dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (249) hide show
  1. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/METADATA +64 -74
  2. dgenerate_ultralytics_headless-8.4.7.dist-info/RECORD +311 -0
  3. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/WHEEL +1 -1
  4. tests/__init__.py +7 -9
  5. tests/conftest.py +8 -15
  6. tests/test_cli.py +1 -1
  7. tests/test_cuda.py +13 -10
  8. tests/test_engine.py +9 -9
  9. tests/test_exports.py +65 -13
  10. tests/test_integrations.py +13 -13
  11. tests/test_python.py +125 -69
  12. tests/test_solutions.py +161 -152
  13. ultralytics/__init__.py +1 -1
  14. ultralytics/cfg/__init__.py +86 -92
  15. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  16. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  17. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  18. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  19. ultralytics/cfg/datasets/TT100K.yaml +346 -0
  20. ultralytics/cfg/datasets/VOC.yaml +15 -16
  21. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  22. ultralytics/cfg/datasets/coco-pose.yaml +21 -0
  23. ultralytics/cfg/datasets/coco12-formats.yaml +101 -0
  24. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  25. ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
  26. ultralytics/cfg/datasets/dog-pose.yaml +28 -0
  27. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  28. ultralytics/cfg/datasets/dota8.yaml +2 -2
  29. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
  30. ultralytics/cfg/datasets/kitti.yaml +27 -0
  31. ultralytics/cfg/datasets/lvis.yaml +5 -5
  32. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  33. ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
  34. ultralytics/cfg/datasets/xView.yaml +16 -16
  35. ultralytics/cfg/default.yaml +4 -2
  36. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  37. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  38. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  39. ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
  40. ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
  41. ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
  42. ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
  43. ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
  44. ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
  45. ultralytics/cfg/models/26/yolo26.yaml +52 -0
  46. ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
  47. ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
  48. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
  49. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
  51. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
  52. ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
  53. ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
  54. ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
  55. ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
  56. ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
  57. ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
  58. ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
  59. ultralytics/cfg/models/v6/yolov6.yaml +1 -1
  60. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  61. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  62. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  63. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  64. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  65. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  66. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  67. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  68. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  69. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  70. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  71. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
  72. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  73. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  74. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  75. ultralytics/data/__init__.py +4 -4
  76. ultralytics/data/annotator.py +5 -6
  77. ultralytics/data/augment.py +300 -475
  78. ultralytics/data/base.py +18 -26
  79. ultralytics/data/build.py +147 -25
  80. ultralytics/data/converter.py +108 -87
  81. ultralytics/data/dataset.py +47 -75
  82. ultralytics/data/loaders.py +42 -49
  83. ultralytics/data/split.py +5 -6
  84. ultralytics/data/split_dota.py +8 -15
  85. ultralytics/data/utils.py +36 -45
  86. ultralytics/engine/exporter.py +351 -263
  87. ultralytics/engine/model.py +186 -225
  88. ultralytics/engine/predictor.py +45 -54
  89. ultralytics/engine/results.py +198 -325
  90. ultralytics/engine/trainer.py +165 -106
  91. ultralytics/engine/tuner.py +41 -43
  92. ultralytics/engine/validator.py +55 -38
  93. ultralytics/hub/__init__.py +16 -19
  94. ultralytics/hub/auth.py +6 -12
  95. ultralytics/hub/google/__init__.py +7 -10
  96. ultralytics/hub/session.py +15 -25
  97. ultralytics/hub/utils.py +5 -8
  98. ultralytics/models/__init__.py +1 -1
  99. ultralytics/models/fastsam/__init__.py +1 -1
  100. ultralytics/models/fastsam/model.py +8 -10
  101. ultralytics/models/fastsam/predict.py +18 -30
  102. ultralytics/models/fastsam/utils.py +1 -2
  103. ultralytics/models/fastsam/val.py +5 -7
  104. ultralytics/models/nas/__init__.py +1 -1
  105. ultralytics/models/nas/model.py +5 -8
  106. ultralytics/models/nas/predict.py +7 -9
  107. ultralytics/models/nas/val.py +1 -2
  108. ultralytics/models/rtdetr/__init__.py +1 -1
  109. ultralytics/models/rtdetr/model.py +5 -8
  110. ultralytics/models/rtdetr/predict.py +15 -19
  111. ultralytics/models/rtdetr/train.py +10 -13
  112. ultralytics/models/rtdetr/val.py +21 -23
  113. ultralytics/models/sam/__init__.py +15 -2
  114. ultralytics/models/sam/amg.py +14 -20
  115. ultralytics/models/sam/build.py +26 -19
  116. ultralytics/models/sam/build_sam3.py +377 -0
  117. ultralytics/models/sam/model.py +29 -32
  118. ultralytics/models/sam/modules/blocks.py +83 -144
  119. ultralytics/models/sam/modules/decoders.py +19 -37
  120. ultralytics/models/sam/modules/encoders.py +44 -101
  121. ultralytics/models/sam/modules/memory_attention.py +16 -30
  122. ultralytics/models/sam/modules/sam.py +200 -73
  123. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  124. ultralytics/models/sam/modules/transformer.py +18 -28
  125. ultralytics/models/sam/modules/utils.py +174 -50
  126. ultralytics/models/sam/predict.py +2248 -350
  127. ultralytics/models/sam/sam3/__init__.py +3 -0
  128. ultralytics/models/sam/sam3/decoder.py +546 -0
  129. ultralytics/models/sam/sam3/encoder.py +529 -0
  130. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  131. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  132. ultralytics/models/sam/sam3/model_misc.py +199 -0
  133. ultralytics/models/sam/sam3/necks.py +129 -0
  134. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  135. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  136. ultralytics/models/sam/sam3/vitdet.py +547 -0
  137. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  138. ultralytics/models/utils/loss.py +14 -26
  139. ultralytics/models/utils/ops.py +13 -17
  140. ultralytics/models/yolo/__init__.py +1 -1
  141. ultralytics/models/yolo/classify/predict.py +10 -13
  142. ultralytics/models/yolo/classify/train.py +12 -33
  143. ultralytics/models/yolo/classify/val.py +30 -29
  144. ultralytics/models/yolo/detect/predict.py +9 -12
  145. ultralytics/models/yolo/detect/train.py +17 -23
  146. ultralytics/models/yolo/detect/val.py +77 -59
  147. ultralytics/models/yolo/model.py +43 -60
  148. ultralytics/models/yolo/obb/predict.py +7 -16
  149. ultralytics/models/yolo/obb/train.py +14 -17
  150. ultralytics/models/yolo/obb/val.py +40 -37
  151. ultralytics/models/yolo/pose/__init__.py +1 -1
  152. ultralytics/models/yolo/pose/predict.py +7 -22
  153. ultralytics/models/yolo/pose/train.py +13 -16
  154. ultralytics/models/yolo/pose/val.py +39 -58
  155. ultralytics/models/yolo/segment/predict.py +17 -21
  156. ultralytics/models/yolo/segment/train.py +7 -10
  157. ultralytics/models/yolo/segment/val.py +95 -47
  158. ultralytics/models/yolo/world/train.py +8 -14
  159. ultralytics/models/yolo/world/train_world.py +11 -34
  160. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  161. ultralytics/models/yolo/yoloe/predict.py +16 -23
  162. ultralytics/models/yolo/yoloe/train.py +36 -44
  163. ultralytics/models/yolo/yoloe/train_seg.py +11 -11
  164. ultralytics/models/yolo/yoloe/val.py +15 -20
  165. ultralytics/nn/__init__.py +7 -7
  166. ultralytics/nn/autobackend.py +159 -85
  167. ultralytics/nn/modules/__init__.py +68 -60
  168. ultralytics/nn/modules/activation.py +4 -6
  169. ultralytics/nn/modules/block.py +260 -224
  170. ultralytics/nn/modules/conv.py +52 -97
  171. ultralytics/nn/modules/head.py +831 -299
  172. ultralytics/nn/modules/transformer.py +76 -88
  173. ultralytics/nn/modules/utils.py +16 -21
  174. ultralytics/nn/tasks.py +180 -195
  175. ultralytics/nn/text_model.py +45 -69
  176. ultralytics/optim/__init__.py +5 -0
  177. ultralytics/optim/muon.py +338 -0
  178. ultralytics/solutions/__init__.py +12 -12
  179. ultralytics/solutions/ai_gym.py +13 -19
  180. ultralytics/solutions/analytics.py +15 -16
  181. ultralytics/solutions/config.py +6 -7
  182. ultralytics/solutions/distance_calculation.py +10 -13
  183. ultralytics/solutions/heatmap.py +8 -14
  184. ultralytics/solutions/instance_segmentation.py +6 -9
  185. ultralytics/solutions/object_blurrer.py +7 -10
  186. ultralytics/solutions/object_counter.py +12 -19
  187. ultralytics/solutions/object_cropper.py +8 -14
  188. ultralytics/solutions/parking_management.py +34 -32
  189. ultralytics/solutions/queue_management.py +10 -12
  190. ultralytics/solutions/region_counter.py +9 -12
  191. ultralytics/solutions/security_alarm.py +15 -20
  192. ultralytics/solutions/similarity_search.py +10 -15
  193. ultralytics/solutions/solutions.py +77 -76
  194. ultralytics/solutions/speed_estimation.py +7 -10
  195. ultralytics/solutions/streamlit_inference.py +2 -4
  196. ultralytics/solutions/templates/similarity-search.html +7 -18
  197. ultralytics/solutions/trackzone.py +7 -10
  198. ultralytics/solutions/vision_eye.py +5 -8
  199. ultralytics/trackers/__init__.py +1 -1
  200. ultralytics/trackers/basetrack.py +3 -5
  201. ultralytics/trackers/bot_sort.py +10 -27
  202. ultralytics/trackers/byte_tracker.py +21 -37
  203. ultralytics/trackers/track.py +4 -7
  204. ultralytics/trackers/utils/gmc.py +11 -22
  205. ultralytics/trackers/utils/kalman_filter.py +37 -48
  206. ultralytics/trackers/utils/matching.py +12 -15
  207. ultralytics/utils/__init__.py +124 -124
  208. ultralytics/utils/autobatch.py +2 -4
  209. ultralytics/utils/autodevice.py +17 -18
  210. ultralytics/utils/benchmarks.py +57 -71
  211. ultralytics/utils/callbacks/base.py +8 -10
  212. ultralytics/utils/callbacks/clearml.py +5 -13
  213. ultralytics/utils/callbacks/comet.py +32 -46
  214. ultralytics/utils/callbacks/dvc.py +13 -18
  215. ultralytics/utils/callbacks/mlflow.py +4 -5
  216. ultralytics/utils/callbacks/neptune.py +7 -15
  217. ultralytics/utils/callbacks/platform.py +423 -38
  218. ultralytics/utils/callbacks/raytune.py +3 -4
  219. ultralytics/utils/callbacks/tensorboard.py +25 -31
  220. ultralytics/utils/callbacks/wb.py +16 -14
  221. ultralytics/utils/checks.py +127 -85
  222. ultralytics/utils/cpu.py +3 -8
  223. ultralytics/utils/dist.py +9 -12
  224. ultralytics/utils/downloads.py +25 -33
  225. ultralytics/utils/errors.py +6 -14
  226. ultralytics/utils/events.py +2 -4
  227. ultralytics/utils/export/__init__.py +4 -236
  228. ultralytics/utils/export/engine.py +246 -0
  229. ultralytics/utils/export/imx.py +117 -63
  230. ultralytics/utils/export/tensorflow.py +231 -0
  231. ultralytics/utils/files.py +26 -30
  232. ultralytics/utils/git.py +9 -11
  233. ultralytics/utils/instance.py +30 -51
  234. ultralytics/utils/logger.py +212 -114
  235. ultralytics/utils/loss.py +601 -215
  236. ultralytics/utils/metrics.py +128 -156
  237. ultralytics/utils/nms.py +13 -16
  238. ultralytics/utils/ops.py +117 -166
  239. ultralytics/utils/patches.py +75 -21
  240. ultralytics/utils/plotting.py +75 -80
  241. ultralytics/utils/tal.py +125 -59
  242. ultralytics/utils/torch_utils.py +53 -79
  243. ultralytics/utils/tqdm.py +24 -21
  244. ultralytics/utils/triton.py +13 -19
  245. ultralytics/utils/tuner.py +19 -10
  246. dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
  247. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/entry_points.txt +0 -0
  248. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/licenses/LICENSE +0 -0
  249. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/top_level.txt +0 -0
@@ -14,11 +14,10 @@ from ultralytics.utils.checks import check_imshow
14
14
 
15
15
 
16
16
  class ParkingPtsSelection:
17
- """
18
- A class for selecting and managing parking zone points on images using a Tkinter-based UI.
17
+ """A class for selecting and managing parking zone points on images using a Tkinter-based UI.
19
18
 
20
- This class provides functionality to upload an image, select points to define parking zones, and save the
21
- selected points to a JSON file. It uses Tkinter for the graphical user interface.
19
+ This class provides functionality to upload an image, select points to define parking zones, and save the selected
20
+ points to a JSON file. It uses Tkinter for the graphical user interface.
22
21
 
23
22
  Attributes:
24
23
  tk (module): The Tkinter module for GUI operations.
@@ -93,7 +92,7 @@ class ParkingPtsSelection:
93
92
 
94
93
  for text, cmd in [
95
94
  ("Upload Image", self.upload_image),
96
- ("Remove Last BBox", self.remove_last_bounding_box),
95
+ ("Remove Last Bounding Box", self.remove_last_bounding_box),
97
96
  ("Save", self.save_to_json),
98
97
  ]:
99
98
  self.tk.Button(button_frame, text=text, command=cmd).pack(side=self.tk.LEFT)
@@ -178,26 +177,25 @@ class ParkingPtsSelection:
178
177
 
179
178
 
180
179
  class ParkingManagement(BaseSolution):
181
- """
182
- Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization.
180
+ """Manages parking occupancy and availability using YOLO model for real-time monitoring and visualization.
183
181
 
184
- This class extends BaseSolution to provide functionality for parking lot management, including detection of
185
- occupied spaces, visualization of parking regions, and display of occupancy statistics.
182
+ This class extends BaseSolution to provide functionality for parking lot management, including detection of occupied
183
+ spaces, visualization of parking regions, and display of occupancy statistics.
186
184
 
187
185
  Attributes:
188
186
  json_file (str): Path to the JSON file containing parking region details.
189
187
  json (list[dict]): Loaded JSON data containing parking region information.
190
188
  pr_info (dict[str, int]): Dictionary storing parking information (Occupancy and Available spaces).
191
- arc (tuple[int, int, int]): RGB color tuple for available region visualization.
192
- occ (tuple[int, int, int]): RGB color tuple for occupied region visualization.
193
- dc (tuple[int, int, int]): RGB color tuple for centroid visualization of detected objects.
189
+ arc (tuple[int, int, int]): BGR color tuple for available region visualization.
190
+ occ (tuple[int, int, int]): BGR color tuple for occupied region visualization.
191
+ dc (tuple[int, int, int]): BGR color tuple for centroid visualization of detected objects.
194
192
 
195
193
  Methods:
196
194
  process: Process the input image for parking lot management and visualization.
197
195
 
198
196
  Examples:
199
197
  >>> from ultralytics.solutions import ParkingManagement
200
- >>> parking_manager = ParkingManagement(model="yolo11n.pt", json_file="parking_regions.json")
198
+ >>> parking_manager = ParkingManagement(model="yolo26n.pt", json_file="parking_regions.json")
201
199
  >>> print(f"Occupied spaces: {parking_manager.pr_info['Occupancy']}")
202
200
  >>> print(f"Available spaces: {parking_manager.pr_info['Available']}")
203
201
  """
@@ -207,11 +205,11 @@ class ParkingManagement(BaseSolution):
207
205
  super().__init__(**kwargs)
208
206
 
209
207
  self.json_file = self.CFG["json_file"] # Load parking regions JSON data
210
- if self.json_file is None:
211
- LOGGER.warning("json_file argument missing. Parking region details required.")
212
- raise ValueError("❌ Json file path can not be empty")
208
+ if not self.json_file:
209
+ LOGGER.warning("ParkingManagement requires `json_file` with parking region coordinates.")
210
+ raise ValueError("❌ JSON file path cannot be empty.")
213
211
 
214
- with open(self.json_file) as f:
212
+ with open(self.json_file, encoding="utf-8") as f:
215
213
  self.json = json.load(f)
216
214
 
217
215
  self.pr_info = {"Occupancy": 0, "Available": 0} # Dictionary for parking information
@@ -221,19 +219,19 @@ class ParkingManagement(BaseSolution):
221
219
  self.dc = (255, 0, 189) # Centroid color for each box
222
220
 
223
221
  def process(self, im0: np.ndarray) -> SolutionResults:
224
- """
225
- Process the input image for parking lot management and visualization.
222
+ """Process the input image for parking lot management and visualization.
226
223
 
227
- This function analyzes the input image, extracts tracks, and determines the occupancy status of parking
228
- regions defined in the JSON file. It annotates the image with occupied and available parking spots,
229
- and updates the parking information.
224
+ This function analyzes the input image, extracts tracks, and determines the occupancy status of parking regions
225
+ defined in the JSON file. It annotates the image with occupied and available parking spots, and updates the
226
+ parking information.
230
227
 
231
228
  Args:
232
229
  im0 (np.ndarray): The input inference image.
233
230
 
234
231
  Returns:
235
232
  (SolutionResults): Contains processed image `plot_im`, 'filled_slots' (number of occupied parking slots),
236
- 'available_slots' (number of available parking slots), and 'total_tracks' (total number of tracked objects).
233
+ 'available_slots' (number of available parking slots), and 'total_tracks' (total number of
234
+ tracked objects).
237
235
 
238
236
  Examples:
239
237
  >>> parking_manager = ParkingManagement(json_file="parking_regions.json")
@@ -241,28 +239,32 @@ class ParkingManagement(BaseSolution):
241
239
  >>> results = parking_manager.process(image)
242
240
  """
243
241
  self.extract_tracks(im0) # Extract tracks from im0
244
- es, fs = len(self.json), 0 # Empty slots, filled slots
242
+ available_slots, occupied_slots = len(self.json), 0
245
243
  annotator = SolutionAnnotator(im0, self.line_width) # Initialize annotator
246
244
 
247
245
  for region in self.json:
248
246
  # Convert points to a NumPy array with the correct dtype and reshape properly
249
- pts_array = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2))
250
- rg_occupied = False # Occupied region initialization
247
+ region_polygon = np.array(region["points"], dtype=np.int32).reshape((-1, 1, 2))
248
+ region_occupied = False
251
249
  for box, cls in zip(self.boxes, self.clss):
252
250
  xc, yc = int((box[0] + box[2]) / 2), int((box[1] + box[3]) / 2)
253
- dist = cv2.pointPolygonTest(pts_array, (xc, yc), False)
254
- if dist >= 0:
251
+ inside_distance = cv2.pointPolygonTest(region_polygon, (xc, yc), False)
252
+ if inside_distance >= 0:
255
253
  # cv2.circle(im0, (xc, yc), radius=self.line_width * 4, color=self.dc, thickness=-1)
256
254
  annotator.display_objects_labels(
257
255
  im0, self.model.names[int(cls)], (104, 31, 17), (255, 255, 255), xc, yc, 10
258
256
  )
259
- rg_occupied = True
257
+ region_occupied = True
260
258
  break
261
- fs, es = (fs + 1, es - 1) if rg_occupied else (fs, es)
259
+ if region_occupied:
260
+ occupied_slots += 1
261
+ available_slots -= 1
262
262
  # Plot regions
263
- cv2.polylines(im0, [pts_array], isClosed=True, color=self.occ if rg_occupied else self.arc, thickness=2)
263
+ cv2.polylines(
264
+ im0, [region_polygon], isClosed=True, color=self.occ if region_occupied else self.arc, thickness=2
265
+ )
264
266
 
265
- self.pr_info["Occupancy"], self.pr_info["Available"] = fs, es
267
+ self.pr_info["Occupancy"], self.pr_info["Available"] = occupied_slots, available_slots
266
268
 
267
269
  annotator.display_analytics(im0, self.pr_info, (104, 31, 17), (255, 255, 255), 10)
268
270
 
@@ -7,15 +7,14 @@ from ultralytics.utils.plotting import colors
7
7
 
8
8
 
9
9
  class QueueManager(BaseSolution):
10
- """
11
- Manages queue counting in real-time video streams based on object tracks.
10
+ """Manages queue counting in real-time video streams based on object tracks.
12
11
 
13
- This class extends BaseSolution to provide functionality for tracking and counting objects within a specified
14
- region in video frames.
12
+ This class extends BaseSolution to provide functionality for tracking and counting objects within a specified region
13
+ in video frames.
15
14
 
16
15
  Attributes:
17
16
  counts (int): The current count of objects in the queue.
18
- rect_color (tuple[int, int, int]): RGB color tuple for drawing the queue region rectangle.
17
+ rect_color (tuple[int, int, int]): BGR color tuple for drawing the queue region rectangle.
19
18
  region_length (int): The number of points defining the queue region.
20
19
  track_line (list[tuple[int, int]]): List of track line coordinates.
21
20
  track_history (dict[int, list[tuple[int, int]]]): Dictionary storing tracking history for each object.
@@ -31,10 +30,10 @@ class QueueManager(BaseSolution):
31
30
  >>> cap = cv2.VideoCapture("path/to/video.mp4")
32
31
  >>> queue_manager = QueueManager(region=[100, 100, 200, 200, 300, 300])
33
32
  >>> while cap.isOpened():
34
- >>> success, im0 = cap.read()
35
- >>> if not success:
36
- >>> break
37
- >>> results = queue_manager.process(im0)
33
+ ... success, im0 = cap.read()
34
+ ... if not success:
35
+ ... break
36
+ ... results = queue_manager.process(im0)
38
37
  """
39
38
 
40
39
  def __init__(self, **kwargs: Any) -> None:
@@ -46,8 +45,7 @@ class QueueManager(BaseSolution):
46
45
  self.region_length = len(self.region) # Store region length for further usage
47
46
 
48
47
  def process(self, im0) -> SolutionResults:
49
- """
50
- Process queue management for a single frame of video.
48
+ """Process queue management for a single frame of video.
51
49
 
52
50
  Args:
53
51
  im0 (np.ndarray): Input image for processing, typically a frame from a video stream.
@@ -83,7 +81,7 @@ class QueueManager(BaseSolution):
83
81
 
84
82
  # Display queue counts
85
83
  annotator.queue_counts_display(
86
- f"Queue Counts : {str(self.counts)}",
84
+ f"Queue Counts : {self.counts}",
87
85
  points=self.region,
88
86
  region_color=self.rect_color,
89
87
  txt_color=(104, 31, 17),
@@ -11,8 +11,7 @@ from ultralytics.utils.plotting import colors
11
11
 
12
12
 
13
13
  class RegionCounter(BaseSolution):
14
- """
15
- A class for real-time counting of objects within user-defined regions in a video stream.
14
+ """A class for real-time counting of objects within user-defined regions in a video stream.
16
15
 
17
16
  This class inherits from `BaseSolution` and provides functionality to define polygonal regions in a video frame,
18
17
  track objects, and count those objects that pass through each defined region. Useful for applications requiring
@@ -21,8 +20,8 @@ class RegionCounter(BaseSolution):
21
20
  Attributes:
22
21
  region_template (dict): Template for creating new counting regions with default attributes including name,
23
22
  polygon coordinates, and display colors.
24
- counting_regions (list): List storing all defined regions, where each entry is based on `region_template`
25
- and includes specific region settings like name, coordinates, and color.
23
+ counting_regions (list): List storing all defined regions, where each entry is based on `region_template` and
24
+ includes specific region settings like name, coordinates, and color.
26
25
  region_counts (dict): Dictionary storing the count of objects for each named region.
27
26
 
28
27
  Methods:
@@ -59,8 +58,7 @@ class RegionCounter(BaseSolution):
59
58
  region_color: tuple[int, int, int],
60
59
  text_color: tuple[int, int, int],
61
60
  ) -> dict[str, Any]:
62
- """
63
- Add a new region to the counting list based on the provided template with specific attributes.
61
+ """Add a new region to the counting list based on the provided template with specific attributes.
64
62
 
65
63
  Args:
66
64
  name (str): Name assigned to the new region.
@@ -69,7 +67,7 @@ class RegionCounter(BaseSolution):
69
67
  text_color (tuple[int, int, int]): BGR color for the text within the region.
70
68
 
71
69
  Returns:
72
- (dict[str, any]): Returns a dictionary including the region information i.e. name, region_color etc.
70
+ (dict[str, Any]): Region information including name, polygon, and display colors.
73
71
  """
74
72
  region = self.region_template.copy()
75
73
  region.update(
@@ -84,7 +82,7 @@ class RegionCounter(BaseSolution):
84
82
  return region
85
83
 
86
84
  def initialize_regions(self):
87
- """Initialize regions only once."""
85
+ """Initialize regions from `self.region` only once."""
88
86
  if self.region is None:
89
87
  self.initialize_region()
90
88
  if not isinstance(self.region, dict): # Ensure self.region is initialized and structured as a dictionary
@@ -94,15 +92,14 @@ class RegionCounter(BaseSolution):
94
92
  region["prepared_polygon"] = self.prep(region["polygon"])
95
93
 
96
94
  def process(self, im0: np.ndarray) -> SolutionResults:
97
- """
98
- Process the input frame to detect and count objects within each defined region.
95
+ """Process the input frame to detect and count objects within each defined region.
99
96
 
100
97
  Args:
101
98
  im0 (np.ndarray): Input image frame where objects and regions are annotated.
102
99
 
103
100
  Returns:
104
- (SolutionResults): Contains processed image `plot_im`, 'total_tracks' (int, total number of tracked objects),
105
- and 'region_counts' (dict, counts of objects per region).
101
+ (SolutionResults): Contains processed image `plot_im`, 'total_tracks' (int, total number of tracked
102
+ objects), and 'region_counts' (dict, counts of objects per region).
106
103
  """
107
104
  self.extract_tracks(im0)
108
105
  annotator = SolutionAnnotator(im0, line_width=self.line_width)
@@ -8,8 +8,7 @@ from ultralytics.utils.plotting import colors
8
8
 
9
9
 
10
10
  class SecurityAlarm(BaseSolution):
11
- """
12
- A class to manage security alarm functionalities for real-time monitoring.
11
+ """A class to manage security alarm functionalities for real-time monitoring.
13
12
 
14
13
  This class extends the BaseSolution class and provides features to monitor objects in a frame, send email
15
14
  notifications when specific thresholds are exceeded for total detections, and annotate the output frame for
@@ -35,8 +34,7 @@ class SecurityAlarm(BaseSolution):
35
34
  """
36
35
 
37
36
  def __init__(self, **kwargs: Any) -> None:
38
- """
39
- Initialize the SecurityAlarm class with parameters for real-time object monitoring.
37
+ """Initialize the SecurityAlarm class with parameters for real-time object monitoring.
40
38
 
41
39
  Args:
42
40
  **kwargs (Any): Additional keyword arguments passed to the parent class.
@@ -49,16 +47,15 @@ class SecurityAlarm(BaseSolution):
49
47
  self.from_email = ""
50
48
 
51
49
  def authenticate(self, from_email: str, password: str, to_email: str) -> None:
52
- """
53
- Authenticate the email server for sending alert notifications.
50
+ """Authenticate the email server for sending alert notifications.
51
+
52
+ This method initializes a secure connection with the SMTP server and logs in using the provided credentials.
54
53
 
55
54
  Args:
56
55
  from_email (str): Sender's email address.
57
56
  password (str): Password for the sender's email account.
58
57
  to_email (str): Recipient's email address.
59
58
 
60
- This method initializes a secure connection with the SMTP server and logs in using the provided credentials.
61
-
62
59
  Examples:
63
60
  >>> alarm = SecurityAlarm()
64
61
  >>> alarm.authenticate("sender@example.com", "password123", "recipient@example.com")
@@ -72,16 +69,15 @@ class SecurityAlarm(BaseSolution):
72
69
  self.from_email = from_email
73
70
 
74
71
  def send_email(self, im0, records: int = 5) -> None:
75
- """
76
- Send an email notification with an image attachment indicating the number of objects detected.
72
+ """Send an email notification with an image attachment indicating the number of objects detected.
73
+
74
+ This method encodes the input image, composes the email message with details about the detection, and sends it
75
+ to the specified recipient.
77
76
 
78
77
  Args:
79
78
  im0 (np.ndarray): The input image or frame to be attached to the email.
80
79
  records (int, optional): The number of detected objects to be included in the email message.
81
80
 
82
- This method encodes the input image, composes the email message with details about the detection, and sends it
83
- to the specified recipient.
84
-
85
81
  Examples:
86
82
  >>> alarm = SecurityAlarm()
87
83
  >>> frame = cv2.imread("path/to/image.jpg")
@@ -102,7 +98,7 @@ class SecurityAlarm(BaseSolution):
102
98
  message["Subject"] = "Security Alert"
103
99
 
104
100
  # Add the text message body
105
- message_body = f"Ultralytics ALERT!!! {records} objects have been detected!!"
101
+ message_body = f"Ultralytics alert: {records} object(s) detected."
106
102
  message.attach(MIMEText(message_body))
107
103
 
108
104
  # Attach the image
@@ -117,8 +113,11 @@ class SecurityAlarm(BaseSolution):
117
113
  LOGGER.error(f"Failed to send email: {e}")
118
114
 
119
115
  def process(self, im0) -> SolutionResults:
120
- """
121
- Monitor the frame, process object detections, and trigger alerts if thresholds are exceeded.
116
+ """Monitor the frame, process object detections, and trigger alerts if thresholds are exceeded.
117
+
118
+ This method processes the input frame, extracts detections, annotates the frame with bounding boxes, and sends
119
+ an email notification if the number of detected objects surpasses the specified threshold and an alert has not
120
+ already been sent.
122
121
 
123
122
  Args:
124
123
  im0 (np.ndarray): The input image or frame to be processed and annotated.
@@ -127,10 +126,6 @@ class SecurityAlarm(BaseSolution):
127
126
  (SolutionResults): Contains processed image `plot_im`, 'total_tracks' (total number of tracked objects) and
128
127
  'email_sent' (whether an email alert was triggered).
129
128
 
130
- This method processes the input frame, extracts detections, annotates the frame with bounding boxes, and sends
131
- an email notification if the number of detected objects surpasses the specified threshold and an alert has not
132
- already been sent.
133
-
134
129
  Examples:
135
130
  >>> alarm = SecurityAlarm()
136
131
  >>> frame = cv2.imread("path/to/image.jpg")
@@ -18,8 +18,7 @@ os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # Avoid OpenMP conflict on some sys
18
18
 
19
19
 
20
20
  class VisualAISearch:
21
- """
22
- A semantic image search system that leverages OpenCLIP for generating high-quality image and text embeddings and
21
+ """A semantic image search system that leverages OpenCLIP for generating high-quality image and text embeddings and
23
22
  FAISS for fast similarity-based retrieval.
24
23
 
25
24
  This class aligns image and text embeddings in a shared semantic space, enabling users to search large collections
@@ -78,15 +77,14 @@ class VisualAISearch:
78
77
 
79
78
  def extract_image_feature(self, path: Path) -> np.ndarray:
80
79
  """Extract CLIP image embedding from the given image path."""
81
- return self.model.encode_image(Image.open(path)).cpu().numpy()
80
+ return self.model.encode_image(Image.open(path)).detach().cpu().numpy()
82
81
 
83
82
  def extract_text_feature(self, text: str) -> np.ndarray:
84
83
  """Extract CLIP text embedding from the given text query."""
85
- return self.model.encode_text(self.model.tokenize([text])).cpu().numpy()
84
+ return self.model.encode_text(self.model.tokenize([text])).detach().cpu().numpy()
86
85
 
87
86
  def load_or_build_index(self) -> None:
88
- """
89
- Load existing FAISS index or build a new one from image features.
87
+ """Load existing FAISS index or build a new one from image features.
90
88
 
91
89
  Checks if FAISS index and image paths exist on disk. If found, loads them directly. Otherwise, builds a new
92
90
  index by extracting features from all images in the data directory, normalizes the features, and saves both the
@@ -130,8 +128,7 @@ class VisualAISearch:
130
128
  LOGGER.info(f"Indexed {len(self.image_paths)} images.")
131
129
 
132
130
  def search(self, query: str, k: int = 30, similarity_thresh: float = 0.1) -> list[str]:
133
- """
134
- Return top-k semantically similar images to the given query.
131
+ """Return top-k semantically similar images to the given query.
135
132
 
136
133
  Args:
137
134
  query (str): Natural language text query to search for.
@@ -167,11 +164,10 @@ class VisualAISearch:
167
164
 
168
165
 
169
166
  class SearchApp:
170
- """
171
- A Flask-based web interface for semantic image search with natural language queries.
167
+ """A Flask-based web interface for semantic image search with natural language queries.
172
168
 
173
- This class provides a clean, responsive frontend that enables users to input natural language queries and
174
- instantly view the most relevant images retrieved from the indexed database.
169
+ This class provides a clean, responsive frontend that enables users to input natural language queries and instantly
170
+ view the most relevant images retrieved from the indexed database.
175
171
 
176
172
  Attributes:
177
173
  render_template: Flask template rendering function.
@@ -189,9 +185,8 @@ class SearchApp:
189
185
  >>> app.run(debug=True)
190
186
  """
191
187
 
192
- def __init__(self, data: str = "images", device: str = None) -> None:
193
- """
194
- Initialize the SearchApp with VisualAISearch backend.
188
+ def __init__(self, data: str = "images", device: str | None = None) -> None:
189
+ """Initialize the SearchApp with VisualAISearch backend.
195
190
 
196
191
  Args:
197
192
  data (str, optional): Path to directory containing images to index and search.