diffusers 0.26.2__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +28 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +278 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +52 -21
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/METADATA +5 -5
- diffusers-0.27.0.dist-info/RECORD +399 -0
- diffusers-0.26.2.dist-info/RECORD +0 -384
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/WHEEL +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -22,21 +22,16 @@ import torch
|
|
22
22
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
23
23
|
|
24
24
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
25
|
-
from ...loaders import LoraLoaderMixin
|
26
25
|
from ...models import AutoencoderKL
|
27
|
-
from ...models.lora import adjust_lora_scale_text_encoder
|
28
26
|
from ...models.unets.unet_i2vgen_xl import I2VGenXLUNet
|
29
27
|
from ...schedulers import DDIMScheduler
|
30
28
|
from ...utils import (
|
31
|
-
USE_PEFT_BACKEND,
|
32
29
|
BaseOutput,
|
33
30
|
logging,
|
34
31
|
replace_example_docstring,
|
35
|
-
scale_lora_layers,
|
36
|
-
unscale_lora_layers,
|
37
32
|
)
|
38
33
|
from ...utils.torch_utils import randn_tensor
|
39
|
-
from ..pipeline_utils import DiffusionPipeline
|
34
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
40
35
|
|
41
36
|
|
42
37
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -46,11 +41,12 @@ EXAMPLE_DOC_STRING = """
|
|
46
41
|
```py
|
47
42
|
>>> import torch
|
48
43
|
>>> from diffusers import I2VGenXLPipeline
|
44
|
+
>>> from diffusers.utils import export_to_gif, load_image
|
49
45
|
|
50
46
|
>>> pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
|
51
47
|
>>> pipeline.enable_model_cpu_offload()
|
52
48
|
|
53
|
-
>>> image_url = "https://
|
49
|
+
>>> image_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
|
54
50
|
>>> image = load_image(image_url).convert("RGB")
|
55
51
|
|
56
52
|
>>> prompt = "Papers were floating in the air on a table in the library"
|
@@ -87,7 +83,7 @@ def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type:
|
|
87
83
|
outputs = torch.stack(outputs)
|
88
84
|
|
89
85
|
elif not output_type == "pil":
|
90
|
-
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]")
|
86
|
+
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
|
91
87
|
|
92
88
|
return outputs
|
93
89
|
|
@@ -95,18 +91,22 @@ def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type:
|
|
95
91
|
@dataclass
|
96
92
|
class I2VGenXLPipelineOutput(BaseOutput):
|
97
93
|
r"""
|
98
|
-
|
94
|
+
Output class for image-to-video pipeline.
|
99
95
|
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
96
|
+
Args:
|
97
|
+
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
98
|
+
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised
|
99
|
+
PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
100
|
+
`(batch_size, num_frames, channels, height, width)`
|
104
101
|
"""
|
105
102
|
|
106
|
-
frames: Union[
|
103
|
+
frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]
|
107
104
|
|
108
105
|
|
109
|
-
class I2VGenXLPipeline(
|
106
|
+
class I2VGenXLPipeline(
|
107
|
+
DiffusionPipeline,
|
108
|
+
StableDiffusionMixin,
|
109
|
+
):
|
110
110
|
r"""
|
111
111
|
Pipeline for image-to-video generation as proposed in [I2VGenXL](https://i2vgen-xl.github.io/).
|
112
112
|
|
@@ -164,39 +164,6 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
164
164
|
def do_classifier_free_guidance(self):
|
165
165
|
return self._guidance_scale > 1
|
166
166
|
|
167
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
168
|
-
def enable_vae_slicing(self):
|
169
|
-
r"""
|
170
|
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
171
|
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
172
|
-
"""
|
173
|
-
self.vae.enable_slicing()
|
174
|
-
|
175
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
176
|
-
def disable_vae_slicing(self):
|
177
|
-
r"""
|
178
|
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
179
|
-
computing decoding in one step.
|
180
|
-
"""
|
181
|
-
self.vae.disable_slicing()
|
182
|
-
|
183
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
184
|
-
def enable_vae_tiling(self):
|
185
|
-
r"""
|
186
|
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
187
|
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
188
|
-
processing larger images.
|
189
|
-
"""
|
190
|
-
self.vae.enable_tiling()
|
191
|
-
|
192
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
193
|
-
def disable_vae_tiling(self):
|
194
|
-
r"""
|
195
|
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
196
|
-
computing decoding in one step.
|
197
|
-
"""
|
198
|
-
self.vae.disable_tiling()
|
199
|
-
|
200
167
|
def encode_prompt(
|
201
168
|
self,
|
202
169
|
prompt,
|
@@ -205,7 +172,6 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
205
172
|
negative_prompt=None,
|
206
173
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
207
174
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
208
|
-
lora_scale: Optional[float] = None,
|
209
175
|
clip_skip: Optional[int] = None,
|
210
176
|
):
|
211
177
|
r"""
|
@@ -231,23 +197,10 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
231
197
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
232
198
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
233
199
|
argument.
|
234
|
-
lora_scale (`float`, *optional*):
|
235
|
-
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
236
200
|
clip_skip (`int`, *optional*):
|
237
201
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
238
202
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
239
203
|
"""
|
240
|
-
# set lora scale so that monkey patched LoRA
|
241
|
-
# function of text encoder can correctly access it
|
242
|
-
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
243
|
-
self._lora_scale = lora_scale
|
244
|
-
|
245
|
-
# dynamically adjust the LoRA scale
|
246
|
-
if not USE_PEFT_BACKEND:
|
247
|
-
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
248
|
-
else:
|
249
|
-
scale_lora_layers(self.text_encoder, lora_scale)
|
250
|
-
|
251
204
|
if prompt is not None and isinstance(prompt, str):
|
252
205
|
batch_size = 1
|
253
206
|
elif prompt is not None and isinstance(prompt, list):
|
@@ -378,10 +331,6 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
378
331
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
379
332
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
380
333
|
|
381
|
-
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
382
|
-
# Retrieve the original scale by scaling back the LoRA layers
|
383
|
-
unscale_lora_layers(self.text_encoder, lora_scale)
|
384
|
-
|
385
334
|
return prompt_embeds, negative_prompt_embeds
|
386
335
|
|
387
336
|
def _encode_image(self, image, device, num_videos_per_prompt):
|
@@ -563,34 +512,6 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
563
512
|
latents = latents * self.scheduler.init_noise_sigma
|
564
513
|
return latents
|
565
514
|
|
566
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
567
|
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
568
|
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
569
|
-
|
570
|
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
571
|
-
|
572
|
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
573
|
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
574
|
-
|
575
|
-
Args:
|
576
|
-
s1 (`float`):
|
577
|
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
578
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
579
|
-
s2 (`float`):
|
580
|
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
581
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
582
|
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
583
|
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
584
|
-
"""
|
585
|
-
if not hasattr(self, "unet"):
|
586
|
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
587
|
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
588
|
-
|
589
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
590
|
-
def disable_freeu(self):
|
591
|
-
"""Disables the FreeU mechanism if enabled."""
|
592
|
-
self.unet.disable_freeu()
|
593
|
-
|
594
515
|
@torch.no_grad()
|
595
516
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
596
517
|
def __call__(
|
@@ -704,9 +625,6 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
704
625
|
self._guidance_scale = guidance_scale
|
705
626
|
|
706
627
|
# 3.1 Encode input text prompt
|
707
|
-
text_encoder_lora_scale = (
|
708
|
-
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
709
|
-
)
|
710
628
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
711
629
|
prompt,
|
712
630
|
device,
|
@@ -714,7 +632,6 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
714
632
|
negative_prompt,
|
715
633
|
prompt_embeds=prompt_embeds,
|
716
634
|
negative_prompt_embeds=negative_prompt_embeds,
|
717
|
-
lora_scale=text_encoder_lora_scale,
|
718
635
|
clip_skip=clip_skip,
|
719
636
|
)
|
720
637
|
# For classifier free guidance, we need to do two forward passes.
|
@@ -809,13 +726,14 @@ class I2VGenXLPipeline(DiffusionPipeline):
|
|
809
726
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
810
727
|
progress_bar.update()
|
811
728
|
|
729
|
+
# 8. Post processing
|
812
730
|
if output_type == "latent":
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
|
731
|
+
video = latents
|
732
|
+
else:
|
733
|
+
video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size)
|
734
|
+
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
|
817
735
|
|
818
|
-
# Offload all models
|
736
|
+
# 9. Offload all models
|
819
737
|
self.maybe_free_model_hooks()
|
820
738
|
|
821
739
|
if not return_dict:
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -481,7 +481,7 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
|
|
481
481
|
if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse(
|
482
482
|
"0.23.0.dev0"
|
483
483
|
):
|
484
|
-
logger.
|
484
|
+
logger.warning(
|
485
485
|
"Please note that the expected format of `mask_image` has recently been changed. "
|
486
486
|
"Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. "
|
487
487
|
"As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. "
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -372,7 +372,7 @@ class KandinskyV22InpaintPipeline(DiffusionPipeline):
|
|
372
372
|
if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse(
|
373
373
|
"0.23.0.dev0"
|
374
374
|
):
|
375
|
-
logger.
|
375
|
+
logger.warning(
|
376
376
|
"Please note that the expected format of `mask_image` has recently been changed. "
|
377
377
|
"Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. "
|
378
378
|
"As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. "
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -36,7 +36,7 @@ from ...utils import (
|
|
36
36
|
unscale_lora_layers,
|
37
37
|
)
|
38
38
|
from ...utils.torch_utils import randn_tensor
|
39
|
-
from ..pipeline_utils import DiffusionPipeline
|
39
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
40
40
|
from ..stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
41
41
|
|
42
42
|
|
@@ -129,7 +129,12 @@ EXAMPLE_DOC_STRING = """
|
|
129
129
|
|
130
130
|
|
131
131
|
class LatentConsistencyModelImg2ImgPipeline(
|
132
|
-
DiffusionPipeline,
|
132
|
+
DiffusionPipeline,
|
133
|
+
StableDiffusionMixin,
|
134
|
+
TextualInversionLoaderMixin,
|
135
|
+
IPAdapterMixin,
|
136
|
+
LoraLoaderMixin,
|
137
|
+
FromSingleFileMixin,
|
133
138
|
):
|
134
139
|
r"""
|
135
140
|
Pipeline for image-to-image generation using a latent consistency model.
|
@@ -209,67 +214,6 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
209
214
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
210
215
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
211
216
|
|
212
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
213
|
-
def enable_vae_slicing(self):
|
214
|
-
r"""
|
215
|
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
216
|
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
217
|
-
"""
|
218
|
-
self.vae.enable_slicing()
|
219
|
-
|
220
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
221
|
-
def disable_vae_slicing(self):
|
222
|
-
r"""
|
223
|
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
224
|
-
computing decoding in one step.
|
225
|
-
"""
|
226
|
-
self.vae.disable_slicing()
|
227
|
-
|
228
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
229
|
-
def enable_vae_tiling(self):
|
230
|
-
r"""
|
231
|
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
232
|
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
233
|
-
processing larger images.
|
234
|
-
"""
|
235
|
-
self.vae.enable_tiling()
|
236
|
-
|
237
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
238
|
-
def disable_vae_tiling(self):
|
239
|
-
r"""
|
240
|
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
241
|
-
computing decoding in one step.
|
242
|
-
"""
|
243
|
-
self.vae.disable_tiling()
|
244
|
-
|
245
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
246
|
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
247
|
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
248
|
-
|
249
|
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
250
|
-
|
251
|
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
252
|
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
253
|
-
|
254
|
-
Args:
|
255
|
-
s1 (`float`):
|
256
|
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
257
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
258
|
-
s2 (`float`):
|
259
|
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
260
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
261
|
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
262
|
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
263
|
-
"""
|
264
|
-
if not hasattr(self, "unet"):
|
265
|
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
266
|
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
267
|
-
|
268
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
269
|
-
def disable_freeu(self):
|
270
|
-
"""Disables the FreeU mechanism if enabled."""
|
271
|
-
self.unet.disable_freeu()
|
272
|
-
|
273
217
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
274
218
|
def encode_prompt(
|
275
219
|
self,
|
@@ -331,7 +275,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
331
275
|
batch_size = prompt_embeds.shape[0]
|
332
276
|
|
333
277
|
if prompt_embeds is None:
|
334
|
-
# textual inversion:
|
278
|
+
# textual inversion: process multi-vector tokens if necessary
|
335
279
|
if isinstance(self, TextualInversionLoaderMixin):
|
336
280
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
337
281
|
|
@@ -413,7 +357,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
413
357
|
else:
|
414
358
|
uncond_tokens = negative_prompt
|
415
359
|
|
416
|
-
# textual inversion:
|
360
|
+
# textual inversion: process multi-vector tokens if necessary
|
417
361
|
if isinstance(self, TextualInversionLoaderMixin):
|
418
362
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
419
363
|
|
@@ -478,31 +422,54 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
478
422
|
return image_embeds, uncond_image_embeds
|
479
423
|
|
480
424
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
481
|
-
def prepare_ip_adapter_image_embeds(
|
482
|
-
|
483
|
-
|
425
|
+
def prepare_ip_adapter_image_embeds(
|
426
|
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
427
|
+
):
|
428
|
+
if ip_adapter_image_embeds is None:
|
429
|
+
if not isinstance(ip_adapter_image, list):
|
430
|
+
ip_adapter_image = [ip_adapter_image]
|
484
431
|
|
485
|
-
|
486
|
-
|
487
|
-
|
488
|
-
|
432
|
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
433
|
+
raise ValueError(
|
434
|
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
435
|
+
)
|
489
436
|
|
490
|
-
|
491
|
-
|
492
|
-
|
493
|
-
|
494
|
-
|
495
|
-
|
496
|
-
|
497
|
-
|
498
|
-
|
499
|
-
|
437
|
+
image_embeds = []
|
438
|
+
for single_ip_adapter_image, image_proj_layer in zip(
|
439
|
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
440
|
+
):
|
441
|
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
442
|
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
443
|
+
single_ip_adapter_image, device, 1, output_hidden_state
|
444
|
+
)
|
445
|
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
446
|
+
single_negative_image_embeds = torch.stack(
|
447
|
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
448
|
+
)
|
500
449
|
|
501
|
-
|
502
|
-
|
503
|
-
|
450
|
+
if do_classifier_free_guidance:
|
451
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
452
|
+
single_image_embeds = single_image_embeds.to(device)
|
504
453
|
|
505
|
-
|
454
|
+
image_embeds.append(single_image_embeds)
|
455
|
+
else:
|
456
|
+
repeat_dims = [1]
|
457
|
+
image_embeds = []
|
458
|
+
for single_image_embeds in ip_adapter_image_embeds:
|
459
|
+
if do_classifier_free_guidance:
|
460
|
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
461
|
+
single_image_embeds = single_image_embeds.repeat(
|
462
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
463
|
+
)
|
464
|
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
465
|
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
466
|
+
)
|
467
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
468
|
+
else:
|
469
|
+
single_image_embeds = single_image_embeds.repeat(
|
470
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
471
|
+
)
|
472
|
+
image_embeds.append(single_image_embeds)
|
506
473
|
|
507
474
|
return image_embeds
|
508
475
|
|
@@ -634,6 +601,8 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
634
601
|
|
635
602
|
t_start = max(num_inference_steps - init_timestep, 0)
|
636
603
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
604
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
605
|
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
637
606
|
|
638
607
|
return timesteps, num_inference_steps - t_start
|
639
608
|
|
@@ -643,6 +612,8 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
643
612
|
strength: float,
|
644
613
|
callback_steps: int,
|
645
614
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
615
|
+
ip_adapter_image=None,
|
616
|
+
ip_adapter_image_embeds=None,
|
646
617
|
callback_on_step_end_tensor_inputs=None,
|
647
618
|
):
|
648
619
|
if strength < 0 or strength > 1:
|
@@ -673,6 +644,21 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
673
644
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
674
645
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
675
646
|
|
647
|
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
648
|
+
raise ValueError(
|
649
|
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
650
|
+
)
|
651
|
+
|
652
|
+
if ip_adapter_image_embeds is not None:
|
653
|
+
if not isinstance(ip_adapter_image_embeds, list):
|
654
|
+
raise ValueError(
|
655
|
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
656
|
+
)
|
657
|
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
658
|
+
raise ValueError(
|
659
|
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
660
|
+
)
|
661
|
+
|
676
662
|
@property
|
677
663
|
def guidance_scale(self):
|
678
664
|
return self._guidance_scale
|
@@ -685,6 +671,10 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
685
671
|
def clip_skip(self):
|
686
672
|
return self._clip_skip
|
687
673
|
|
674
|
+
@property
|
675
|
+
def do_classifier_free_guidance(self):
|
676
|
+
return False
|
677
|
+
|
688
678
|
@property
|
689
679
|
def num_timesteps(self):
|
690
680
|
return self._num_timesteps
|
@@ -705,6 +695,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
705
695
|
latents: Optional[torch.FloatTensor] = None,
|
706
696
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
707
697
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
698
|
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
708
699
|
output_type: Optional[str] = "pil",
|
709
700
|
return_dict: bool = True,
|
710
701
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -755,6 +746,11 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
755
746
|
provided, text embeddings are generated from the `prompt` input argument.
|
756
747
|
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
757
748
|
Optional image input to work with IP Adapters.
|
749
|
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
750
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
751
|
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
752
|
+
if `do_classifier_free_guidance` is set to `True`.
|
753
|
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
758
754
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
759
755
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
760
756
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -802,7 +798,15 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
802
798
|
)
|
803
799
|
|
804
800
|
# 1. Check inputs. Raise error if not correct
|
805
|
-
self.check_inputs(
|
801
|
+
self.check_inputs(
|
802
|
+
prompt,
|
803
|
+
strength,
|
804
|
+
callback_steps,
|
805
|
+
prompt_embeds,
|
806
|
+
ip_adapter_image,
|
807
|
+
ip_adapter_image_embeds,
|
808
|
+
callback_on_step_end_tensor_inputs,
|
809
|
+
)
|
806
810
|
self._guidance_scale = guidance_scale
|
807
811
|
self._clip_skip = clip_skip
|
808
812
|
self._cross_attention_kwargs = cross_attention_kwargs
|
@@ -816,11 +820,14 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
816
820
|
batch_size = prompt_embeds.shape[0]
|
817
821
|
|
818
822
|
device = self._execution_device
|
819
|
-
# do_classifier_free_guidance = guidance_scale > 1.0
|
820
823
|
|
821
|
-
if ip_adapter_image is not None:
|
824
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
822
825
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
823
|
-
ip_adapter_image,
|
826
|
+
ip_adapter_image,
|
827
|
+
ip_adapter_image_embeds,
|
828
|
+
device,
|
829
|
+
batch_size * num_images_per_prompt,
|
830
|
+
self.do_classifier_free_guidance,
|
824
831
|
)
|
825
832
|
|
826
833
|
# 3. Encode input prompt
|
@@ -835,7 +842,7 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
835
842
|
prompt,
|
836
843
|
device,
|
837
844
|
num_images_per_prompt,
|
838
|
-
|
845
|
+
self.do_classifier_free_guidance,
|
839
846
|
negative_prompt=None,
|
840
847
|
prompt_embeds=prompt_embeds,
|
841
848
|
negative_prompt_embeds=None,
|
@@ -881,7 +888,11 @@ class LatentConsistencyModelImg2ImgPipeline(
|
|
881
888
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, None)
|
882
889
|
|
883
890
|
# 7.1 Add image embeds for IP-Adapter
|
884
|
-
added_cond_kwargs =
|
891
|
+
added_cond_kwargs = (
|
892
|
+
{"image_embeds": image_embeds}
|
893
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
894
|
+
else None
|
895
|
+
)
|
885
896
|
|
886
897
|
# 8. LCM Multistep Sampling Loop
|
887
898
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|