diffusers 0.26.2__py3-none-any.whl → 0.27.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +20 -1
- diffusers/commands/__init__.py +1 -1
- diffusers/commands/diffusers_cli.py +1 -1
- diffusers/commands/env.py +1 -1
- diffusers/commands/fp16_safetensors.py +1 -1
- diffusers/configuration_utils.py +7 -3
- diffusers/dependency_versions_check.py +1 -1
- diffusers/dependency_versions_table.py +2 -2
- diffusers/experimental/rl/value_guided_sampling.py +1 -1
- diffusers/image_processor.py +110 -4
- diffusers/loaders/autoencoder.py +28 -8
- diffusers/loaders/controlnet.py +17 -8
- diffusers/loaders/ip_adapter.py +86 -23
- diffusers/loaders/lora.py +105 -310
- diffusers/loaders/lora_conversion_utils.py +1 -1
- diffusers/loaders/peft.py +1 -1
- diffusers/loaders/single_file.py +51 -12
- diffusers/loaders/single_file_utils.py +278 -49
- diffusers/loaders/textual_inversion.py +23 -4
- diffusers/loaders/unet.py +195 -41
- diffusers/loaders/utils.py +1 -1
- diffusers/models/__init__.py +3 -1
- diffusers/models/activations.py +9 -9
- diffusers/models/attention.py +26 -36
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +171 -114
- diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
- diffusers/models/autoencoders/autoencoder_kl.py +3 -1
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +1 -1
- diffusers/models/autoencoders/autoencoder_tiny.py +4 -2
- diffusers/models/autoencoders/consistency_decoder_vae.py +1 -1
- diffusers/models/autoencoders/vae.py +1 -1
- diffusers/models/controlnet.py +1 -1
- diffusers/models/controlnet_flax.py +1 -1
- diffusers/models/downsampling.py +8 -12
- diffusers/models/dual_transformer_2d.py +1 -1
- diffusers/models/embeddings.py +3 -4
- diffusers/models/embeddings_flax.py +1 -1
- diffusers/models/lora.py +33 -10
- diffusers/models/modeling_flax_pytorch_utils.py +1 -1
- diffusers/models/modeling_flax_utils.py +1 -1
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +4 -6
- diffusers/models/normalization.py +1 -1
- diffusers/models/resnet.py +31 -58
- diffusers/models/resnet_flax.py +1 -1
- diffusers/models/t5_film_transformer.py +1 -1
- diffusers/models/transformer_2d.py +1 -1
- diffusers/models/transformer_temporal.py +1 -1
- diffusers/models/transformers/dual_transformer_2d.py +1 -1
- diffusers/models/transformers/t5_film_transformer.py +1 -1
- diffusers/models/transformers/transformer_2d.py +29 -31
- diffusers/models/transformers/transformer_temporal.py +1 -1
- diffusers/models/unet_1d.py +1 -1
- diffusers/models/unet_1d_blocks.py +1 -1
- diffusers/models/unet_2d.py +1 -1
- diffusers/models/unet_2d_blocks.py +1 -1
- diffusers/models/unet_2d_condition.py +1 -1
- diffusers/models/unets/__init__.py +1 -0
- diffusers/models/unets/unet_1d.py +1 -1
- diffusers/models/unets/unet_1d_blocks.py +1 -1
- diffusers/models/unets/unet_2d.py +4 -4
- diffusers/models/unets/unet_2d_blocks.py +238 -98
- diffusers/models/unets/unet_2d_blocks_flax.py +1 -1
- diffusers/models/unets/unet_2d_condition.py +420 -323
- diffusers/models/unets/unet_2d_condition_flax.py +21 -12
- diffusers/models/unets/unet_3d_blocks.py +50 -40
- diffusers/models/unets/unet_3d_condition.py +47 -8
- diffusers/models/unets/unet_i2vgen_xl.py +75 -30
- diffusers/models/unets/unet_kandinsky3.py +1 -1
- diffusers/models/unets/unet_motion_model.py +48 -8
- diffusers/models/unets/unet_spatio_temporal_condition.py +1 -1
- diffusers/models/unets/unet_stable_cascade.py +610 -0
- diffusers/models/unets/uvit_2d.py +1 -1
- diffusers/models/upsampling.py +10 -16
- diffusers/models/vae_flax.py +1 -1
- diffusers/models/vq_model.py +1 -1
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +26 -0
- diffusers/pipelines/amused/pipeline_amused.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_img2img.py +1 -1
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +1 -1
- diffusers/pipelines/animatediff/pipeline_animatediff.py +162 -417
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +165 -137
- diffusers/pipelines/animatediff/pipeline_output.py +7 -6
- diffusers/pipelines/audioldm/pipeline_audioldm.py +3 -19
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +1 -1
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +3 -3
- diffusers/pipelines/auto_pipeline.py +7 -16
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +2 -2
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +1 -1
- diffusers/pipelines/controlnet/pipeline_controlnet.py +90 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +98 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +92 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +145 -70
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +126 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +108 -96
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/dance_diffusion/pipeline_dance_diffusion.py +1 -1
- diffusers/pipelines/ddim/pipeline_ddim.py +1 -1
- diffusers/pipelines/ddpm/pipeline_ddpm.py +1 -1
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +4 -4
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +5 -5
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +5 -5
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +10 -120
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +10 -91
- diffusers/pipelines/deprecated/audio_diffusion/mel.py +1 -1
- diffusers/pipelines/deprecated/audio_diffusion/pipeline_audio_diffusion.py +1 -1
- diffusers/pipelines/deprecated/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py +1 -1
- diffusers/pipelines/deprecated/pndm/pipeline_pndm.py +1 -1
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +1 -1
- diffusers/pipelines/deprecated/score_sde_ve/pipeline_score_sde_ve.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/continuous_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/midi_utils.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/notes_encoder.py +1 -1
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +1 -1
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +5 -4
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +7 -22
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +5 -39
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +5 -5
- diffusers/pipelines/deprecated/stochastic_karras_ve/pipeline_stochastic_karras_ve.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +31 -22
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +1 -1
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +1 -2
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +1 -1
- diffusers/pipelines/dit/pipeline_dit.py +1 -1
- diffusers/pipelines/free_init_utils.py +184 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +22 -104
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +1 -1
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +2 -2
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +1 -1
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +2 -2
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +104 -93
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +112 -74
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +1 -1
- diffusers/pipelines/ledits_pp/__init__.py +55 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +1505 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +1797 -0
- diffusers/pipelines/ledits_pp/pipeline_output.py +43 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +3 -19
- diffusers/pipelines/onnx_utils.py +1 -1
- diffusers/pipelines/paint_by_example/image_encoder.py +1 -1
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +3 -3
- diffusers/pipelines/pia/pipeline_pia.py +168 -327
- diffusers/pipelines/pipeline_flax_utils.py +1 -1
- diffusers/pipelines/pipeline_loading_utils.py +508 -0
- diffusers/pipelines/pipeline_utils.py +188 -534
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +56 -10
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +3 -3
- diffusers/pipelines/shap_e/camera.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e.py +1 -1
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +1 -1
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_cascade/__init__.py +50 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +482 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +311 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +638 -0
- diffusers/pipelines/stable_diffusion/clip_image_project_model.py +1 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +4 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_img2img.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +90 -146
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +4 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +92 -119
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +13 -59
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +3 -31
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +5 -33
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +5 -21
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -21
- diffusers/pipelines/stable_diffusion/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion/safety_checker_flax.py +1 -1
- diffusers/pipelines/stable_diffusion/stable_unclip_image_normalizer.py +1 -1
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +5 -21
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +9 -38
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +5 -34
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +6 -35
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +7 -6
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +4 -124
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +282 -80
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +94 -46
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +3 -3
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +6 -22
- diffusers/pipelines/stable_diffusion_xl/pipeline_flax_stable_diffusion_xl.py +1 -1
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +96 -148
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +98 -154
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +98 -153
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +25 -87
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +89 -80
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +5 -49
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +80 -88
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +8 -6
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +15 -86
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +20 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +5 -5
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +3 -19
- diffusers/pipelines/unclip/pipeline_unclip.py +1 -1
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +1 -1
- diffusers/pipelines/unclip/text_proj.py +1 -1
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +35 -35
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +1 -1
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +4 -21
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_diffnext.py +2 -2
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -5
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +8 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +1 -1
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +2 -2
- diffusers/schedulers/__init__.py +7 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +1 -1
- diffusers/schedulers/deprecated/scheduling_sde_vp.py +1 -1
- diffusers/schedulers/scheduling_consistency_models.py +42 -19
- diffusers/schedulers/scheduling_ddim.py +2 -4
- diffusers/schedulers/scheduling_ddim_flax.py +13 -5
- diffusers/schedulers/scheduling_ddim_inverse.py +2 -4
- diffusers/schedulers/scheduling_ddim_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm.py +2 -4
- diffusers/schedulers/scheduling_ddpm_flax.py +1 -1
- diffusers/schedulers/scheduling_ddpm_parallel.py +2 -4
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +1 -1
- diffusers/schedulers/scheduling_deis_multistep.py +46 -19
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +107 -21
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +1 -1
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +9 -7
- diffusers/schedulers/scheduling_dpmsolver_sde.py +35 -35
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +52 -21
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +683 -0
- diffusers/schedulers/scheduling_edm_euler.py +381 -0
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +43 -15
- diffusers/schedulers/scheduling_euler_discrete.py +42 -17
- diffusers/schedulers/scheduling_euler_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_heun_discrete.py +35 -35
- diffusers/schedulers/scheduling_ipndm.py +37 -11
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +44 -44
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +44 -44
- diffusers/schedulers/scheduling_karras_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_lcm.py +38 -14
- diffusers/schedulers/scheduling_lms_discrete.py +43 -15
- diffusers/schedulers/scheduling_lms_discrete_flax.py +1 -1
- diffusers/schedulers/scheduling_pndm.py +2 -4
- diffusers/schedulers/scheduling_pndm_flax.py +2 -4
- diffusers/schedulers/scheduling_repaint.py +1 -1
- diffusers/schedulers/scheduling_sasolver.py +41 -9
- diffusers/schedulers/scheduling_sde_ve.py +1 -1
- diffusers/schedulers/scheduling_sde_ve_flax.py +1 -1
- diffusers/schedulers/scheduling_tcd.py +686 -0
- diffusers/schedulers/scheduling_unclip.py +1 -1
- diffusers/schedulers/scheduling_unipc_multistep.py +46 -19
- diffusers/schedulers/scheduling_utils.py +2 -1
- diffusers/schedulers/scheduling_utils_flax.py +1 -1
- diffusers/schedulers/scheduling_vq_diffusion.py +1 -1
- diffusers/training_utils.py +9 -2
- diffusers/utils/__init__.py +2 -1
- diffusers/utils/accelerate_utils.py +1 -1
- diffusers/utils/constants.py +1 -1
- diffusers/utils/doc_utils.py +1 -1
- diffusers/utils/dummy_pt_objects.py +60 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +75 -0
- diffusers/utils/dynamic_modules_utils.py +1 -1
- diffusers/utils/export_utils.py +3 -3
- diffusers/utils/hub_utils.py +60 -16
- diffusers/utils/import_utils.py +15 -1
- diffusers/utils/loading_utils.py +2 -0
- diffusers/utils/logging.py +1 -1
- diffusers/utils/model_card_template.md +24 -0
- diffusers/utils/outputs.py +14 -7
- diffusers/utils/peft_utils.py +1 -1
- diffusers/utils/state_dict_utils.py +1 -1
- diffusers/utils/testing_utils.py +2 -0
- diffusers/utils/torch_utils.py +1 -1
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/METADATA +5 -5
- diffusers-0.27.0.dist-info/RECORD +399 -0
- diffusers-0.26.2.dist-info/RECORD +0 -384
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/LICENSE +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/WHEEL +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/entry_points.txt +0 -0
- {diffusers-0.26.2.dist-info → diffusers-0.27.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -54,7 +54,7 @@ from ...utils import (
|
|
54
54
|
unscale_lora_layers,
|
55
55
|
)
|
56
56
|
from ...utils.torch_utils import is_compiled_module, randn_tensor
|
57
|
-
from ..pipeline_utils import DiffusionPipeline
|
57
|
+
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
58
58
|
from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
59
59
|
|
60
60
|
|
@@ -157,7 +157,11 @@ def retrieve_latents(
|
|
157
157
|
|
158
158
|
|
159
159
|
class StableDiffusionXLControlNetImg2ImgPipeline(
|
160
|
-
DiffusionPipeline,
|
160
|
+
DiffusionPipeline,
|
161
|
+
StableDiffusionMixin,
|
162
|
+
TextualInversionLoaderMixin,
|
163
|
+
StableDiffusionXLLoraLoaderMixin,
|
164
|
+
IPAdapterMixin,
|
161
165
|
):
|
162
166
|
r"""
|
163
167
|
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
@@ -271,39 +275,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
271
275
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
272
276
|
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
273
277
|
|
274
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
275
|
-
def enable_vae_slicing(self):
|
276
|
-
r"""
|
277
|
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
278
|
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
279
|
-
"""
|
280
|
-
self.vae.enable_slicing()
|
281
|
-
|
282
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
283
|
-
def disable_vae_slicing(self):
|
284
|
-
r"""
|
285
|
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
286
|
-
computing decoding in one step.
|
287
|
-
"""
|
288
|
-
self.vae.disable_slicing()
|
289
|
-
|
290
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
291
|
-
def enable_vae_tiling(self):
|
292
|
-
r"""
|
293
|
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
294
|
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
295
|
-
processing larger images.
|
296
|
-
"""
|
297
|
-
self.vae.enable_tiling()
|
298
|
-
|
299
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
300
|
-
def disable_vae_tiling(self):
|
301
|
-
r"""
|
302
|
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
303
|
-
computing decoding in one step.
|
304
|
-
"""
|
305
|
-
self.vae.disable_tiling()
|
306
|
-
|
307
278
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
308
279
|
def encode_prompt(
|
309
280
|
self,
|
@@ -400,7 +371,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
400
371
|
prompt_2 = prompt_2 or prompt
|
401
372
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
402
373
|
|
403
|
-
# textual inversion:
|
374
|
+
# textual inversion: process multi-vector tokens if necessary
|
404
375
|
prompt_embeds_list = []
|
405
376
|
prompts = [prompt, prompt_2]
|
406
377
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
@@ -565,31 +536,54 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
565
536
|
return image_embeds, uncond_image_embeds
|
566
537
|
|
567
538
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
568
|
-
def prepare_ip_adapter_image_embeds(
|
569
|
-
|
570
|
-
|
539
|
+
def prepare_ip_adapter_image_embeds(
|
540
|
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
541
|
+
):
|
542
|
+
if ip_adapter_image_embeds is None:
|
543
|
+
if not isinstance(ip_adapter_image, list):
|
544
|
+
ip_adapter_image = [ip_adapter_image]
|
571
545
|
|
572
|
-
|
573
|
-
|
574
|
-
|
575
|
-
|
546
|
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
547
|
+
raise ValueError(
|
548
|
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
549
|
+
)
|
576
550
|
|
577
|
-
|
578
|
-
|
579
|
-
|
580
|
-
|
581
|
-
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
586
|
-
|
551
|
+
image_embeds = []
|
552
|
+
for single_ip_adapter_image, image_proj_layer in zip(
|
553
|
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
554
|
+
):
|
555
|
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
556
|
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
557
|
+
single_ip_adapter_image, device, 1, output_hidden_state
|
558
|
+
)
|
559
|
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
560
|
+
single_negative_image_embeds = torch.stack(
|
561
|
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
562
|
+
)
|
587
563
|
|
588
|
-
|
589
|
-
|
590
|
-
|
564
|
+
if do_classifier_free_guidance:
|
565
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
566
|
+
single_image_embeds = single_image_embeds.to(device)
|
591
567
|
|
592
|
-
|
568
|
+
image_embeds.append(single_image_embeds)
|
569
|
+
else:
|
570
|
+
repeat_dims = [1]
|
571
|
+
image_embeds = []
|
572
|
+
for single_image_embeds in ip_adapter_image_embeds:
|
573
|
+
if do_classifier_free_guidance:
|
574
|
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
575
|
+
single_image_embeds = single_image_embeds.repeat(
|
576
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
577
|
+
)
|
578
|
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
579
|
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
580
|
+
)
|
581
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
582
|
+
else:
|
583
|
+
single_image_embeds = single_image_embeds.repeat(
|
584
|
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
585
|
+
)
|
586
|
+
image_embeds.append(single_image_embeds)
|
593
587
|
|
594
588
|
return image_embeds
|
595
589
|
|
@@ -625,6 +619,8 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
625
619
|
negative_prompt_embeds=None,
|
626
620
|
pooled_prompt_embeds=None,
|
627
621
|
negative_pooled_prompt_embeds=None,
|
622
|
+
ip_adapter_image=None,
|
623
|
+
ip_adapter_image_embeds=None,
|
628
624
|
controlnet_conditioning_scale=1.0,
|
629
625
|
control_guidance_start=0.0,
|
630
626
|
control_guidance_end=1.0,
|
@@ -795,6 +791,21 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
795
791
|
if end > 1.0:
|
796
792
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
797
793
|
|
794
|
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
795
|
+
raise ValueError(
|
796
|
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
797
|
+
)
|
798
|
+
|
799
|
+
if ip_adapter_image_embeds is not None:
|
800
|
+
if not isinstance(ip_adapter_image_embeds, list):
|
801
|
+
raise ValueError(
|
802
|
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
803
|
+
)
|
804
|
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
805
|
+
raise ValueError(
|
806
|
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
807
|
+
)
|
808
|
+
|
798
809
|
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
799
810
|
def check_image(self, image, prompt, prompt_embeds):
|
800
811
|
image_is_pil = isinstance(image, PIL.Image.Image)
|
@@ -871,6 +882,8 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
871
882
|
|
872
883
|
t_start = max(num_inference_steps - init_timestep, 0)
|
873
884
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
885
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
886
|
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
874
887
|
|
875
888
|
return timesteps, num_inference_steps - t_start
|
876
889
|
|
@@ -1015,34 +1028,6 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1015
1028
|
self.vae.decoder.conv_in.to(dtype)
|
1016
1029
|
self.vae.decoder.mid_block.to(dtype)
|
1017
1030
|
|
1018
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
|
1019
|
-
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
1020
|
-
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
1021
|
-
|
1022
|
-
The suffixes after the scaling factors represent the stages where they are being applied.
|
1023
|
-
|
1024
|
-
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
1025
|
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
1026
|
-
|
1027
|
-
Args:
|
1028
|
-
s1 (`float`):
|
1029
|
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
1030
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
1031
|
-
s2 (`float`):
|
1032
|
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
1033
|
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
1034
|
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
1035
|
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
1036
|
-
"""
|
1037
|
-
if not hasattr(self, "unet"):
|
1038
|
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
1039
|
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
1040
|
-
|
1041
|
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
|
1042
|
-
def disable_freeu(self):
|
1043
|
-
"""Disables the FreeU mechanism if enabled."""
|
1044
|
-
self.unet.disable_freeu()
|
1045
|
-
|
1046
1031
|
@property
|
1047
1032
|
def guidance_scale(self):
|
1048
1033
|
return self._guidance_scale
|
@@ -1090,6 +1075,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1090
1075
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1091
1076
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1092
1077
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1078
|
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
1093
1079
|
output_type: Optional[str] = "pil",
|
1094
1080
|
return_dict: bool = True,
|
1095
1081
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -1140,15 +1126,15 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1140
1126
|
The width in pixels of the generated image. Anything below 512 pixels won't work well for
|
1141
1127
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1142
1128
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1129
|
+
strength (`float`, *optional*, defaults to 0.8):
|
1130
|
+
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
1131
|
+
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
1132
|
+
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
1133
|
+
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
1134
|
+
essentially ignores `image`.
|
1143
1135
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
1144
1136
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1145
1137
|
expense of slower inference.
|
1146
|
-
strength (`float`, *optional*, defaults to 0.3):
|
1147
|
-
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
1148
|
-
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
1149
|
-
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
1150
|
-
be maximum and the denoising process will run for the full number of iterations specified in
|
1151
|
-
`num_inference_steps`.
|
1152
1138
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1153
1139
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1154
1140
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
@@ -1189,6 +1175,11 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1189
1175
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1190
1176
|
input argument.
|
1191
1177
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1178
|
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1179
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
1180
|
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
1181
|
+
if `do_classifier_free_guidance` is set to `True`.
|
1182
|
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1192
1183
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
1193
1184
|
The output format of the generate image. Choose between
|
1194
1185
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
@@ -1312,6 +1303,8 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1312
1303
|
negative_prompt_embeds,
|
1313
1304
|
pooled_prompt_embeds,
|
1314
1305
|
negative_pooled_prompt_embeds,
|
1306
|
+
ip_adapter_image,
|
1307
|
+
ip_adapter_image_embeds,
|
1315
1308
|
controlnet_conditioning_scale,
|
1316
1309
|
control_guidance_start,
|
1317
1310
|
control_guidance_end,
|
@@ -1368,9 +1361,13 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1368
1361
|
)
|
1369
1362
|
|
1370
1363
|
# 3.2 Encode ip_adapter_image
|
1371
|
-
if ip_adapter_image is not None:
|
1364
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1372
1365
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1373
|
-
ip_adapter_image,
|
1366
|
+
ip_adapter_image,
|
1367
|
+
ip_adapter_image_embeds,
|
1368
|
+
device,
|
1369
|
+
batch_size * num_images_per_prompt,
|
1370
|
+
self.do_classifier_free_guidance,
|
1374
1371
|
)
|
1375
1372
|
|
1376
1373
|
# 4. Prepare image and controlnet_conditioning_image
|
@@ -1535,7 +1532,7 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1535
1532
|
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
|
1536
1533
|
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
|
1537
1534
|
|
1538
|
-
if ip_adapter_image is not None:
|
1535
|
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1539
1536
|
added_cond_kwargs["image_embeds"] = image_embeds
|
1540
1537
|
|
1541
1538
|
# predict the noise residual
|
@@ -1590,7 +1587,22 @@ class StableDiffusionXLControlNetImg2ImgPipeline(
|
|
1590
1587
|
self.upcast_vae()
|
1591
1588
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1592
1589
|
|
1593
|
-
|
1590
|
+
# unscale/denormalize the latents
|
1591
|
+
# denormalize with the mean and std if available and not None
|
1592
|
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1593
|
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1594
|
+
if has_latents_mean and has_latents_std:
|
1595
|
+
latents_mean = (
|
1596
|
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1597
|
+
)
|
1598
|
+
latents_std = (
|
1599
|
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1600
|
+
)
|
1601
|
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1602
|
+
else:
|
1603
|
+
latents = latents / self.vae.config.scaling_factor
|
1604
|
+
|
1605
|
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1594
1606
|
|
1595
1607
|
# cast back to fp16 if needed
|
1596
1608
|
if needs_upcasting:
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -156,7 +156,7 @@ class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline):
|
|
156
156
|
self.dtype = dtype
|
157
157
|
|
158
158
|
if safety_checker is None:
|
159
|
-
logger.
|
159
|
+
logger.warning(
|
160
160
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
161
161
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
162
162
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
@@ -416,13 +416,13 @@ class IFPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
416
416
|
|
417
417
|
def _text_preprocessing(self, text, clean_caption=False):
|
418
418
|
if clean_caption and not is_bs4_available():
|
419
|
-
logger.
|
420
|
-
logger.
|
419
|
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
420
|
+
logger.warning("Setting `clean_caption` to False...")
|
421
421
|
clean_caption = False
|
422
422
|
|
423
423
|
if clean_caption and not is_ftfy_available():
|
424
|
-
logger.
|
425
|
-
logger.
|
424
|
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
425
|
+
logger.warning("Setting `clean_caption` to False...")
|
426
426
|
clean_caption = False
|
427
427
|
|
428
428
|
if not isinstance(text, (tuple, list)):
|
@@ -460,13 +460,13 @@ class IFImg2ImgPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
460
460
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
461
461
|
def _text_preprocessing(self, text, clean_caption=False):
|
462
462
|
if clean_caption and not is_bs4_available():
|
463
|
-
logger.
|
464
|
-
logger.
|
463
|
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
464
|
+
logger.warning("Setting `clean_caption` to False...")
|
465
465
|
clean_caption = False
|
466
466
|
|
467
467
|
if clean_caption and not is_ftfy_available():
|
468
|
-
logger.
|
469
|
-
logger.
|
468
|
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
469
|
+
logger.warning("Setting `clean_caption` to False...")
|
470
470
|
clean_caption = False
|
471
471
|
|
472
472
|
if not isinstance(text, (tuple, list)):
|
@@ -175,7 +175,7 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
175
175
|
)
|
176
176
|
|
177
177
|
if unet.config.in_channels != 6:
|
178
|
-
logger.
|
178
|
+
logger.warning(
|
179
179
|
"It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`."
|
180
180
|
)
|
181
181
|
|
@@ -209,13 +209,13 @@ class IFImg2ImgSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
209
209
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
210
210
|
def _text_preprocessing(self, text, clean_caption=False):
|
211
211
|
if clean_caption and not is_bs4_available():
|
212
|
-
logger.
|
213
|
-
logger.
|
212
|
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
213
|
+
logger.warning("Setting `clean_caption` to False...")
|
214
214
|
clean_caption = False
|
215
215
|
|
216
216
|
if clean_caption and not is_ftfy_available():
|
217
|
-
logger.
|
218
|
-
logger.
|
217
|
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
218
|
+
logger.warning("Setting `clean_caption` to False...")
|
219
219
|
clean_caption = False
|
220
220
|
|
221
221
|
if not isinstance(text, (tuple, list)):
|
@@ -500,13 +500,13 @@ class IFInpaintingPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
500
500
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
501
501
|
def _text_preprocessing(self, text, clean_caption=False):
|
502
502
|
if clean_caption and not is_bs4_available():
|
503
|
-
logger.
|
504
|
-
logger.
|
503
|
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
504
|
+
logger.warning("Setting `clean_caption` to False...")
|
505
505
|
clean_caption = False
|
506
506
|
|
507
507
|
if clean_caption and not is_ftfy_available():
|
508
|
-
logger.
|
509
|
-
logger.
|
508
|
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
509
|
+
logger.warning("Setting `clean_caption` to False...")
|
510
510
|
clean_caption = False
|
511
511
|
|
512
512
|
if not isinstance(text, (tuple, list)):
|
@@ -177,7 +177,7 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
177
177
|
)
|
178
178
|
|
179
179
|
if unet.config.in_channels != 6:
|
180
|
-
logger.
|
180
|
+
logger.warning(
|
181
181
|
"It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`."
|
182
182
|
)
|
183
183
|
|
@@ -211,13 +211,13 @@ class IFInpaintingSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
211
211
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
212
212
|
def _text_preprocessing(self, text, clean_caption=False):
|
213
213
|
if clean_caption and not is_bs4_available():
|
214
|
-
logger.
|
215
|
-
logger.
|
214
|
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
215
|
+
logger.warning("Setting `clean_caption` to False...")
|
216
216
|
clean_caption = False
|
217
217
|
|
218
218
|
if clean_caption and not is_ftfy_available():
|
219
|
-
logger.
|
220
|
-
logger.
|
219
|
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
220
|
+
logger.warning("Setting `clean_caption` to False...")
|
221
221
|
clean_caption = False
|
222
222
|
|
223
223
|
if not isinstance(text, (tuple, list)):
|
@@ -133,7 +133,7 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
133
133
|
)
|
134
134
|
|
135
135
|
if unet.config.in_channels != 6:
|
136
|
-
logger.
|
136
|
+
logger.warning(
|
137
137
|
"It seems like you have loaded a checkpoint that shall not be used for super resolution from {unet.config._name_or_path} as it accepts {unet.config.in_channels} input channels instead of 6. Please make sure to pass a super resolution checkpoint as the `'unet'`: IFSuperResolutionPipeline.from_pretrained(unet=super_resolution_unet, ...)`."
|
138
138
|
)
|
139
139
|
|
@@ -167,13 +167,13 @@ class IFSuperResolutionPipeline(DiffusionPipeline, LoraLoaderMixin):
|
|
167
167
|
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
168
168
|
def _text_preprocessing(self, text, clean_caption=False):
|
169
169
|
if clean_caption and not is_bs4_available():
|
170
|
-
logger.
|
171
|
-
logger.
|
170
|
+
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
171
|
+
logger.warning("Setting `clean_caption` to False...")
|
172
172
|
clean_caption = False
|
173
173
|
|
174
174
|
if clean_caption and not is_ftfy_available():
|
175
|
-
logger.
|
176
|
-
logger.
|
175
|
+
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
176
|
+
logger.warning("Setting `clean_caption` to False...")
|
177
177
|
clean_caption = False
|
178
178
|
|
179
179
|
if not isinstance(text, (tuple, list)):
|