fbgemm-gpu-genai-nightly 2025.12.19__cp310-cp310-manylinux_2_28_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of fbgemm-gpu-genai-nightly might be problematic. Click here for more details.
- fbgemm_gpu/__init__.py +186 -0
- fbgemm_gpu/asmjit.so +0 -0
- fbgemm_gpu/batched_unary_embeddings_ops.py +87 -0
- fbgemm_gpu/config/__init__.py +9 -0
- fbgemm_gpu/config/feature_list.py +88 -0
- fbgemm_gpu/docs/__init__.py +18 -0
- fbgemm_gpu/docs/common.py +9 -0
- fbgemm_gpu/docs/examples.py +73 -0
- fbgemm_gpu/docs/jagged_tensor_ops.py +259 -0
- fbgemm_gpu/docs/merge_pooled_embedding_ops.py +36 -0
- fbgemm_gpu/docs/permute_pooled_embedding_ops.py +108 -0
- fbgemm_gpu/docs/quantize_ops.py +41 -0
- fbgemm_gpu/docs/sparse_ops.py +616 -0
- fbgemm_gpu/docs/target.genai.json.py +6 -0
- fbgemm_gpu/enums.py +24 -0
- fbgemm_gpu/experimental/example/__init__.py +29 -0
- fbgemm_gpu/experimental/example/fbgemm_gpu_experimental_example_py.so +0 -0
- fbgemm_gpu/experimental/example/utils.py +20 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/__init__.py +15 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp4_quantize.py +5654 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/fp8_gemm.py +4422 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/grouped_gemm.py +1192 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/matmul_perf_model.py +232 -0
- fbgemm_gpu/experimental/gemm/triton_gemm/utils.py +130 -0
- fbgemm_gpu/experimental/gen_ai/__init__.py +56 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/__init__.py +46 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_custom_op.py +333 -0
- fbgemm_gpu/experimental/gen_ai/attention/cutlass_blackwell_fmha/cutlass_blackwell_fmha_interface.py +552 -0
- fbgemm_gpu/experimental/gen_ai/bench/__init__.py +13 -0
- fbgemm_gpu/experimental/gen_ai/bench/comm_bench.py +257 -0
- fbgemm_gpu/experimental/gen_ai/bench/gather_scatter_bench.py +348 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_bench.py +707 -0
- fbgemm_gpu/experimental/gen_ai/bench/quantize_ops.py +3483 -0
- fbgemm_gpu/experimental/gen_ai/fbgemm_gpu_experimental_gen_ai.so +0 -0
- fbgemm_gpu/experimental/gen_ai/moe/README.md +15 -0
- fbgemm_gpu/experimental/gen_ai/moe/__init__.py +66 -0
- fbgemm_gpu/experimental/gen_ai/moe/activation.py +292 -0
- fbgemm_gpu/experimental/gen_ai/moe/gather_scatter.py +740 -0
- fbgemm_gpu/experimental/gen_ai/moe/layers.py +1272 -0
- fbgemm_gpu/experimental/gen_ai/moe/shuffling.py +421 -0
- fbgemm_gpu/experimental/gen_ai/quantize.py +307 -0
- fbgemm_gpu/fbgemm.so +0 -0
- fbgemm_gpu/metrics.py +160 -0
- fbgemm_gpu/permute_pooled_embedding_modules.py +142 -0
- fbgemm_gpu/permute_pooled_embedding_modules_split.py +85 -0
- fbgemm_gpu/quantize/__init__.py +43 -0
- fbgemm_gpu/quantize/quantize_ops.py +64 -0
- fbgemm_gpu/quantize_comm.py +315 -0
- fbgemm_gpu/quantize_utils.py +246 -0
- fbgemm_gpu/runtime_monitor.py +237 -0
- fbgemm_gpu/sll/__init__.py +189 -0
- fbgemm_gpu/sll/cpu/__init__.py +80 -0
- fbgemm_gpu/sll/cpu/cpu_sll.py +1001 -0
- fbgemm_gpu/sll/meta/__init__.py +35 -0
- fbgemm_gpu/sll/meta/meta_sll.py +337 -0
- fbgemm_gpu/sll/triton/__init__.py +127 -0
- fbgemm_gpu/sll/triton/common.py +38 -0
- fbgemm_gpu/sll/triton/triton_dense_jagged_cat_jagged_out.py +72 -0
- fbgemm_gpu/sll/triton/triton_jagged2_to_padded_dense.py +221 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm.py +418 -0
- fbgemm_gpu/sll/triton/triton_jagged_bmm_jagged_out.py +553 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_add.py +52 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_elementwise_mul_jagged_out.py +175 -0
- fbgemm_gpu/sll/triton/triton_jagged_dense_flash_attention.py +861 -0
- fbgemm_gpu/sll/triton/triton_jagged_flash_attention_basic.py +667 -0
- fbgemm_gpu/sll/triton/triton_jagged_self_substraction_jagged_out.py +73 -0
- fbgemm_gpu/sll/triton/triton_jagged_softmax.py +463 -0
- fbgemm_gpu/sll/triton/triton_multi_head_jagged_flash_attention.py +751 -0
- fbgemm_gpu/sparse_ops.py +1455 -0
- fbgemm_gpu/split_embedding_configs.py +452 -0
- fbgemm_gpu/split_embedding_inference_converter.py +175 -0
- fbgemm_gpu/split_embedding_optimizer_ops.py +21 -0
- fbgemm_gpu/split_embedding_utils.py +29 -0
- fbgemm_gpu/split_table_batched_embeddings_ops.py +73 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_common.py +484 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_inference.py +2042 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training.py +4600 -0
- fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py +146 -0
- fbgemm_gpu/ssd_split_table_batched_embeddings_ops.py +26 -0
- fbgemm_gpu/tbe/__init__.py +6 -0
- fbgemm_gpu/tbe/bench/__init__.py +55 -0
- fbgemm_gpu/tbe/bench/bench_config.py +156 -0
- fbgemm_gpu/tbe/bench/bench_runs.py +709 -0
- fbgemm_gpu/tbe/bench/benchmark_click_interface.py +187 -0
- fbgemm_gpu/tbe/bench/eeg_cli.py +137 -0
- fbgemm_gpu/tbe/bench/embedding_ops_common_config.py +149 -0
- fbgemm_gpu/tbe/bench/eval_compression.py +119 -0
- fbgemm_gpu/tbe/bench/reporter.py +35 -0
- fbgemm_gpu/tbe/bench/tbe_data_config.py +137 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_bench_helper.py +323 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_loader.py +289 -0
- fbgemm_gpu/tbe/bench/tbe_data_config_param_models.py +170 -0
- fbgemm_gpu/tbe/bench/utils.py +48 -0
- fbgemm_gpu/tbe/cache/__init__.py +11 -0
- fbgemm_gpu/tbe/cache/kv_embedding_ops_inference.py +385 -0
- fbgemm_gpu/tbe/cache/split_embeddings_cache_ops.py +48 -0
- fbgemm_gpu/tbe/ssd/__init__.py +15 -0
- fbgemm_gpu/tbe/ssd/common.py +46 -0
- fbgemm_gpu/tbe/ssd/inference.py +586 -0
- fbgemm_gpu/tbe/ssd/training.py +4908 -0
- fbgemm_gpu/tbe/ssd/utils/__init__.py +7 -0
- fbgemm_gpu/tbe/ssd/utils/partially_materialized_tensor.py +273 -0
- fbgemm_gpu/tbe/stats/__init__.py +10 -0
- fbgemm_gpu/tbe/stats/bench_params_reporter.py +339 -0
- fbgemm_gpu/tbe/utils/__init__.py +13 -0
- fbgemm_gpu/tbe/utils/common.py +42 -0
- fbgemm_gpu/tbe/utils/offsets.py +65 -0
- fbgemm_gpu/tbe/utils/quantize.py +251 -0
- fbgemm_gpu/tbe/utils/requests.py +556 -0
- fbgemm_gpu/tbe_input_multiplexer.py +108 -0
- fbgemm_gpu/triton/__init__.py +22 -0
- fbgemm_gpu/triton/common.py +77 -0
- fbgemm_gpu/triton/jagged/__init__.py +8 -0
- fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py +824 -0
- fbgemm_gpu/triton/quantize.py +647 -0
- fbgemm_gpu/triton/quantize_ref.py +286 -0
- fbgemm_gpu/utils/__init__.py +11 -0
- fbgemm_gpu/utils/filestore.py +211 -0
- fbgemm_gpu/utils/loader.py +36 -0
- fbgemm_gpu/utils/torch_library.py +132 -0
- fbgemm_gpu/uvm.py +40 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/METADATA +62 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/RECORD +127 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/WHEEL +5 -0
- fbgemm_gpu_genai_nightly-2025.12.19.dist-info/top_level.txt +2 -0
- list_versions/__init__.py +12 -0
- list_versions/cli_run.py +163 -0
|
@@ -0,0 +1,861 @@
|
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
2
|
+
# All rights reserved.
|
|
3
|
+
#
|
|
4
|
+
# This source code is licensed under the BSD-style license found in the
|
|
5
|
+
# LICENSE file in the root directory of this source tree.
|
|
6
|
+
|
|
7
|
+
# pyre-unsafe
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
import triton
|
|
12
|
+
import triton.language as tl
|
|
13
|
+
|
|
14
|
+
from .common import expect_contiguous
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@triton.jit
|
|
18
|
+
def jagged_dense_flash_attention_fwd_kernel(
|
|
19
|
+
q_ptr,
|
|
20
|
+
k_ptr,
|
|
21
|
+
v_ptr,
|
|
22
|
+
ab_ptr, # attn bias ptr
|
|
23
|
+
o_ptr,
|
|
24
|
+
lse_ptr,
|
|
25
|
+
jagged_offsets_ptr,
|
|
26
|
+
max_seq_len,
|
|
27
|
+
stride_ql,
|
|
28
|
+
stride_qd,
|
|
29
|
+
stride_kb,
|
|
30
|
+
stride_kd,
|
|
31
|
+
stride_kt,
|
|
32
|
+
stride_vn,
|
|
33
|
+
stride_vd,
|
|
34
|
+
stride_ab_b, # attn bias stride batch
|
|
35
|
+
stride_ab_n,
|
|
36
|
+
stride_ab_t,
|
|
37
|
+
stride_ob,
|
|
38
|
+
stride_ot,
|
|
39
|
+
stride_od,
|
|
40
|
+
D: tl.constexpr,
|
|
41
|
+
T: tl.constexpr,
|
|
42
|
+
allow_tf32: tl.constexpr,
|
|
43
|
+
BLOCK_T: tl.constexpr,
|
|
44
|
+
BLOCK_L: tl.constexpr,
|
|
45
|
+
BLOCK_D: tl.constexpr,
|
|
46
|
+
):
|
|
47
|
+
pid_t = tl.program_id(0)
|
|
48
|
+
pid_batch = tl.program_id(1)
|
|
49
|
+
|
|
50
|
+
# begin offset of the current sample
|
|
51
|
+
begin = tl.load(jagged_offsets_ptr + pid_batch)
|
|
52
|
+
# end offset of the current sample
|
|
53
|
+
end = tl.load(jagged_offsets_ptr + pid_batch + 1)
|
|
54
|
+
|
|
55
|
+
# The seq length of the current sample
|
|
56
|
+
length = end - begin
|
|
57
|
+
length = tl.minimum(length, max_seq_len)
|
|
58
|
+
|
|
59
|
+
if length == 0:
|
|
60
|
+
return
|
|
61
|
+
|
|
62
|
+
q_start_ptr = q_ptr + begin * stride_ql
|
|
63
|
+
k_start_ptr = k_ptr + pid_batch * stride_kb
|
|
64
|
+
ab_start_ptr = ab_ptr + pid_batch * stride_ab_b
|
|
65
|
+
v_start_ptr = v_ptr + begin * stride_vn
|
|
66
|
+
|
|
67
|
+
offs_t = pid_t * BLOCK_T + tl.arange(0, BLOCK_T)
|
|
68
|
+
offs_d = tl.arange(0, BLOCK_D)
|
|
69
|
+
|
|
70
|
+
# Load a block of Q into [BLOCK_D, BLOCK_T]
|
|
71
|
+
ki_ptrs = k_start_ptr + offs_d[:, None] * stride_kd + offs_t[None, :] * stride_kt
|
|
72
|
+
|
|
73
|
+
ki = tl.load(
|
|
74
|
+
ki_ptrs,
|
|
75
|
+
mask=((offs_d[:, None] < D) & (offs_t[None, :] < T)),
|
|
76
|
+
other=0.0,
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
mi = tl.zeros([BLOCK_T], dtype=tl.float32) - float("inf")
|
|
80
|
+
li = tl.zeros([BLOCK_T], dtype=tl.float32)
|
|
81
|
+
oi = tl.zeros([BLOCK_T, BLOCK_D], dtype=tl.float32)
|
|
82
|
+
|
|
83
|
+
# Loop through the seq length dimension
|
|
84
|
+
for start_l in range(0, length, BLOCK_L):
|
|
85
|
+
offs_l = start_l + tl.arange(0, BLOCK_L)
|
|
86
|
+
|
|
87
|
+
# Load a block of K into [BLOCK_L, BLOCK_D]
|
|
88
|
+
qj_ptrs = (
|
|
89
|
+
q_start_ptr
|
|
90
|
+
# pyre-fixme[16]: `int` has no attribute `__getitem__`.
|
|
91
|
+
+ offs_l[:, None] * stride_ql
|
|
92
|
+
+ offs_d[None, :] * stride_qd
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
qj = tl.load(
|
|
96
|
+
qj_ptrs,
|
|
97
|
+
mask=((offs_l[:, None] < length) & (offs_d[None, :] < D)),
|
|
98
|
+
other=0.0,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
# gemm [BLOCK_L, BLOCK_D] x [BLOCK_D, BLOCK_T] = [BLOCK_L, BLOCK_T]
|
|
102
|
+
qk = tl.dot(qj, ki, allow_tf32=allow_tf32)
|
|
103
|
+
|
|
104
|
+
# Load a block of attn bias into [BLOCK_L, BLOCK_T]
|
|
105
|
+
ab_ptrs = (
|
|
106
|
+
ab_start_ptr + offs_l[:, None] * stride_ab_n + offs_t[None, :] * stride_ab_t
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
abij = tl.load(
|
|
110
|
+
ab_ptrs,
|
|
111
|
+
mask=((offs_l[:, None] < length) & (offs_t[None, :] < T)),
|
|
112
|
+
other=0.0,
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
# q*k output + attn bias
|
|
116
|
+
qk = qk + abij
|
|
117
|
+
|
|
118
|
+
# Note: softmax on axis 0
|
|
119
|
+
mij_hat = tl.max(qk, axis=0)
|
|
120
|
+
mi_new = tl.maximum(mi, mij_hat)
|
|
121
|
+
pij_hat = tl.exp(qk - mi_new[None, :])
|
|
122
|
+
pij_hat = tl.where(
|
|
123
|
+
(offs_l[:, None] < length) & (offs_t[None, :] < T), pij_hat, 0.0
|
|
124
|
+
)
|
|
125
|
+
lij_hat = tl.sum(pij_hat, axis=0)
|
|
126
|
+
alpha = tl.exp(mi - mi_new)
|
|
127
|
+
li_new = alpha * li + lij_hat
|
|
128
|
+
oi = alpha[:, None] * oi
|
|
129
|
+
|
|
130
|
+
# Load a block of V into [BLOCK_L, BLOCK_D]
|
|
131
|
+
vj_ptrs = (
|
|
132
|
+
v_start_ptr + offs_l[:, None] * stride_vn + offs_d[None, :] * stride_vd
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
vj = tl.load(
|
|
136
|
+
vj_ptrs,
|
|
137
|
+
mask=((offs_l[:, None] < length) & (offs_d[None, :] < D)),
|
|
138
|
+
other=0.0,
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
pij_hat = pij_hat.to(v_ptr.dtype.element_ty)
|
|
142
|
+
# gemm [BLOCK_T, BLOCK_L] x [BLOCK_L, BLOCK_D] = [BLOCK_T, BLOCK_D]
|
|
143
|
+
oi = oi + tl.dot(tl.trans(pij_hat), vj, allow_tf32=allow_tf32)
|
|
144
|
+
|
|
145
|
+
mi = mi_new
|
|
146
|
+
li = li_new
|
|
147
|
+
|
|
148
|
+
oi = oi / li[:, None]
|
|
149
|
+
|
|
150
|
+
lse_ptrs = lse_ptr + pid_batch * T + offs_t
|
|
151
|
+
# Save both mi and li to avoid recomputation in backward
|
|
152
|
+
lse_i = mi + tl.log(li)
|
|
153
|
+
tl.store(lse_ptrs, lse_i, mask=(offs_t < T))
|
|
154
|
+
|
|
155
|
+
# Write the output [BLOCK_T, BLOCK_D]
|
|
156
|
+
attn_out_ptrs = (
|
|
157
|
+
o_ptr
|
|
158
|
+
+ pid_batch * stride_ob
|
|
159
|
+
+ offs_t[:, None] * stride_ot
|
|
160
|
+
+ offs_d[None, :] * stride_od
|
|
161
|
+
)
|
|
162
|
+
tl.store(attn_out_ptrs, oi, mask=((offs_t[:, None] < T) & (offs_d[None, :] < D)))
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
def jagged_dense_flash_attention_fwd(
|
|
166
|
+
Q,
|
|
167
|
+
K,
|
|
168
|
+
V,
|
|
169
|
+
attn_bias,
|
|
170
|
+
jagged_offsets,
|
|
171
|
+
max_seq_len,
|
|
172
|
+
allow_tf32=False,
|
|
173
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
174
|
+
"""
|
|
175
|
+
Q: jagged tensor, [sum_B, D]
|
|
176
|
+
K: dense tensor, [B, D, T]
|
|
177
|
+
V: jagged tensor [sum_B, D]
|
|
178
|
+
attn_bias: dense tensor [B, N, T]
|
|
179
|
+
out: dense tenros: [B, T, D]
|
|
180
|
+
|
|
181
|
+
Attention steps:
|
|
182
|
+
1. Q * K: [sum_B, D] * [B, D, T] = [sum_B, T]
|
|
183
|
+
2. softmax_input = Q * K + attn_bias
|
|
184
|
+
[sum_B, T] + [B, N, T] = [sum_B, T]
|
|
185
|
+
3. softmax_out = softmax(softmax_input):
|
|
186
|
+
softmax([sum_B, T]) = [sum_B, T]
|
|
187
|
+
4. softmax_out * V:
|
|
188
|
+
[sum_B, T] * [sum_B, D] = [B, T, D]
|
|
189
|
+
"""
|
|
190
|
+
assert Q.size(1) == K.size(1), "incompatible dimensions for Q and K"
|
|
191
|
+
assert Q.size() == V.size(), "incompatible dimensions for Q and V"
|
|
192
|
+
assert jagged_offsets.is_contiguous(), "jagged_offsets must be contiguous"
|
|
193
|
+
|
|
194
|
+
(B, D, T) = K.size()
|
|
195
|
+
assert D > 0 and (D & (D - 1)) == 0, "D needs to be a power of two"
|
|
196
|
+
|
|
197
|
+
attn_out = torch.zeros(B, T, D, dtype=Q.dtype, device=Q.device)
|
|
198
|
+
lse = torch.empty((B, T), dtype=K.dtype, device=K.device)
|
|
199
|
+
|
|
200
|
+
BLOCK_T = 32
|
|
201
|
+
BLOCK_L = 32
|
|
202
|
+
BLOCK_D = D
|
|
203
|
+
|
|
204
|
+
num_blocks_t = triton.cdiv(T, BLOCK_T)
|
|
205
|
+
grid = (num_blocks_t, B)
|
|
206
|
+
|
|
207
|
+
jagged_dense_flash_attention_fwd_kernel[grid](
|
|
208
|
+
Q,
|
|
209
|
+
K,
|
|
210
|
+
V,
|
|
211
|
+
attn_bias,
|
|
212
|
+
attn_out,
|
|
213
|
+
lse,
|
|
214
|
+
jagged_offsets,
|
|
215
|
+
max_seq_len,
|
|
216
|
+
Q.stride(0),
|
|
217
|
+
Q.stride(1),
|
|
218
|
+
K.stride(0),
|
|
219
|
+
K.stride(1),
|
|
220
|
+
K.stride(2),
|
|
221
|
+
V.stride(0),
|
|
222
|
+
V.stride(1),
|
|
223
|
+
attn_bias.stride(0),
|
|
224
|
+
attn_bias.stride(1),
|
|
225
|
+
attn_bias.stride(2),
|
|
226
|
+
attn_out.stride(0),
|
|
227
|
+
attn_out.stride(1),
|
|
228
|
+
attn_out.stride(2),
|
|
229
|
+
D,
|
|
230
|
+
T,
|
|
231
|
+
allow_tf32,
|
|
232
|
+
BLOCK_T, # pyre-ignore
|
|
233
|
+
BLOCK_L, # pyre-ignore
|
|
234
|
+
BLOCK_D,
|
|
235
|
+
)
|
|
236
|
+
|
|
237
|
+
return attn_out, lse
|
|
238
|
+
|
|
239
|
+
|
|
240
|
+
@triton.jit
|
|
241
|
+
def _bwd_preprocess_do_o_dot(
|
|
242
|
+
o_ptr,
|
|
243
|
+
do_ptr,
|
|
244
|
+
delta_ptr,
|
|
245
|
+
T,
|
|
246
|
+
stride_ob,
|
|
247
|
+
stride_ot,
|
|
248
|
+
stride_od,
|
|
249
|
+
stride_do_b,
|
|
250
|
+
stride_do_t,
|
|
251
|
+
stride_do_d,
|
|
252
|
+
BLOCK_T: tl.constexpr,
|
|
253
|
+
BLOCK_D: tl.constexpr,
|
|
254
|
+
):
|
|
255
|
+
start_t = tl.program_id(0)
|
|
256
|
+
offs_t = start_t * BLOCK_T + tl.arange(0, BLOCK_T)
|
|
257
|
+
pid_b = tl.program_id(1)
|
|
258
|
+
offs_d = tl.arange(0, BLOCK_D)
|
|
259
|
+
|
|
260
|
+
o_ptrs = (
|
|
261
|
+
o_ptr
|
|
262
|
+
+ pid_b * stride_ob
|
|
263
|
+
+ offs_t[:, None] * stride_ot
|
|
264
|
+
+ offs_d[None, :] * stride_od
|
|
265
|
+
)
|
|
266
|
+
do_ptrs = (
|
|
267
|
+
do_ptr
|
|
268
|
+
+ pid_b * stride_do_b
|
|
269
|
+
+ offs_t[:, None] * stride_do_t
|
|
270
|
+
+ offs_d[None, :] * stride_do_d
|
|
271
|
+
)
|
|
272
|
+
o = tl.load(o_ptrs, mask=(offs_t[:, None] < T), other=0.0)
|
|
273
|
+
do = tl.load(do_ptrs, mask=(offs_t[:, None] < T), other=0.0)
|
|
274
|
+
delta = tl.sum(o * do, axis=1)
|
|
275
|
+
|
|
276
|
+
delta_ptrs = delta_ptr + pid_b * T + offs_t
|
|
277
|
+
tl.store(delta_ptrs, delta, mask=(offs_t < T))
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
@triton.jit
|
|
281
|
+
def _jagged_dense_flash_attention_bwd_dv_db_dq_kernel(
|
|
282
|
+
q_ptr,
|
|
283
|
+
k_ptr,
|
|
284
|
+
v_ptr,
|
|
285
|
+
ab_ptr, # attn bias
|
|
286
|
+
jagged_offsets_ptr,
|
|
287
|
+
out_ptr,
|
|
288
|
+
do_ptr,
|
|
289
|
+
lse_ptr,
|
|
290
|
+
delta_ptr,
|
|
291
|
+
dq_ptr,
|
|
292
|
+
dk_ptr,
|
|
293
|
+
dv_ptr,
|
|
294
|
+
dbias_ptr,
|
|
295
|
+
max_seq_len,
|
|
296
|
+
stride_ql,
|
|
297
|
+
stride_qd,
|
|
298
|
+
stride_kb,
|
|
299
|
+
stride_kd,
|
|
300
|
+
stride_kt,
|
|
301
|
+
stride_vl,
|
|
302
|
+
stride_vd,
|
|
303
|
+
stride_ab_b, # attn bias stride batch
|
|
304
|
+
stride_ab_l,
|
|
305
|
+
stride_ab_t,
|
|
306
|
+
stride_ob,
|
|
307
|
+
stride_ot,
|
|
308
|
+
stride_od,
|
|
309
|
+
stride_dq_l,
|
|
310
|
+
stride_dq_d,
|
|
311
|
+
stride_dv_l,
|
|
312
|
+
stride_dv_d,
|
|
313
|
+
stride_db_b,
|
|
314
|
+
stride_db_l,
|
|
315
|
+
stride_db_t,
|
|
316
|
+
stride_do_b,
|
|
317
|
+
stride_do_t,
|
|
318
|
+
stride_do_d,
|
|
319
|
+
T: tl.constexpr,
|
|
320
|
+
BLOCK_T: tl.constexpr,
|
|
321
|
+
BLOCK_L: tl.constexpr,
|
|
322
|
+
BLOCK_D: tl.constexpr,
|
|
323
|
+
allow_tf32: tl.constexpr,
|
|
324
|
+
):
|
|
325
|
+
pid_l = tl.program_id(0)
|
|
326
|
+
pid_b = tl.program_id(1)
|
|
327
|
+
# begin offset of the current sample
|
|
328
|
+
begin = tl.load(jagged_offsets_ptr + pid_b)
|
|
329
|
+
# end offset of the current sample
|
|
330
|
+
end = tl.load(jagged_offsets_ptr + pid_b + 1)
|
|
331
|
+
|
|
332
|
+
# The seq length of the current sample
|
|
333
|
+
seqlen = end - begin
|
|
334
|
+
seqlen = tl.minimum(seqlen, max_seq_len)
|
|
335
|
+
|
|
336
|
+
if seqlen == 0:
|
|
337
|
+
return
|
|
338
|
+
|
|
339
|
+
q_start_ptr = q_ptr + begin * stride_ql
|
|
340
|
+
k_start_ptr = k_ptr + pid_b * stride_kb
|
|
341
|
+
ab_start_ptr = ab_ptr + pid_b * stride_ab_b
|
|
342
|
+
v_start_ptr = v_ptr + begin * stride_vl
|
|
343
|
+
do_start_ptr = do_ptr + pid_b * stride_do_b
|
|
344
|
+
dq_start_ptr = dq_ptr + begin * stride_dq_l
|
|
345
|
+
dv_start_ptr = dv_ptr + begin * stride_dv_l
|
|
346
|
+
dbias_start_ptr = dbias_ptr + pid_b * stride_db_b
|
|
347
|
+
delta_ptrs = delta_ptr + pid_b * T
|
|
348
|
+
lse_ptrs = lse_ptr + pid_b * T
|
|
349
|
+
|
|
350
|
+
start_l = pid_l * BLOCK_L
|
|
351
|
+
offs_l_curr = start_l + tl.arange(0, BLOCK_L)
|
|
352
|
+
offs_d = tl.arange(0, BLOCK_D)
|
|
353
|
+
offs_t = tl.arange(0, BLOCK_T)
|
|
354
|
+
|
|
355
|
+
q_ptrs = (
|
|
356
|
+
q_start_ptr + offs_l_curr[:, None] * stride_ql + offs_d[None, :] * stride_qd
|
|
357
|
+
)
|
|
358
|
+
k_ptrs = k_start_ptr + offs_d[:, None] * stride_kd + offs_t[None, :] * stride_kt
|
|
359
|
+
v_ptrs = (
|
|
360
|
+
v_start_ptr + offs_l_curr[:, None] * stride_vl + offs_d[None, :] * stride_vd
|
|
361
|
+
)
|
|
362
|
+
|
|
363
|
+
do_ptrs = (
|
|
364
|
+
do_start_ptr + offs_t[:, None] * stride_do_t + offs_d[None, :] * stride_do_d
|
|
365
|
+
)
|
|
366
|
+
|
|
367
|
+
dq = tl.zeros([BLOCK_L, BLOCK_D], dtype=tl.float32)
|
|
368
|
+
dv = tl.zeros([BLOCK_L, BLOCK_D], dtype=tl.float32)
|
|
369
|
+
|
|
370
|
+
# Load a block of q into [BLOCK_L, BLOCK_D]
|
|
371
|
+
q = tl.load(
|
|
372
|
+
q_ptrs,
|
|
373
|
+
mask=((offs_l_curr[:, None] < seqlen) & (offs_d[None, :] < BLOCK_D)),
|
|
374
|
+
other=0.0,
|
|
375
|
+
)
|
|
376
|
+
v = tl.load(v_ptrs, mask=(offs_l_curr[:, None] < seqlen), other=0.0)
|
|
377
|
+
|
|
378
|
+
# for start_t in range(0, T, BLOCK_T):
|
|
379
|
+
start_t = 0
|
|
380
|
+
while start_t < T:
|
|
381
|
+
offs_t_curr = start_t + tl.arange(0, BLOCK_T)
|
|
382
|
+
|
|
383
|
+
# Load a block of k into [BLOCK_D, BLOCK_T]
|
|
384
|
+
k = tl.load(
|
|
385
|
+
k_ptrs,
|
|
386
|
+
mask=((offs_t_curr[None, :] < T) & (offs_d[:, None] < BLOCK_D)),
|
|
387
|
+
other=0.0,
|
|
388
|
+
)
|
|
389
|
+
qk = tl.zeros([BLOCK_L, BLOCK_T], dtype=tl.float32)
|
|
390
|
+
|
|
391
|
+
# gemm [BLOCK_L, BLOCK_D] x [BLOCK_D, BLOCK_T] -> [BLOCK_L, BLOCK_T]
|
|
392
|
+
qk += tl.dot(q, k, allow_tf32=allow_tf32)
|
|
393
|
+
|
|
394
|
+
ab_ptrs = (
|
|
395
|
+
ab_start_ptr
|
|
396
|
+
+ offs_l_curr[:, None] * stride_ab_l
|
|
397
|
+
+ offs_t_curr[None, :] * stride_ab_t
|
|
398
|
+
)
|
|
399
|
+
|
|
400
|
+
ab = tl.load(
|
|
401
|
+
ab_ptrs,
|
|
402
|
+
mask=((offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T)),
|
|
403
|
+
other=0.0,
|
|
404
|
+
)
|
|
405
|
+
|
|
406
|
+
# q*k output + attn bias
|
|
407
|
+
qk = qk + ab
|
|
408
|
+
|
|
409
|
+
# Mask out invalid positions for softmax
|
|
410
|
+
qk_mask = (offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T)
|
|
411
|
+
qk = tl.where(qk_mask, qk, float("-inf"))
|
|
412
|
+
|
|
413
|
+
lse_t = tl.load(
|
|
414
|
+
lse_ptrs + offs_t_curr, mask=(offs_t_curr < T), other=float("inf")
|
|
415
|
+
)
|
|
416
|
+
# Perform softmax
|
|
417
|
+
p = tl.exp(qk - lse_t[None, :])
|
|
418
|
+
p = tl.where(qk_mask, p, 0.0)
|
|
419
|
+
|
|
420
|
+
# Compute dv
|
|
421
|
+
# Load a block of do into [BLOCK_T, BLOCK_D]
|
|
422
|
+
do = tl.load(do_ptrs, mask=(offs_t_curr[:, None] < T), other=0.0)
|
|
423
|
+
|
|
424
|
+
# gemm [BLOCK_L, BLOCK_T] x [BLOCK_T, BLOCK_D] -> [BLOCK_L, BLOCK_D]
|
|
425
|
+
dv += tl.dot(p, do, allow_tf32=allow_tf32)
|
|
426
|
+
|
|
427
|
+
# Compute dp
|
|
428
|
+
delta = tl.load(delta_ptrs + offs_t_curr, mask=(offs_t_curr < T))
|
|
429
|
+
dp = tl.zeros([BLOCK_L, BLOCK_T], dtype=tl.float32)
|
|
430
|
+
|
|
431
|
+
# gemm [BLOCK_T, BLOCK_D] x [BLOCK_D, BLOCK_L] = [BLOCK_T, BLOCK_L]
|
|
432
|
+
# [BLOCK_T, BLOCK_L]^T -> [BLOCK_L, BLOCK_T]
|
|
433
|
+
dp += tl.trans(tl.dot(do, tl.trans(v), allow_tf32=allow_tf32))
|
|
434
|
+
|
|
435
|
+
# Compute ds = p * (dp - delta)
|
|
436
|
+
ds = p * (dp - delta[None, :])
|
|
437
|
+
|
|
438
|
+
# Save dbias = ds
|
|
439
|
+
dbias_ptrs = (
|
|
440
|
+
dbias_start_ptr
|
|
441
|
+
+ offs_l_curr[:, None] * stride_db_l
|
|
442
|
+
+ offs_t_curr[None, :] * stride_db_t
|
|
443
|
+
)
|
|
444
|
+
tl.store(
|
|
445
|
+
dbias_ptrs,
|
|
446
|
+
ds,
|
|
447
|
+
mask=((offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T)),
|
|
448
|
+
)
|
|
449
|
+
|
|
450
|
+
# Compute dq
|
|
451
|
+
# gemm [BLOCK_L, BLOCK_T] x [BLOCK_T, BLOCK_D] -> [BLOCK_L, BLOCK_D]
|
|
452
|
+
dq += tl.dot(ds, tl.trans(k), allow_tf32=allow_tf32)
|
|
453
|
+
|
|
454
|
+
k_ptrs += BLOCK_T * stride_kt
|
|
455
|
+
do_ptrs += BLOCK_T * stride_do_t
|
|
456
|
+
start_t += BLOCK_T
|
|
457
|
+
|
|
458
|
+
dq_ptrs = (
|
|
459
|
+
dq_start_ptr
|
|
460
|
+
+ offs_l_curr[:, None] * stride_dq_l
|
|
461
|
+
+ offs_d[None, :] * stride_dq_d
|
|
462
|
+
)
|
|
463
|
+
dv_ptrs = (
|
|
464
|
+
dv_start_ptr
|
|
465
|
+
+ offs_l_curr[:, None] * stride_dv_l
|
|
466
|
+
+ offs_d[None, :] * stride_dv_d
|
|
467
|
+
)
|
|
468
|
+
tl.store(dq_ptrs, dq, mask=(offs_l_curr[:, None] < seqlen))
|
|
469
|
+
tl.store(dv_ptrs, dv, mask=(offs_l_curr[:, None] < seqlen))
|
|
470
|
+
|
|
471
|
+
|
|
472
|
+
@triton.jit
|
|
473
|
+
def _jagged_dense_flash_attention_bwd_dk_kernel(
|
|
474
|
+
q_ptr,
|
|
475
|
+
k_ptr,
|
|
476
|
+
v_ptr,
|
|
477
|
+
ab_ptr, # attn bias
|
|
478
|
+
jagged_offsets_ptr,
|
|
479
|
+
out_ptr,
|
|
480
|
+
do_ptr,
|
|
481
|
+
lse_ptr,
|
|
482
|
+
delta_ptr,
|
|
483
|
+
dq_ptr,
|
|
484
|
+
dk_ptr,
|
|
485
|
+
dv_ptr,
|
|
486
|
+
dbias_ptr,
|
|
487
|
+
max_seq_len,
|
|
488
|
+
stride_ql,
|
|
489
|
+
stride_qd,
|
|
490
|
+
stride_kb,
|
|
491
|
+
stride_kd,
|
|
492
|
+
stride_kt,
|
|
493
|
+
stride_vl,
|
|
494
|
+
stride_vd,
|
|
495
|
+
stride_ab_b, # attn bias stride batch
|
|
496
|
+
stride_ab_l,
|
|
497
|
+
stride_ab_t,
|
|
498
|
+
stride_ob,
|
|
499
|
+
stride_ot,
|
|
500
|
+
stride_od,
|
|
501
|
+
stride_dk_b,
|
|
502
|
+
stride_dk_d,
|
|
503
|
+
stride_dk_t,
|
|
504
|
+
stride_do_b,
|
|
505
|
+
stride_do_t,
|
|
506
|
+
stride_do_d,
|
|
507
|
+
D,
|
|
508
|
+
T: tl.constexpr,
|
|
509
|
+
BLOCK_T: tl.constexpr,
|
|
510
|
+
BLOCK_L: tl.constexpr,
|
|
511
|
+
BLOCK_D: tl.constexpr,
|
|
512
|
+
allow_tf32: tl.constexpr,
|
|
513
|
+
):
|
|
514
|
+
pid_t = tl.program_id(0)
|
|
515
|
+
pid_b = tl.program_id(1)
|
|
516
|
+
# begin offset of the current sample
|
|
517
|
+
begin = tl.load(jagged_offsets_ptr + pid_b)
|
|
518
|
+
# end offset of the current sample
|
|
519
|
+
end = tl.load(jagged_offsets_ptr + pid_b + 1)
|
|
520
|
+
|
|
521
|
+
# The seq length of the current sample
|
|
522
|
+
seqlen = end - begin
|
|
523
|
+
seqlen = tl.minimum(seqlen, max_seq_len)
|
|
524
|
+
|
|
525
|
+
if seqlen == 0:
|
|
526
|
+
return
|
|
527
|
+
|
|
528
|
+
q_start_ptr = q_ptr + begin * stride_ql
|
|
529
|
+
k_start_ptr = k_ptr + pid_b * stride_kb
|
|
530
|
+
ab_start_ptr = ab_ptr + pid_b * stride_ab_b
|
|
531
|
+
v_start_ptr = v_ptr + begin * stride_vl
|
|
532
|
+
do_start_ptr = do_ptr + pid_b * stride_do_b
|
|
533
|
+
dk_start_ptr = dk_ptr + pid_b * stride_dk_b
|
|
534
|
+
delta_ptrs = delta_ptr + pid_b * T
|
|
535
|
+
lse_ptrs = lse_ptr + pid_b * T
|
|
536
|
+
|
|
537
|
+
offs_t_curr = pid_t * BLOCK_T + tl.arange(0, BLOCK_T)
|
|
538
|
+
offs_d = tl.arange(0, BLOCK_D)
|
|
539
|
+
|
|
540
|
+
k_ptrs = (
|
|
541
|
+
k_start_ptr + offs_d[:, None] * stride_kd + offs_t_curr[None, :] * stride_kt
|
|
542
|
+
)
|
|
543
|
+
|
|
544
|
+
do_ptrs = (
|
|
545
|
+
do_start_ptr
|
|
546
|
+
+ offs_t_curr[:, None] * stride_do_t
|
|
547
|
+
+ offs_d[None, :] * stride_do_d
|
|
548
|
+
)
|
|
549
|
+
|
|
550
|
+
dk_ptrs = (
|
|
551
|
+
dk_start_ptr
|
|
552
|
+
+ offs_d[:, None] * stride_dk_d
|
|
553
|
+
+ offs_t_curr[None, :] * stride_dk_t
|
|
554
|
+
)
|
|
555
|
+
|
|
556
|
+
dk = tl.zeros([BLOCK_D, BLOCK_T], dtype=tl.float32)
|
|
557
|
+
|
|
558
|
+
# Load a block of k into [BLOCK_D, BLOCK_T]
|
|
559
|
+
k = tl.load(
|
|
560
|
+
k_ptrs,
|
|
561
|
+
mask=((offs_t_curr[None, :] < T) & (offs_d[:, None] < BLOCK_D)),
|
|
562
|
+
other=0.0,
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
start_l = 0
|
|
566
|
+
while start_l < seqlen:
|
|
567
|
+
offs_l_curr = start_l + tl.arange(0, BLOCK_L)
|
|
568
|
+
|
|
569
|
+
# Load a block of q into [BLOCK_L, BLOCK_D]
|
|
570
|
+
q_ptrs = (
|
|
571
|
+
q_start_ptr + offs_l_curr[:, None] * stride_ql + offs_d[None, :] * stride_qd
|
|
572
|
+
)
|
|
573
|
+
|
|
574
|
+
q = tl.load(
|
|
575
|
+
q_ptrs,
|
|
576
|
+
mask=(offs_l_curr[:, None] < seqlen),
|
|
577
|
+
other=0.0,
|
|
578
|
+
)
|
|
579
|
+
|
|
580
|
+
v_ptrs = (
|
|
581
|
+
v_start_ptr + offs_l_curr[:, None] * stride_vl + offs_d[None, :] * stride_vd
|
|
582
|
+
)
|
|
583
|
+
|
|
584
|
+
v = tl.load(v_ptrs, mask=(offs_l_curr[:, None] < seqlen), other=0.0)
|
|
585
|
+
|
|
586
|
+
qk = tl.zeros([BLOCK_L, BLOCK_T], dtype=tl.float32)
|
|
587
|
+
# gemm [BLOCK_L, BLOCK_D] x [BLOCK_D, BLOCK_T] -> [BLOCK_L, BLOCK_T]
|
|
588
|
+
|
|
589
|
+
qk = tl.dot(q, k, allow_tf32=allow_tf32)
|
|
590
|
+
qk = tl.where(
|
|
591
|
+
(offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T), qk, 0.0
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
ab_ptrs = (
|
|
595
|
+
ab_start_ptr
|
|
596
|
+
+ offs_l_curr[:, None] * stride_ab_l
|
|
597
|
+
+ offs_t_curr[None, :] * stride_ab_t
|
|
598
|
+
)
|
|
599
|
+
|
|
600
|
+
ab = tl.load(
|
|
601
|
+
ab_ptrs,
|
|
602
|
+
mask=((offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T)),
|
|
603
|
+
other=0.0,
|
|
604
|
+
)
|
|
605
|
+
|
|
606
|
+
# q*k output + attn bias
|
|
607
|
+
qk = qk + ab
|
|
608
|
+
|
|
609
|
+
# Mask out invalid positions for softmax
|
|
610
|
+
qk_mask = (offs_l_curr[:, None] < seqlen) & (offs_t_curr[None, :] < T)
|
|
611
|
+
qk = tl.where(qk_mask, qk, float("-inf"))
|
|
612
|
+
|
|
613
|
+
lse_t = tl.load(lse_ptrs + offs_t_curr, mask=(offs_t_curr < T))
|
|
614
|
+
# Perform softmax
|
|
615
|
+
p = tl.exp(qk - lse_t[None, :])
|
|
616
|
+
p = tl.where(qk_mask, p, 0.0)
|
|
617
|
+
|
|
618
|
+
# Compute dv
|
|
619
|
+
# Load a block of do into [BLOCK_T, BLOCK_D]
|
|
620
|
+
do = tl.load(do_ptrs, mask=(offs_t_curr[:, None] < T), other=0.0)
|
|
621
|
+
|
|
622
|
+
# Compute dp
|
|
623
|
+
delta = tl.load(delta_ptrs + offs_t_curr, mask=(offs_t_curr < T))
|
|
624
|
+
|
|
625
|
+
# gemm [BLOCK_T, BLOCK_D] x [BLOCK_D, BLOCK_L] = [BLOCK_T, BLOCK_L]
|
|
626
|
+
# [BLOCK_T, BLOCK_L]^T -> [BLOCK_L, BLOCK_T]
|
|
627
|
+
dp = tl.trans(tl.dot(do, tl.trans(v), allow_tf32=allow_tf32))
|
|
628
|
+
|
|
629
|
+
# Compute ds = p * (dp - delta)
|
|
630
|
+
ds = p * (dp - delta[None, :])
|
|
631
|
+
|
|
632
|
+
# Compute dk
|
|
633
|
+
# gemm [BLOCK_D, BLOCK_L] x [BLOCK_L, BLOCK_T] = [BLOCK_D, BLOCK_T]
|
|
634
|
+
dk += tl.dot(tl.trans(q), ds, allow_tf32=allow_tf32)
|
|
635
|
+
|
|
636
|
+
start_l += BLOCK_L
|
|
637
|
+
|
|
638
|
+
tl.store(dk_ptrs, dk, mask=(offs_t_curr[None, :] < T))
|
|
639
|
+
|
|
640
|
+
|
|
641
|
+
def jagged_dense_flash_attention_bwd(
|
|
642
|
+
Q,
|
|
643
|
+
K,
|
|
644
|
+
V,
|
|
645
|
+
Out,
|
|
646
|
+
lse,
|
|
647
|
+
do, # derivative of attn_out
|
|
648
|
+
attn_bias,
|
|
649
|
+
jagged_offsets,
|
|
650
|
+
max_seq_len,
|
|
651
|
+
allow_tf32=False,
|
|
652
|
+
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
653
|
+
"""
|
|
654
|
+
Q: jagged tensor, [sum_B, D]
|
|
655
|
+
K: dense tensor, [B, D, T]
|
|
656
|
+
V: jagged tensor [sum_B, D]
|
|
657
|
+
Out: dense tensor: [B, T, D]
|
|
658
|
+
lse: dense tensor [B, T]
|
|
659
|
+
do: dense tensor [B, T, D]
|
|
660
|
+
attn_bias: dense tensor [B, N, T]
|
|
661
|
+
jagged_offsets: tensor [B + 1]
|
|
662
|
+
"""
|
|
663
|
+
assert Q.size(1) == K.size(1), "incompatible dimensions for Q and K"
|
|
664
|
+
assert Q.size() == V.size(), "incompatible dimensions for Q and V"
|
|
665
|
+
assert lse.size(1) == K.size(2), "incompatible dimensions for LSE and K"
|
|
666
|
+
|
|
667
|
+
if not do.is_contiguous():
|
|
668
|
+
do = do.contiguous()
|
|
669
|
+
|
|
670
|
+
(B, D, T) = K.size()
|
|
671
|
+
BLOCK_T = 32
|
|
672
|
+
BLOCK_L = 32
|
|
673
|
+
BLOCK_D = D
|
|
674
|
+
num_blocks_k = triton.cdiv(T, BLOCK_T)
|
|
675
|
+
|
|
676
|
+
dk = torch.zeros_like(K)
|
|
677
|
+
dq = torch.zeros_like(Q)
|
|
678
|
+
dv = torch.zeros_like(V)
|
|
679
|
+
dbias = torch.zeros_like(attn_bias)
|
|
680
|
+
|
|
681
|
+
delta = torch.empty_like(lse)
|
|
682
|
+
_bwd_preprocess_do_o_dot[(num_blocks_k, B)](
|
|
683
|
+
Out,
|
|
684
|
+
do,
|
|
685
|
+
delta,
|
|
686
|
+
T,
|
|
687
|
+
Out.stride(0),
|
|
688
|
+
Out.stride(1),
|
|
689
|
+
Out.stride(2),
|
|
690
|
+
do.stride(0),
|
|
691
|
+
do.stride(1),
|
|
692
|
+
do.stride(2),
|
|
693
|
+
BLOCK_T, # pyre-ignore
|
|
694
|
+
BLOCK_D,
|
|
695
|
+
)
|
|
696
|
+
|
|
697
|
+
num_blocks_l = triton.cdiv(max_seq_len, BLOCK_L)
|
|
698
|
+
_jagged_dense_flash_attention_bwd_dv_db_dq_kernel[(num_blocks_l, B)](
|
|
699
|
+
Q,
|
|
700
|
+
K,
|
|
701
|
+
V,
|
|
702
|
+
attn_bias,
|
|
703
|
+
jagged_offsets,
|
|
704
|
+
Out,
|
|
705
|
+
do,
|
|
706
|
+
lse,
|
|
707
|
+
delta,
|
|
708
|
+
dq,
|
|
709
|
+
dk,
|
|
710
|
+
dv,
|
|
711
|
+
dbias,
|
|
712
|
+
max_seq_len,
|
|
713
|
+
Q.stride(0),
|
|
714
|
+
Q.stride(1),
|
|
715
|
+
K.stride(0),
|
|
716
|
+
K.stride(1),
|
|
717
|
+
K.stride(2),
|
|
718
|
+
V.stride(0),
|
|
719
|
+
V.stride(1),
|
|
720
|
+
attn_bias.stride(0),
|
|
721
|
+
attn_bias.stride(1),
|
|
722
|
+
attn_bias.stride(2),
|
|
723
|
+
Out.stride(0),
|
|
724
|
+
Out.stride(1),
|
|
725
|
+
Out.stride(2),
|
|
726
|
+
dq.stride(0),
|
|
727
|
+
dq.stride(1),
|
|
728
|
+
dv.stride(0),
|
|
729
|
+
dv.stride(1),
|
|
730
|
+
dbias.stride(0),
|
|
731
|
+
dbias.stride(1),
|
|
732
|
+
dbias.stride(2),
|
|
733
|
+
do.stride(0),
|
|
734
|
+
do.stride(1),
|
|
735
|
+
do.stride(2),
|
|
736
|
+
T,
|
|
737
|
+
BLOCK_T, # pyre-ignore
|
|
738
|
+
BLOCK_L, # pyre-ignore
|
|
739
|
+
BLOCK_D,
|
|
740
|
+
allow_tf32,
|
|
741
|
+
)
|
|
742
|
+
|
|
743
|
+
num_blocks_t = triton.cdiv(T, BLOCK_T)
|
|
744
|
+
_jagged_dense_flash_attention_bwd_dk_kernel[(num_blocks_t, B)](
|
|
745
|
+
Q,
|
|
746
|
+
K,
|
|
747
|
+
V,
|
|
748
|
+
attn_bias,
|
|
749
|
+
jagged_offsets,
|
|
750
|
+
Out,
|
|
751
|
+
do,
|
|
752
|
+
lse,
|
|
753
|
+
delta,
|
|
754
|
+
dq,
|
|
755
|
+
dk,
|
|
756
|
+
dv,
|
|
757
|
+
dbias,
|
|
758
|
+
max_seq_len,
|
|
759
|
+
Q.stride(0),
|
|
760
|
+
Q.stride(1),
|
|
761
|
+
K.stride(0),
|
|
762
|
+
K.stride(1),
|
|
763
|
+
K.stride(2),
|
|
764
|
+
V.stride(0),
|
|
765
|
+
V.stride(1),
|
|
766
|
+
attn_bias.stride(0),
|
|
767
|
+
attn_bias.stride(1),
|
|
768
|
+
attn_bias.stride(2),
|
|
769
|
+
Out.stride(0),
|
|
770
|
+
Out.stride(1),
|
|
771
|
+
Out.stride(2),
|
|
772
|
+
dk.stride(0),
|
|
773
|
+
dk.stride(1),
|
|
774
|
+
dk.stride(2),
|
|
775
|
+
do.stride(0),
|
|
776
|
+
do.stride(1),
|
|
777
|
+
do.stride(2),
|
|
778
|
+
D,
|
|
779
|
+
T,
|
|
780
|
+
BLOCK_T, # pyre-ignore
|
|
781
|
+
BLOCK_L, # pyre-ignore
|
|
782
|
+
BLOCK_D,
|
|
783
|
+
allow_tf32,
|
|
784
|
+
)
|
|
785
|
+
|
|
786
|
+
return dq, dk, dv, dbias
|
|
787
|
+
|
|
788
|
+
|
|
789
|
+
class JaggedDenseFlashAttention(torch.autograd.Function):
|
|
790
|
+
@staticmethod
|
|
791
|
+
# pyre-fixme
|
|
792
|
+
def forward(
|
|
793
|
+
ctx,
|
|
794
|
+
Q: torch.Tensor,
|
|
795
|
+
K: torch.Tensor,
|
|
796
|
+
V: torch.Tensor,
|
|
797
|
+
attn_bias: torch.Tensor,
|
|
798
|
+
jagged_offsets: torch.Tensor,
|
|
799
|
+
max_seq_len: int,
|
|
800
|
+
allow_tf32: bool = False,
|
|
801
|
+
) -> torch.Tensor:
|
|
802
|
+
attn_out, lse = jagged_dense_flash_attention_fwd(
|
|
803
|
+
Q, K, V, attn_bias, jagged_offsets, max_seq_len, allow_tf32
|
|
804
|
+
)
|
|
805
|
+
ctx.save_for_backward(Q, K, V, attn_bias, jagged_offsets, lse, attn_out)
|
|
806
|
+
ctx.max_seq_len = max_seq_len
|
|
807
|
+
ctx.allow_tf32 = allow_tf32
|
|
808
|
+
return attn_out
|
|
809
|
+
|
|
810
|
+
@staticmethod
|
|
811
|
+
# pyre-fixme
|
|
812
|
+
def backward(
|
|
813
|
+
ctx, do: torch.Tensor
|
|
814
|
+
) -> tuple[
|
|
815
|
+
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, None, None, None
|
|
816
|
+
]:
|
|
817
|
+
Q, K, V, attn_bias, jagged_offsets, lse, attn_out = ctx.saved_tensors
|
|
818
|
+
max_seq_len = ctx.max_seq_len
|
|
819
|
+
allow_tf32 = ctx.allow_tf32
|
|
820
|
+
|
|
821
|
+
dq, dk, dv, dbias = jagged_dense_flash_attention_bwd(
|
|
822
|
+
Q,
|
|
823
|
+
K,
|
|
824
|
+
V,
|
|
825
|
+
attn_out,
|
|
826
|
+
lse,
|
|
827
|
+
do,
|
|
828
|
+
attn_bias,
|
|
829
|
+
jagged_offsets,
|
|
830
|
+
max_seq_len,
|
|
831
|
+
allow_tf32,
|
|
832
|
+
)
|
|
833
|
+
return dq, dk, dv, dbias, None, None, None
|
|
834
|
+
|
|
835
|
+
|
|
836
|
+
def jagged_dense_flash_attention(
|
|
837
|
+
q: torch.Tensor,
|
|
838
|
+
k: torch.Tensor,
|
|
839
|
+
v: torch.Tensor,
|
|
840
|
+
attn_bias: torch.Tensor,
|
|
841
|
+
offsets: torch.Tensor,
|
|
842
|
+
max_seq_len: int,
|
|
843
|
+
allow_tf32: bool = True,
|
|
844
|
+
):
|
|
845
|
+
"""
|
|
846
|
+
q: jagged tensor, [sum_B, D]
|
|
847
|
+
k: dense tensor, [B, D, T]
|
|
848
|
+
v: jagged tensor [sum_B, D]
|
|
849
|
+
attn_bias: dense tensor [B, N, T]
|
|
850
|
+
offsets: offsets for jagged tensor [B + 1]
|
|
851
|
+
"""
|
|
852
|
+
|
|
853
|
+
q = expect_contiguous(q)
|
|
854
|
+
k = expect_contiguous(k)
|
|
855
|
+
v = expect_contiguous(v)
|
|
856
|
+
attn_bias = expect_contiguous(attn_bias)
|
|
857
|
+
offsets = expect_contiguous(offsets)
|
|
858
|
+
|
|
859
|
+
return JaggedDenseFlashAttention.apply(
|
|
860
|
+
q, k, v, attn_bias, offsets, max_seq_len, allow_tf32
|
|
861
|
+
)
|