diffusers 0.26.2__py3-none-any.whl → 0.27.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (299) hide show
  1. diffusers/__init__.py +20 -1
  2. diffusers/commands/__init__.py +1 -1
  3. diffusers/commands/diffusers_cli.py +1 -1
  4. diffusers/commands/env.py +1 -1
  5. diffusers/commands/fp16_safetensors.py +1 -1
  6. diffusers/configuration_utils.py +7 -3
  7. diffusers/dependency_versions_check.py +1 -1
  8. diffusers/dependency_versions_table.py +2 -2
  9. diffusers/experimental/rl/value_guided_sampling.py +1 -1
  10. diffusers/image_processor.py +110 -4
  11. diffusers/loaders/autoencoder.py +28 -8
  12. diffusers/loaders/controlnet.py +17 -8
  13. diffusers/loaders/ip_adapter.py +86 -23
  14. diffusers/loaders/lora.py +105 -310
  15. diffusers/loaders/lora_conversion_utils.py +1 -1
  16. diffusers/loaders/peft.py +1 -1
  17. diffusers/loaders/single_file.py +51 -12
  18. diffusers/loaders/single_file_utils.py +278 -49
  19. diffusers/loaders/textual_inversion.py +23 -4
  20. diffusers/loaders/unet.py +195 -41
  21. diffusers/loaders/utils.py +1 -1
  22. diffusers/models/__init__.py +3 -1
  23. diffusers/models/activations.py +9 -9
  24. diffusers/models/attention.py +26 -36
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +171 -114
  27. diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
  28. diffusers/models/autoencoders/autoencoder_kl.py +3 -1
  29. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
  30. diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
  31. diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
  32. diffusers/models/autoencoders/vae.py +1 -1
  33. diffusers/models/controlnet.py +1 -1
  34. diffusers/models/controlnet_flax.py +1 -1
  35. diffusers/models/downsampling.py +8 -12
  36. diffusers/models/dual_transformer_2d.py +1 -1
  37. diffusers/models/embeddings.py +3 -4
  38. diffusers/models/embeddings_flax.py +1 -1
  39. diffusers/models/lora.py +33 -10
  40. diffusers/models/modeling_flax_pytorch_utils.py +1 -1
  41. diffusers/models/modeling_flax_utils.py +1 -1
  42. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  43. diffusers/models/modeling_utils.py +4 -6
  44. diffusers/models/normalization.py +1 -1
  45. diffusers/models/resnet.py +31 -58
  46. diffusers/models/resnet_flax.py +1 -1
  47. diffusers/models/t5_film_transformer.py +1 -1
  48. diffusers/models/transformer_2d.py +1 -1
  49. diffusers/models/transformer_temporal.py +1 -1
  50. diffusers/models/transformers/dual_transformer_2d.py +1 -1
  51. diffusers/models/transformers/t5_film_transformer.py +1 -1
  52. diffusers/models/transformers/transformer_2d.py +29 -31
  53. diffusers/models/transformers/transformer_temporal.py +1 -1
  54. diffusers/models/unet_1d.py +1 -1
  55. diffusers/models/unet_1d_blocks.py +1 -1
  56. diffusers/models/unet_2d.py +1 -1
  57. diffusers/models/unet_2d_blocks.py +1 -1
  58. diffusers/models/unet_2d_condition.py +1 -1
  59. diffusers/models/unets/__init__.py +1 -0
  60. diffusers/models/unets/unet_1d.py +1 -1
  61. diffusers/models/unets/unet_1d_blocks.py +1 -1
  62. diffusers/models/unets/unet_2d.py +4 -4
  63. diffusers/models/unets/unet_2d_blocks.py +238 -98
  64. diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
  65. diffusers/models/unets/unet_2d_condition.py +420 -323
  66. diffusers/models/unets/unet_2d_condition_flax.py +21 -12
  67. diffusers/models/unets/unet_3d_blocks.py +50 -40
  68. diffusers/models/unets/unet_3d_condition.py +47 -8
  69. diffusers/models/unets/unet_i2vgen_xl.py +75 -30
  70. diffusers/models/unets/unet_kandinsky3.py +1 -1
  71. diffusers/models/unets/unet_motion_model.py +48 -8
  72. diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
  73. diffusers/models/unets/unet_stable_cascade.py +610 -0
  74. diffusers/models/unets/uvit_2d.py +1 -1
  75. diffusers/models/upsampling.py +10 -16
  76. diffusers/models/vae_flax.py +1 -1
  77. diffusers/models/vq_model.py +1 -1
  78. diffusers/optimization.py +1 -1
  79. diffusers/pipelines/__init__.py +26 -0
  80. diffusers/pipelines/amused/pipeline_amused.py +1 -1
  81. diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
  82. diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
  83. diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
  84. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
  85. diffusers/pipelines/animatediff/pipeline_output.py +7 -6
  86. diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
  87. diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
  88. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
  89. diffusers/pipelines/auto_pipeline.py +7 -16
  90. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  91. diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
  92. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
  93. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  94. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
  95. diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
  96. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  97. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
  98. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
  99. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
  100. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
  101. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
  102. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  103. diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
  104. diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
  105. diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
  106. diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
  107. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
  108. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
  109. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
  110. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
  111. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
  112. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
  113. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
  114. diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
  115. diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
  116. diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
  117. diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
  118. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
  119. diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
  120. diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
  121. diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
  122. diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
  123. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
  124. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
  125. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
  126. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
  127. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
  128. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
  129. diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
  130. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
  131. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
  132. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
  133. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
  134. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
  135. diffusers/pipelines/dit/pipeline_dit.py +1 -1
  136. diffusers/pipelines/free_init_utils.py +184 -0
  137. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
  138. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
  139. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
  140. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
  141. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
  142. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
  143. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
  144. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
  145. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
  146. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
  147. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
  148. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
  149. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
  150. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
  151. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
  152. diffusers/pipelines/ledits_pp/__init__.py +55 -0
  153. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
  154. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
  155. diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
  156. diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
  157. diffusers/pipelines/onnx_utils.py +1 -1
  158. diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
  159. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
  160. diffusers/pipelines/pia/pipeline_pia.py +168 -327
  161. diffusers/pipelines/pipeline_flax_utils.py +1 -1
  162. diffusers/pipelines/pipeline_loading_utils.py +508 -0
  163. diffusers/pipelines/pipeline_utils.py +188 -534
  164. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
  165. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
  166. diffusers/pipelines/shap_e/camera.py +1 -1
  167. diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
  168. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
  169. diffusers/pipelines/shap_e/renderer.py +1 -1
  170. diffusers/pipelines/stable_cascade/__init__.py +50 -0
  171. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
  172. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
  173. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
  174. diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
  175. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
  176. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  177. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
  178. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
  179. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
  180. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
  181. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
  182. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
  183. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
  184. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
  185. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
  186. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
  187. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
  188. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
  189. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
  190. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
  191. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
  192. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
  193. diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
  194. diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
  195. diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
  196. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
  197. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
  198. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
  199. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
  200. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
  201. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
  202. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
  203. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
  204. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
  205. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  206. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
  207. diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
  208. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
  209. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
  210. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
  211. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
  212. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
  213. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
  214. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
  215. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
  216. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
  217. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
  218. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
  219. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
  220. diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
  221. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
  222. diffusers/pipelines/unclip/text_proj.py +1 -1
  223. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
  224. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
  225. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
  226. diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
  227. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
  228. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
  229. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
  230. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
  231. diffusers/schedulers/__init__.py +7 -1
  232. diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
  233. diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
  234. diffusers/schedulers/scheduling_consistency_models.py +42 -19
  235. diffusers/schedulers/scheduling_ddim.py +2 -4
  236. diffusers/schedulers/scheduling_ddim_flax.py +13 -5
  237. diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
  238. diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
  239. diffusers/schedulers/scheduling_ddpm.py +2 -4
  240. diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
  241. diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
  242. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
  243. diffusers/schedulers/scheduling_deis_multistep.py +46 -19
  244. diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
  245. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
  246. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
  247. diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
  248. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +52 -21
  249. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
  250. diffusers/schedulers/scheduling_edm_euler.py +381 -0
  251. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
  252. diffusers/schedulers/scheduling_euler_discrete.py +42 -17
  253. diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
  254. diffusers/schedulers/scheduling_heun_discrete.py +35 -35
  255. diffusers/schedulers/scheduling_ipndm.py +37 -11
  256. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
  257. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
  258. diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
  259. diffusers/schedulers/scheduling_lcm.py +38 -14
  260. diffusers/schedulers/scheduling_lms_discrete.py +43 -15
  261. diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
  262. diffusers/schedulers/scheduling_pndm.py +2 -4
  263. diffusers/schedulers/scheduling_pndm_flax.py +2 -4
  264. diffusers/schedulers/scheduling_repaint.py +1 -1
  265. diffusers/schedulers/scheduling_sasolver.py +41 -9
  266. diffusers/schedulers/scheduling_sde_ve.py +1 -1
  267. diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
  268. diffusers/schedulers/scheduling_tcd.py +686 -0
  269. diffusers/schedulers/scheduling_unclip.py +1 -1
  270. diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
  271. diffusers/schedulers/scheduling_utils.py +2 -1
  272. diffusers/schedulers/scheduling_utils_flax.py +1 -1
  273. diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
  274. diffusers/training_utils.py +9 -2
  275. diffusers/utils/__init__.py +2 -1
  276. diffusers/utils/accelerate_utils.py +1 -1
  277. diffusers/utils/constants.py +1 -1
  278. diffusers/utils/doc_utils.py +1 -1
  279. diffusers/utils/dummy_pt_objects.py +60 -0
  280. diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
  281. diffusers/utils/dynamic_modules_utils.py +1 -1
  282. diffusers/utils/export_utils.py +3 -3
  283. diffusers/utils/hub_utils.py +60 -16
  284. diffusers/utils/import_utils.py +15 -1
  285. diffusers/utils/loading_utils.py +2 -0
  286. diffusers/utils/logging.py +1 -1
  287. diffusers/utils/model_card_template.md +24 -0
  288. diffusers/utils/outputs.py +14 -7
  289. diffusers/utils/peft_utils.py +1 -1
  290. diffusers/utils/state_dict_utils.py +1 -1
  291. diffusers/utils/testing_utils.py +2 -0
  292. diffusers/utils/torch_utils.py +1 -1
  293. {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/METADATA +5 -5
  294. diffusers-0.27.0.dist-info/RECORD +399 -0
  295. diffusers-0.26.2.dist-info/RECORD +0 -384
  296. {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
  297. {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/WHEEL +0 -0
  298. {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
  299. {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,638 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from dataclasses import dataclass
16
+ from math import ceil
17
+ from typing import Callable, Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+ import PIL
21
+ import torch
22
+ from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection
23
+
24
+ from ...models import StableCascadeUNet
25
+ from ...schedulers import DDPMWuerstchenScheduler
26
+ from ...utils import BaseOutput, logging, replace_example_docstring
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..pipeline_utils import DiffusionPipeline
29
+
30
+
31
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
32
+
33
+ DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:]
34
+
35
+ EXAMPLE_DOC_STRING = """
36
+ Examples:
37
+ ```py
38
+ >>> import torch
39
+ >>> from diffusers import StableCascadePriorPipeline
40
+
41
+ >>> prior_pipe = StableCascadePriorPipeline.from_pretrained(
42
+ ... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16
43
+ ... ).to("cuda")
44
+
45
+ >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
46
+ >>> prior_output = pipe(prompt)
47
+ ```
48
+ """
49
+
50
+
51
+ @dataclass
52
+ class StableCascadePriorPipelineOutput(BaseOutput):
53
+ """
54
+ Output class for WuerstchenPriorPipeline.
55
+
56
+ Args:
57
+ image_embeddings (`torch.FloatTensor` or `np.ndarray`)
58
+ Prior image embeddings for text prompt
59
+ prompt_embeds (`torch.FloatTensor`):
60
+ Text embeddings for the prompt.
61
+ negative_prompt_embeds (`torch.FloatTensor`):
62
+ Text embeddings for the negative prompt.
63
+ """
64
+
65
+ image_embeddings: Union[torch.FloatTensor, np.ndarray]
66
+ prompt_embeds: Union[torch.FloatTensor, np.ndarray]
67
+ prompt_embeds_pooled: Union[torch.FloatTensor, np.ndarray]
68
+ negative_prompt_embeds: Union[torch.FloatTensor, np.ndarray]
69
+ negative_prompt_embeds_pooled: Union[torch.FloatTensor, np.ndarray]
70
+
71
+
72
+ class StableCascadePriorPipeline(DiffusionPipeline):
73
+ """
74
+ Pipeline for generating image prior for Stable Cascade.
75
+
76
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
77
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
78
+
79
+ Args:
80
+ prior ([`StableCascadeUNet`]):
81
+ The Stable Cascade prior to approximate the image embedding from the text and/or image embedding.
82
+ text_encoder ([`CLIPTextModelWithProjection`]):
83
+ Frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
84
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
85
+ Model that extracts features from generated images to be used as inputs for the `image_encoder`.
86
+ image_encoder ([`CLIPVisionModelWithProjection`]):
87
+ Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
88
+ tokenizer (`CLIPTokenizer`):
89
+ Tokenizer of class
90
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
91
+ scheduler ([`DDPMWuerstchenScheduler`]):
92
+ A scheduler to be used in combination with `prior` to generate image embedding.
93
+ resolution_multiple ('float', *optional*, defaults to 42.67):
94
+ Default resolution for multiple images generated.
95
+ """
96
+
97
+ unet_name = "prior"
98
+ text_encoder_name = "text_encoder"
99
+ model_cpu_offload_seq = "image_encoder->text_encoder->prior"
100
+ _optional_components = ["image_encoder", "feature_extractor"]
101
+ _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"]
102
+
103
+ def __init__(
104
+ self,
105
+ tokenizer: CLIPTokenizer,
106
+ text_encoder: CLIPTextModelWithProjection,
107
+ prior: StableCascadeUNet,
108
+ scheduler: DDPMWuerstchenScheduler,
109
+ resolution_multiple: float = 42.67,
110
+ feature_extractor: Optional[CLIPImageProcessor] = None,
111
+ image_encoder: Optional[CLIPVisionModelWithProjection] = None,
112
+ ) -> None:
113
+ super().__init__()
114
+ self.register_modules(
115
+ tokenizer=tokenizer,
116
+ text_encoder=text_encoder,
117
+ image_encoder=image_encoder,
118
+ feature_extractor=feature_extractor,
119
+ prior=prior,
120
+ scheduler=scheduler,
121
+ )
122
+ self.register_to_config(resolution_multiple=resolution_multiple)
123
+
124
+ def prepare_latents(
125
+ self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler
126
+ ):
127
+ latent_shape = (
128
+ num_images_per_prompt * batch_size,
129
+ self.prior.config.in_channels,
130
+ ceil(height / self.config.resolution_multiple),
131
+ ceil(width / self.config.resolution_multiple),
132
+ )
133
+
134
+ if latents is None:
135
+ latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype)
136
+ else:
137
+ if latents.shape != latent_shape:
138
+ raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}")
139
+ latents = latents.to(device)
140
+
141
+ latents = latents * scheduler.init_noise_sigma
142
+ return latents
143
+
144
+ def encode_prompt(
145
+ self,
146
+ device,
147
+ batch_size,
148
+ num_images_per_prompt,
149
+ do_classifier_free_guidance,
150
+ prompt=None,
151
+ negative_prompt=None,
152
+ prompt_embeds: Optional[torch.FloatTensor] = None,
153
+ prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
154
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
155
+ negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
156
+ ):
157
+ if prompt_embeds is None:
158
+ # get prompt text embeddings
159
+ text_inputs = self.tokenizer(
160
+ prompt,
161
+ padding="max_length",
162
+ max_length=self.tokenizer.model_max_length,
163
+ truncation=True,
164
+ return_tensors="pt",
165
+ )
166
+ text_input_ids = text_inputs.input_ids
167
+ attention_mask = text_inputs.attention_mask
168
+
169
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
170
+
171
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
172
+ text_input_ids, untruncated_ids
173
+ ):
174
+ removed_text = self.tokenizer.batch_decode(
175
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
176
+ )
177
+ logger.warning(
178
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
179
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
180
+ )
181
+ text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
182
+ attention_mask = attention_mask[:, : self.tokenizer.model_max_length]
183
+
184
+ text_encoder_output = self.text_encoder(
185
+ text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True
186
+ )
187
+ prompt_embeds = text_encoder_output.hidden_states[-1]
188
+ if prompt_embeds_pooled is None:
189
+ prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1)
190
+
191
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
192
+ prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device)
193
+ prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
194
+ prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0)
195
+
196
+ if negative_prompt_embeds is None and do_classifier_free_guidance:
197
+ uncond_tokens: List[str]
198
+ if negative_prompt is None:
199
+ uncond_tokens = [""] * batch_size
200
+ elif type(prompt) is not type(negative_prompt):
201
+ raise TypeError(
202
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
203
+ f" {type(prompt)}."
204
+ )
205
+ elif isinstance(negative_prompt, str):
206
+ uncond_tokens = [negative_prompt]
207
+ elif batch_size != len(negative_prompt):
208
+ raise ValueError(
209
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
210
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
211
+ " the batch size of `prompt`."
212
+ )
213
+ else:
214
+ uncond_tokens = negative_prompt
215
+
216
+ uncond_input = self.tokenizer(
217
+ uncond_tokens,
218
+ padding="max_length",
219
+ max_length=self.tokenizer.model_max_length,
220
+ truncation=True,
221
+ return_tensors="pt",
222
+ )
223
+ negative_prompt_embeds_text_encoder_output = self.text_encoder(
224
+ uncond_input.input_ids.to(device),
225
+ attention_mask=uncond_input.attention_mask.to(device),
226
+ output_hidden_states=True,
227
+ )
228
+
229
+ negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1]
230
+ negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1)
231
+
232
+ if do_classifier_free_guidance:
233
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
234
+ seq_len = negative_prompt_embeds.shape[1]
235
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
236
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
237
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
238
+
239
+ seq_len = negative_prompt_embeds_pooled.shape[1]
240
+ negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to(
241
+ dtype=self.text_encoder.dtype, device=device
242
+ )
243
+ negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1)
244
+ negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view(
245
+ batch_size * num_images_per_prompt, seq_len, -1
246
+ )
247
+ # done duplicates
248
+
249
+ return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled
250
+
251
+ def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt):
252
+ image_embeds = []
253
+ for image in images:
254
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
255
+ image = image.to(device=device, dtype=dtype)
256
+ image_embed = self.image_encoder(image).image_embeds.unsqueeze(1)
257
+ image_embeds.append(image_embed)
258
+ image_embeds = torch.cat(image_embeds, dim=1)
259
+
260
+ image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1)
261
+ negative_image_embeds = torch.zeros_like(image_embeds)
262
+
263
+ return image_embeds, negative_image_embeds
264
+
265
+ def check_inputs(
266
+ self,
267
+ prompt,
268
+ images=None,
269
+ image_embeds=None,
270
+ negative_prompt=None,
271
+ prompt_embeds=None,
272
+ prompt_embeds_pooled=None,
273
+ negative_prompt_embeds=None,
274
+ negative_prompt_embeds_pooled=None,
275
+ callback_on_step_end_tensor_inputs=None,
276
+ ):
277
+ if callback_on_step_end_tensor_inputs is not None and not all(
278
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
279
+ ):
280
+ raise ValueError(
281
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
282
+ )
283
+
284
+ if prompt is not None and prompt_embeds is not None:
285
+ raise ValueError(
286
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
287
+ " only forward one of the two."
288
+ )
289
+ elif prompt is None and prompt_embeds is None:
290
+ raise ValueError(
291
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
292
+ )
293
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
294
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
295
+
296
+ if negative_prompt is not None and negative_prompt_embeds is not None:
297
+ raise ValueError(
298
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
299
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
300
+ )
301
+
302
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
303
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
304
+ raise ValueError(
305
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
306
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
307
+ f" {negative_prompt_embeds.shape}."
308
+ )
309
+
310
+ if prompt_embeds is not None and prompt_embeds_pooled is None:
311
+ raise ValueError(
312
+ "If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`"
313
+ )
314
+
315
+ if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None:
316
+ raise ValueError(
317
+ "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`"
318
+ )
319
+
320
+ if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None:
321
+ if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape:
322
+ raise ValueError(
323
+ "`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passed"
324
+ f"directly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !="
325
+ f"`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}."
326
+ )
327
+
328
+ if image_embeds is not None and images is not None:
329
+ raise ValueError(
330
+ f"Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to"
331
+ " only forward one of the two."
332
+ )
333
+
334
+ if images:
335
+ for i, image in enumerate(images):
336
+ if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image):
337
+ raise TypeError(
338
+ f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got"
339
+ f"{type(image)} for image number {i}."
340
+ )
341
+
342
+ @property
343
+ def guidance_scale(self):
344
+ return self._guidance_scale
345
+
346
+ @property
347
+ def do_classifier_free_guidance(self):
348
+ return self._guidance_scale > 1
349
+
350
+ @property
351
+ def num_timesteps(self):
352
+ return self._num_timesteps
353
+
354
+ def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
355
+ s = torch.tensor([0.003])
356
+ clamp_range = [0, 1]
357
+ min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
358
+ var = alphas_cumprod[t]
359
+ var = var.clamp(*clamp_range)
360
+ s, min_var = s.to(var.device), min_var.to(var.device)
361
+ ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
362
+ return ratio
363
+
364
+ @torch.no_grad()
365
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
366
+ def __call__(
367
+ self,
368
+ prompt: Optional[Union[str, List[str]]] = None,
369
+ images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None,
370
+ height: int = 1024,
371
+ width: int = 1024,
372
+ num_inference_steps: int = 20,
373
+ timesteps: List[float] = None,
374
+ guidance_scale: float = 4.0,
375
+ negative_prompt: Optional[Union[str, List[str]]] = None,
376
+ prompt_embeds: Optional[torch.FloatTensor] = None,
377
+ prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
378
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
379
+ negative_prompt_embeds_pooled: Optional[torch.FloatTensor] = None,
380
+ image_embeds: Optional[torch.FloatTensor] = None,
381
+ num_images_per_prompt: Optional[int] = 1,
382
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
383
+ latents: Optional[torch.FloatTensor] = None,
384
+ output_type: Optional[str] = "pt",
385
+ return_dict: bool = True,
386
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
387
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
388
+ ):
389
+ """
390
+ Function invoked when calling the pipeline for generation.
391
+
392
+ Args:
393
+ prompt (`str` or `List[str]`):
394
+ The prompt or prompts to guide the image generation.
395
+ height (`int`, *optional*, defaults to 1024):
396
+ The height in pixels of the generated image.
397
+ width (`int`, *optional*, defaults to 1024):
398
+ The width in pixels of the generated image.
399
+ num_inference_steps (`int`, *optional*, defaults to 60):
400
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
401
+ expense of slower inference.
402
+ guidance_scale (`float`, *optional*, defaults to 8.0):
403
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
404
+ `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen
405
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting
406
+ `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely
407
+ linked to the text `prompt`, usually at the expense of lower image quality.
408
+ negative_prompt (`str` or `List[str]`, *optional*):
409
+ The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
410
+ if `decoder_guidance_scale` is less than `1`).
411
+ prompt_embeds (`torch.FloatTensor`, *optional*):
412
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
413
+ provided, text embeddings will be generated from `prompt` input argument.
414
+ prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
415
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
416
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
417
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
418
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
419
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
420
+ argument.
421
+ negative_prompt_embeds_pooled (`torch.FloatTensor`, *optional*):
422
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
423
+ weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input
424
+ argument.
425
+ image_embeds (`torch.FloatTensor`, *optional*):
426
+ Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting.
427
+ If not provided, image embeddings will be generated from `image` input argument if existing.
428
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
429
+ The number of images to generate per prompt.
430
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
431
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
432
+ to make generation deterministic.
433
+ latents (`torch.FloatTensor`, *optional*):
434
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
435
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
436
+ tensor will ge generated by sampling using the supplied random `generator`.
437
+ output_type (`str`, *optional*, defaults to `"pil"`):
438
+ The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"`
439
+ (`np.array`) or `"pt"` (`torch.Tensor`).
440
+ return_dict (`bool`, *optional*, defaults to `True`):
441
+ Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
442
+ callback_on_step_end (`Callable`, *optional*):
443
+ A function that calls at the end of each denoising steps during the inference. The function is called
444
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
445
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
446
+ `callback_on_step_end_tensor_inputs`.
447
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
448
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
449
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
450
+ `._callback_tensor_inputs` attribute of your pipeline class.
451
+
452
+ Examples:
453
+
454
+ Returns:
455
+ [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if
456
+ `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the
457
+ generated image embeddings.
458
+ """
459
+
460
+ # 0. Define commonly used variables
461
+ device = self._execution_device
462
+ dtype = next(self.prior.parameters()).dtype
463
+ self._guidance_scale = guidance_scale
464
+ if prompt is not None and isinstance(prompt, str):
465
+ batch_size = 1
466
+ elif prompt is not None and isinstance(prompt, list):
467
+ batch_size = len(prompt)
468
+ else:
469
+ batch_size = prompt_embeds.shape[0]
470
+
471
+ # 1. Check inputs. Raise error if not correct
472
+ self.check_inputs(
473
+ prompt,
474
+ images=images,
475
+ image_embeds=image_embeds,
476
+ negative_prompt=negative_prompt,
477
+ prompt_embeds=prompt_embeds,
478
+ prompt_embeds_pooled=prompt_embeds_pooled,
479
+ negative_prompt_embeds=negative_prompt_embeds,
480
+ negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
481
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
482
+ )
483
+
484
+ # 2. Encode caption + images
485
+ (
486
+ prompt_embeds,
487
+ prompt_embeds_pooled,
488
+ negative_prompt_embeds,
489
+ negative_prompt_embeds_pooled,
490
+ ) = self.encode_prompt(
491
+ prompt=prompt,
492
+ device=device,
493
+ batch_size=batch_size,
494
+ num_images_per_prompt=num_images_per_prompt,
495
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
496
+ negative_prompt=negative_prompt,
497
+ prompt_embeds=prompt_embeds,
498
+ prompt_embeds_pooled=prompt_embeds_pooled,
499
+ negative_prompt_embeds=negative_prompt_embeds,
500
+ negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
501
+ )
502
+
503
+ if images is not None:
504
+ image_embeds_pooled, uncond_image_embeds_pooled = self.encode_image(
505
+ images=images,
506
+ device=device,
507
+ dtype=dtype,
508
+ batch_size=batch_size,
509
+ num_images_per_prompt=num_images_per_prompt,
510
+ )
511
+ elif image_embeds is not None:
512
+ image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1)
513
+ uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled)
514
+ else:
515
+ image_embeds_pooled = torch.zeros(
516
+ batch_size * num_images_per_prompt,
517
+ 1,
518
+ self.prior.config.clip_image_in_channels,
519
+ device=device,
520
+ dtype=dtype,
521
+ )
522
+ uncond_image_embeds_pooled = torch.zeros(
523
+ batch_size * num_images_per_prompt,
524
+ 1,
525
+ self.prior.config.clip_image_in_channels,
526
+ device=device,
527
+ dtype=dtype,
528
+ )
529
+
530
+ if self.do_classifier_free_guidance:
531
+ image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0)
532
+ else:
533
+ image_embeds = image_embeds_pooled
534
+
535
+ # For classifier free guidance, we need to do two forward passes.
536
+ # Here we concatenate the unconditional and text embeddings into a single batch
537
+ # to avoid doing two forward passes
538
+ text_encoder_hidden_states = (
539
+ torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds
540
+ )
541
+ text_encoder_pooled = (
542
+ torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled])
543
+ if negative_prompt_embeds is not None
544
+ else prompt_embeds_pooled
545
+ )
546
+
547
+ # 4. Prepare and set timesteps
548
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
549
+ timesteps = self.scheduler.timesteps
550
+
551
+ # 5. Prepare latents
552
+ latents = self.prepare_latents(
553
+ batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
554
+ )
555
+
556
+ if isinstance(self.scheduler, DDPMWuerstchenScheduler):
557
+ timesteps = timesteps[:-1]
558
+ else:
559
+ if self.scheduler.config.clip_sample:
560
+ self.scheduler.config.clip_sample = False # disample sample clipping
561
+ logger.warning(" set `clip_sample` to be False")
562
+ # 6. Run denoising loop
563
+ if hasattr(self.scheduler, "betas"):
564
+ alphas = 1.0 - self.scheduler.betas
565
+ alphas_cumprod = torch.cumprod(alphas, dim=0)
566
+ else:
567
+ alphas_cumprod = []
568
+
569
+ self._num_timesteps = len(timesteps)
570
+ for i, t in enumerate(self.progress_bar(timesteps)):
571
+ if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
572
+ if len(alphas_cumprod) > 0:
573
+ timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod)
574
+ timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device)
575
+ else:
576
+ timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype)
577
+ else:
578
+ timestep_ratio = t.expand(latents.size(0)).to(dtype)
579
+ # 7. Denoise image embeddings
580
+ predicted_image_embedding = self.prior(
581
+ sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents,
582
+ timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio,
583
+ clip_text_pooled=text_encoder_pooled,
584
+ clip_text=text_encoder_hidden_states,
585
+ clip_img=image_embeds,
586
+ return_dict=False,
587
+ )[0]
588
+
589
+ # 8. Check for classifier free guidance and apply it
590
+ if self.do_classifier_free_guidance:
591
+ predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2)
592
+ predicted_image_embedding = torch.lerp(
593
+ predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale
594
+ )
595
+
596
+ # 9. Renoise latents to next timestep
597
+ if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
598
+ timestep_ratio = t
599
+ latents = self.scheduler.step(
600
+ model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator
601
+ ).prev_sample
602
+
603
+ if callback_on_step_end is not None:
604
+ callback_kwargs = {}
605
+ for k in callback_on_step_end_tensor_inputs:
606
+ callback_kwargs[k] = locals()[k]
607
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
608
+
609
+ latents = callback_outputs.pop("latents", latents)
610
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
611
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
612
+
613
+ # Offload all models
614
+ self.maybe_free_model_hooks()
615
+
616
+ if output_type == "np":
617
+ latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
618
+ prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work
619
+ negative_prompt_embeds = (
620
+ negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None
621
+ ) # float() as bfloat16-> numpy doesnt work
622
+
623
+ if not return_dict:
624
+ return (
625
+ latents,
626
+ prompt_embeds,
627
+ prompt_embeds_pooled,
628
+ negative_prompt_embeds,
629
+ negative_prompt_embeds_pooled,
630
+ )
631
+
632
+ return StableCascadePriorPipelineOutput(
633
+ image_embeddings=latents,
634
+ prompt_embeds=prompt_embeds,
635
+ prompt_embeds_pooled=prompt_embeds_pooled,
636
+ negative_prompt_embeds=negative_prompt_embeds,
637
+ negative_prompt_embeds_pooled=negative_prompt_embeds_pooled,
638
+ )
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The GLIGEN Authors and HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The GLIGEN Authors and HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -1,5 +1,5 @@
1
1
  # coding=utf-8
2
- # Copyright 2023 The HuggingFace Inc. team.
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
5
5
  # you may not use this file except in compliance with the License.
@@ -1320,6 +1320,9 @@ def download_from_original_stable_diffusion_ckpt(
1320
1320
  else:
1321
1321
  with open(original_config_file, "r") as f:
1322
1322
  original_config_file = f.read()
1323
+ else:
1324
+ with open(original_config_file, "r") as f:
1325
+ original_config_file = f.read()
1323
1326
 
1324
1327
  original_config = yaml.safe_load(original_config_file)
1325
1328
 
@@ -1,4 +1,4 @@
1
- # Copyright 2023 The HuggingFace Team. All rights reserved.
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.