens=tokens,
|
|
27
|
+
token_counts=token_counts,
|
|
28
|
+
expert_start=expert_start,
|
|
29
|
+
expert_end=expert_end,
|
|
30
|
+
is_padded=is_padded,
|
|
31
|
+
is_combine=True,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def split_shuffling(
|
|
36
|
+
tokens: torch.Tensor,
|
|
37
|
+
token_counts: torch.Tensor,
|
|
38
|
+
expert_start: Optional[int] = None,
|
|
39
|
+
expert_end: Optional[int] = None,
|
|
40
|
+
is_padded: bool = False,
|
|
41
|
+
init_with_zeros: bool = False,
|
|
42
|
+
) -> torch.Tensor:
|
|
43
|
+
# pyre-ignore
|
|
44
|
+
return _combine_or_split_shuffling(
|
|
45
|
+
tokens=tokens,
|
|
46
|
+
token_counts=token_counts,
|
|
47
|
+
expert_start=expert_start,
|
|
48
|
+
expert_end=expert_end,
|
|
49
|
+
is_padded=is_padded,
|
|
50
|
+
is_combine=False,
|
|
51
|
+
init_with_zeros=init_with_zeros,
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def _combine_or_split_shuffling(
|
|
56
|
+
tokens: torch.Tensor,
|
|
57
|
+
token_counts: torch.Tensor,
|
|
58
|
+
expert_start: Optional[int],
|
|
59
|
+
expert_end: Optional[int],
|
|
60
|
+
is_padded: bool,
|
|
61
|
+
is_combine: bool,
|
|
62
|
+
init_with_zeros: bool = False,
|
|
63
|
+
) -> Union[torch.Tensor, tuple[torch.Tensor, torch.Tensor]]:
|
|
64
|
+
# T is intentionally ignored in kernel interface to avoid recompilation
|
|
65
|
+
assert tokens.is_contiguous()
|
|
66
|
+
assert token_counts.is_contiguous()
|
|
67
|
+
|
|
68
|
+
T, D = tokens.shape
|
|
69
|
+
EP, E = token_counts.shape
|
|
70
|
+
B_T = -1
|
|
71
|
+
if is_padded:
|
|
72
|
+
assert T % EP == 0
|
|
73
|
+
B_T = T // EP
|
|
74
|
+
|
|
75
|
+
if expert_start is None:
|
|
76
|
+
expert_start = 0
|
|
77
|
+
if expert_end is None:
|
|
78
|
+
expert_end = E
|
|
79
|
+
|
|
80
|
+
EG: int = expert_end - expert_start
|
|
81
|
+
|
|
82
|
+
NUM_SMS = torch.cuda.get_device_properties("cuda").multi_processor_count
|
|
83
|
+
SPLIT_D = max(NUM_SMS // (EP * EG), 1)
|
|
84
|
+
SPLIT_D = triton.next_power_of_2(SPLIT_D + 1)
|
|
85
|
+
if T <= 1024:
|
|
86
|
+
SPLIT_D //= 2
|
|
87
|
+
|
|
88
|
+
if is_combine:
|
|
89
|
+
grid = (EP * EG * SPLIT_D + 1,)
|
|
90
|
+
else:
|
|
91
|
+
grid = (EP * EG * SPLIT_D,)
|
|
92
|
+
|
|
93
|
+
output_tokens = (
|
|
94
|
+
torch.zeros_like(tokens) if init_with_zeros else torch.empty_like(tokens)
|
|
95
|
+
)
|
|
96
|
+
if is_combine:
|
|
97
|
+
output_token_counts = torch.empty(
|
|
98
|
+
EG + 1, dtype=token_counts.dtype, device=token_counts.device
|
|
99
|
+
)
|
|
100
|
+
else:
|
|
101
|
+
output_token_counts = None
|
|
102
|
+
|
|
103
|
+
BLOCK_E = max(triton.next_power_of_2(E), 8)
|
|
104
|
+
BLOCK_EG = max(triton.next_power_of_2(EG), 8)
|
|
105
|
+
BLOCK_EP = max(triton.next_power_of_2(EP), 8)
|
|
106
|
+
|
|
107
|
+
_fbgemm_combine_or_split_shuffling[grid](
|
|
108
|
+
tokens,
|
|
109
|
+
token_counts,
|
|
110
|
+
output_tokens,
|
|
111
|
+
output_token_counts,
|
|
112
|
+
is_combine,
|
|
113
|
+
expert_start,
|
|
114
|
+
is_padded,
|
|
115
|
+
B_T,
|
|
116
|
+
EG,
|
|
117
|
+
EP,
|
|
118
|
+
E,
|
|
119
|
+
D,
|
|
120
|
+
BLOCK_E,
|
|
121
|
+
BLOCK_EG,
|
|
122
|
+
BLOCK_EP,
|
|
123
|
+
SPLIT_D,
|
|
124
|
+
)
|
|
125
|
+
|
|
126
|
+
if is_combine:
|
|
127
|
+
assert output_token_counts is not None
|
|
128
|
+
return output_tokens, output_token_counts
|
|
129
|
+
else:
|
|
130
|
+
return output_tokens
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
# Torch Custom Op Registrations
|
|
134
|
+
_COMBINE_SHUFFLING_OP_NAME = "fbgemm::combine_shuffling"
|
|
135
|
+
|
|
136
|
+
torch.library.define(
|
|
137
|
+
"fbgemm::combine_shuffling",
|
|
138
|
+
"(Tensor tokens, Tensor token_counts, int? expert_start = None, int? expert_end = None, bool? is_padded = False) -> (Tensor, Tensor)",
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
@torch.library.impl(_COMBINE_SHUFFLING_OP_NAME, "Meta")
|
|
143
|
+
def combine_shuffling_meta(
|
|
144
|
+
tokens,
|
|
145
|
+
token_counts,
|
|
146
|
+
expert_start,
|
|
147
|
+
expert_end,
|
|
148
|
+
is_padded,
|
|
149
|
+
):
|
|
150
|
+
_, E = token_counts.shape
|
|
151
|
+
if expert_start is None:
|
|
152
|
+
expert_start = 0
|
|
153
|
+
if expert_end is None:
|
|
154
|
+
expert_end = E
|
|
155
|
+
|
|
156
|
+
EG: int = expert_end - expert_start
|
|
157
|
+
output_tokens = torch.empty_like(tokens)
|
|
158
|
+
output_token_counts = torch.empty(
|
|
159
|
+
EG + 1, dtype=token_counts.dtype, device=token_counts.device
|
|
160
|
+
)
|
|
161
|
+
return output_tokens, output_token_counts
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
@torch.library.impl(_COMBINE_SHUFFLING_OP_NAME, "CUDA")
|
|
165
|
+
def combine_shuffling_cuda(
|
|
166
|
+
tokens,
|
|
167
|
+
token_counts,
|
|
168
|
+
expert_start=None,
|
|
169
|
+
expert_end=None,
|
|
170
|
+
is_padded=False,
|
|
171
|
+
):
|
|
172
|
+
return combine_shuffling(
|
|
173
|
+
tokens,
|
|
174
|
+
token_counts,
|
|
175
|
+
expert_start,
|
|
176
|
+
expert_end,
|
|
177
|
+
is_padded,
|
|
178
|
+
)
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
_SPLIT_SHUFFLING_OP_NAME = "fbgemm::split_shuffling"
|
|
182
|
+
|
|
183
|
+
torch.library.define(
|
|
184
|
+
"fbgemm::split_shuffling",
|
|
185
|
+
"(Tensor tokens, Tensor token_counts, int? expert_start = None, int? expert_end = None, bool? is_padded = False, bool? init_with_zeros = False) -> Tensor",
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
@torch.library.impl(_SPLIT_SHUFFLING_OP_NAME, "Meta")
|
|
190
|
+
def split_shuffling_meta(
|
|
191
|
+
tokens,
|
|
192
|
+
token_counts,
|
|
193
|
+
expert_start,
|
|
194
|
+
expert_end,
|
|
195
|
+
is_padded,
|
|
196
|
+
):
|
|
197
|
+
output_tokens = torch.empty_like(tokens)
|
|
198
|
+
return output_tokens
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
@torch.library.impl(_SPLIT_SHUFFLING_OP_NAME, "CUDA")
|
|
202
|
+
def split_shuffling_cuda(
|
|
203
|
+
tokens,
|
|
204
|
+
token_counts,
|
|
205
|
+
expert_start=None,
|
|
206
|
+
expert_end=None,
|
|
207
|
+
is_padded=False,
|
|
208
|
+
):
|
|
209
|
+
return split_shuffling(
|
|
210
|
+
tokens,
|
|
211
|
+
token_counts,
|
|
212
|
+
expert_start,
|
|
213
|
+
expert_end,
|
|
214
|
+
is_padded,
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
# Kernel Implementations
|
|
219
|
+
_NV_CONFIGS = [
|
|
220
|
+
triton.Config(
|
|
221
|
+
{
|
|
222
|
+
"BLOCK_T": block_t,
|
|
223
|
+
"BLOCK_D": block_d,
|
|
224
|
+
},
|
|
225
|
+
num_stages=num_stages,
|
|
226
|
+
num_warps=num_warps,
|
|
227
|
+
num_ctas=num_ctas,
|
|
228
|
+
)
|
|
229
|
+
for block_t in [32, 64]
|
|
230
|
+
for block_d in [256, 512, 1024]
|
|
231
|
+
for num_stages in [1, 3]
|
|
232
|
+
for num_warps in [8, 16]
|
|
233
|
+
for num_ctas in [1]
|
|
234
|
+
]
|
|
235
|
+
|
|
236
|
+
_AMD_CONFIGS = [
|
|
237
|
+
triton.Config(
|
|
238
|
+
{
|
|
239
|
+
"BLOCK_T": block_t,
|
|
240
|
+
"BLOCK_D": block_d,
|
|
241
|
+
"waves_per_eu": waves_per_cu,
|
|
242
|
+
},
|
|
243
|
+
num_stages=num_stages,
|
|
244
|
+
num_warps=num_warps,
|
|
245
|
+
)
|
|
246
|
+
for block_t in [32, 64]
|
|
247
|
+
for block_d in [256, 512, 1024]
|
|
248
|
+
for num_stages in [1, 3]
|
|
249
|
+
for num_warps, waves_per_cu in [(8, 2), (16, 4)]
|
|
250
|
+
]
|
|
251
|
+
|
|
252
|
+
|
|
253
|
+
@triton.autotune(
|
|
254
|
+
configs=_AMD_CONFIGS if torch.version.hip else _NV_CONFIGS,
|
|
255
|
+
key=[
|
|
256
|
+
"COMBINE",
|
|
257
|
+
"EG",
|
|
258
|
+
"EP",
|
|
259
|
+
"E",
|
|
260
|
+
"D",
|
|
261
|
+
],
|
|
262
|
+
)
|
|
263
|
+
@triton.jit
|
|
264
|
+
def _fbgemm_combine_or_split_shuffling(
|
|
265
|
+
input_tokens_ptr,
|
|
266
|
+
input_token_counts_ptr,
|
|
267
|
+
output_tokens_ptr,
|
|
268
|
+
output_token_counts_ptr,
|
|
269
|
+
COMBINE: tl.constexpr,
|
|
270
|
+
EG_START,
|
|
271
|
+
PADDED,
|
|
272
|
+
B_T: tl.constexpr,
|
|
273
|
+
EG: tl.constexpr,
|
|
274
|
+
EP: tl.constexpr,
|
|
275
|
+
E: tl.constexpr,
|
|
276
|
+
D: tl.constexpr,
|
|
277
|
+
BLOCK_E: tl.constexpr,
|
|
278
|
+
BLOCK_EG: tl.constexpr,
|
|
279
|
+
BLOCK_EP: tl.constexpr,
|
|
280
|
+
SPLIT_D: tl.constexpr,
|
|
281
|
+
BLOCK_T: tl.constexpr,
|
|
282
|
+
BLOCK_D: tl.constexpr,
|
|
283
|
+
) -> None:
|
|
284
|
+
"""
|
|
285
|
+
tokens: [T, D]
|
|
286
|
+
input_token_counts: [EP, E]
|
|
287
|
+
output_tokens: [T, D]
|
|
288
|
+
output_token_counts: [E]
|
|
289
|
+
"""
|
|
290
|
+
tidx = tl.program_id(0)
|
|
291
|
+
|
|
292
|
+
NUM_D_BLOCKS: tl.constexpr = (D + SPLIT_D * BLOCK_D - 1) // (SPLIT_D * BLOCK_D)
|
|
293
|
+
|
|
294
|
+
rank = tidx // (EG * SPLIT_D)
|
|
295
|
+
local_expert = (tidx % (EG * SPLIT_D)) // SPLIT_D
|
|
296
|
+
didx = tidx % SPLIT_D
|
|
297
|
+
# All experts in communication group
|
|
298
|
+
offs_e = tl.arange(0, BLOCK_E)
|
|
299
|
+
# Local experts
|
|
300
|
+
offs_eg = tl.arange(0, BLOCK_EG)
|
|
301
|
+
# Ranks
|
|
302
|
+
offs_ep = tl.arange(0, BLOCK_EP)
|
|
303
|
+
|
|
304
|
+
global_expert = local_expert + EG_START
|
|
305
|
+
|
|
306
|
+
input_token_counts = tl.load(
|
|
307
|
+
input_token_counts_ptr + offs_ep[:, None] * E + offs_e[None, :],
|
|
308
|
+
eviction_policy="evict_last",
|
|
309
|
+
mask=((offs_ep[:, None] < EP) & (offs_e[None, :] < E)),
|
|
310
|
+
other=0,
|
|
311
|
+
) # [EP, E]
|
|
312
|
+
|
|
313
|
+
if E == EG:
|
|
314
|
+
input_token_counts_eg = input_token_counts
|
|
315
|
+
else:
|
|
316
|
+
input_token_counts_eg = tl.load(
|
|
317
|
+
input_token_counts_ptr + offs_ep[:, None] * E + EG_START + offs_eg[None, :],
|
|
318
|
+
eviction_policy="evict_last",
|
|
319
|
+
mask=((offs_ep[:, None] < EP) & (offs_eg[None, :] < EG)),
|
|
320
|
+
other=0,
|
|
321
|
+
) # [EP, EG]
|
|
322
|
+
|
|
323
|
+
if COMBINE:
|
|
324
|
+
LAST_TILE: tl.constexpr = EP * EG * SPLIT_D
|
|
325
|
+
|
|
326
|
+
if tidx == LAST_TILE:
|
|
327
|
+
output_token_counts_eg = tl.sum(input_token_counts_eg, axis=0)
|
|
328
|
+
tl.store(
|
|
329
|
+
output_token_counts_ptr + offs_eg,
|
|
330
|
+
output_token_counts_eg,
|
|
331
|
+
mask=(offs_eg < EG),
|
|
332
|
+
)
|
|
333
|
+
output_token_counts_eg = tl.sum(output_token_counts_eg)
|
|
334
|
+
tl.store(output_token_counts_ptr + EG, output_token_counts_eg)
|
|
335
|
+
return
|
|
336
|
+
|
|
337
|
+
cond0 = offs_ep[:, None] < rank
|
|
338
|
+
cond1 = offs_ep[:, None] == rank
|
|
339
|
+
|
|
340
|
+
cond2 = offs_e[None, :] < global_expert
|
|
341
|
+
|
|
342
|
+
if PADDED:
|
|
343
|
+
tl.device_assert(B_T >= 0)
|
|
344
|
+
# Only need information from previous experts in the same rank.
|
|
345
|
+
ep_first_order = (
|
|
346
|
+
tl.sum(tl.where(cond1 and cond2, input_token_counts, 0)) + B_T * rank
|
|
347
|
+
)
|
|
348
|
+
else:
|
|
349
|
+
# r < rank || (r == rank && e < expert)
|
|
350
|
+
ep_first_order = tl.sum(
|
|
351
|
+
tl.where(cond0 or (cond1 and cond2), input_token_counts, 0)
|
|
352
|
+
)
|
|
353
|
+
|
|
354
|
+
cond4 = offs_eg[None, :] < local_expert
|
|
355
|
+
cond5 = offs_eg[None, :] == local_expert
|
|
356
|
+
|
|
357
|
+
# Expert first only need information from local experts across ranks.
|
|
358
|
+
# e < expert || (e == expert && r < rank)
|
|
359
|
+
expert_first_order = tl.sum(
|
|
360
|
+
tl.where(cond4 or (cond5 and cond0), input_token_counts_eg, 0)
|
|
361
|
+
)
|
|
362
|
+
|
|
363
|
+
if COMBINE:
|
|
364
|
+
input_offset = ep_first_order
|
|
365
|
+
output_offset = expert_first_order
|
|
366
|
+
else:
|
|
367
|
+
input_offset = expert_first_order
|
|
368
|
+
output_offset = ep_first_order
|
|
369
|
+
|
|
370
|
+
input_offset = input_offset.to(tl.int64)
|
|
371
|
+
output_offset = output_offset.to(tl.int64)
|
|
372
|
+
|
|
373
|
+
num_copy_tokens = tl.load(input_token_counts_ptr + rank * E + global_expert)
|
|
374
|
+
if num_copy_tokens == 0:
|
|
375
|
+
return
|
|
376
|
+
|
|
377
|
+
STEP_D: tl.constexpr = SPLIT_D * BLOCK_D
|
|
378
|
+
MASK_D: tl.constexpr = D % STEP_D != 0
|
|
379
|
+
|
|
380
|
+
num_t_blocks = tl.cdiv(num_copy_tokens, BLOCK_T)
|
|
381
|
+
|
|
382
|
+
t_1d_ptr = tl.arange(0, BLOCK_T)[:, None]
|
|
383
|
+
ti_1d_ptr = input_offset + t_1d_ptr
|
|
384
|
+
to_1d_ptr = output_offset + t_1d_ptr
|
|
385
|
+
|
|
386
|
+
d_1d_ptr = didx * NUM_D_BLOCKS * BLOCK_D + tl.arange(0, BLOCK_D)[None, :]
|
|
387
|
+
|
|
388
|
+
i_2d_ptr = input_tokens_ptr + ti_1d_ptr * D + d_1d_ptr
|
|
389
|
+
o_2d_ptr = output_tokens_ptr + to_1d_ptr * D + d_1d_ptr
|
|
390
|
+
|
|
391
|
+
for i in range(num_t_blocks * NUM_D_BLOCKS):
|
|
392
|
+
mask = t_1d_ptr < num_copy_tokens
|
|
393
|
+
if MASK_D:
|
|
394
|
+
mask &= d_1d_ptr < D
|
|
395
|
+
|
|
396
|
+
block = tl.load(
|
|
397
|
+
i_2d_ptr,
|
|
398
|
+
mask=mask,
|
|
399
|
+
)
|
|
400
|
+
tl.store(
|
|
401
|
+
o_2d_ptr,
|
|
402
|
+
value=block,
|
|
403
|
+
mask=mask,
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
if i % NUM_D_BLOCKS == (NUM_D_BLOCKS - 1): # pyre-ignore
|
|
407
|
+
# just to make sure constant folding happens
|
|
408
|
+
D_1D_SHIFT: tl.constexpr = -(NUM_D_BLOCKS - 1) * BLOCK_D
|
|
409
|
+
TD_2D_SHIFT: tl.constexpr = BLOCK_T * D + D_1D_SHIFT
|
|
410
|
+
# increment T, D
|
|
411
|
+
t_1d_ptr += BLOCK_T
|
|
412
|
+
i_2d_ptr += TD_2D_SHIFT
|
|
413
|
+
o_2d_ptr += TD_2D_SHIFT
|
|
414
|
+
if MASK_D:
|
|
415
|
+
d_1d_ptr += D_1D_SHIFT
|
|
416
|
+
else:
|
|
417
|
+
# increment D
|
|
418
|
+
i_2d_ptr += BLOCK_D
|
|
419
|
+
o_2d_ptr += BLOCK_D
|
|
420
|
+
if MASK_D:
|
|
421
|
+
d_1d_ptr += BLOCK_D
|