dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (249) hide show
  1. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/METADATA +64 -74
  2. dgenerate_ultralytics_headless-8.4.7.dist-info/RECORD +311 -0
  3. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/WHEEL +1 -1
  4. tests/__init__.py +7 -9
  5. tests/conftest.py +8 -15
  6. tests/test_cli.py +1 -1
  7. tests/test_cuda.py +13 -10
  8. tests/test_engine.py +9 -9
  9. tests/test_exports.py +65 -13
  10. tests/test_integrations.py +13 -13
  11. tests/test_python.py +125 -69
  12. tests/test_solutions.py +161 -152
  13. ultralytics/__init__.py +1 -1
  14. ultralytics/cfg/__init__.py +86 -92
  15. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  16. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  17. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  18. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  19. ultralytics/cfg/datasets/TT100K.yaml +346 -0
  20. ultralytics/cfg/datasets/VOC.yaml +15 -16
  21. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  22. ultralytics/cfg/datasets/coco-pose.yaml +21 -0
  23. ultralytics/cfg/datasets/coco12-formats.yaml +101 -0
  24. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  25. ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
  26. ultralytics/cfg/datasets/dog-pose.yaml +28 -0
  27. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  28. ultralytics/cfg/datasets/dota8.yaml +2 -2
  29. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
  30. ultralytics/cfg/datasets/kitti.yaml +27 -0
  31. ultralytics/cfg/datasets/lvis.yaml +5 -5
  32. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  33. ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
  34. ultralytics/cfg/datasets/xView.yaml +16 -16
  35. ultralytics/cfg/default.yaml +4 -2
  36. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  37. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  38. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  39. ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
  40. ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
  41. ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
  42. ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
  43. ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
  44. ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
  45. ultralytics/cfg/models/26/yolo26.yaml +52 -0
  46. ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
  47. ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
  48. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
  49. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
  51. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
  52. ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
  53. ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
  54. ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
  55. ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
  56. ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
  57. ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
  58. ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
  59. ultralytics/cfg/models/v6/yolov6.yaml +1 -1
  60. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  61. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  62. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  63. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  64. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  65. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  66. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  67. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  68. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  69. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  70. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  71. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
  72. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  73. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  74. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  75. ultralytics/data/__init__.py +4 -4
  76. ultralytics/data/annotator.py +5 -6
  77. ultralytics/data/augment.py +300 -475
  78. ultralytics/data/base.py +18 -26
  79. ultralytics/data/build.py +147 -25
  80. ultralytics/data/converter.py +108 -87
  81. ultralytics/data/dataset.py +47 -75
  82. ultralytics/data/loaders.py +42 -49
  83. ultralytics/data/split.py +5 -6
  84. ultralytics/data/split_dota.py +8 -15
  85. ultralytics/data/utils.py +36 -45
  86. ultralytics/engine/exporter.py +351 -263
  87. ultralytics/engine/model.py +186 -225
  88. ultralytics/engine/predictor.py +45 -54
  89. ultralytics/engine/results.py +198 -325
  90. ultralytics/engine/trainer.py +165 -106
  91. ultralytics/engine/tuner.py +41 -43
  92. ultralytics/engine/validator.py +55 -38
  93. ultralytics/hub/__init__.py +16 -19
  94. ultralytics/hub/auth.py +6 -12
  95. ultralytics/hub/google/__init__.py +7 -10
  96. ultralytics/hub/session.py +15 -25
  97. ultralytics/hub/utils.py +5 -8
  98. ultralytics/models/__init__.py +1 -1
  99. ultralytics/models/fastsam/__init__.py +1 -1
  100. ultralytics/models/fastsam/model.py +8 -10
  101. ultralytics/models/fastsam/predict.py +18 -30
  102. ultralytics/models/fastsam/utils.py +1 -2
  103. ultralytics/models/fastsam/val.py +5 -7
  104. ultralytics/models/nas/__init__.py +1 -1
  105. ultralytics/models/nas/model.py +5 -8
  106. ultralytics/models/nas/predict.py +7 -9
  107. ultralytics/models/nas/val.py +1 -2
  108. ultralytics/models/rtdetr/__init__.py +1 -1
  109. ultralytics/models/rtdetr/model.py +5 -8
  110. ultralytics/models/rtdetr/predict.py +15 -19
  111. ultralytics/models/rtdetr/train.py +10 -13
  112. ultralytics/models/rtdetr/val.py +21 -23
  113. ultralytics/models/sam/__init__.py +15 -2
  114. ultralytics/models/sam/amg.py +14 -20
  115. ultralytics/models/sam/build.py +26 -19
  116. ultralytics/models/sam/build_sam3.py +377 -0
  117. ultralytics/models/sam/model.py +29 -32
  118. ultralytics/models/sam/modules/blocks.py +83 -144
  119. ultralytics/models/sam/modules/decoders.py +19 -37
  120. ultralytics/models/sam/modules/encoders.py +44 -101
  121. ultralytics/models/sam/modules/memory_attention.py +16 -30
  122. ultralytics/models/sam/modules/sam.py +200 -73
  123. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  124. ultralytics/models/sam/modules/transformer.py +18 -28
  125. ultralytics/models/sam/modules/utils.py +174 -50
  126. ultralytics/models/sam/predict.py +2248 -350
  127. ultralytics/models/sam/sam3/__init__.py +3 -0
  128. ultralytics/models/sam/sam3/decoder.py +546 -0
  129. ultralytics/models/sam/sam3/encoder.py +529 -0
  130. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  131. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  132. ultralytics/models/sam/sam3/model_misc.py +199 -0
  133. ultralytics/models/sam/sam3/necks.py +129 -0
  134. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  135. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  136. ultralytics/models/sam/sam3/vitdet.py +547 -0
  137. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  138. ultralytics/models/utils/loss.py +14 -26
  139. ultralytics/models/utils/ops.py +13 -17
  140. ultralytics/models/yolo/__init__.py +1 -1
  141. ultralytics/models/yolo/classify/predict.py +10 -13
  142. ultralytics/models/yolo/classify/train.py +12 -33
  143. ultralytics/models/yolo/classify/val.py +30 -29
  144. ultralytics/models/yolo/detect/predict.py +9 -12
  145. ultralytics/models/yolo/detect/train.py +17 -23
  146. ultralytics/models/yolo/detect/val.py +77 -59
  147. ultralytics/models/yolo/model.py +43 -60
  148. ultralytics/models/yolo/obb/predict.py +7 -16
  149. ultralytics/models/yolo/obb/train.py +14 -17
  150. ultralytics/models/yolo/obb/val.py +40 -37
  151. ultralytics/models/yolo/pose/__init__.py +1 -1
  152. ultralytics/models/yolo/pose/predict.py +7 -22
  153. ultralytics/models/yolo/pose/train.py +13 -16
  154. ultralytics/models/yolo/pose/val.py +39 -58
  155. ultralytics/models/yolo/segment/predict.py +17 -21
  156. ultralytics/models/yolo/segment/train.py +7 -10
  157. ultralytics/models/yolo/segment/val.py +95 -47
  158. ultralytics/models/yolo/world/train.py +8 -14
  159. ultralytics/models/yolo/world/train_world.py +11 -34
  160. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  161. ultralytics/models/yolo/yoloe/predict.py +16 -23
  162. ultralytics/models/yolo/yoloe/train.py +36 -44
  163. ultralytics/models/yolo/yoloe/train_seg.py +11 -11
  164. ultralytics/models/yolo/yoloe/val.py +15 -20
  165. ultralytics/nn/__init__.py +7 -7
  166. ultralytics/nn/autobackend.py +159 -85
  167. ultralytics/nn/modules/__init__.py +68 -60
  168. ultralytics/nn/modules/activation.py +4 -6
  169. ultralytics/nn/modules/block.py +260 -224
  170. ultralytics/nn/modules/conv.py +52 -97
  171. ultralytics/nn/modules/head.py +831 -299
  172. ultralytics/nn/modules/transformer.py +76 -88
  173. ultralytics/nn/modules/utils.py +16 -21
  174. ultralytics/nn/tasks.py +180 -195
  175. ultralytics/nn/text_model.py +45 -69
  176. ultralytics/optim/__init__.py +5 -0
  177. ultralytics/optim/muon.py +338 -0
  178. ultralytics/solutions/__init__.py +12 -12
  179. ultralytics/solutions/ai_gym.py +13 -19
  180. ultralytics/solutions/analytics.py +15 -16
  181. ultralytics/solutions/config.py +6 -7
  182. ultralytics/solutions/distance_calculation.py +10 -13
  183. ultralytics/solutions/heatmap.py +8 -14
  184. ultralytics/solutions/instance_segmentation.py +6 -9
  185. ultralytics/solutions/object_blurrer.py +7 -10
  186. ultralytics/solutions/object_counter.py +12 -19
  187. ultralytics/solutions/object_cropper.py +8 -14
  188. ultralytics/solutions/parking_management.py +34 -32
  189. ultralytics/solutions/queue_management.py +10 -12
  190. ultralytics/solutions/region_counter.py +9 -12
  191. ultralytics/solutions/security_alarm.py +15 -20
  192. ultralytics/solutions/similarity_search.py +10 -15
  193. ultralytics/solutions/solutions.py +77 -76
  194. ultralytics/solutions/speed_estimation.py +7 -10
  195. ultralytics/solutions/streamlit_inference.py +2 -4
  196. ultralytics/solutions/templates/similarity-search.html +7 -18
  197. ultralytics/solutions/trackzone.py +7 -10
  198. ultralytics/solutions/vision_eye.py +5 -8
  199. ultralytics/trackers/__init__.py +1 -1
  200. ultralytics/trackers/basetrack.py +3 -5
  201. ultralytics/trackers/bot_sort.py +10 -27
  202. ultralytics/trackers/byte_tracker.py +21 -37
  203. ultralytics/trackers/track.py +4 -7
  204. ultralytics/trackers/utils/gmc.py +11 -22
  205. ultralytics/trackers/utils/kalman_filter.py +37 -48
  206. ultralytics/trackers/utils/matching.py +12 -15
  207. ultralytics/utils/__init__.py +124 -124
  208. ultralytics/utils/autobatch.py +2 -4
  209. ultralytics/utils/autodevice.py +17 -18
  210. ultralytics/utils/benchmarks.py +57 -71
  211. ultralytics/utils/callbacks/base.py +8 -10
  212. ultralytics/utils/callbacks/clearml.py +5 -13
  213. ultralytics/utils/callbacks/comet.py +32 -46
  214. ultralytics/utils/callbacks/dvc.py +13 -18
  215. ultralytics/utils/callbacks/mlflow.py +4 -5
  216. ultralytics/utils/callbacks/neptune.py +7 -15
  217. ultralytics/utils/callbacks/platform.py +423 -38
  218. ultralytics/utils/callbacks/raytune.py +3 -4
  219. ultralytics/utils/callbacks/tensorboard.py +25 -31
  220. ultralytics/utils/callbacks/wb.py +16 -14
  221. ultralytics/utils/checks.py +127 -85
  222. ultralytics/utils/cpu.py +3 -8
  223. ultralytics/utils/dist.py +9 -12
  224. ultralytics/utils/downloads.py +25 -33
  225. ultralytics/utils/errors.py +6 -14
  226. ultralytics/utils/events.py +2 -4
  227. ultralytics/utils/export/__init__.py +4 -236
  228. ultralytics/utils/export/engine.py +246 -0
  229. ultralytics/utils/export/imx.py +117 -63
  230. ultralytics/utils/export/tensorflow.py +231 -0
  231. ultralytics/utils/files.py +26 -30
  232. ultralytics/utils/git.py +9 -11
  233. ultralytics/utils/instance.py +30 -51
  234. ultralytics/utils/logger.py +212 -114
  235. ultralytics/utils/loss.py +601 -215
  236. ultralytics/utils/metrics.py +128 -156
  237. ultralytics/utils/nms.py +13 -16
  238. ultralytics/utils/ops.py +117 -166
  239. ultralytics/utils/patches.py +75 -21
  240. ultralytics/utils/plotting.py +75 -80
  241. ultralytics/utils/tal.py +125 -59
  242. ultralytics/utils/torch_utils.py +53 -79
  243. ultralytics/utils/tqdm.py +24 -21
  244. ultralytics/utils/triton.py +13 -19
  245. ultralytics/utils/tuner.py +19 -10
  246. dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
  247. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/entry_points.txt +0 -0
  248. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/licenses/LICENSE +0 -0
  249. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,346 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # Tsinghua-Tencent 100K (TT100K) dataset https://cg.cs.tsinghua.edu.cn/traffic-sign/ by Tsinghua University
4
+ # Documentation: https://cg.cs.tsinghua.edu.cn/traffic-sign/tutorial.html
5
+ # Paper: Traffic-Sign Detection and Classification in the Wild (CVPR 2016)
6
+ # License: CC BY-NC 2.0 license for non-commercial use only
7
+ # Example usage: yolo train data=TT100K.yaml
8
+ # parent
9
+ # ├── ultralytics
10
+ # └── datasets
11
+ # └── TT100K ← downloads here (~18 GB)
12
+
13
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
14
+ path: TT100K # dataset root dir
15
+ train: images/train # train images (relative to 'path') 6105 images
16
+ val: images/val # val images (relative to 'path') 7641 images (original 'other' split)
17
+ test: images/test # test images (relative to 'path') 3071 images
18
+
19
+ # Classes (221 traffic sign categories, 45 with sufficient training instances)
20
+ names:
21
+ 0: pl5
22
+ 1: pl10
23
+ 2: pl15
24
+ 3: pl20
25
+ 4: pl25
26
+ 5: pl30
27
+ 6: pl40
28
+ 7: pl50
29
+ 8: pl60
30
+ 9: pl70
31
+ 10: pl80
32
+ 11: pl90
33
+ 12: pl100
34
+ 13: pl110
35
+ 14: pl120
36
+ 15: pm5
37
+ 16: pm10
38
+ 17: pm13
39
+ 18: pm15
40
+ 19: pm20
41
+ 20: pm25
42
+ 21: pm30
43
+ 22: pm35
44
+ 23: pm40
45
+ 24: pm46
46
+ 25: pm50
47
+ 26: pm55
48
+ 27: pm8
49
+ 28: pn
50
+ 29: pne
51
+ 30: ph4
52
+ 31: ph4.5
53
+ 32: ph5
54
+ 33: ps
55
+ 34: pg
56
+ 35: ph1.5
57
+ 36: ph2
58
+ 37: ph2.1
59
+ 38: ph2.2
60
+ 39: ph2.4
61
+ 40: ph2.5
62
+ 41: ph2.8
63
+ 42: ph2.9
64
+ 43: ph3
65
+ 44: ph3.2
66
+ 45: ph3.5
67
+ 46: ph3.8
68
+ 47: ph4.2
69
+ 48: ph4.3
70
+ 49: ph4.8
71
+ 50: ph5.3
72
+ 51: ph5.5
73
+ 52: pb
74
+ 53: pr10
75
+ 54: pr100
76
+ 55: pr20
77
+ 56: pr30
78
+ 57: pr40
79
+ 58: pr45
80
+ 59: pr50
81
+ 60: pr60
82
+ 61: pr70
83
+ 62: pr80
84
+ 63: pr90
85
+ 64: p1
86
+ 65: p2
87
+ 66: p3
88
+ 67: p4
89
+ 68: p5
90
+ 69: p6
91
+ 70: p7
92
+ 71: p8
93
+ 72: p9
94
+ 73: p10
95
+ 74: p11
96
+ 75: p12
97
+ 76: p13
98
+ 77: p14
99
+ 78: p15
100
+ 79: p16
101
+ 80: p17
102
+ 81: p18
103
+ 82: p19
104
+ 83: p20
105
+ 84: p21
106
+ 85: p22
107
+ 86: p23
108
+ 87: p24
109
+ 88: p25
110
+ 89: p26
111
+ 90: p27
112
+ 91: p28
113
+ 92: pa8
114
+ 93: pa10
115
+ 94: pa12
116
+ 95: pa13
117
+ 96: pa14
118
+ 97: pb5
119
+ 98: pc
120
+ 99: pg
121
+ 100: ph1
122
+ 101: ph1.3
123
+ 102: ph1.5
124
+ 103: ph2
125
+ 104: ph3
126
+ 105: ph4
127
+ 106: ph5
128
+ 107: pi
129
+ 108: pl0
130
+ 109: pl4
131
+ 110: pl5
132
+ 111: pl8
133
+ 112: pl10
134
+ 113: pl15
135
+ 114: pl20
136
+ 115: pl25
137
+ 116: pl30
138
+ 117: pl35
139
+ 118: pl40
140
+ 119: pl50
141
+ 120: pl60
142
+ 121: pl65
143
+ 122: pl70
144
+ 123: pl80
145
+ 124: pl90
146
+ 125: pl100
147
+ 126: pl110
148
+ 127: pl120
149
+ 128: pm2
150
+ 129: pm8
151
+ 130: pm10
152
+ 131: pm13
153
+ 132: pm15
154
+ 133: pm20
155
+ 134: pm25
156
+ 135: pm30
157
+ 136: pm35
158
+ 137: pm40
159
+ 138: pm46
160
+ 139: pm50
161
+ 140: pm55
162
+ 141: pn
163
+ 142: pne
164
+ 143: po
165
+ 144: pr10
166
+ 145: pr100
167
+ 146: pr20
168
+ 147: pr30
169
+ 148: pr40
170
+ 149: pr45
171
+ 150: pr50
172
+ 151: pr60
173
+ 152: pr70
174
+ 153: pr80
175
+ 154: ps
176
+ 155: w1
177
+ 156: w2
178
+ 157: w3
179
+ 158: w5
180
+ 159: w8
181
+ 160: w10
182
+ 161: w12
183
+ 162: w13
184
+ 163: w16
185
+ 164: w18
186
+ 165: w20
187
+ 166: w21
188
+ 167: w22
189
+ 168: w24
190
+ 169: w28
191
+ 170: w30
192
+ 171: w31
193
+ 172: w32
194
+ 173: w34
195
+ 174: w35
196
+ 175: w37
197
+ 176: w38
198
+ 177: w41
199
+ 178: w42
200
+ 179: w43
201
+ 180: w44
202
+ 181: w45
203
+ 182: w46
204
+ 183: w47
205
+ 184: w48
206
+ 185: w49
207
+ 186: w50
208
+ 187: w51
209
+ 188: w52
210
+ 189: w53
211
+ 190: w54
212
+ 191: w55
213
+ 192: w56
214
+ 193: w57
215
+ 194: w58
216
+ 195: w59
217
+ 196: w60
218
+ 197: w62
219
+ 198: w63
220
+ 199: w66
221
+ 200: i1
222
+ 201: i2
223
+ 202: i3
224
+ 203: i4
225
+ 204: i5
226
+ 205: i6
227
+ 206: i7
228
+ 207: i8
229
+ 208: i9
230
+ 209: i10
231
+ 210: i11
232
+ 211: i12
233
+ 212: i13
234
+ 213: i14
235
+ 214: i15
236
+ 215: il60
237
+ 216: il80
238
+ 217: il100
239
+ 218: il110
240
+ 219: io
241
+ 220: ip
242
+
243
+ # Download script/URL (optional) ---------------------------------------------------------------------------------------
244
+ download: |
245
+ import json
246
+ import shutil
247
+ from pathlib import Path
248
+
249
+ from PIL import Image
250
+
251
+ from ultralytics.utils import TQDM
252
+ from ultralytics.utils.downloads import download
253
+
254
+
255
+ def tt100k2yolo(dir):
256
+ """Convert TT100K annotations to YOLO format with images/{split} and labels/{split} structure."""
257
+ data_dir = dir / "data"
258
+ anno_file = data_dir / "annotations.json"
259
+
260
+ print("Loading annotations...")
261
+ with open(anno_file, encoding="utf-8") as f:
262
+ data = json.load(f)
263
+
264
+ # Build class name to index mapping from yaml
265
+ names = yaml["names"]
266
+ class_to_idx = {v: k for k, v in names.items()}
267
+
268
+ # Create directories
269
+ for split in ["train", "val", "test"]:
270
+ (dir / "images" / split).mkdir(parents=True, exist_ok=True)
271
+ (dir / "labels" / split).mkdir(parents=True, exist_ok=True)
272
+
273
+ print("Converting annotations to YOLO format...")
274
+ skipped = 0
275
+ for img_id, img_data in TQDM(data["imgs"].items(), desc="Processing"):
276
+ img_path_str = img_data["path"]
277
+ if "train" in img_path_str:
278
+ split = "train"
279
+ elif "test" in img_path_str:
280
+ split = "test"
281
+ else:
282
+ split = "val"
283
+
284
+ # Source and destination paths
285
+ src_img = data_dir / img_path_str
286
+ if not src_img.exists():
287
+ continue
288
+
289
+ dst_img = dir / "images" / split / src_img.name
290
+
291
+ # Get image dimensions
292
+ try:
293
+ with Image.open(src_img) as img:
294
+ img_width, img_height = img.size
295
+ except Exception as e:
296
+ print(f"Error reading {src_img}: {e}")
297
+ continue
298
+
299
+ # Copy image to destination
300
+ shutil.copy2(src_img, dst_img)
301
+
302
+ # Convert annotations
303
+ label_file = dir / "labels" / split / f"{src_img.stem}.txt"
304
+ lines = []
305
+
306
+ for obj in img_data.get("objects", []):
307
+ category = obj["category"]
308
+ if category not in class_to_idx:
309
+ skipped += 1
310
+ continue
311
+
312
+ bbox = obj["bbox"]
313
+ xmin, ymin = bbox["xmin"], bbox["ymin"]
314
+ xmax, ymax = bbox["xmax"], bbox["ymax"]
315
+
316
+ # Convert to YOLO format (normalized center coordinates and dimensions)
317
+ x_center = ((xmin + xmax) / 2.0) / img_width
318
+ y_center = ((ymin + ymax) / 2.0) / img_height
319
+ width = (xmax - xmin) / img_width
320
+ height = (ymax - ymin) / img_height
321
+
322
+ # Clip to valid range
323
+ x_center = max(0, min(1, x_center))
324
+ y_center = max(0, min(1, y_center))
325
+ width = max(0, min(1, width))
326
+ height = max(0, min(1, height))
327
+
328
+ cls_idx = class_to_idx[category]
329
+ lines.append(f"{cls_idx} {x_center:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n")
330
+
331
+ # Write label file
332
+ if lines:
333
+ label_file.write_text("".join(lines), encoding="utf-8")
334
+
335
+ if skipped:
336
+ print(f"Skipped {skipped} annotations with unknown categories")
337
+ print("Conversion complete!")
338
+
339
+
340
+ # Download
341
+ dir = Path(yaml["path"]) # dataset root dir
342
+ urls = ["https://cg.cs.tsinghua.edu.cn/traffic-sign/data_model_code/data.zip"]
343
+ download(urls, dir=dir, curl=True, threads=1)
344
+
345
+ # Convert
346
+ tt100k2yolo(dir)
@@ -1,7 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
4
- # Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/voc/
5
5
  # Example usage: yolo train data=VOC.yaml
6
6
  # parent
7
7
  # ├── ultralytics
@@ -59,22 +59,21 @@ download: |
59
59
  x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
60
60
  return x * dw, y * dh, w * dw, h * dh
61
61
 
62
- in_file = open(path / f"VOC{year}/Annotations/{image_id}.xml")
63
- out_file = open(lb_path, "w")
64
- tree = ET.parse(in_file)
65
- root = tree.getroot()
66
- size = root.find("size")
67
- w = int(size.find("width").text)
68
- h = int(size.find("height").text)
62
+ with open(path / f"VOC{year}/Annotations/{image_id}.xml") as in_file, open(lb_path, "w", encoding="utf-8") as out_file:
63
+ tree = ET.parse(in_file)
64
+ root = tree.getroot()
65
+ size = root.find("size")
66
+ w = int(size.find("width").text)
67
+ h = int(size.find("height").text)
69
68
 
70
- names = list(yaml["names"].values()) # names list
71
- for obj in root.iter("object"):
72
- cls = obj.find("name").text
73
- if cls in names and int(obj.find("difficult").text) != 1:
74
- xmlbox = obj.find("bndbox")
75
- bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ("xmin", "xmax", "ymin", "ymax")])
76
- cls_id = names.index(cls) # class id
77
- out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + "\n")
69
+ names = list(yaml["names"].values()) # names list
70
+ for obj in root.iter("object"):
71
+ cls = obj.find("name").text
72
+ if cls in names and int(obj.find("difficult").text) != 1:
73
+ xmlbox = obj.find("bndbox")
74
+ bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ("xmin", "xmax", "ymin", "ymax")])
75
+ cls_id = names.index(cls) # class id
76
+ out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + "\n")
78
77
 
79
78
 
80
79
  # Download
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # African-wildlife dataset by Ultralytics
3
+ # African Wildlife dataset by Ultralytics
4
4
  # Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
5
5
  # Example usage: yolo train data=african-wildlife.yaml
6
6
  # parent
@@ -22,6 +22,27 @@ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
22
22
  names:
23
23
  0: person
24
24
 
25
+ # Keypoint names per class
26
+ kpt_names:
27
+ 0:
28
+ - nose
29
+ - left_eye
30
+ - right_eye
31
+ - left_ear
32
+ - right_ear
33
+ - left_shoulder
34
+ - right_shoulder
35
+ - left_elbow
36
+ - right_elbow
37
+ - left_wrist
38
+ - right_wrist
39
+ - left_hip
40
+ - right_hip
41
+ - left_knee
42
+ - right_knee
43
+ - left_ankle
44
+ - right_ankle
45
+
25
46
  # Download script/URL (optional)
26
47
  download: |
27
48
  from pathlib import Path
@@ -0,0 +1,101 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # COCO12-Formats dataset (12 images testing all supported image formats) by Ultralytics
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/coco12-formats/
5
+ # Example usage: yolo train data=coco12-formats.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── coco12-formats ← downloads here (1 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: coco12-formats # dataset root dir
13
+ train: images/train # train images (relative to 'path') 6 images
14
+ val: images/val # val images (relative to 'path') 6 images
15
+ test: # test images (optional)
16
+
17
+ # Classes
18
+ names:
19
+ 0: person
20
+ 1: bicycle
21
+ 2: car
22
+ 3: motorcycle
23
+ 4: airplane
24
+ 5: bus
25
+ 6: train
26
+ 7: truck
27
+ 8: boat
28
+ 9: traffic light
29
+ 10: fire hydrant
30
+ 11: stop sign
31
+ 12: parking meter
32
+ 13: bench
33
+ 14: bird
34
+ 15: cat
35
+ 16: dog
36
+ 17: horse
37
+ 18: sheep
38
+ 19: cow
39
+ 20: elephant
40
+ 21: bear
41
+ 22: zebra
42
+ 23: giraffe
43
+ 24: backpack
44
+ 25: umbrella
45
+ 26: handbag
46
+ 27: tie
47
+ 28: suitcase
48
+ 29: frisbee
49
+ 30: skis
50
+ 31: snowboard
51
+ 32: sports ball
52
+ 33: kite
53
+ 34: baseball bat
54
+ 35: baseball glove
55
+ 36: skateboard
56
+ 37: surfboard
57
+ 38: tennis racket
58
+ 39: bottle
59
+ 40: wine glass
60
+ 41: cup
61
+ 42: fork
62
+ 43: knife
63
+ 44: spoon
64
+ 45: bowl
65
+ 46: banana
66
+ 47: apple
67
+ 48: sandwich
68
+ 49: orange
69
+ 50: broccoli
70
+ 51: carrot
71
+ 52: hot dog
72
+ 53: pizza
73
+ 54: donut
74
+ 55: cake
75
+ 56: chair
76
+ 57: couch
77
+ 58: potted plant
78
+ 59: bed
79
+ 60: dining table
80
+ 61: toilet
81
+ 62: tv
82
+ 63: laptop
83
+ 64: mouse
84
+ 65: remote
85
+ 66: keyboard
86
+ 67: cell phone
87
+ 68: microwave
88
+ 69: oven
89
+ 70: toaster
90
+ 71: sink
91
+ 72: refrigerator
92
+ 73: book
93
+ 74: clock
94
+ 75: vase
95
+ 76: scissors
96
+ 77: teddy bear
97
+ 78: hair drier
98
+ 79: toothbrush
99
+
100
+ # Download script/URL (optional)
101
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco12-formats.zip
@@ -2,7 +2,7 @@
2
2
 
3
3
  # COCO128-seg dataset https://www.kaggle.com/datasets/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
4
4
  # Documentation: https://docs.ultralytics.com/datasets/segment/coco/
5
- # Example usage: yolo train data=coco128.yaml
5
+ # Example usage: yolo train data=coco128-seg.yaml
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
@@ -22,5 +22,26 @@ flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
22
22
  names:
23
23
  0: person
24
24
 
25
+ # Keypoint names per class
26
+ kpt_names:
27
+ 0:
28
+ - nose
29
+ - left_eye
30
+ - right_eye
31
+ - left_ear
32
+ - right_ear
33
+ - left_shoulder
34
+ - right_shoulder
35
+ - left_elbow
36
+ - right_elbow
37
+ - left_wrist
38
+ - right_wrist
39
+ - left_hip
40
+ - right_hip
41
+ - left_knee
42
+ - right_knee
43
+ - left_ankle
44
+ - right_ankle
45
+
25
46
  # Download script/URL (optional)
26
47
  download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip
@@ -20,5 +20,33 @@ kpt_shape: [24, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y
20
20
  names:
21
21
  0: dog
22
22
 
23
+ # Keypoint names per class
24
+ kpt_names:
25
+ 0:
26
+ - front_left_paw
27
+ - front_left_knee
28
+ - front_left_elbow
29
+ - rear_left_paw
30
+ - rear_left_knee
31
+ - rear_left_elbow
32
+ - front_right_paw
33
+ - front_right_knee
34
+ - front_right_elbow
35
+ - rear_right_paw
36
+ - rear_right_knee
37
+ - rear_right_elbow
38
+ - tail_start
39
+ - tail_end
40
+ - left_ear_base
41
+ - right_ear_base
42
+ - nose
43
+ - chin
44
+ - left_ear_tip
45
+ - right_ear_tip
46
+ - left_eye
47
+ - right_eye
48
+ - withers
49
+ - throat
50
+
23
51
  # Download script/URL (optional)
24
52
  download: https://github.com/ultralytics/assets/releases/download/v0.0.0/dog-pose.zip
@@ -6,7 +6,7 @@
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota8-multispectral ← downloads here (37.3MB)
9
+ # └── dota8-multispectral ← downloads here (37.3 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: dota8-multispectral # dataset root dir
@@ -1,12 +1,12 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # DOTA8 dataset 8 images from split DOTAv1 dataset by Ultralytics
3
+ # DOTA8 dataset (8 images from the DOTAv1 split) by Ultralytics
4
4
  # Documentation: https://docs.ultralytics.com/datasets/obb/dota8/
5
5
  # Example usage: yolo train model=yolov8n-obb.pt data=dota8.yaml
6
6
  # parent
7
7
  # ├── ultralytics
8
8
  # └── datasets
9
- # └── dota8 ← downloads here (1MB)
9
+ # └── dota8 ← downloads here (1 MB)
10
10
 
11
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
12
  path: dota8 # dataset root dir
@@ -15,12 +15,36 @@ val: images/val # val images (relative to 'path') 7992 images
15
15
 
16
16
  # Keypoints
17
17
  kpt_shape: [21, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
- flip_idx:
19
- [0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
18
+ flip_idx: [0, 1, 2, 4, 3, 10, 11, 12, 13, 14, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20]
20
19
 
21
20
  # Classes
22
21
  names:
23
22
  0: hand
24
23
 
24
+ # Keypoint names per class
25
+ kpt_names:
26
+ 0:
27
+ - wrist
28
+ - thumb_cmc
29
+ - thumb_mcp
30
+ - thumb_ip
31
+ - thumb_tip
32
+ - index_mcp
33
+ - index_pip
34
+ - index_dip
35
+ - index_tip
36
+ - middle_mcp
37
+ - middle_pip
38
+ - middle_dip
39
+ - middle_tip
40
+ - ring_mcp
41
+ - ring_pip
42
+ - ring_dip
43
+ - ring_tip
44
+ - pinky_mcp
45
+ - pinky_pip
46
+ - pinky_dip
47
+ - pinky_tip
48
+
25
49
  # Download script/URL (optional)
26
50
  download: https://github.com/ultralytics/assets/releases/download/v0.0.0/hand-keypoints.zip
@@ -0,0 +1,27 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ # KITTI dataset by Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago
4
+ # Documentation: https://docs.ultralytics.com/datasets/detect/kitti/
5
+ # Example usage: yolo train data=kitti.yaml
6
+ # parent
7
+ # ├── ultralytics
8
+ # └── datasets
9
+ # └── kitti ← downloads here (390.5 MB)
10
+
11
+ # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
+ path: kitti # dataset root dir
13
+ train: images/train # train images (relative to 'path') 5985 images
14
+ val: images/val # val images (relative to 'path') 1496 images
15
+
16
+ names:
17
+ 0: car
18
+ 1: van
19
+ 2: truck
20
+ 3: pedestrian
21
+ 4: person_sitting
22
+ 5: cyclist
23
+ 6: tram
24
+ 7: misc
25
+
26
+ # Download script/URL (optional)
27
+ download: https://github.com/ultralytics/assets/releases/download/v0.0.0/kitti.zip