diffusers 0.26.2__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +28 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +278 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +52 -21
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/METADATA +5 -5
- diffusers-0.27.0.dist-info/RECORD +399 -0
- diffusers-0.26.2.dist-info/RECORD +0 -384
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/WHEEL +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -34,7 +34,8 @@ from ...schedulers import (
|
|
34
34
|
)
|
35
35
|
from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
36
36
|
from ...utils.torch_utils import randn_tensor
|
37
|
-
from ..
|
37
|
+
from ..free_init_utils import FreeInitMixin
|
38
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
38
39
|
from .pipeline_output import AnimateDiffPipelineOutput
|
39
40
|
|
40
41
|
|
@@ -99,7 +100,7 @@ def tensor2vid(video: torch.Tensor, processor, output_type="np"):
|
|
99
100
|
outputs = torch.stack(outputs)
|
100
101
|
|
101
102
|
elif not output_type == "pil":
|
102
|
-
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]")
|
103
|
+
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
|
103
104
|
|
104
105
|
return outputs
|
105
106
|
|
@@ -163,7 +164,14 @@ def retrieve_timesteps(
|
|
163
164
|
return timesteps, num_inference_steps
|
164
165
|
|
165
166
|
|
166
|
-
class AnimateDiffVideoToVideoPipeline(
|
167
|
+
class AnimateDiffVideoToVideoPipeline(
|
168
|
+
DiffusionPipeline,
|
169
|
+
StableDiffusionMixin,
|
170
|
+
TextualInversionLoaderMixin,
|
171
|
+
IPAdapterMixin,
|
172
|
+
LoraLoaderMixin,
|
173
|
+
FreeInitMixin,
|
174
|
+
):
|
167
175
|
r"""
|
168
176
|
Pipeline for video-to-video generation.
|
169
177
|
|
@@ -193,7 +201,7 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
193
201
|
"""
|
194
202
|
|
195
203
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
196
|
-
_optional_components = ["feature_extractor", "image_encoder"]
|
204
|
+
_optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
|
197
205
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
198
206
|
|
199
207
|
def __init__(
|
@@ -215,7 +223,8 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
215
223
|
image_encoder: CLIPVisionModelWithProjection = None,
|
216
224
|
):
|
217
225
|
super().__init__()
|
218
|
-
|
226
|
+
if isinstance(unet, UNet2DConditionModel):
|
227
|
+
unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
|
219
228
|
|
220
229
|
self.register_modules(
|
221
230
|
vae=vae,
|
@@ -291,7 +300,7 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
291
300
|
batch_size = prompt_embeds.shape[0]
|
292
301
|
|
293
302
|
if prompt_embeds is None:
|
294
|
-
# textual inversion:
|
303
|
+
# textual inversion: process multi-vector tokens if necessary
|
295
304
|
if isinstance(self, TextualInversionLoaderMixin):
|
296
305
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
297
306
|
|
@@ -373,7 +382,7 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
373
382
|
else:
|
374
383
|
uncond_tokens = negative_prompt
|
375
384
|
|
376
|
-
# textual inversion:
|
385
|
+
# textual inversion: process multi-vector tokens if necessary
|
377
386
|
if isinstance(self, TextualInversionLoaderMixin):
|
378
387
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
379
388
|
|
@@ -437,6 +446,58 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
437
446
|
|
438
447
|
return image_embeds, uncond_image_embeds
|
439
448
|
|
449
|
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
450
|
+
def prepare_ip_adapter_image_embeds(
|
451
|
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
452
|
+
):
|
453
|
+
if ip_adapter_image_embeds is None:
|
454
|
+
if not isinstance(ip_adapter_image, list):
|
455
|
+
ip_adapter_image = [ip_adapter_image]
|
456
|
+
|
457
|
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
458
|
+
raise ValueError(
|
459
|
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
460
|
+
)
|
461
|
+
|
462
|
+
image_embeds = []
|
463
|
+
for single_ip_adapter_image, image_proj_layer in zip(
|
464
|
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
465
|
+
):
|
466
|
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
467
|
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
468
|
+
single_ip_adapter_image, device, 1, output_hidden_state
|
469
|
+
)
|
470
|
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
471
|
+
single_negative_image_embeds = torch.stack(
|
472
|
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
473
|
+
)
|
474
|
+
|
475
|
+
if do_classifier_free_guidance:
|
476
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
477
|
+
single_image_embeds = single_image_embeds.to(device)
|
478
|
+
|
479
|
+
image_embeds.append(single_image_embeds)
|
480
|
+
else:
|
481
|
+
repeat_dims = [1]
|
482
|
+
image_embeds = []
|
483
|
+
for single_image_embeds in ip_adapter_image_embeds:
|
484
|
+
if do_classifier_free_guidance:
|
485
|
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
486
|
+
single_image_embeds = single_image_embeds.repeat(
|
487
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
488
|
+
)
|
489
|
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
490
|
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
491
|
+
)
|
492
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
493
|
+
else:
|
494
|
+
single_image_embeds = single_image_embeds.repeat(
|
495
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
496
|
+
)
|
497
|
+
image_embeds.append(single_image_embeds)
|
498
|
+
|
499
|
+
return image_embeds
|
500
|
+
|
440
501
|
# Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
|
441
502
|
def decode_latents(self, latents):
|
442
503
|
latents = 1 / self.vae.config.scaling_factor * latents
|
@@ -445,83 +506,11 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
445
506
|
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
446
507
|
|
447
508
|
image = self.vae.decode(latents).sample
|
448
|
-
video = (
|
449
|
-
image[None, :]
|
450
|
-
.reshape(
|
451
|
-
(
|
452
|
-
batch_size,
|
453
|
-
num_frames,
|
454
|
-
-1,
|
455
|
-
)
|
456
|
-
+ image.shape[2:]
|
457
|
-
)
|
458
|
-
.permute(0, 2, 1, 3, 4)
|
459
|
-
)
|
509
|
+
video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
|
460
510
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
461
511
|
video = video.float()
|
462
512
|
return video
|
463
513
|
|
464
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
465
|
-
def enable_vae_slicing(self):
|
466
|
-
r"""
|
467
|
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
468
|
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
469
|
-
"""
|
470
|
-
self.vae.enable_slicing()
|
471
|
-
|
472
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
473
|
-
def disable_vae_slicing(self):
|
474
|
-
r"""
|
475
|
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
476
|
-
computing decoding in one step.
|
477
|
-
"""
|
478
|
-
self.vae.disable_slicing()
|
479
|
-
|
480
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
481
|
-
def enable_vae_tiling(self):
|
482
|
-
r"""
|
483
|
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
484
|
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
485
|
-
processing larger images.
|
486
|
-
"""
|
487
|
-
self.vae.enable_tiling()
|
488
|
-
|
489
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
490
|
-
def disable_vae_tiling(self):
|
491
|
-
r"""
|
492
|
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
493
|
-
computing decoding in one step.
|
494
|
-
"""
|
495
|
-
self.vae.disable_tiling()
|
496
|
-
|
497
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
498
|
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
499
|
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
500
|
-
|
501
|
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
502
|
-
|
503
|
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
504
|
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
505
|
-
|
506
|
-
Args:
|
507
|
-
s1 (`float`):
|
508
|
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
509
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
510
|
-
s2 (`float`):
|
511
|
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
512
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
513
|
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
514
|
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
515
|
-
"""
|
516
|
-
if not hasattr(self, "unet"):
|
517
|
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
518
|
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
519
|
-
|
520
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
521
|
-
def disable_freeu(self):
|
522
|
-
"""Disables the FreeU mechanism if enabled."""
|
523
|
-
self.unet.disable_freeu()
|
524
|
-
|
525
514
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
526
515
|
def prepare_extra_step_kwargs(self, generator, eta):
|
527
516
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
@@ -551,6 +540,8 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
551
540
|
negative_prompt=None,
|
552
541
|
prompt_embeds=None,
|
553
542
|
negative_prompt_embeds=None,
|
543
|
+
ip_adapter_image=None,
|
544
|
+
ip_adapter_image_embeds=None,
|
554
545
|
callback_on_step_end_tensor_inputs=None,
|
555
546
|
):
|
556
547
|
if strength < 0 or strength > 1:
|
@@ -595,12 +586,27 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
595
586
|
if video is not None and latents is not None:
|
596
587
|
raise ValueError("Only one of `video` or `latents` should be provided")
|
597
588
|
|
598
|
-
|
589
|
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
590
|
+
raise ValueError(
|
591
|
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
592
|
+
)
|
593
|
+
|
594
|
+
if ip_adapter_image_embeds is not None:
|
595
|
+
if not isinstance(ip_adapter_image_embeds, list):
|
596
|
+
raise ValueError(
|
597
|
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
598
|
+
)
|
599
|
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
600
|
+
raise ValueError(
|
601
|
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
602
|
+
)
|
603
|
+
|
604
|
+
def get_timesteps(self, num_inference_steps, timesteps, strength, device):
|
599
605
|
# get the original timestep using init_timestep
|
600
606
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
601
607
|
|
602
608
|
t_start = max(num_inference_steps - init_timestep, 0)
|
603
|
-
timesteps =
|
609
|
+
timesteps = timesteps[t_start * self.scheduler.order :]
|
604
610
|
|
605
611
|
return timesteps, num_inference_steps - t_start
|
606
612
|
|
@@ -742,6 +748,7 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
742
748
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
743
749
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
744
750
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
751
|
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
745
752
|
output_type: Optional[str] = "pil",
|
746
753
|
return_dict: bool = True,
|
747
754
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -791,6 +798,11 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
791
798
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
792
799
|
ip_adapter_image: (`PipelineImageInput`, *optional*):
|
793
800
|
Optional image input to work with IP Adapters.
|
801
|
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
802
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
803
|
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
804
|
+
if `do_classifier_free_guidance` is set to `True`.
|
805
|
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
794
806
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
795
807
|
The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
|
796
808
|
`np.array`.
|
@@ -816,8 +828,8 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
816
828
|
Examples:
|
817
829
|
|
818
830
|
Returns:
|
819
|
-
[`AnimateDiffPipelineOutput`] or `tuple`:
|
820
|
-
If `return_dict` is `True`, [`AnimateDiffPipelineOutput`] is
|
831
|
+
[`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
|
832
|
+
If `return_dict` is `True`, [`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
|
821
833
|
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
822
834
|
"""
|
823
835
|
|
@@ -838,6 +850,8 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
838
850
|
negative_prompt_embeds=negative_prompt_embeds,
|
839
851
|
video=video,
|
840
852
|
latents=latents,
|
853
|
+
ip_adapter_image=ip_adapter_image,
|
854
|
+
ip_adapter_image_embeds=ip_adapter_image_embeds,
|
841
855
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
842
856
|
)
|
843
857
|
|
@@ -877,19 +891,19 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
877
891
|
if self.do_classifier_free_guidance:
|
878
892
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
879
893
|
|
880
|
-
if ip_adapter_image is not None:
|
881
|
-
|
882
|
-
|
883
|
-
|
894
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
895
|
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
896
|
+
ip_adapter_image,
|
897
|
+
ip_adapter_image_embeds,
|
898
|
+
device,
|
899
|
+
batch_size * num_videos_per_prompt,
|
900
|
+
self.do_classifier_free_guidance,
|
884
901
|
)
|
885
|
-
if self.do_classifier_free_guidance:
|
886
|
-
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
887
902
|
|
888
903
|
# 4. Prepare timesteps
|
889
904
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
890
|
-
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
905
|
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
|
891
906
|
latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
|
892
|
-
self._num_timesteps = len(timesteps)
|
893
907
|
|
894
908
|
# 5. Prepare latent variables
|
895
909
|
num_channels_latents = self.unet.config.in_channels
|
@@ -910,54 +924,68 @@ class AnimateDiffVideoToVideoPipeline(DiffusionPipeline, TextualInversionLoaderM
|
|
910
924
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
911
925
|
|
912
926
|
# 7. Add image embeds for IP-Adapter
|
913
|
-
added_cond_kwargs =
|
914
|
-
|
915
|
-
|
916
|
-
|
917
|
-
|
918
|
-
for i, t in enumerate(timesteps):
|
919
|
-
# expand the latents if we are doing classifier free guidance
|
920
|
-
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
921
|
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
922
|
-
|
923
|
-
# predict the noise residual
|
924
|
-
noise_pred = self.unet(
|
925
|
-
latent_model_input,
|
926
|
-
t,
|
927
|
-
encoder_hidden_states=prompt_embeds,
|
928
|
-
cross_attention_kwargs=self.cross_attention_kwargs,
|
929
|
-
added_cond_kwargs=added_cond_kwargs,
|
930
|
-
).sample
|
931
|
-
|
932
|
-
# perform guidance
|
933
|
-
if self.do_classifier_free_guidance:
|
934
|
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
935
|
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
936
|
-
|
937
|
-
# compute the previous noisy sample x_t -> x_t-1
|
938
|
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
939
|
-
|
940
|
-
if callback_on_step_end is not None:
|
941
|
-
callback_kwargs = {}
|
942
|
-
for k in callback_on_step_end_tensor_inputs:
|
943
|
-
callback_kwargs[k] = locals()[k]
|
944
|
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
945
|
-
|
946
|
-
latents = callback_outputs.pop("latents", latents)
|
947
|
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
948
|
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
949
|
-
|
950
|
-
progress_bar.update()
|
927
|
+
added_cond_kwargs = (
|
928
|
+
{"image_embeds": image_embeds}
|
929
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None
|
930
|
+
else None
|
931
|
+
)
|
951
932
|
|
952
|
-
if
|
953
|
-
|
933
|
+
num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
|
934
|
+
for free_init_iter in range(num_free_init_iters):
|
935
|
+
if self.free_init_enabled:
|
936
|
+
latents, timesteps = self._apply_free_init(
|
937
|
+
latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
|
938
|
+
)
|
939
|
+
num_inference_steps = len(timesteps)
|
940
|
+
# make sure to readjust timesteps based on strength
|
941
|
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
|
942
|
+
|
943
|
+
self._num_timesteps = len(timesteps)
|
944
|
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
945
|
+
|
946
|
+
# 8. Denoising loop
|
947
|
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
948
|
+
for i, t in enumerate(timesteps):
|
949
|
+
# expand the latents if we are doing classifier free guidance
|
950
|
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
951
|
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
952
|
+
|
953
|
+
# predict the noise residual
|
954
|
+
noise_pred = self.unet(
|
955
|
+
latent_model_input,
|
956
|
+
t,
|
957
|
+
encoder_hidden_states=prompt_embeds,
|
958
|
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
959
|
+
added_cond_kwargs=added_cond_kwargs,
|
960
|
+
).sample
|
961
|
+
|
962
|
+
# perform guidance
|
963
|
+
if self.do_classifier_free_guidance:
|
964
|
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
965
|
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
966
|
+
|
967
|
+
# compute the previous noisy sample x_t -> x_t-1
|
968
|
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
969
|
+
|
970
|
+
if callback_on_step_end is not None:
|
971
|
+
callback_kwargs = {}
|
972
|
+
for k in callback_on_step_end_tensor_inputs:
|
973
|
+
callback_kwargs[k] = locals()[k]
|
974
|
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
975
|
+
|
976
|
+
latents = callback_outputs.pop("latents", latents)
|
977
|
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
978
|
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
979
|
+
|
980
|
+
# call the callback, if provided
|
981
|
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
982
|
+
progress_bar.update()
|
954
983
|
|
955
984
|
# 9. Post-processing
|
956
|
-
|
957
|
-
|
958
|
-
if output_type == "pt":
|
959
|
-
video = video_tensor
|
985
|
+
if output_type == "latent":
|
986
|
+
video = latents
|
960
987
|
else:
|
988
|
+
video_tensor = self.decode_latents(latents)
|
961
989
|
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
|
962
990
|
|
963
991
|
# 10. Offload all models
|
@@ -11,12 +11,13 @@ from ...utils import BaseOutput
|
|
11
11
|
@dataclass
|
12
12
|
class AnimateDiffPipelineOutput(BaseOutput):
|
13
13
|
r"""
|
14
|
-
|
14
|
+
Output class for AnimateDiff pipelines.
|
15
15
|
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
16
|
+
Args:
|
17
|
+
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
|
18
|
+
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised
|
19
|
+
PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
|
20
|
+
`(batch_size, num_frames, channels, height, width)`
|
20
21
|
"""
|
21
22
|
|
22
|
-
frames: Union[List[List[PIL.Image.Image]]
|
23
|
+
frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]]
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -24,7 +24,7 @@ from ...models import AutoencoderKL, UNet2DConditionModel
|
|
24
24
|
from ...schedulers import KarrasDiffusionSchedulers
|
25
25
|
from ...utils import logging, replace_example_docstring
|
26
26
|
from ...utils.torch_utils import randn_tensor
|
27
|
-
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
|
27
|
+
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline, StableDiffusionMixin
|
28
28
|
|
29
29
|
|
30
30
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
@@ -49,7 +49,7 @@ EXAMPLE_DOC_STRING = """
|
|
49
49
|
"""
|
50
50
|
|
51
51
|
|
52
|
-
class AudioLDMPipeline(DiffusionPipeline):
|
52
|
+
class AudioLDMPipeline(DiffusionPipeline, StableDiffusionMixin):
|
53
53
|
r"""
|
54
54
|
Pipeline for text-to-audio generation using AudioLDM.
|
55
55
|
|
@@ -96,22 +96,6 @@ class AudioLDMPipeline(DiffusionPipeline):
|
|
96
96
|
)
|
97
97
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
98
98
|
|
99
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
100
|
-
def enable_vae_slicing(self):
|
101
|
-
r"""
|
102
|
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
103
|
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
104
|
-
"""
|
105
|
-
self.vae.enable_slicing()
|
106
|
-
|
107
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
108
|
-
def disable_vae_slicing(self):
|
109
|
-
r"""
|
110
|
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
111
|
-
computing decoding in one step.
|
112
|
-
"""
|
113
|
-
self.vae.disable_slicing()
|
114
|
-
|
115
99
|
def _encode_prompt(
|
116
100
|
self,
|
117
101
|
prompt,
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 CVSSP, ByteDance and The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -173,7 +173,7 @@ class AudioLDM2Pipeline(DiffusionPipeline):
|
|
173
173
|
)
|
174
174
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
175
175
|
|
176
|
-
# Copied from diffusers.pipelines.
|
176
|
+
# Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.enable_vae_slicing
|
177
177
|
def enable_vae_slicing(self):
|
178
178
|
r"""
|
179
179
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
@@ -181,7 +181,7 @@ class AudioLDM2Pipeline(DiffusionPipeline):
|
|
181
181
|
"""
|
182
182
|
self.vae.enable_slicing()
|
183
183
|
|
184
|
-
# Copied from diffusers.pipelines.
|
184
|
+
# Copied from diffusers.pipelines.pipeline_utils.StableDiffusionMixin.disable_vae_slicing
|
185
185
|
def disable_vae_slicing(self):
|
186
186
|
r"""
|
187
187
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
@@ -1,5 +1,5 @@
|
|
1
1
|
# coding=utf-8
|
2
|
-
# Copyright
|
2
|
+
# Copyright 2024 The HuggingFace Inc. team.
|
3
3
|
#
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
5
|
# you may not use this file except in compliance with the License.
|
@@ -13,7 +13,6 @@
|
|
13
13
|
# See the License for the specific language governing permissions and
|
14
14
|
# limitations under the License.
|
15
15
|
|
16
|
-
import inspect
|
17
16
|
from collections import OrderedDict
|
18
17
|
|
19
18
|
from huggingface_hub.utils import validate_hf_hub_args
|
@@ -164,14 +163,6 @@ def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool
|
|
164
163
|
raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}")
|
165
164
|
|
166
165
|
|
167
|
-
def _get_signature_keys(obj):
|
168
|
-
parameters = inspect.signature(obj.__init__).parameters
|
169
|
-
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
|
170
|
-
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
|
171
|
-
expected_modules = set(required_parameters.keys()) - {"self"}
|
172
|
-
return expected_modules, optional_parameters
|
173
|
-
|
174
|
-
|
175
166
|
class AutoPipelineForText2Image(ConfigMixin):
|
176
167
|
r"""
|
177
168
|
|
@@ -352,7 +343,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
|
352
343
|
pipeline linked to the pipeline class using pattern matching on pipeline class name.
|
353
344
|
|
354
345
|
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
|
355
|
-
additional
|
346
|
+
additional memory.
|
356
347
|
|
357
348
|
The pipeline is set in evaluation mode (`model.eval()`) by default.
|
358
349
|
|
@@ -391,7 +382,7 @@ class AutoPipelineForText2Image(ConfigMixin):
|
|
391
382
|
)
|
392
383
|
|
393
384
|
# define expected module and optional kwargs given the pipeline signature
|
394
|
-
expected_modules, optional_kwargs = _get_signature_keys(text_2_image_cls)
|
385
|
+
expected_modules, optional_kwargs = text_2_image_cls._get_signature_keys(text_2_image_cls)
|
395
386
|
|
396
387
|
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
|
397
388
|
|
@@ -625,7 +616,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
|
625
616
|
image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name.
|
626
617
|
|
627
618
|
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating
|
628
|
-
additional
|
619
|
+
additional memory.
|
629
620
|
|
630
621
|
The pipeline is set in evaluation mode (`model.eval()`) by default.
|
631
622
|
|
@@ -668,7 +659,7 @@ class AutoPipelineForImage2Image(ConfigMixin):
|
|
668
659
|
)
|
669
660
|
|
670
661
|
# define expected module and optional kwargs given the pipeline signature
|
671
|
-
expected_modules, optional_kwargs = _get_signature_keys(image_2_image_cls)
|
662
|
+
expected_modules, optional_kwargs = image_2_image_cls._get_signature_keys(image_2_image_cls)
|
672
663
|
|
673
664
|
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
|
674
665
|
|
@@ -901,7 +892,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
|
901
892
|
pipeline linked to the pipeline class using pattern matching on pipeline class name.
|
902
893
|
|
903
894
|
All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating
|
904
|
-
additional
|
895
|
+
additional memory.
|
905
896
|
|
906
897
|
The pipeline is set in evaluation mode (`model.eval()`) by default.
|
907
898
|
|
@@ -943,7 +934,7 @@ class AutoPipelineForInpainting(ConfigMixin):
|
|
943
934
|
)
|
944
935
|
|
945
936
|
# define expected module and optional kwargs given the pipeline signature
|
946
|
-
expected_modules, optional_kwargs = _get_signature_keys(inpainting_cls)
|
937
|
+
expected_modules, optional_kwargs = inpainting_cls._get_signature_keys(inpainting_cls)
|
947
938
|
|
948
939
|
pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
|
949
940
|
|
@@ -1,5 +1,5 @@
|
|
1
1
|
# coding=utf-8
|
2
|
-
# Copyright
|
2
|
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
3
3
|
#
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
5
|
# you may not use this file except in compliance with the License.
|
@@ -1,5 +1,5 @@
|
|
1
|
-
# Copyright
|
2
|
-
# Copyright
|
1
|
+
# Copyright 2024 Salesforce.com, inc.
|
2
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
3
3
|
#
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
5
|
# you may not use this file except in compliance with the License.
|
@@ -1,5 +1,5 @@
|
|
1
|
-
# Copyright
|
2
|
-
# Copyright
|
1
|
+
# Copyright 2024 Salesforce.com, inc.
|
2
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
5
5
|
# You may obtain a copy of the License at
|