dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (249) hide show
  1. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/METADATA +64 -74
  2. dgenerate_ultralytics_headless-8.4.7.dist-info/RECORD +311 -0
  3. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/WHEEL +1 -1
  4. tests/__init__.py +7 -9
  5. tests/conftest.py +8 -15
  6. tests/test_cli.py +1 -1
  7. tests/test_cuda.py +13 -10
  8. tests/test_engine.py +9 -9
  9. tests/test_exports.py +65 -13
  10. tests/test_integrations.py +13 -13
  11. tests/test_python.py +125 -69
  12. tests/test_solutions.py +161 -152
  13. ultralytics/__init__.py +1 -1
  14. ultralytics/cfg/__init__.py +86 -92
  15. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  16. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  17. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  18. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  19. ultralytics/cfg/datasets/TT100K.yaml +346 -0
  20. ultralytics/cfg/datasets/VOC.yaml +15 -16
  21. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  22. ultralytics/cfg/datasets/coco-pose.yaml +21 -0
  23. ultralytics/cfg/datasets/coco12-formats.yaml +101 -0
  24. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  25. ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
  26. ultralytics/cfg/datasets/dog-pose.yaml +28 -0
  27. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  28. ultralytics/cfg/datasets/dota8.yaml +2 -2
  29. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
  30. ultralytics/cfg/datasets/kitti.yaml +27 -0
  31. ultralytics/cfg/datasets/lvis.yaml +5 -5
  32. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  33. ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
  34. ultralytics/cfg/datasets/xView.yaml +16 -16
  35. ultralytics/cfg/default.yaml +4 -2
  36. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  37. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  38. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  39. ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
  40. ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
  41. ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
  42. ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
  43. ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
  44. ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
  45. ultralytics/cfg/models/26/yolo26.yaml +52 -0
  46. ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
  47. ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
  48. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
  49. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
  51. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
  52. ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
  53. ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
  54. ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
  55. ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
  56. ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
  57. ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
  58. ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
  59. ultralytics/cfg/models/v6/yolov6.yaml +1 -1
  60. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  61. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  62. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  63. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  64. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  65. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  66. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  67. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  68. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  69. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  70. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  71. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
  72. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  73. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  74. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  75. ultralytics/data/__init__.py +4 -4
  76. ultralytics/data/annotator.py +5 -6
  77. ultralytics/data/augment.py +300 -475
  78. ultralytics/data/base.py +18 -26
  79. ultralytics/data/build.py +147 -25
  80. ultralytics/data/converter.py +108 -87
  81. ultralytics/data/dataset.py +47 -75
  82. ultralytics/data/loaders.py +42 -49
  83. ultralytics/data/split.py +5 -6
  84. ultralytics/data/split_dota.py +8 -15
  85. ultralytics/data/utils.py +36 -45
  86. ultralytics/engine/exporter.py +351 -263
  87. ultralytics/engine/model.py +186 -225
  88. ultralytics/engine/predictor.py +45 -54
  89. ultralytics/engine/results.py +198 -325
  90. ultralytics/engine/trainer.py +165 -106
  91. ultralytics/engine/tuner.py +41 -43
  92. ultralytics/engine/validator.py +55 -38
  93. ultralytics/hub/__init__.py +16 -19
  94. ultralytics/hub/auth.py +6 -12
  95. ultralytics/hub/google/__init__.py +7 -10
  96. ultralytics/hub/session.py +15 -25
  97. ultralytics/hub/utils.py +5 -8
  98. ultralytics/models/__init__.py +1 -1
  99. ultralytics/models/fastsam/__init__.py +1 -1
  100. ultralytics/models/fastsam/model.py +8 -10
  101. ultralytics/models/fastsam/predict.py +18 -30
  102. ultralytics/models/fastsam/utils.py +1 -2
  103. ultralytics/models/fastsam/val.py +5 -7
  104. ultralytics/models/nas/__init__.py +1 -1
  105. ultralytics/models/nas/model.py +5 -8
  106. ultralytics/models/nas/predict.py +7 -9
  107. ultralytics/models/nas/val.py +1 -2
  108. ultralytics/models/rtdetr/__init__.py +1 -1
  109. ultralytics/models/rtdetr/model.py +5 -8
  110. ultralytics/models/rtdetr/predict.py +15 -19
  111. ultralytics/models/rtdetr/train.py +10 -13
  112. ultralytics/models/rtdetr/val.py +21 -23
  113. ultralytics/models/sam/__init__.py +15 -2
  114. ultralytics/models/sam/amg.py +14 -20
  115. ultralytics/models/sam/build.py +26 -19
  116. ultralytics/models/sam/build_sam3.py +377 -0
  117. ultralytics/models/sam/model.py +29 -32
  118. ultralytics/models/sam/modules/blocks.py +83 -144
  119. ultralytics/models/sam/modules/decoders.py +19 -37
  120. ultralytics/models/sam/modules/encoders.py +44 -101
  121. ultralytics/models/sam/modules/memory_attention.py +16 -30
  122. ultralytics/models/sam/modules/sam.py +200 -73
  123. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  124. ultralytics/models/sam/modules/transformer.py +18 -28
  125. ultralytics/models/sam/modules/utils.py +174 -50
  126. ultralytics/models/sam/predict.py +2248 -350
  127. ultralytics/models/sam/sam3/__init__.py +3 -0
  128. ultralytics/models/sam/sam3/decoder.py +546 -0
  129. ultralytics/models/sam/sam3/encoder.py +529 -0
  130. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  131. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  132. ultralytics/models/sam/sam3/model_misc.py +199 -0
  133. ultralytics/models/sam/sam3/necks.py +129 -0
  134. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  135. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  136. ultralytics/models/sam/sam3/vitdet.py +547 -0
  137. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  138. ultralytics/models/utils/loss.py +14 -26
  139. ultralytics/models/utils/ops.py +13 -17
  140. ultralytics/models/yolo/__init__.py +1 -1
  141. ultralytics/models/yolo/classify/predict.py +10 -13
  142. ultralytics/models/yolo/classify/train.py +12 -33
  143. ultralytics/models/yolo/classify/val.py +30 -29
  144. ultralytics/models/yolo/detect/predict.py +9 -12
  145. ultralytics/models/yolo/detect/train.py +17 -23
  146. ultralytics/models/yolo/detect/val.py +77 -59
  147. ultralytics/models/yolo/model.py +43 -60
  148. ultralytics/models/yolo/obb/predict.py +7 -16
  149. ultralytics/models/yolo/obb/train.py +14 -17
  150. ultralytics/models/yolo/obb/val.py +40 -37
  151. ultralytics/models/yolo/pose/__init__.py +1 -1
  152. ultralytics/models/yolo/pose/predict.py +7 -22
  153. ultralytics/models/yolo/pose/train.py +13 -16
  154. ultralytics/models/yolo/pose/val.py +39 -58
  155. ultralytics/models/yolo/segment/predict.py +17 -21
  156. ultralytics/models/yolo/segment/train.py +7 -10
  157. ultralytics/models/yolo/segment/val.py +95 -47
  158. ultralytics/models/yolo/world/train.py +8 -14
  159. ultralytics/models/yolo/world/train_world.py +11 -34
  160. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  161. ultralytics/models/yolo/yoloe/predict.py +16 -23
  162. ultralytics/models/yolo/yoloe/train.py +36 -44
  163. ultralytics/models/yolo/yoloe/train_seg.py +11 -11
  164. ultralytics/models/yolo/yoloe/val.py +15 -20
  165. ultralytics/nn/__init__.py +7 -7
  166. ultralytics/nn/autobackend.py +159 -85
  167. ultralytics/nn/modules/__init__.py +68 -60
  168. ultralytics/nn/modules/activation.py +4 -6
  169. ultralytics/nn/modules/block.py +260 -224
  170. ultralytics/nn/modules/conv.py +52 -97
  171. ultralytics/nn/modules/head.py +831 -299
  172. ultralytics/nn/modules/transformer.py +76 -88
  173. ultralytics/nn/modules/utils.py +16 -21
  174. ultralytics/nn/tasks.py +180 -195
  175. ultralytics/nn/text_model.py +45 -69
  176. ultralytics/optim/__init__.py +5 -0
  177. ultralytics/optim/muon.py +338 -0
  178. ultralytics/solutions/__init__.py +12 -12
  179. ultralytics/solutions/ai_gym.py +13 -19
  180. ultralytics/solutions/analytics.py +15 -16
  181. ultralytics/solutions/config.py +6 -7
  182. ultralytics/solutions/distance_calculation.py +10 -13
  183. ultralytics/solutions/heatmap.py +8 -14
  184. ultralytics/solutions/instance_segmentation.py +6 -9
  185. ultralytics/solutions/object_blurrer.py +7 -10
  186. ultralytics/solutions/object_counter.py +12 -19
  187. ultralytics/solutions/object_cropper.py +8 -14
  188. ultralytics/solutions/parking_management.py +34 -32
  189. ultralytics/solutions/queue_management.py +10 -12
  190. ultralytics/solutions/region_counter.py +9 -12
  191. ultralytics/solutions/security_alarm.py +15 -20
  192. ultralytics/solutions/similarity_search.py +10 -15
  193. ultralytics/solutions/solutions.py +77 -76
  194. ultralytics/solutions/speed_estimation.py +7 -10
  195. ultralytics/solutions/streamlit_inference.py +2 -4
  196. ultralytics/solutions/templates/similarity-search.html +7 -18
  197. ultralytics/solutions/trackzone.py +7 -10
  198. ultralytics/solutions/vision_eye.py +5 -8
  199. ultralytics/trackers/__init__.py +1 -1
  200. ultralytics/trackers/basetrack.py +3 -5
  201. ultralytics/trackers/bot_sort.py +10 -27
  202. ultralytics/trackers/byte_tracker.py +21 -37
  203. ultralytics/trackers/track.py +4 -7
  204. ultralytics/trackers/utils/gmc.py +11 -22
  205. ultralytics/trackers/utils/kalman_filter.py +37 -48
  206. ultralytics/trackers/utils/matching.py +12 -15
  207. ultralytics/utils/__init__.py +124 -124
  208. ultralytics/utils/autobatch.py +2 -4
  209. ultralytics/utils/autodevice.py +17 -18
  210. ultralytics/utils/benchmarks.py +57 -71
  211. ultralytics/utils/callbacks/base.py +8 -10
  212. ultralytics/utils/callbacks/clearml.py +5 -13
  213. ultralytics/utils/callbacks/comet.py +32 -46
  214. ultralytics/utils/callbacks/dvc.py +13 -18
  215. ultralytics/utils/callbacks/mlflow.py +4 -5
  216. ultralytics/utils/callbacks/neptune.py +7 -15
  217. ultralytics/utils/callbacks/platform.py +423 -38
  218. ultralytics/utils/callbacks/raytune.py +3 -4
  219. ultralytics/utils/callbacks/tensorboard.py +25 -31
  220. ultralytics/utils/callbacks/wb.py +16 -14
  221. ultralytics/utils/checks.py +127 -85
  222. ultralytics/utils/cpu.py +3 -8
  223. ultralytics/utils/dist.py +9 -12
  224. ultralytics/utils/downloads.py +25 -33
  225. ultralytics/utils/errors.py +6 -14
  226. ultralytics/utils/events.py +2 -4
  227. ultralytics/utils/export/__init__.py +4 -236
  228. ultralytics/utils/export/engine.py +246 -0
  229. ultralytics/utils/export/imx.py +117 -63
  230. ultralytics/utils/export/tensorflow.py +231 -0
  231. ultralytics/utils/files.py +26 -30
  232. ultralytics/utils/git.py +9 -11
  233. ultralytics/utils/instance.py +30 -51
  234. ultralytics/utils/logger.py +212 -114
  235. ultralytics/utils/loss.py +601 -215
  236. ultralytics/utils/metrics.py +128 -156
  237. ultralytics/utils/nms.py +13 -16
  238. ultralytics/utils/ops.py +117 -166
  239. ultralytics/utils/patches.py +75 -21
  240. ultralytics/utils/plotting.py +75 -80
  241. ultralytics/utils/tal.py +125 -59
  242. ultralytics/utils/torch_utils.py +53 -79
  243. ultralytics/utils/tqdm.py +24 -21
  244. ultralytics/utils/triton.py +13 -19
  245. ultralytics/utils/tuner.py +19 -10
  246. dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
  247. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/entry_points.txt +0 -0
  248. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/licenses/LICENSE +0 -0
  249. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dgenerate-ultralytics-headless
3
- Version: 8.3.214
3
+ Version: 8.4.7
4
4
  Summary: Automatically built Ultralytics package with python-opencv-headless dependency instead of python-opencv
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -39,27 +39,26 @@ Requires-Dist: pillow>=7.1.2
39
39
  Requires-Dist: pyyaml>=5.3.1
40
40
  Requires-Dist: requests>=2.23.0
41
41
  Requires-Dist: scipy>=1.4.1
42
- Requires-Dist: torch>=1.8.0
43
- Requires-Dist: torch!=2.4.0,>=1.8.0; sys_platform == "win32"
42
+ Requires-Dist: torch<2.10,>=1.8.0
43
+ Requires-Dist: torch!=2.4.0,<2.10,>=1.8.0; sys_platform == "win32"
44
44
  Requires-Dist: torchvision>=0.9.0
45
- Requires-Dist: psutil
46
- Requires-Dist: polars
47
- Requires-Dist: ultralytics-thop>=2.0.0
45
+ Requires-Dist: psutil>=5.8.0
46
+ Requires-Dist: polars>=0.20.0
47
+ Requires-Dist: ultralytics-thop>=2.0.18
48
48
  Provides-Extra: dev
49
49
  Requires-Dist: ipython; extra == "dev"
50
50
  Requires-Dist: pytest; extra == "dev"
51
51
  Requires-Dist: pytest-cov; extra == "dev"
52
52
  Requires-Dist: coverage[toml]; extra == "dev"
53
- Requires-Dist: mkdocs>=1.6.0; extra == "dev"
54
- Requires-Dist: mkdocs-material>=9.5.9; extra == "dev"
55
- Requires-Dist: mkdocstrings[python]; extra == "dev"
56
- Requires-Dist: mkdocs-ultralytics-plugin>=0.1.29; extra == "dev"
57
- Requires-Dist: mkdocs-macros-plugin>=1.0.5; extra == "dev"
53
+ Requires-Dist: zensical>=0.0.15; python_version >= "3.10" and extra == "dev"
54
+ Requires-Dist: mkdocs-ultralytics-plugin>=0.2.4; extra == "dev"
55
+ Requires-Dist: minijinja>=2.0.0; extra == "dev"
58
56
  Provides-Extra: export
59
57
  Requires-Dist: numpy<2.0.0; extra == "export"
60
58
  Requires-Dist: onnx>=1.12.0; platform_system != "Darwin" and extra == "export"
61
59
  Requires-Dist: onnx<1.18.0,>=1.12.0; platform_system == "Darwin" and extra == "export"
62
- Requires-Dist: coremltools>=8.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
60
+ Requires-Dist: onnxslim>=0.1.82; extra == "export"
61
+ Requires-Dist: coremltools>=9.0; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
63
62
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.13") and extra == "export"
64
63
  Requires-Dist: openvino>=2024.0.0; extra == "export"
65
64
  Requires-Dist: tensorflow<=2.19.0,>=2.0.0; extra == "export"
@@ -75,12 +74,11 @@ Requires-Dist: wandb; extra == "logging"
75
74
  Requires-Dist: tensorboard; extra == "logging"
76
75
  Requires-Dist: mlflow; extra == "logging"
77
76
  Provides-Extra: extra
78
- Requires-Dist: hub-sdk>=0.0.12; extra == "extra"
79
77
  Requires-Dist: ipython; extra == "extra"
80
78
  Requires-Dist: albumentations>=1.4.6; extra == "extra"
81
79
  Requires-Dist: faster-coco-eval>=1.6.7; extra == "extra"
82
80
  Provides-Extra: typing
83
- Requires-Dist: scipy-stubs; extra == "typing"
81
+ Requires-Dist: scipy-stubs>=1.14.1.4; python_version >= "3.10" and extra == "typing"
84
82
  Requires-Dist: types-pillow; extra == "typing"
85
83
  Requires-Dist: types-psutil; extra == "typing"
86
84
  Requires-Dist: types-pyyaml; extra == "typing"
@@ -121,7 +119,7 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
121
119
 
122
120
  <div align="center">
123
121
  <p>
124
- <a href="https://www.ultralytics.com/events/yolovision?utm_source=github&utm_medium=org&utm_campaign=yv25_event" target="_blank">
122
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
125
123
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="Ultralytics YOLO banner"></a>
126
124
  </p>
127
125
 
@@ -130,14 +128,13 @@ The workflow runs automatically every day at midnight UTC to check for new Ultra
130
128
  <div>
131
129
  <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yml/badge.svg" alt="Ultralytics CI"></a>
132
130
  <a href="https://clickpy.clickhouse.com/dashboard/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
133
- <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
134
131
  <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
135
132
  <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
136
133
  <a href="https://www.reddit.com/r/ultralytics/"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
137
134
  <br>
138
135
  <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
139
136
  <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
140
- <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
137
+ <a href="https://www.kaggle.com/models/ultralytics/yolo26"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
141
138
  <a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
142
139
  </div>
143
140
  </div>
@@ -149,8 +146,8 @@ Find detailed documentation in the [Ultralytics Docs](https://docs.ultralytics.c
149
146
 
150
147
  Request an Enterprise License for commercial use at [Ultralytics Licensing](https://www.ultralytics.com/license).
151
148
 
152
- <a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
153
- <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
149
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26" target="_blank">
150
+ <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO26 performance plots">
154
151
  </a>
155
152
 
156
153
  <div align="center">
@@ -160,7 +157,7 @@ Request an Enterprise License for commercial use at [Ultralytics Licensing](http
160
157
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
161
158
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
162
159
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
163
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
160
+ <a href="https://www.youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
164
161
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
165
162
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
166
163
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
@@ -198,8 +195,8 @@ For alternative installation methods, including [Conda](https://anaconda.org/con
198
195
  You can use Ultralytics YOLO directly from the Command Line Interface (CLI) with the `yolo` command:
199
196
 
200
197
  ```bash
201
- # Predict using a pretrained YOLO model (e.g., YOLO11n) on an image
202
- yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
198
+ # Predict using a pretrained YOLO model (e.g., YOLO26n) on an image
199
+ yolo predict model=yolo26n.pt source='https://ultralytics.com/images/bus.jpg'
203
200
  ```
204
201
 
205
202
  The `yolo` command supports various tasks and modes, accepting additional arguments like `imgsz=640`. Explore the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for more examples.
@@ -211,8 +208,8 @@ Ultralytics YOLO can also be integrated directly into your Python projects. It a
211
208
  ```python
212
209
  from ultralytics import YOLO
213
210
 
214
- # Load a pretrained YOLO11n model
215
- model = YOLO("yolo11n.pt")
211
+ # Load a pretrained YOLO26n model
212
+ model = YOLO("yolo26n.pt")
216
213
 
217
214
  # Train the model on the COCO8 dataset for 100 epochs
218
215
  train_results = model.train(
@@ -239,7 +236,7 @@ Discover more examples in the YOLO [Python Docs](https://docs.ultralytics.com/us
239
236
 
240
237
  ## ✨ Models
241
238
 
242
- Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO11](https://docs.ultralytics.com/models/yolo11/). The tables below showcase YOLO11 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
239
+ Ultralytics supports a wide range of YOLO models, from early versions like [YOLOv3](https://docs.ultralytics.com/models/yolov3/) to the latest [YOLO26](https://docs.ultralytics.com/models/yolo26/). The tables below showcase YOLO26 models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset for [Detection](https://docs.ultralytics.com/tasks/detect/), [Segmentation](https://docs.ultralytics.com/tasks/segment/), and [Pose Estimation](https://docs.ultralytics.com/tasks/pose/). Additionally, [Classification](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset are available. [Tracking](https://docs.ultralytics.com/modes/track/) mode is compatible with all Detection, Segmentation, and Pose models. All [Models](https://docs.ultralytics.com/models/) are automatically downloaded from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) upon first use.
243
240
 
244
241
  <a href="https://docs.ultralytics.com/tasks/" target="_blank">
245
242
  <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
@@ -251,13 +248,13 @@ Ultralytics supports a wide range of YOLO models, from early versions like [YOLO
251
248
 
252
249
  Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples. These models are trained on the [COCO dataset](https://cocodataset.org/), featuring 80 object classes.
253
250
 
254
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
255
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
256
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
257
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
258
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
259
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
260
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
251
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>val<br>50-95</sup> | mAP<sup>val<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
252
+ | ------------------------------------------------------------------------------------ | --------------------------- | -------------------------- | ------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
253
+ | [YOLO26n](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n.pt) | 640 | 40.9 | 40.1 | 38.9 ± 0.7 | 1.7 ± 0.0 | 2.4 | 5.4 |
254
+ | [YOLO26s](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s.pt) | 640 | 48.6 | 47.8 | 87.2 ± 0.9 | 2.5 ± 0.0 | 9.5 | 20.7 |
255
+ | [YOLO26m](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m.pt) | 640 | 53.1 | 52.5 | 220.0 ± 1.4 | 4.7 ± 0.1 | 20.4 | 68.2 |
256
+ | [YOLO26l](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l.pt) | 640 | 55.0 | 54.4 | 286.2 ± 2.0 | 6.2 ± 0.2 | 24.8 | 86.4 |
257
+ | [YOLO26x](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x.pt) | 640 | 57.5 | 56.9 | 525.8 ± 4.0 | 11.8 ± 0.2 | 55.7 | 193.9 |
261
258
 
262
259
  - **mAP<sup>val</sup>** values refer to single-model single-scale performance on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val detect data=coco.yaml device=0`
263
260
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -268,13 +265,13 @@ Explore the [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usa
268
265
 
269
266
  Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples. These models are trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), including 80 classes.
270
267
 
271
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
272
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
273
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.9 ± 1.1 | 1.8 ± 0.0 | 2.9 | 9.7 |
274
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.6 ± 4.9 | 2.9 ± 0.0 | 10.1 | 33.0 |
275
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.6 ± 1.2 | 6.3 ± 0.1 | 22.4 | 113.2 |
276
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.2 ± 3.2 | 7.8 ± 0.2 | 27.6 | 132.2 |
277
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.5 ± 3.2 | 15.8 ± 0.7 | 62.1 | 296.4 |
268
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>box<br>50-95(e2e)</sup> | mAP<sup>mask<br>50-95(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
269
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ------------------------------- | -------------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
270
+ | [YOLO26n-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-seg.pt) | 640 | 39.6 | 33.9 | 53.3 ± 0.5 | 2.1 ± 0.0 | 2.7 | 9.1 |
271
+ | [YOLO26s-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-seg.pt) | 640 | 47.3 | 40.0 | 118.4 ± 0.9 | 3.3 ± 0.0 | 10.4 | 34.2 |
272
+ | [YOLO26m-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-seg.pt) | 640 | 52.5 | 44.1 | 328.2 ± 2.4 | 6.7 ± 0.1 | 23.6 | 121.5 |
273
+ | [YOLO26l-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-seg.pt) | 640 | 54.4 | 45.5 | 387.0 ± 3.7 | 8.0 ± 0.1 | 28.0 | 139.8 |
274
+ | [YOLO26x-seg](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-seg.pt) | 640 | 56.5 | 47.0 | 787.0 ± 6.8 | 16.4 ± 0.1 | 62.8 | 313.5 |
278
275
 
279
276
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO val2017](https://cocodataset.org/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val segment data=coco.yaml device=0`
280
277
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val segment data=coco.yaml batch=1 device=0|cpu`
@@ -285,13 +282,13 @@ Refer to the [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) fo
285
282
 
286
283
  Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples. These models are trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), covering 1000 classes.
287
284
 
288
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 224 |
289
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
290
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
291
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
292
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
293
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
294
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
285
+ | Model | size<br><sup>(pixels)</sup> | acc<br><sup>top1</sup> | acc<br><sup>top5</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B) at 224</sup> |
286
+ | -------------------------------------------------------------------------------------------- | --------------------------- | ---------------------- | ---------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ------------------------------ |
287
+ | [YOLO26n-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-cls.pt) | 224 | 71.4 | 90.1 | 5.0 ± 0.3 | 1.1 ± 0.0 | 2.8 | 0.5 |
288
+ | [YOLO26s-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-cls.pt) | 224 | 76.0 | 92.9 | 7.9 ± 0.2 | 1.3 ± 0.0 | 6.7 | 1.6 |
289
+ | [YOLO26m-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-cls.pt) | 224 | 78.1 | 94.2 | 17.2 ± 0.4 | 2.0 ± 0.0 | 11.6 | 4.9 |
290
+ | [YOLO26l-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-cls.pt) | 224 | 79.0 | 94.6 | 23.2 ± 0.3 | 2.8 ± 0.0 | 14.1 | 6.2 |
291
+ | [YOLO26x-cls](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-cls.pt) | 224 | 79.9 | 95.0 | 41.4 ± 0.9 | 3.8 ± 0.0 | 29.6 | 13.6 |
295
292
 
296
293
  - **acc** values represent model accuracy on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce with `yolo val classify data=path/to/ImageNet device=0`
297
294
  - **Speed** metrics are averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -302,13 +299,13 @@ Consult the [Classification Docs](https://docs.ultralytics.com/tasks/classify/)
302
299
 
303
300
  See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples. These models are trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), focusing on the 'person' class.
304
301
 
305
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
306
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
307
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.4 ± 0.5 | 1.7 ± 0.0 | 2.9 | 7.4 |
308
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.5 ± 0.6 | 2.6 ± 0.0 | 9.9 | 23.1 |
309
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.3 ± 0.8 | 4.9 ± 0.1 | 20.9 | 71.4 |
310
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.7 ± 1.1 | 6.4 ± 0.1 | 26.1 | 90.3 |
311
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 488.0 ± 13.9 | 12.1 ± 0.2 | 58.8 | 202.8 |
302
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>pose<br>50-95(e2e)</sup> | mAP<sup>pose<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
303
+ | ---------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
304
+ | [YOLO26n-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-pose.pt) | 640 | 57.2 | 83.3 | 40.3 ± 0.5 | 1.8 ± 0.0 | 2.9 | 7.5 |
305
+ | [YOLO26s-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-pose.pt) | 640 | 63.0 | 86.6 | 85.3 ± 0.9 | 2.7 ± 0.0 | 10.4 | 23.9 |
306
+ | [YOLO26m-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-pose.pt) | 640 | 68.8 | 89.6 | 218.0 ± 1.5 | 5.0 ± 0.1 | 21.5 | 73.1 |
307
+ | [YOLO26l-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-pose.pt) | 640 | 70.4 | 90.5 | 275.4 ± 2.4 | 6.5 ± 0.1 | 25.9 | 91.3 |
308
+ | [YOLO26x-pose](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-pose.pt) | 640 | 71.6 | 91.6 | 565.4 ± 3.0 | 12.2 ± 0.2 | 57.6 | 201.7 |
312
309
 
313
310
  - **mAP<sup>val</sup>** values are for single-model single-scale on the [COCO Keypoints val2017](https://docs.ultralytics.com/datasets/pose/coco/) dataset. See [YOLO Performance Metrics](https://docs.ultralytics.com/guides/yolo-performance-metrics/) for details. <br>Reproduce with `yolo val pose data=coco-pose.yaml device=0`
314
311
  - **Speed** metrics are averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce with `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -319,13 +316,13 @@ See the [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usa
319
316
 
320
317
  Check the [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples. These models are trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), including 15 classes.
321
318
 
322
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
323
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
324
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.6 ± 0.8 | 4.4 ± 0.0 | 2.7 | 16.8 |
325
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.4 ± 4.0 | 5.1 ± 0.0 | 9.7 | 57.1 |
326
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.8 ± 2.9 | 10.1 ± 0.4 | 20.9 | 182.8 |
327
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.5 ± 5.0 | 13.5 ± 0.6 | 26.1 | 231.2 |
328
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.6 ± 7.7 | 28.6 ± 1.0 | 58.8 | 519.1 |
319
+ | Model | size<br><sup>(pixels)</sup> | mAP<sup>test<br>50-95(e2e)</sup> | mAP<sup>test<br>50(e2e)</sup> | Speed<br><sup>CPU ONNX<br>(ms)</sup> | Speed<br><sup>T4 TensorRT10<br>(ms)</sup> | params<br><sup>(M)</sup> | FLOPs<br><sup>(B)</sup> |
320
+ | -------------------------------------------------------------------------------------------- | --------------------------- | -------------------------------- | ----------------------------- | ------------------------------------ | ----------------------------------------- | ------------------------ | ----------------------- |
321
+ | [YOLO26n-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26n-obb.pt) | 1024 | 52.4 | 78.9 | 97.7 ± 0.9 | 2.8 ± 0.0 | 2.5 | 14.0 |
322
+ | [YOLO26s-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26s-obb.pt) | 1024 | 54.8 | 80.9 | 218.0 ± 1.4 | 4.9 ± 0.1 | 9.8 | 55.1 |
323
+ | [YOLO26m-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26m-obb.pt) | 1024 | 55.3 | 81.0 | 579.2 ± 3.8 | 10.2 ± 0.3 | 21.2 | 183.3 |
324
+ | [YOLO26l-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26l-obb.pt) | 1024 | 56.2 | 81.6 | 735.6 ± 3.1 | 13.0 ± 0.2 | 25.6 | 230.0 |
325
+ | [YOLO26x-obb](https://github.com/ultralytics/assets/releases/download/v8.4.0/yolo26x-obb.pt) | 1024 | 56.7 | 81.7 | 1485.7 ± 11.5 | 30.5 ± 0.9 | 57.6 | 516.5 |
329
326
 
330
327
  - **mAP<sup>test</sup>** values are for single-model multiscale performance on the [DOTAv1 test set](https://captain-whu.github.io/DOTA/dataset.html). <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to the [DOTA evaluation server](https://captain-whu.github.io/DOTA/evaluation.html).
331
328
  - **Speed** metrics are averaged over [DOTAv1 val images](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10) using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. CPU speeds measured with [ONNX](https://onnx.ai/) export. GPU speeds measured with [TensorRT](https://developer.nvidia.com/tensorrt) export. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -343,8 +340,8 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
343
340
  <br>
344
341
 
345
342
  <div align="center">
346
- <a href="https://www.ultralytics.com/hub">
347
- <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
343
+ <a href="https://platform.ultralytics.com/ultralytics/yolo26">
344
+ <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics Platform logo"></a>
348
345
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
349
346
  <a href="https://docs.ultralytics.com/integrations/weights-biases/">
350
347
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="Weights & Biases logo"></a>
@@ -356,16 +353,9 @@ Our key integrations with leading AI platforms extend the functionality of Ultra
356
353
  <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="Neural Magic logo"></a>
357
354
  </div>
358
355
 
359
- | Ultralytics HUB 🌟 | Weights & Biases | Comet | Neural Magic |
360
- | :-----------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
361
- | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://hub.ultralytics.com/). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
362
-
363
- ## 🌟 Ultralytics HUB
364
-
365
- Experience seamless AI with [Ultralytics HUB](https://hub.ultralytics.com/), the all-in-one platform for data visualization, training YOLO models, and deployment—no coding required. Transform images into actionable insights and bring your AI visions to life effortlessly using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** today!
366
-
367
- <a href="https://www.ultralytics.com/hub" target="_blank">
368
- <img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
356
+ | Ultralytics Platform 🌟 | Weights & Biases | Comet | Neural Magic |
357
+ | :---------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------: |
358
+ | Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics Platform](https://platform.ultralytics.com/ultralytics/yolo26). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.ultralytics.com/integrations/weights-biases/). | Free forever, [Comet ML](https://docs.ultralytics.com/integrations/comet/) lets you save YOLO models, resume training, and interactively visualize predictions. | Run YOLO inference up to 6x faster with [Neural Magic DeepSparse](https://docs.ultralytics.com/integrations/neural-magic/). |
369
359
 
370
360
  ## 🤝 Contribute
371
361
 
@@ -381,7 +371,7 @@ We look forward to your contributions to help make the Ultralytics ecosystem eve
381
371
 
382
372
  Ultralytics offers two licensing options to suit different needs:
383
373
 
384
- - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for full details.
374
+ - **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license/agpl-v3) open-source license is perfect for students, researchers, and enthusiasts. It encourages open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for full details.
385
375
  - **Ultralytics Enterprise License**: Designed for commercial use, this license allows for the seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. If your use case involves commercial deployment, please contact us via [Ultralytics Licensing](https://www.ultralytics.com/license).
386
376
 
387
377
  ## 📞 Contact
@@ -396,7 +386,7 @@ For bug reports and feature requests related to Ultralytics software, please vis
396
386
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
397
387
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
398
388
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
399
- <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
389
+ <a href="https://www.youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
400
390
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
401
391
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
402
392
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">