dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.4.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (249) hide show
  1. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/METADATA +64 -74
  2. dgenerate_ultralytics_headless-8.4.7.dist-info/RECORD +311 -0
  3. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/WHEEL +1 -1
  4. tests/__init__.py +7 -9
  5. tests/conftest.py +8 -15
  6. tests/test_cli.py +1 -1
  7. tests/test_cuda.py +13 -10
  8. tests/test_engine.py +9 -9
  9. tests/test_exports.py +65 -13
  10. tests/test_integrations.py +13 -13
  11. tests/test_python.py +125 -69
  12. tests/test_solutions.py +161 -152
  13. ultralytics/__init__.py +1 -1
  14. ultralytics/cfg/__init__.py +86 -92
  15. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  16. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  17. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  18. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  19. ultralytics/cfg/datasets/TT100K.yaml +346 -0
  20. ultralytics/cfg/datasets/VOC.yaml +15 -16
  21. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  22. ultralytics/cfg/datasets/coco-pose.yaml +21 -0
  23. ultralytics/cfg/datasets/coco12-formats.yaml +101 -0
  24. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  25. ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
  26. ultralytics/cfg/datasets/dog-pose.yaml +28 -0
  27. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  28. ultralytics/cfg/datasets/dota8.yaml +2 -2
  29. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
  30. ultralytics/cfg/datasets/kitti.yaml +27 -0
  31. ultralytics/cfg/datasets/lvis.yaml +5 -5
  32. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  33. ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
  34. ultralytics/cfg/datasets/xView.yaml +16 -16
  35. ultralytics/cfg/default.yaml +4 -2
  36. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  37. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  38. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  39. ultralytics/cfg/models/26/yolo26-cls.yaml +33 -0
  40. ultralytics/cfg/models/26/yolo26-obb.yaml +52 -0
  41. ultralytics/cfg/models/26/yolo26-p2.yaml +60 -0
  42. ultralytics/cfg/models/26/yolo26-p6.yaml +62 -0
  43. ultralytics/cfg/models/26/yolo26-pose.yaml +53 -0
  44. ultralytics/cfg/models/26/yolo26-seg.yaml +52 -0
  45. ultralytics/cfg/models/26/yolo26.yaml +52 -0
  46. ultralytics/cfg/models/26/yoloe-26-seg.yaml +53 -0
  47. ultralytics/cfg/models/26/yoloe-26.yaml +53 -0
  48. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
  49. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
  50. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
  51. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
  52. ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
  53. ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
  54. ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
  55. ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
  56. ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
  57. ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
  58. ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
  59. ultralytics/cfg/models/v6/yolov6.yaml +1 -1
  60. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  61. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  62. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  63. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  64. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  65. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  66. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  67. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  68. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  69. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  70. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  71. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
  72. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  73. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  74. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  75. ultralytics/data/__init__.py +4 -4
  76. ultralytics/data/annotator.py +5 -6
  77. ultralytics/data/augment.py +300 -475
  78. ultralytics/data/base.py +18 -26
  79. ultralytics/data/build.py +147 -25
  80. ultralytics/data/converter.py +108 -87
  81. ultralytics/data/dataset.py +47 -75
  82. ultralytics/data/loaders.py +42 -49
  83. ultralytics/data/split.py +5 -6
  84. ultralytics/data/split_dota.py +8 -15
  85. ultralytics/data/utils.py +36 -45
  86. ultralytics/engine/exporter.py +351 -263
  87. ultralytics/engine/model.py +186 -225
  88. ultralytics/engine/predictor.py +45 -54
  89. ultralytics/engine/results.py +198 -325
  90. ultralytics/engine/trainer.py +165 -106
  91. ultralytics/engine/tuner.py +41 -43
  92. ultralytics/engine/validator.py +55 -38
  93. ultralytics/hub/__init__.py +16 -19
  94. ultralytics/hub/auth.py +6 -12
  95. ultralytics/hub/google/__init__.py +7 -10
  96. ultralytics/hub/session.py +15 -25
  97. ultralytics/hub/utils.py +5 -8
  98. ultralytics/models/__init__.py +1 -1
  99. ultralytics/models/fastsam/__init__.py +1 -1
  100. ultralytics/models/fastsam/model.py +8 -10
  101. ultralytics/models/fastsam/predict.py +18 -30
  102. ultralytics/models/fastsam/utils.py +1 -2
  103. ultralytics/models/fastsam/val.py +5 -7
  104. ultralytics/models/nas/__init__.py +1 -1
  105. ultralytics/models/nas/model.py +5 -8
  106. ultralytics/models/nas/predict.py +7 -9
  107. ultralytics/models/nas/val.py +1 -2
  108. ultralytics/models/rtdetr/__init__.py +1 -1
  109. ultralytics/models/rtdetr/model.py +5 -8
  110. ultralytics/models/rtdetr/predict.py +15 -19
  111. ultralytics/models/rtdetr/train.py +10 -13
  112. ultralytics/models/rtdetr/val.py +21 -23
  113. ultralytics/models/sam/__init__.py +15 -2
  114. ultralytics/models/sam/amg.py +14 -20
  115. ultralytics/models/sam/build.py +26 -19
  116. ultralytics/models/sam/build_sam3.py +377 -0
  117. ultralytics/models/sam/model.py +29 -32
  118. ultralytics/models/sam/modules/blocks.py +83 -144
  119. ultralytics/models/sam/modules/decoders.py +19 -37
  120. ultralytics/models/sam/modules/encoders.py +44 -101
  121. ultralytics/models/sam/modules/memory_attention.py +16 -30
  122. ultralytics/models/sam/modules/sam.py +200 -73
  123. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  124. ultralytics/models/sam/modules/transformer.py +18 -28
  125. ultralytics/models/sam/modules/utils.py +174 -50
  126. ultralytics/models/sam/predict.py +2248 -350
  127. ultralytics/models/sam/sam3/__init__.py +3 -0
  128. ultralytics/models/sam/sam3/decoder.py +546 -0
  129. ultralytics/models/sam/sam3/encoder.py +529 -0
  130. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  131. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  132. ultralytics/models/sam/sam3/model_misc.py +199 -0
  133. ultralytics/models/sam/sam3/necks.py +129 -0
  134. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  135. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  136. ultralytics/models/sam/sam3/vitdet.py +547 -0
  137. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  138. ultralytics/models/utils/loss.py +14 -26
  139. ultralytics/models/utils/ops.py +13 -17
  140. ultralytics/models/yolo/__init__.py +1 -1
  141. ultralytics/models/yolo/classify/predict.py +10 -13
  142. ultralytics/models/yolo/classify/train.py +12 -33
  143. ultralytics/models/yolo/classify/val.py +30 -29
  144. ultralytics/models/yolo/detect/predict.py +9 -12
  145. ultralytics/models/yolo/detect/train.py +17 -23
  146. ultralytics/models/yolo/detect/val.py +77 -59
  147. ultralytics/models/yolo/model.py +43 -60
  148. ultralytics/models/yolo/obb/predict.py +7 -16
  149. ultralytics/models/yolo/obb/train.py +14 -17
  150. ultralytics/models/yolo/obb/val.py +40 -37
  151. ultralytics/models/yolo/pose/__init__.py +1 -1
  152. ultralytics/models/yolo/pose/predict.py +7 -22
  153. ultralytics/models/yolo/pose/train.py +13 -16
  154. ultralytics/models/yolo/pose/val.py +39 -58
  155. ultralytics/models/yolo/segment/predict.py +17 -21
  156. ultralytics/models/yolo/segment/train.py +7 -10
  157. ultralytics/models/yolo/segment/val.py +95 -47
  158. ultralytics/models/yolo/world/train.py +8 -14
  159. ultralytics/models/yolo/world/train_world.py +11 -34
  160. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  161. ultralytics/models/yolo/yoloe/predict.py +16 -23
  162. ultralytics/models/yolo/yoloe/train.py +36 -44
  163. ultralytics/models/yolo/yoloe/train_seg.py +11 -11
  164. ultralytics/models/yolo/yoloe/val.py +15 -20
  165. ultralytics/nn/__init__.py +7 -7
  166. ultralytics/nn/autobackend.py +159 -85
  167. ultralytics/nn/modules/__init__.py +68 -60
  168. ultralytics/nn/modules/activation.py +4 -6
  169. ultralytics/nn/modules/block.py +260 -224
  170. ultralytics/nn/modules/conv.py +52 -97
  171. ultralytics/nn/modules/head.py +831 -299
  172. ultralytics/nn/modules/transformer.py +76 -88
  173. ultralytics/nn/modules/utils.py +16 -21
  174. ultralytics/nn/tasks.py +180 -195
  175. ultralytics/nn/text_model.py +45 -69
  176. ultralytics/optim/__init__.py +5 -0
  177. ultralytics/optim/muon.py +338 -0
  178. ultralytics/solutions/__init__.py +12 -12
  179. ultralytics/solutions/ai_gym.py +13 -19
  180. ultralytics/solutions/analytics.py +15 -16
  181. ultralytics/solutions/config.py +6 -7
  182. ultralytics/solutions/distance_calculation.py +10 -13
  183. ultralytics/solutions/heatmap.py +8 -14
  184. ultralytics/solutions/instance_segmentation.py +6 -9
  185. ultralytics/solutions/object_blurrer.py +7 -10
  186. ultralytics/solutions/object_counter.py +12 -19
  187. ultralytics/solutions/object_cropper.py +8 -14
  188. ultralytics/solutions/parking_management.py +34 -32
  189. ultralytics/solutions/queue_management.py +10 -12
  190. ultralytics/solutions/region_counter.py +9 -12
  191. ultralytics/solutions/security_alarm.py +15 -20
  192. ultralytics/solutions/similarity_search.py +10 -15
  193. ultralytics/solutions/solutions.py +77 -76
  194. ultralytics/solutions/speed_estimation.py +7 -10
  195. ultralytics/solutions/streamlit_inference.py +2 -4
  196. ultralytics/solutions/templates/similarity-search.html +7 -18
  197. ultralytics/solutions/trackzone.py +7 -10
  198. ultralytics/solutions/vision_eye.py +5 -8
  199. ultralytics/trackers/__init__.py +1 -1
  200. ultralytics/trackers/basetrack.py +3 -5
  201. ultralytics/trackers/bot_sort.py +10 -27
  202. ultralytics/trackers/byte_tracker.py +21 -37
  203. ultralytics/trackers/track.py +4 -7
  204. ultralytics/trackers/utils/gmc.py +11 -22
  205. ultralytics/trackers/utils/kalman_filter.py +37 -48
  206. ultralytics/trackers/utils/matching.py +12 -15
  207. ultralytics/utils/__init__.py +124 -124
  208. ultralytics/utils/autobatch.py +2 -4
  209. ultralytics/utils/autodevice.py +17 -18
  210. ultralytics/utils/benchmarks.py +57 -71
  211. ultralytics/utils/callbacks/base.py +8 -10
  212. ultralytics/utils/callbacks/clearml.py +5 -13
  213. ultralytics/utils/callbacks/comet.py +32 -46
  214. ultralytics/utils/callbacks/dvc.py +13 -18
  215. ultralytics/utils/callbacks/mlflow.py +4 -5
  216. ultralytics/utils/callbacks/neptune.py +7 -15
  217. ultralytics/utils/callbacks/platform.py +423 -38
  218. ultralytics/utils/callbacks/raytune.py +3 -4
  219. ultralytics/utils/callbacks/tensorboard.py +25 -31
  220. ultralytics/utils/callbacks/wb.py +16 -14
  221. ultralytics/utils/checks.py +127 -85
  222. ultralytics/utils/cpu.py +3 -8
  223. ultralytics/utils/dist.py +9 -12
  224. ultralytics/utils/downloads.py +25 -33
  225. ultralytics/utils/errors.py +6 -14
  226. ultralytics/utils/events.py +2 -4
  227. ultralytics/utils/export/__init__.py +4 -236
  228. ultralytics/utils/export/engine.py +246 -0
  229. ultralytics/utils/export/imx.py +117 -63
  230. ultralytics/utils/export/tensorflow.py +231 -0
  231. ultralytics/utils/files.py +26 -30
  232. ultralytics/utils/git.py +9 -11
  233. ultralytics/utils/instance.py +30 -51
  234. ultralytics/utils/logger.py +212 -114
  235. ultralytics/utils/loss.py +601 -215
  236. ultralytics/utils/metrics.py +128 -156
  237. ultralytics/utils/nms.py +13 -16
  238. ultralytics/utils/ops.py +117 -166
  239. ultralytics/utils/patches.py +75 -21
  240. ultralytics/utils/plotting.py +75 -80
  241. ultralytics/utils/tal.py +125 -59
  242. ultralytics/utils/torch_utils.py +53 -79
  243. ultralytics/utils/tqdm.py +24 -21
  244. ultralytics/utils/triton.py +13 -19
  245. ultralytics/utils/tuner.py +19 -10
  246. dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
  247. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/entry_points.txt +0 -0
  248. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/licenses/LICENSE +0 -0
  249. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.4.7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,311 @@
1
+ dgenerate_ultralytics_headless-8.4.7.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
2
+ tests/__init__.py,sha256=hfUXxYLJB3846OCzWV94ZKEZsi8vq9Pqrdd2mMgjjck,804
3
+ tests/conftest.py,sha256=rlKyDuOC_3ptXrWS8Q19bNEGOupUmYXHj3nB6o1GBGY,2318
4
+ tests/test_cli.py,sha256=GhIFHi-_WIJpDgoGNRi0DnjbfwP1wHbklBMnkCM-P_4,5464
5
+ tests/test_cuda.py,sha256=2TBe-ZkecMOGPWLdHcbsAjH3m9c5SQJ2KeyICgS0aeo,8426
6
+ tests/test_engine.py,sha256=ufSn3X4kL_Lpn2O25jKAfw_9QwHTMRjP9shDdpgBqnY,5740
7
+ tests/test_exports.py,sha256=Toy4u-4bsoyAbzNhc9kbMuKqvMKywZxNj5jlFNTzFWs,14670
8
+ tests/test_integrations.py,sha256=FjvTGjXm3bvYHK3_obgObhC5SzHCTzw4aOJV9Hh08jQ,6220
9
+ tests/test_python.py,sha256=CRgmOp2TiGBn9p7m16PVXBq3G9SkzIWG_kZvC9-nTGo,30474
10
+ tests/test_solutions.py,sha256=1tRlM72YciE42Nk9v83gsXOD5RSx9GSWVsKGhH7-HxE,14122
11
+ ultralytics/__init__.py,sha256=uc5Wwzw5ozOEVHw3LV11N34z-n4aZ3iH6pwcvQ4TP5I,1300
12
+ ultralytics/py.typed,sha256=la67KBlbjXN-_-DfGNcdOcjYumVpKG_Tkw-8n5dnGB4,8
13
+ ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
14
+ ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
15
+ ultralytics/cfg/__init__.py,sha256=N7eKXgd97UHWxYOgx_s3KKLzdKvRzp5LCFUL2P8Rpeo,40212
16
+ ultralytics/cfg/default.yaml,sha256=HFUxIYHNKR1RBmMfEmv72zNp2kqMzrSm18IQSKKTgnQ,9053
17
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=QGpdh3Hj5dFrvbsaE_8rAVj9BO4XpKTB7uhXaTTnE-o,3364
18
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=KE7VC-ZMDSei1pLPm-pdk_ZAMRU_gLwGgtIQNbwp6dA,1212
19
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=DUmBEfvdlCRH2t9aqhc3uk55sOXWWsY9v6RVYaELeTA,1182
20
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=dnr_loeYSE6Eo_f7V1yubILsMRBMRm1ozyC5r7uT-iY,2144
21
+ ultralytics/cfg/datasets/HomeObjects-3K.yaml,sha256=xEtSqEad-rtfGuIrERjjhdISggmPlvaX-315ZzKz50I,934
22
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=N9NHhIgnlNIBqZZbzQZAW3aCnz6RSXQABnopaDs5BmE,42529
23
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=8Bl-NAm0mlMW8EfMsz39JZo-HCvmp0ejJXaMeoHTpqw,9649
24
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=xvRkq3SdDOwBA91U85bln7HTXkod5MvFX6pt1PxTjJE,2609
25
+ ultralytics/cfg/datasets/TT100K.yaml,sha256=qrJ6nrZdvrMy5ov9FaHn-pFI8hJn_WLYaB60vhtCOxs,6918
26
+ ultralytics/cfg/datasets/VOC.yaml,sha256=XpaegRHjp7xZnenOuA9zgg2lQURSL-o7mLQwzIKKuqM,3803
27
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=PfudojW5av_5q-dC9VsG_xhvuv9cTGEpRp4loXCJ4Ng,3397
28
+ ultralytics/cfg/datasets/african-wildlife.yaml,sha256=6UfO_gnwJEDVq05p72IMJfkTIKZlXKNLSeKru-JyTrQ,915
29
+ ultralytics/cfg/datasets/brain-tumor.yaml,sha256=qrxPO_t9wxbn2kHFwP3vGTzSWj2ELTLelUwYL3_b6nc,800
30
+ ultralytics/cfg/datasets/carparts-seg.yaml,sha256=A4e9hM1unTY2jjZIXGiKSarF6R-Ad9R99t57OgRJ37w,1253
31
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=rl1Pcnn8Hmst-Ian0-HvP6WQ2PKZxr1AjBEA406vwWw,1928
32
+ ultralytics/cfg/datasets/coco.yaml,sha256=woUMk6L3G3DMQDcThIKouZMcjTI5vP9XUdEVrzYGL50,2584
33
+ ultralytics/cfg/datasets/coco12-formats.yaml,sha256=Zd-41pX4PEUVIehyE4829QK_fUxiyZ79JVQSH-1UJVM,1953
34
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=JsXu197vJX1YRuFvbEjsXyv4LUWIET-ruWZ9KqX6hYk,1986
35
+ ultralytics/cfg/datasets/coco128.yaml,sha256=ok_dzaBUzSd0DWfe531GT_uYTEoF5mIQcgoMHZyIVIA,1965
36
+ ultralytics/cfg/datasets/coco8-grayscale.yaml,sha256=8v6G6mOzZHQNdQM1YwdTBW_lsWWkLRnAimwZBHKtJg8,1961
37
+ ultralytics/cfg/datasets/coco8-multispectral.yaml,sha256=nlU4W0d8rl1cVChthOk0NImhVDCm0voY3FrZs2D0lY0,2063
38
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=3cbd8JqzkpW1M42jtQdhh66Nh3jtJNiy-u3bMgSyLUo,1336
39
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=Ez42ZE6xHlj8lcjtMBJJP2Y460q2BuiwRfk090XnBgE,1913
40
+ ultralytics/cfg/datasets/coco8.yaml,sha256=tzrDY1KW82AHsgpCxte_yPkgMIIpNY6Pb4F46TDPxkk,1888
41
+ ultralytics/cfg/datasets/construction-ppe.yaml,sha256=pSU9yaAXV369EYQJymNtFQbS_XH4V369gPKKjDrb4ho,1008
42
+ ultralytics/cfg/datasets/crack-seg.yaml,sha256=fqvSIq1fRXO55V_g2T92hcYAVoKBHZsSZQR7CokoPUI,837
43
+ ultralytics/cfg/datasets/dog-pose.yaml,sha256=BI-2S3_cSVyV2Gfzbs_3GzvivRlikT0ANjlEJQ6QUp4,1408
44
+ ultralytics/cfg/datasets/dota8-multispectral.yaml,sha256=jSj22-S3qxWcW4RVvZIdnFrUt4uM50D0PglpzIC45Rg,1217
45
+ ultralytics/cfg/datasets/dota8.yaml,sha256=emS-orevDZd5L4KvbMejNPCUqFdD_iM-TewqQ9H-wp0,1059
46
+ ultralytics/cfg/datasets/hand-keypoints.yaml,sha256=5mPwZcWeEwlxMrZG68SvLFnuMo6kS7yp4IAeyA854fk,1363
47
+ ultralytics/cfg/datasets/kitti.yaml,sha256=pp4odyfarT8ZSjvBZ8qjv5RfjH4V3bL4gaBiejAqZ-k,895
48
+ ultralytics/cfg/datasets/lvis.yaml,sha256=RescdwAJ8EU1o7Sm0YlxYsGbQFNU1p-LFbFKYEt5MhE,29596
49
+ ultralytics/cfg/datasets/medical-pills.yaml,sha256=RK7iQFpDDkUS6EsEGqlbFjoohi3cgSsUIbsk7UItyds,792
50
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=2fVFmb8UEYH-LkX0z5GlYp__U0_GDqVgVqzmnfFerm8,12116
51
+ ultralytics/cfg/datasets/package-seg.yaml,sha256=V4uyTDWWzgft24y9HJWuELKuZ5AndAHXbanxMI6T8GU,849
52
+ ultralytics/cfg/datasets/signature.yaml,sha256=gBvU3715gVxVAafI_yaYczGX3kfEfA4BttbiMkgOXNk,774
53
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=bJ7nBTDQwXRHtlg3xmo4C2bOpPn_r4l8-DezSWMYNcU,1196
54
+ ultralytics/cfg/datasets/xView.yaml,sha256=RNf5p5HJRu80ofUuM6gHByyCZJ1-KQrFP685fa59o9A,5406
55
+ ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml,sha256=1Ycp9qMrwpb8rq7cqht3Q-1gMN0R87U35nm2j_isdro,524
56
+ ultralytics/cfg/models/11/yolo11-cls.yaml,sha256=17l5GdN-Vst4LvafsK2-q6Li9VX9UlUcT5ClCtikweE,1412
57
+ ultralytics/cfg/models/11/yolo11-obb.yaml,sha256=3M_c06B-y8da4tunHVxQQ-iFUNLKUfofqCZTpnH5FEU,2034
58
+ ultralytics/cfg/models/11/yolo11-pose.yaml,sha256=uLQjzoNPP1oiWOSUdDdrZWhke3Sq-VblhgW8wQMcCPI,2133
59
+ ultralytics/cfg/models/11/yolo11-seg.yaml,sha256=dGKO-8TZTYHudPqQIdp11MBztQEvjCh_T1WCFUxEz_s,2045
60
+ ultralytics/cfg/models/11/yolo11.yaml,sha256=Q9inyGrMdygt30lm1lJuCR5bBkwUDtSm5MC2jsvDeEw,2012
61
+ ultralytics/cfg/models/11/yoloe-11-seg.yaml,sha256=2qnNOOVmECI-d-PMts5LUFLlIVZUfSVvmFZI3V3Xbhg,1996
62
+ ultralytics/cfg/models/11/yoloe-11.yaml,sha256=EgU4TJZOesKi7F_rCE0XeP8dF_nHbZtHIbPR1TfXvq8,1989
63
+ ultralytics/cfg/models/12/yolo12-cls.yaml,sha256=BLv578ZuU-QKx6GTNWX6lXdutzf_0rGhRrC3HrpxaNM,1405
64
+ ultralytics/cfg/models/12/yolo12-obb.yaml,sha256=JMviFAOmDbW0aMNzZNqispP0wxWw3mtKn2iUwedf4WM,1975
65
+ ultralytics/cfg/models/12/yolo12-pose.yaml,sha256=Mr9xjYclLQzxYhMqjIKQTdiTvtqZvEXBtclADFggaMA,2074
66
+ ultralytics/cfg/models/12/yolo12-seg.yaml,sha256=RBFFz4b95Dupfg0fmqCkZ4i1Zzai_QyJrI6Y2oLsocM,1984
67
+ ultralytics/cfg/models/12/yolo12.yaml,sha256=ZeA8LuymJXPNjZ5xkxkZHkcktDaKDzUBb2Kc3gCLC1w,1953
68
+ ultralytics/cfg/models/26/yolo26-cls.yaml,sha256=GmaLvnB62X6r9_mZwpx0b2LTRYIXzVYqSqR3Mcy336g,1432
69
+ ultralytics/cfg/models/26/yolo26-obb.yaml,sha256=3EKhFjHlOV0XBgb8J2B4iMd7dONiBC1iohYQStk6cyw,2147
70
+ ultralytics/cfg/models/26/yolo26-p2.yaml,sha256=Dbwvo9_t5e3NolZquMfqFQrQZuop155o1sTaK6tHYnk,2405
71
+ ultralytics/cfg/models/26/yolo26-p6.yaml,sha256=YFWaH6NAOHoLYmH4Te3edcj5-c7QJ-glzri-xPFk4U0,2457
72
+ ultralytics/cfg/models/26/yolo26-pose.yaml,sha256=ac9XyCyVrTUHkjEoSkYKtQrawZQ6Vr4hQZE1aO83b7s,2245
73
+ ultralytics/cfg/models/26/yolo26-seg.yaml,sha256=iL4euVjAg8dSq0oN-71-VDk0EqSruTGBjfCHqQYUqrg,2154
74
+ ultralytics/cfg/models/26/yolo26.yaml,sha256=sdH6DGns7WT5k5U2A4vY1pfDLnIgCzQYenZ95DGvfvA,2120
75
+ ultralytics/cfg/models/26/yoloe-26-seg.yaml,sha256=QlyK3awjLOjs9q0raj0we5QCG1tDy-NvQ2uQzKDoBYk,2223
76
+ ultralytics/cfg/models/26/yoloe-26.yaml,sha256=YWsBS4D3f7QhqLQzYT-LVdCOISo0VaTILIaLKmujDdo,2191
77
+ ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=hAZti6u7lYIeYERsRrsdU9wekNFHURH_mq6Ow4XfhB4,2036
78
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=Rtj3KCpxsvvFmYTJ2NKqoc0fk7-I5gaZiDsdgXFZ_6g,1689
79
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=QLhmuMS9OEuLFbMuaDrjtzCizpYzddQcM6QyBL6rhPg,1685
80
+ ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=-9qiCz89szx5vU0-xbOjQq9ftdyMOGDIaTrnpUCbBYc,2243
81
+ ultralytics/cfg/models/v10/yolov10b.yaml,sha256=q4H9pBITGoFY4vOankdFnkVkU3N6BZ775P-xKpVvmN8,1485
82
+ ultralytics/cfg/models/v10/yolov10l.yaml,sha256=UE9-7Qeknk6pFTxwzQoJGeMHOMq5RQTeyZHpIX5kDZM,1485
83
+ ultralytics/cfg/models/v10/yolov10m.yaml,sha256=ThA9xzFTPv-i7ftcZQBz7ZpMqiMkal9kh5JvtnDJsu4,1476
84
+ ultralytics/cfg/models/v10/yolov10n.yaml,sha256=4DBR_6P-Qwx5F1-1oljB6_1wDbi4D8l8Zix7Y001o2w,1471
85
+ ultralytics/cfg/models/v10/yolov10s.yaml,sha256=Wp5yUdalRje0j3D0By9hn9SqbkZuYUFOGPgUK5FDpjo,1480
86
+ ultralytics/cfg/models/v10/yolov10x.yaml,sha256=DI6SOhXQrRrLf3-pkLaG6lzhGOVbkpHBtHvl_MSvYz8,1488
87
+ ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=hsM-yhdWv-8XlWuaSOVqFJcHUVZ-FmjH4QjkA9CHJZU,1625
88
+ ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=SYrSg0m1A6ErUapdrJDI5E-edLaH0oF-NRb558DZgmQ,1330
89
+ ultralytics/cfg/models/v3/yolov3.yaml,sha256=Fvt4_PTwLBpRw3R4v4VQ-1PIiojpoFZD1uuTZySUYSw,1612
90
+ ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=VKEWykksykSlzvuy7if4yFo9WlblC3hdqcNxJ9bwHek,1994
91
+ ultralytics/cfg/models/v5/yolov5.yaml,sha256=QD8dRe5e5ys52wXPKvNJn622H_3iX0jPzE_2--2dZx0,1626
92
+ ultralytics/cfg/models/v6/yolov6.yaml,sha256=tl04iHe4dVg_78jgupVul5gbqOn5hBhtLKfP3xYxcWA,1813
93
+ ultralytics/cfg/models/v8/yoloe-v8-seg.yaml,sha256=cgl2mHps6g9RImm8KbegjEL6lO1elK5OnpDRNjqU2m4,2003
94
+ ultralytics/cfg/models/v8/yoloe-v8.yaml,sha256=0K_3-xecoPp6YWwAf2pmInWtkeH6R3Vp_hfgEPjzw-A,1954
95
+ ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml,sha256=TAiAkZwUckzjWdY6yn_ulGzM-lnHaY7Yx9v8rI-2WoA,1014
96
+ ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml,sha256=gbIttNMvj02Rk3eKjq45qgjdmdCo5n_mV9R5xt65OdU,1010
97
+ ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=G50mnw-C0SWrZpZl5wzov1dugdjZMM6zT30t5cQrcJQ,1019
98
+ ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=5MX8D3_8lkj9aKVwpAIC1PZAaMoTFs_Wq-XZUTVn9PU,2505
99
+ ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=c7YYnEPx2vrwHjbgr4o_Q9f_NI2X1dx2MrLo9xeOvXc,2575
100
+ ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=nxzIlvntFajHbu4DN8ujEx65PREgn7o0Dd6cHp8pHSM,2198
101
+ ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=Owlncx5peKBTNo3xhkbVxz_1qlzVJR4Z2zNeoR_NDxg,2016
102
+ ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=ulQ2Pp8oPo9gsPoIQ-s3EVCTM41vknPM1PdPYGOXVPQ,1831
103
+ ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=TqIsa8gNEW04KmdLxxC9rqhd7PCHlUqkzoiDxnMTio0,2363
104
+ ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=tfgfYrbVu5biWCWmdTZRr7ZRC-zlAzycsRyaJbDtI1g,2047
105
+ ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=LdzbiIVknZQMLYB2wzCHqul3NilfKp4nx5SdaGQsF6s,1676
106
+ ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=nQzysAwOq6t9vDTJGhDhnKPecJ4a5g1jPe110wWjzqk,2048
107
+ ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=7FlNlY-sB8bCcVty2Hf_nYD8fxZpsqaTgGxTfac8DRI,1958
108
+ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=hFeiOFVwTV4zv08IrmTIuzJcUZmYkY7SIi2oV322e6U,1587
109
+ ultralytics/cfg/models/v8/yolov8-world.yaml,sha256=rjWAxH5occ9-28StkgYD2dGMJ_niQRZqoZWgyZgErUw,2169
110
+ ultralytics/cfg/models/v8/yolov8-worldv2.yaml,sha256=t-Q0bV8qQ7L4b_InviUxhTW6RqrPWg6LPezYLj_JkHM,2119
111
+ ultralytics/cfg/models/v8/yolov8.yaml,sha256=QFo8MC62CWEDqZr02CwdLYsrv_RpoijFWqyUSywZZyo,1977
112
+ ultralytics/cfg/models/v9/yolov9c-seg.yaml,sha256=UBHoQ_cJV2yp6rMzHXRp46uBAUmKIrbgd3jiEBPRvqI,1447
113
+ ultralytics/cfg/models/v9/yolov9c.yaml,sha256=x1kus_2mQdU9V3ZGg0XdE5WTUU3j8fwGe1Ou3x2aX5I,1426
114
+ ultralytics/cfg/models/v9/yolov9e-seg.yaml,sha256=WVpU5jHgoUuCMVirvmn_ScOmH9d1MyVVIX8XAY8787c,2377
115
+ ultralytics/cfg/models/v9/yolov9e.yaml,sha256=Olr2PlADpkD6N1TiVyAJEMzkrA7SbNul1nOaUF8CS38,2355
116
+ ultralytics/cfg/models/v9/yolov9m.yaml,sha256=WcKQ3xRsC1JMgA42Hx4xzr4FZmtE6B3wKvqhlQxkqw8,1411
117
+ ultralytics/cfg/models/v9/yolov9s.yaml,sha256=cWkQtYNWWOckOBXjd8XrJ_q5v6T_C54xGMP1S3qnpZU,1392
118
+ ultralytics/cfg/models/v9/yolov9t.yaml,sha256=Q8GpSXE7fumhuJiQg4a2SkuS_UmnXqp-eoZxW_C0vEo,1375
119
+ ultralytics/cfg/trackers/botsort.yaml,sha256=tRxC-qT4Wz0mLn5x7ZEwrqgGKrmTDVY7gMge-mhpe7U,1431
120
+ ultralytics/cfg/trackers/bytetrack.yaml,sha256=7LS1ObP5u7BUFcmeY6L2m3bRuPUktnpJspFKd_ElVWc,908
121
+ ultralytics/data/__init__.py,sha256=ToR8zl0JhBHy42ZvV7zIwO_F3lbi5oNlGQNPK3dlddU,644
122
+ ultralytics/data/annotator.py,sha256=iu1En-LzlR4RyR3ocftthnAog_peQHV9ForPRo_QcX8,2985
123
+ ultralytics/data/augment.py,sha256=XR52_BEmwFOrdMxEVRypm_kz6ROkTBgVped05R2xZWs,128566
124
+ ultralytics/data/base.py,sha256=pMs8yJOmAFPXdgfLCDtUemSvkPNDzxReP-fWzkNtonc,19723
125
+ ultralytics/data/build.py,sha256=s-tkSZPf3OfQyfXPXB9XxdW_gIcU6Xy_u21ekSgTnRo,17205
126
+ ultralytics/data/converter.py,sha256=iO3wlF8-Z1wyEH4ueptzOXZd6vJttLOhu7XpWYtitL8,33886
127
+ ultralytics/data/dataset.py,sha256=r_BZy4FwMZ-dYkaJiz1E3jr2pI6dn7V3hZwf2RM9_RQ,36536
128
+ ultralytics/data/loaders.py,sha256=BQbhgjiLCGcRBPkGVG9Hr1jeNfG1nuZD3jstiWb7zS8,31889
129
+ ultralytics/data/split.py,sha256=HpR0ltf5oN1DpZstavFbBFC1YdpGPaATXxDOcAMwOqc,5101
130
+ ultralytics/data/split_dota.py,sha256=Qp9vGB2lzb5fQOrpNupKc8KN9ulqZoco9d4gRcx7JZk,12873
131
+ ultralytics/data/utils.py,sha256=QfypAt0fGCfb5PGw9o9Za-xnH5MUVTsETk-_ZBhtLko,36818
132
+ ultralytics/data/scripts/download_weights.sh,sha256=0y8XtZxOru7dVThXDFUXLHBuICgOIqZNUwpyL4Rh6lg,595
133
+ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J3jKrnPw,1768
134
+ ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
135
+ ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
136
+ ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
137
+ ultralytics/engine/exporter.py,sha256=n_DtRhD0jT9sTFb8oQ_TYdQYTQJbsQzwqdISwR-mQY4,73330
138
+ ultralytics/engine/model.py,sha256=euDHUy7J5vVBvS_d-KbGZd_0BP5bF6Y3cTQ7VXtwZ4k,53210
139
+ ultralytics/engine/predictor.py,sha256=tXrHSTHJ-rDQ3lrPW9P5_ei_ewTwbY2sji6MExybJ28,22838
140
+ ultralytics/engine/results.py,sha256=Lg-Ke8TU6qaxu0wQtOH26unORj4FRYxd8RL0VxV74Zw,68333
141
+ ultralytics/engine/trainer.py,sha256=_pd1lvD2TWcE3v7P4OWqq-fPK5HLzeknxhSylpRuuNw,47309
142
+ ultralytics/engine/tuner.py,sha256=F4fyQaC5_GT74TULRO0VhzTv2S_a54cZDc3FjFoqaHE,21840
143
+ ultralytics/engine/validator.py,sha256=DiKsygbNJdRdwXoKoYOJA6bP_T7vMW3Syj_Qc_l7xTM,17761
144
+ ultralytics/hub/__init__.py,sha256=Z0K_E00jzQh90b18q3IDChwVmTvyIYp6C00sCV-n2F8,6709
145
+ ultralytics/hub/auth.py,sha256=ANzCeZA7lUzTWc_sFHbDuuyBh1jLl2sTpHkoUbIkFYE,6254
146
+ ultralytics/hub/session.py,sha256=OzBXAL9R135gRDdfNYUqyiSrxOyaiMFCVYSZua99sF0,18364
147
+ ultralytics/hub/utils.py,sha256=jknll06yNaAxKyOqKliILJv1XOU39WJWOGG_DyFUh20,6353
148
+ ultralytics/hub/google/__init__.py,sha256=r06Ld4TuZEBOqg4iagpeN-eMAkg43T2OTxOH4_7IfkM,8445
149
+ ultralytics/models/__init__.py,sha256=ljus_u1CIuP99k9fu6sCtzIeFZ-TCE28NZ8kefZHFNY,309
150
+ ultralytics/models/fastsam/__init__.py,sha256=Ku89Fy_X8ok3YPEUajjUZ5i4O08jdJMjJHt-3Z99Frk,231
151
+ ultralytics/models/fastsam/model.py,sha256=HN6CAHCTwMmyBCQlXx4wMBU7XqkvVHyUawRaxn2Gur8,3426
152
+ ultralytics/models/fastsam/predict.py,sha256=zYhlXIrn69ryPnBEwEx4YkgYobPPE3_zvZAX2uAUIP4,8543
153
+ ultralytics/models/fastsam/utils.py,sha256=de9ieh4pBUuTNh5HTiNdRpWZhXAaSfNo3R1FNMt2GOE,879
154
+ ultralytics/models/fastsam/val.py,sha256=T76Yl4PtPezjGOcpXUxEobr0xnkR42Z-wnIz89cZ-IE,2028
155
+ ultralytics/models/nas/__init__.py,sha256=Q4ZQak8xNWtV5YSw_pFu0anbCyDxxEAuMMDfMzu6-0s,207
156
+ ultralytics/models/nas/model.py,sha256=tfr8g3hF-DOIJz4F56aetmFrRJsnKLJ7fgjkgeVzySM,3880
157
+ ultralytics/models/nas/predict.py,sha256=4nbuo9nbvnvI3qVH1ylhLCjo-7oW39MumIesm-1eU3Y,2692
158
+ ultralytics/models/nas/val.py,sha256=MIRym3LQNDIRxnYs5xcOiLkKOgv3enZFXh5_g9Pq2hA,1543
159
+ ultralytics/models/rtdetr/__init__.py,sha256=F4NEQqtcVKFxj97Dh7rkn2Vu3JG4Ea_nxqrBB-9P1vc,225
160
+ ultralytics/models/rtdetr/model.py,sha256=jJzSh_5E__rVQO7_IkmncpC4jIdu9xNiIxlTTIaFJVw,2269
161
+ ultralytics/models/rtdetr/predict.py,sha256=4X1evUcFSNqIGDIwII1to3kZFYTVOd3ohp_YtnjN0iI,4210
162
+ ultralytics/models/rtdetr/train.py,sha256=b7FCFU_m0BWftVGvuYp6uPBJUG9RviKdWcMkQTLQDlE,3742
163
+ ultralytics/models/rtdetr/val.py,sha256=Wfd9GHbE7FHJ_71zjcMzsEHYYiP53DMSFhvOjZ6BnBA,9187
164
+ ultralytics/models/sam/__init__.py,sha256=hofz9cGGhxEWpZXX8yLp5k_LQUmWL_Shd9kfzK4U6z0,592
165
+ ultralytics/models/sam/amg.py,sha256=aYvJ7jQMkTR3X9KV7SHi3qP3yNchQggWNUurTRZwxQg,11786
166
+ ultralytics/models/sam/build.py,sha256=rEaFXA4R1nyutSonIenRKcuNtO1FgEojnkcayo0FTP4,12867
167
+ ultralytics/models/sam/build_sam3.py,sha256=Gg_LiqNrCDTYaDWrob05vj-ln2AhkfMa5KkKhyk5wdE,11976
168
+ ultralytics/models/sam/model.py,sha256=cOawDSkFqJPbt3455aTZ8tjaoWshFWFHQGGqxzsL_QQ,7372
169
+ ultralytics/models/sam/predict.py,sha256=Y6JEP3WGAF1gzTg8Z4eCgdtPFFbexSEA75F7zd8Cp_c,203689
170
+ ultralytics/models/sam/modules/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
171
+ ultralytics/models/sam/modules/blocks.py,sha256=ZU2aY4h6fmosj5pZ5EOEuO1O8Cl8UYeH11eOxkqCt8M,44570
172
+ ultralytics/models/sam/modules/decoders.py,sha256=G4li37ahUe5rTTNTKibWMsAoz6G3R18rI8OPvfunVX8,25045
173
+ ultralytics/models/sam/modules/encoders.py,sha256=C2KlyvWWbYk48uNnymyvPLg_Q2ioRycjK2nMPGKkMhA,35456
174
+ ultralytics/models/sam/modules/memory_attention.py,sha256=jFVWVbgDS7VXPqOL1e3gAzk0vPwWhy-8vj3Vl5WhT4I,13299
175
+ ultralytics/models/sam/modules/sam.py,sha256=-KV-1PZK39DTdSpR5DI3E8I6gGVLja3tMv1MH7Au_eA,61654
176
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=RJQTHjfUe2N3cm1EZHXObJlKqVn10EnYJFla1mnWU_8,42065
177
+ ultralytics/models/sam/modules/transformer.py,sha256=NmTuyxS9PNsg66tKY9_Q2af4I09VW5s8IbfswyTT3ao,14892
178
+ ultralytics/models/sam/modules/utils.py,sha256=hE06t6cZf10AmPLPwGZbFrGheoOgGAGZ0GXRWlJH9pE,21125
179
+ ultralytics/models/sam/sam3/__init__.py,sha256=aM4-KimnYgIFe-e5ctLT8e6k9PagvuvKFaHaagDZM7E,144
180
+ ultralytics/models/sam/sam3/decoder.py,sha256=kXgPOjOh63ttJPFwMF90arK9AKZwPmhxOiexnPijiTE,22872
181
+ ultralytics/models/sam/sam3/encoder.py,sha256=IFUIJkWrVW1MmkeA142Sxhgnx5Tssq2Bgi9T3iIppU4,21543
182
+ ultralytics/models/sam/sam3/geometry_encoders.py,sha256=EAxeVvZgz4Y0q2VYX-4OP_1YuWWG21WilUt_IMBzE_0,17375
183
+ ultralytics/models/sam/sam3/maskformer_segmentation.py,sha256=jf9qJj7xyTVGp7OZ5uJQF0EUD468EOnBm1PsjiTO2ug,10735
184
+ ultralytics/models/sam/sam3/model_misc.py,sha256=4t2ee9hFZRkCV2SLaBpW8cZf2KD2riJ6Xw9vTyYrPAQ,7921
185
+ ultralytics/models/sam/sam3/necks.py,sha256=geWVSSheOwXSy_LiNKkOqQhK13DEe_fDOTgse_W68qU,4553
186
+ ultralytics/models/sam/sam3/sam3_image.py,sha256=MZZXObriPP5VPMKTxJ7rPTWFATAgYng7jeMzchYP8YE,13336
187
+ ultralytics/models/sam/sam3/text_encoder_ve.py,sha256=iv8-6VA3t4yJ1M42RPjHDlFuH9P_nNRSNyaoFn2sjMw,12283
188
+ ultralytics/models/sam/sam3/vitdet.py,sha256=6kvVQUnbjzo3WFww-rrkgSf3wNcNRvreTaKZ7XGiOOk,21834
189
+ ultralytics/models/sam/sam3/vl_combiner.py,sha256=HpFpNj3pXsWIc_aTov-EpW5j1fOj_m0j4yuXmCfWNg4,6476
190
+ ultralytics/models/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
191
+ ultralytics/models/utils/loss.py,sha256=9CcqRXDj5-I-7eZuenInvyoLcPf22Ynf3rUFA5V22bI,21131
192
+ ultralytics/models/utils/ops.py,sha256=z-Ebjv_k14bWOoP6nszDzDBiy3yELcVtbj6M8PsRpvE,15207
193
+ ultralytics/models/yolo/__init__.py,sha256=YD407NDDiyjo0x_MR6usJaTpePKPgsfBUYehlCw7lRs,307
194
+ ultralytics/models/yolo/model.py,sha256=HXkglzJQqW1x7MJaKavI5aasA-0lSH21Xcv_dac3SFU,18504
195
+ ultralytics/models/yolo/classify/__init__.py,sha256=9--HVaNOfI1K7rn_rRqclL8FUAnpfeBrRqEQIaQw2xM,383
196
+ ultralytics/models/yolo/classify/predict.py,sha256=HCStYkSqeg32SNTWfr4FDCkUMQ4wnKqceUK3T995us4,4137
197
+ ultralytics/models/yolo/classify/train.py,sha256=41ZxaIJkzkRxfgq6VffFX5Xfsrm9tNv3i3bdtUPAocE,8958
198
+ ultralytics/models/yolo/classify/val.py,sha256=akH2P3nff4oiZtV2toKB3Z9HIbsVcwsb1uvDwhamszw,10503
199
+ ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
200
+ ultralytics/models/yolo/detect/predict.py,sha256=2nxlMyw_zVKq1aeJFRTgb4EGL2vOFq4pLT9tArHBfF8,5385
201
+ ultralytics/models/yolo/detect/train.py,sha256=uz9PTsoLnIypxiOX2C7C7an3sarIUCQmiqmlZScE84c,10586
202
+ ultralytics/models/yolo/detect/val.py,sha256=54AOR6r3istE0pILJ1v4xzPdv7UcvtTEZ6E5OGj3Jgc,22818
203
+ ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
204
+ ultralytics/models/yolo/obb/predict.py,sha256=I7hWDr1zuy2WuwGom9uzXqomfr7qVMWb7iRl18xdTYw,2577
205
+ ultralytics/models/yolo/obb/train.py,sha256=HEDdPiP-yBbrUQWllcD1rc3gGrbzQmT6RBMTGtmVOu0,3452
206
+ ultralytics/models/yolo/obb/val.py,sha256=qYNe7ZcW3rhTLYPw15OeGfBaqaa_f1ADs4FF21h32e4,14513
207
+ ultralytics/models/yolo/pose/__init__.py,sha256=_9OFLj19XwvJHBRxQtVW5CV7rvJ_3hDPE97miit0sPc,227
208
+ ultralytics/models/yolo/pose/predict.py,sha256=6EW9palcAoWX-gu5ROQvO6AxBSm719934hhqF-9OGjM,3118
209
+ ultralytics/models/yolo/pose/train.py,sha256=IlmsFlb0TsWZVy6PL3Trr_aXfwwGMBKAHyxnP7VPp_g,4747
210
+ ultralytics/models/yolo/pose/val.py,sha256=0luDccEPb_lUMjzaBb5VMsh9RdXVAbxb3Br57VKWNdc,12004
211
+ ultralytics/models/yolo/segment/__init__.py,sha256=3IThhZ1wlkY9FvmWm9cE-5-ZyE6F1FgzAtQ6jOOFzzw,275
212
+ ultralytics/models/yolo/segment/predict.py,sha256=zLhmSTVEnaUumIX9SbjZH09kr2VrNdYWEss7FvseVuY,5428
213
+ ultralytics/models/yolo/segment/train.py,sha256=nS3qrT7Y3swCwjGZzeDQ2EunC9ilMsOiWs6LaTUCAE4,3021
214
+ ultralytics/models/yolo/segment/val.py,sha256=AvPS4rhV2PFpi0yixUfJhdczXctmZQSKgTjh7qVH0To,13204
215
+ ultralytics/models/yolo/world/__init__.py,sha256=nlh8I6t8hMGz_vZg8QSlsUW1R-2eKvn9CGUoPPQEGhA,131
216
+ ultralytics/models/yolo/world/train.py,sha256=80kswko6Zu7peXPBhXcfrTo5HO3Rg8C_cu4vPBQlk7M,7906
217
+ ultralytics/models/yolo/world/train_world.py,sha256=5Jj4gzEwDJtz37bEahL6Lf4xp-c1xiYjGKeg_w7Esns,8723
218
+ ultralytics/models/yolo/yoloe/__init__.py,sha256=zaZo1_ommaxNv7mD7xpdSomNF4s8mpOcCVTXspg0ncY,760
219
+ ultralytics/models/yolo/yoloe/predict.py,sha256=zeu_whH4e2SIWXV8MmJ1NNzoM_cNsiI2kOTjlAhV4qg,7065
220
+ ultralytics/models/yolo/yoloe/train.py,sha256=99iSHQs--5VU_s82Q4w-fAJmyT5-y0TykTul8bo4xFo,13303
221
+ ultralytics/models/yolo/yoloe/train_seg.py,sha256=rV2Jnbuh6vvBMaupaZK_aRXBMevO0XhN2VUR43ZwlIY,5285
222
+ ultralytics/models/yolo/yoloe/val.py,sha256=utUFWeFKRFWZrPr1y3A8ztbTwdoWMYqzlwBN7CQ0tCA,9418
223
+ ultralytics/nn/__init__.py,sha256=538LZPUKKvc3JCMgiQ4VLGqRN2ZAaVLFcQbeNNHFkEA,545
224
+ ultralytics/nn/autobackend.py,sha256=MLS68iMNv6U0HyBK8nGjcyLOyImYIGEjP4398KqOkV0,45068
225
+ ultralytics/nn/tasks.py,sha256=PmlYScI7qTRCmYRR90Mw1QnqeRzvY0ojAMrgStBr11g,72010
226
+ ultralytics/nn/text_model.py,sha256=c--WzxjFEDb7p95u3YGcSsJLjj91zFNqXshij8Evrwg,15291
227
+ ultralytics/nn/modules/__init__.py,sha256=9KyQBxpomp5uJJ1PvMGuOFs2pR3NpqZcFHJlM6Q56c0,3322
228
+ ultralytics/nn/modules/activation.py,sha256=J6n-CJKFK0YbhwcRDqm9zEJM9pSAEycj5quQss_3x6E,2219
229
+ ultralytics/nn/modules/block.py,sha256=9d1eelj3uRnf-HWTHYTjsBqLSpMCrwBQuX52MjeapN4,74499
230
+ ultralytics/nn/modules/conv.py,sha256=9WUlBzHD-wLgz0riLyttzASLIqBtXPK6Jk5EdyIiGCM,21100
231
+ ultralytics/nn/modules/head.py,sha256=eJvXtr_ONGqQVdtsUpJtslplgVblti5sMxP9nkoSa0Y,78057
232
+ ultralytics/nn/modules/transformer.py,sha256=lAjTH-U8IkBp_1cXSOOFSus9tJf-s8WISKKcXPB84CM,31972
233
+ ultralytics/nn/modules/utils.py,sha256=EyhENse_RESlXjLHAJWvV07_tq1MVMmfzXgPR1fiT9w,6066
234
+ ultralytics/optim/__init__.py,sha256=Sl3Dx2eiaJd_u4VbmqcBqWWDF8FHnO5W0nBEL8_M_C4,130
235
+ ultralytics/optim/muon.py,sha256=Cuak4LOcVVEWIhYm4WzGmww7nhfR1N_uQOpLPX7gV-c,14243
236
+ ultralytics/solutions/__init__.py,sha256=Jj7OcRiYjHH-e104H4xTgjjR5W6aPB4mBRndbaSPmgU,1209
237
+ ultralytics/solutions/ai_gym.py,sha256=fq9sIb0RBBvyd7SZShY8TO690lKbpPNOFap4OGi5CI8,5181
238
+ ultralytics/solutions/analytics.py,sha256=UaH-B6h8Ir9l00deRUeAIW6QQTIO_595HTp93sdwteM,12820
239
+ ultralytics/solutions/config.py,sha256=wT_79zyoy_6diG5Iz9JZLzgCuGMaHj770lwRntVuNjQ,5396
240
+ ultralytics/solutions/distance_calculation.py,sha256=RcpRDodEHAJUug9tobtQKt5_bySNA8NMSRiaL347Q1U,5891
241
+ ultralytics/solutions/heatmap.py,sha256=0f7v-0oAGj4no_h1Ll-BGsTmszSBoQ0tNa4azJYAQQw,5481
242
+ ultralytics/solutions/instance_segmentation.py,sha256=poxfCKl4gm7pHhjwULOeIPIRy9q_wOxqwtnUXXE9NhQ,3778
243
+ ultralytics/solutions/object_blurrer.py,sha256=EZrv3oU68kEaahAxlhk9cF5ZKFtoVaW8bDB4Css9xe0,3981
244
+ ultralytics/solutions/object_counter.py,sha256=OpMSLlenDK-cLvCgCOoKbqMXIZrngyqP8DP6ZeEnWL8,9355
245
+ ultralytics/solutions/object_cropper.py,sha256=WRbrfXAR5aD6PQBqJ-BvcVaiaqta_9YeTlXN2dY274s,3510
246
+ ultralytics/solutions/parking_management.py,sha256=Q0fEFKlv6dKKWuw_4jmWaeHQVXGppzuU7Vr_HqVYqHM,13770
247
+ ultralytics/solutions/queue_management.py,sha256=NlVX6PMEaffjoZjfQrVyayaDUdtc0JF8GzTQrZFjpCg,4371
248
+ ultralytics/solutions/region_counter.py,sha256=IAvlFwEYoNftDzfBbdo5MzLwcuidOHW9oTGyRCDzMRc,6025
249
+ ultralytics/solutions/security_alarm.py,sha256=QjUIVBWcy094VTcOkk_zOq3BmKKOeIaHpVi_QMWo_3Q,6293
250
+ ultralytics/solutions/similarity_search.py,sha256=Q2FOBUtEokegiJHlfDbPP0bKxr5F-sHN3-IvskDoe00,9644
251
+ ultralytics/solutions/solutions.py,sha256=ktLwDhC0y4k2FbNd0sk7Y8GcEvBu9wL3rXyFGwlbnIQ,36984
252
+ ultralytics/solutions/speed_estimation.py,sha256=WrZECxKAq6P4QpeTbhkp3-Rqjnox7tdR25fUxzozlpU,5861
253
+ ultralytics/solutions/streamlit_inference.py,sha256=utJOe0Weu44_ABF9rDnAjwLjKyn3gwfaYaxFfFbx-9c,13060
254
+ ultralytics/solutions/trackzone.py,sha256=oqv-zZL99RVUMcN5ViAPmadzX6QNdAEozYrrg2pqO6k,3903
255
+ ultralytics/solutions/vision_eye.py,sha256=bSXmJ93DyLu4_CWgbF3GkHzh_VpiEmkK5vVJDPPGzI4,2982
256
+ ultralytics/solutions/templates/similarity-search.html,sha256=mYuJI8H84cmu4kwPq2aEsmzazimFEEiLhOXZ08lXQgA,4165
257
+ ultralytics/trackers/__init__.py,sha256=n3BOO0TR-Sz5ANDYOkKDipM9nSHOePMEwqafbk-YEPs,255
258
+ ultralytics/trackers/basetrack.py,sha256=F-EW29F9E8GwXr5vzwLqW2rNwItu4KIx2MKce5pQXxI,4374
259
+ ultralytics/trackers/bot_sort.py,sha256=WImn-BOzGrK9dgMFfMPzKFE5awhXEB2VOi7AbOf_Cdc,11831
260
+ ultralytics/trackers/byte_tracker.py,sha256=Ye8cwEPAitVpUsz4Yc8YXj9TEwyfk4zwitSKkIuKIu8,21061
261
+ ultralytics/trackers/track.py,sha256=xte5lkVBbOnrZ_tVLsHUmzvtNjbdksTVeSFQtLCLt_M,4742
262
+ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
263
+ ultralytics/trackers/utils/gmc.py,sha256=cvvhNXOhylVQti4pJQSNPx4yPqhhhw1k2yzY0JFl7Zo,13760
264
+ ultralytics/trackers/utils/kalman_filter.py,sha256=crgysL2bo0v1eTljOlP2YqIJDLBcHjl75MRpbxfaR_M,21514
265
+ ultralytics/trackers/utils/matching.py,sha256=x6uZOIx0O9oVmAcfY6tYMTJQE2cDTUlRR690Y5UkHLs,7129
266
+ ultralytics/utils/__init__.py,sha256=XLEK_pvptzNWhJaO8x0MWghREIyEDei0LOGnUnmU1Kg,55145
267
+ ultralytics/utils/autobatch.py,sha256=jiE4m_--H9UkXFDm_FqzcZk_hSTCGpS72XdVEKgZwAo,5114
268
+ ultralytics/utils/autodevice.py,sha256=rXlPuo-iX-vZ4BabmMGEGh9Uxpau4R7Zlt1KCo9Xfyc,8892
269
+ ultralytics/utils/benchmarks.py,sha256=f4RykrjO1oEBxrTbH6qM_9vMxYKXO9F0ruFcM4xKF7A,32293
270
+ ultralytics/utils/checks.py,sha256=NWc0J-Nk4qHSVEXFDWfJkI7IjTNHFXajKjsSodDroBk,39411
271
+ ultralytics/utils/cpu.py,sha256=OksKOlX93AsbSsFuoYvLXRXgpkOibrZSwQyW6lipt4Q,3493
272
+ ultralytics/utils/dist.py,sha256=sktf2a_uh-vLg6piQyiuRJ5JcMggFYmhS8Wepnb88WM,4220
273
+ ultralytics/utils/downloads.py,sha256=TWXkYwR5hEpVMWL6fbjdywDmZe02WhyL_8YuLVce-uM,23069
274
+ ultralytics/utils/errors.py,sha256=dUZcTWpbJJHqEuWHM6IbeoJJ4TzA_yHBP8E7tEEpBVs,1388
275
+ ultralytics/utils/events.py,sha256=6vqs_iSxoXIhQ804sOjApNZmXwNW9FUFtjaHPY8ta10,4665
276
+ ultralytics/utils/files.py,sha256=u7pjz13wgkLSBfe_beeZrzar32_gaJWoIVa3nvY3mh8,8190
277
+ ultralytics/utils/git.py,sha256=UdqeIiiEzg1qkerAZrg5YtTYPuJYwrpxW9N_6Pq6s8U,5501
278
+ ultralytics/utils/instance.py,sha256=11mhefvTI9ftMqSirXuiViAi0Fxlo6v84qvNxfRNUoE,18862
279
+ ultralytics/utils/logger.py,sha256=T5iaNnaqbCvx_FZf1dhVkr5FVxyxb4vO17t4SJfCIhg,19132
280
+ ultralytics/utils/loss.py,sha256=Uh705dxpHPFLKecjsm_nCZ8JTYv0OHKNE9_ZZyMDiUo,57006
281
+ ultralytics/utils/metrics.py,sha256=puMGn1LfVIlDvx5K7US4RtK8HYW6cRl9OznfV0nUPvk,69261
282
+ ultralytics/utils/nms.py,sha256=zv1rOzMF6WU8Kdk41VzNf1H1EMt_vZHcbDFbg3mnN2o,14248
283
+ ultralytics/utils/ops.py,sha256=4xqb7kwrAWm8c_zxOWP5JoXozgsA1Slk2s4XFwmEZCs,26089
284
+ ultralytics/utils/patches.py,sha256=yXkznJNo3M74gvvzWmHoZYbWFu-KnO3KK4usbmey8H0,8521
285
+ ultralytics/utils/plotting.py,sha256=_iXs4gs8tzMSgiKxCriD4un-MJkOsC3lGSy0wn7qZGk,48433
286
+ ultralytics/utils/tal.py,sha256=vfcfSy78zdtHbGzlvo5UDx-sCwHLRdGBqDO3CX7ZiR0,24182
287
+ ultralytics/utils/torch_utils.py,sha256=dHvLaQopIOr9NcIWkLWPX36f5OAFR4thcqm379Zayfc,40278
288
+ ultralytics/utils/tqdm.py,sha256=f2W608Qpvgu6tFi28qylaZpcRv3IX8wTGY_8lgicaqY,16343
289
+ ultralytics/utils/triton.py,sha256=BQu3CD3OlT76d1OtmnX5slQU37VC1kzRvEtfI2saIQA,5211
290
+ ultralytics/utils/tuner.py,sha256=nRMmnyp0B0gVJzAXcpCxQUnwXjVp0WNiSJwxyR2xvQM,7303
291
+ ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
292
+ ultralytics/utils/callbacks/base.py,sha256=floD31JHqHpiVabQiE76_hzC_j7KjtL4w_czkD1bLKc,6883
293
+ ultralytics/utils/callbacks/clearml.py,sha256=LjfNe4mswceCOpEGVLxqGXjkl_XGbef4awdcp4502RU,5831
294
+ ultralytics/utils/callbacks/comet.py,sha256=iBfIe-ToVq2OnZO0LSpd9-GIjlrpbncsG_MQyo7l3PM,25320
295
+ ultralytics/utils/callbacks/dvc.py,sha256=YT0Sa5P8Huj8Fn9jM2P6MYzUY3PIVxsa5BInViOtOU8,7485
296
+ ultralytics/utils/callbacks/hub.py,sha256=fVLqqr3ZM6hoYFlVMEeejfq1MWDrkWCskPFOG3HGILQ,4159
297
+ ultralytics/utils/callbacks/mlflow.py,sha256=wCXjQgdufp9LYujqMzLZOmIOur6kvrApHNeo9dA7t_g,5323
298
+ ultralytics/utils/callbacks/neptune.py,sha256=_vt3cMwDHCR-LyT3KtRikGpj6AG11oQ-skUUUUdZ74o,4391
299
+ ultralytics/utils/callbacks/platform.py,sha256=Utc9X3SDEGcvyQLaujQs3IA8UpFvmJcQC6HmLnTV4XA,16202
300
+ ultralytics/utils/callbacks/raytune.py,sha256=Y0dFyNZVRuFovSh7nkgUIHTQL3xIXOACElgHuYbg_5I,1278
301
+ ultralytics/utils/callbacks/tensorboard.py,sha256=K7b6KtC7rimfzqFu-NDZ_55Tbd7eC6TckqQdTNPuQ6U,5039
302
+ ultralytics/utils/callbacks/wb.py,sha256=ci6lYVRneKTRC5CL6FRf9_iOYznwU74p9_fV3s9AbfQ,7907
303
+ ultralytics/utils/export/__init__.py,sha256=Cfh-PwVfTF_lwPp-Ss4wiX4z8Sm1XRPklsqdFfmTZ30,333
304
+ ultralytics/utils/export/engine.py,sha256=QoXPqnmQn6W5TOUAygOtCG63R9ExDG4-Df6X6W-_Mzo,10470
305
+ ultralytics/utils/export/imx.py,sha256=VnMDO7c8ezBs91UDoLg9rR0oY8Uc7FujKpbdGxrzV18,13744
306
+ ultralytics/utils/export/tensorflow.py,sha256=xHEcEM3_VeYctyqkJCpgkqcNie1M8xLqcFKr6uANEEQ,9951
307
+ dgenerate_ultralytics_headless-8.4.7.dist-info/METADATA,sha256=-XtPXXF8jhWfqBElNXs7CDCIEsTvslaRYwzQXbwErKU,40081
308
+ dgenerate_ultralytics_headless-8.4.7.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
309
+ dgenerate_ultralytics_headless-8.4.7.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
310
+ dgenerate_ultralytics_headless-8.4.7.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
311
+ dgenerate_ultralytics_headless-8.4.7.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
tests/__init__.py CHANGED
@@ -1,25 +1,23 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
3
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
4
- from ultralytics.utils import ASSETS, ROOT, WEIGHTS_DIR, checks
4
+ from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks
5
5
 
6
6
  # Constants used in tests
7
- MODEL = WEIGHTS_DIR / "path with spaces" / "yolo11n.pt" # test spaces in path
8
- CFG = "yolo11n.yaml"
7
+ MODEL = WEIGHTS_DIR / "path with spaces" / "yolo26n.pt" # test spaces in path
8
+ CFG = "yolo26n.yaml"
9
9
  SOURCE = ASSETS / "bus.jpg"
10
10
  SOURCES_LIST = [ASSETS / "bus.jpg", ASSETS, ASSETS / "*", ASSETS / "**/*.jpg"]
11
- TMP = (ROOT / "../tests/tmp").resolve() # temp directory for test files
12
11
  CUDA_IS_AVAILABLE = checks.cuda_is_available()
13
12
  CUDA_DEVICE_COUNT = checks.cuda_device_count()
14
13
  TASK_MODEL_DATA = [(task, WEIGHTS_DIR / TASK2MODEL[task], TASK2DATA[task]) for task in TASKS]
15
- MODELS = frozenset(list(TASK2MODEL.values()) + ["yolo11n-grayscale.pt"])
14
+ MODELS = frozenset([*list(TASK2MODEL.values()), "yolo11n-grayscale.pt"])
16
15
 
17
16
  __all__ = (
18
- "MODEL",
19
17
  "CFG",
18
+ "CUDA_DEVICE_COUNT",
19
+ "CUDA_IS_AVAILABLE",
20
+ "MODEL",
20
21
  "SOURCE",
21
22
  "SOURCES_LIST",
22
- "TMP",
23
- "CUDA_IS_AVAILABLE",
24
- "CUDA_DEVICE_COUNT",
25
23
  )
tests/conftest.py CHANGED
@@ -3,8 +3,6 @@
3
3
  import shutil
4
4
  from pathlib import Path
5
5
 
6
- from tests import TMP
7
-
8
6
 
9
7
  def pytest_addoption(parser):
10
8
  """Add custom command-line options to pytest."""
@@ -12,8 +10,7 @@ def pytest_addoption(parser):
12
10
 
13
11
 
14
12
  def pytest_collection_modifyitems(config, items):
15
- """
16
- Modify the list of test items to exclude tests marked as slow if the --slow option is not specified.
13
+ """Modify the list of test items to exclude tests marked as slow if the --slow option is not specified.
17
14
 
18
15
  Args:
19
16
  config: The pytest configuration object that provides access to command-line options.
@@ -25,11 +22,10 @@ def pytest_collection_modifyitems(config, items):
25
22
 
26
23
 
27
24
  def pytest_sessionstart(session):
28
- """
29
- Initialize session configurations for pytest.
25
+ """Initialize session configurations for pytest.
30
26
 
31
27
  This function is automatically called by pytest after the 'Session' object has been created but before performing
32
- test collection. It sets the initial seeds and prepares the temporary directory for the test session.
28
+ test collection. It sets the initial seeds for the test session.
33
29
 
34
30
  Args:
35
31
  session: The pytest session object.
@@ -37,16 +33,13 @@ def pytest_sessionstart(session):
37
33
  from ultralytics.utils.torch_utils import init_seeds
38
34
 
39
35
  init_seeds()
40
- shutil.rmtree(TMP, ignore_errors=True) # Delete any existing tests/tmp directory
41
- TMP.mkdir(parents=True, exist_ok=True) # Create a new empty directory
42
36
 
43
37
 
44
38
  def pytest_terminal_summary(terminalreporter, exitstatus, config):
45
- """
46
- Cleanup operations after pytest session.
39
+ """Cleanup operations after pytest session.
47
40
 
48
- This function is automatically called by pytest at the end of the entire test session. It removes certain files
49
- and directories used during testing.
41
+ This function is automatically called by pytest at the end of the entire test session. It removes certain files and
42
+ directories used during testing.
50
43
 
51
44
  Args:
52
45
  terminalreporter: The terminal reporter object used for terminal output.
@@ -57,10 +50,10 @@ def pytest_terminal_summary(terminalreporter, exitstatus, config):
57
50
 
58
51
  # Remove files
59
52
  models = [path for x in {"*.onnx", "*.torchscript"} for path in WEIGHTS_DIR.rglob(x)]
60
- for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo11n.onnx", "yolo11n.torchscript"] + models:
53
+ for file in ["decelera_portrait_min.mov", "bus.jpg", "yolo26n.onnx", "yolo26n.torchscript", *models]:
61
54
  Path(file).unlink(missing_ok=True)
62
55
 
63
56
  # Remove directories
64
57
  models = [path for x in {"*.mlpackage", "*_openvino_model"} for path in WEIGHTS_DIR.rglob(x)]
65
- for directory in [WEIGHTS_DIR / "path with spaces", TMP.parents[1] / ".pytest_cache", TMP] + models:
58
+ for directory in [WEIGHTS_DIR / "path with spaces", *models]:
66
59
  shutil.rmtree(directory, ignore_errors=True)
tests/test_cli.py CHANGED
@@ -82,7 +82,7 @@ def test_fastsam(
82
82
  everything_results = sam_model(s, device="cpu", retina_masks=True, imgsz=320, conf=0.4, iou=0.9)
83
83
 
84
84
  # Remove small regions
85
- new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
85
+ _new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
86
86
 
87
87
  # Run inference with bboxes and points and texts prompt at the same time
88
88
  sam_model(source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog")
tests/test_cuda.py CHANGED
@@ -1,5 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
+ import os
3
4
  from itertools import product
4
5
  from pathlib import Path
5
6
 
@@ -40,7 +41,7 @@ def test_checks():
40
41
  @pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
41
42
  def test_amp():
42
43
  """Test AMP training checks."""
43
- model = YOLO("yolo11n.pt").model.to(f"cuda:{DEVICES[0]}")
44
+ model = YOLO("yolo26n.pt").model.to(f"cuda:{DEVICES[0]}")
44
45
  assert check_amp(model)
45
46
 
46
47
 
@@ -90,6 +91,12 @@ def test_export_onnx_matrix(task, dynamic, int8, half, batch, simplify, nms):
90
91
  )
91
92
  def test_export_engine_matrix(task, dynamic, int8, half, batch):
92
93
  """Test YOLO model export to TensorRT format for various configurations and run inference."""
94
+ import tensorrt as trt
95
+
96
+ is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10
97
+ if is_trt10 and int8 and dynamic:
98
+ pytest.skip("YOLO26 INT8+dynamic export requires explicit quantization on TensorRT 10+")
99
+
93
100
  file = YOLO(TASK2MODEL[task]).export(
94
101
  format="engine",
95
102
  imgsz=32,
@@ -110,26 +117,22 @@ def test_export_engine_matrix(task, dynamic, int8, half, batch):
110
117
  @pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
111
118
  def test_train():
112
119
  """Test model training on a minimal dataset using available CUDA devices."""
113
- import os
114
-
115
120
  device = tuple(DEVICES) if len(DEVICES) > 1 else DEVICES[0]
116
121
  # NVIDIA Jetson only has one GPU and therefore skipping checks
117
122
  if not IS_JETSON:
118
- results = YOLO(MODEL).train(
119
- data="coco8.yaml", imgsz=64, epochs=1, device=device, batch=15
120
- ) # requires imgsz>=64
123
+ results = YOLO(MODEL).train(data="coco8.yaml", imgsz=64, epochs=1, device=device, batch=15)
124
+ results = YOLO(MODEL).train(data="coco128.yaml", imgsz=64, epochs=1, device=device, batch=15, val=False)
121
125
  visible = eval(os.environ["CUDA_VISIBLE_DEVICES"])
122
126
  assert visible == device, f"Passed GPUs '{device}', but used GPUs '{visible}'"
123
- assert (
124
- (results is None) if len(DEVICES) > 1 else (results is not None)
125
- ) # DDP returns None, single-GPU returns metrics
127
+ # Note DDP training returns None, single-GPU returns metrics
128
+ assert (results is None) if len(DEVICES) > 1 else (results is not None)
126
129
 
127
130
 
128
131
  @pytest.mark.slow
129
132
  @pytest.mark.skipif(not DEVICES, reason="No CUDA devices available")
130
133
  def test_predict_multiple_devices():
131
134
  """Validate model prediction consistency across CPU and CUDA devices."""
132
- model = YOLO("yolo11n.pt")
135
+ model = YOLO("yolo26n.pt")
133
136
 
134
137
  # Test CPU
135
138
  model = model.cpu()
tests/test_engine.py CHANGED
@@ -5,7 +5,7 @@ from unittest import mock
5
5
 
6
6
  import torch
7
7
 
8
- from tests import MODEL
8
+ from tests import MODEL, SOURCE
9
9
  from ultralytics import YOLO
10
10
  from ultralytics.cfg import get_cfg
11
11
  from ultralytics.engine.exporter import Exporter
@@ -13,7 +13,7 @@ from ultralytics.models.yolo import classify, detect, segment
13
13
  from ultralytics.utils import ASSETS, DEFAULT_CFG, WEIGHTS_DIR
14
14
 
15
15
 
16
- def test_func(*args): # noqa
16
+ def test_func(*args, **kwargs):
17
17
  """Test function callback for evaluating YOLO model performance metrics."""
18
18
  print("callback test passed")
19
19
 
@@ -23,13 +23,13 @@ def test_export():
23
23
  exporter = Exporter()
24
24
  exporter.add_callback("on_export_start", test_func)
25
25
  assert test_func in exporter.callbacks["on_export_start"], "callback test failed"
26
- f = exporter(model=YOLO("yolo11n.yaml").model)
27
- YOLO(f)(ASSETS) # exported model inference
26
+ f = exporter(model=YOLO("yolo26n.yaml").model)
27
+ YOLO(f)(SOURCE) # exported model inference
28
28
 
29
29
 
30
30
  def test_detect():
31
31
  """Test YOLO object detection training, validation, and prediction functionality."""
32
- overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 1, "save": False}
32
+ overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 1, "save": False}
33
33
  cfg = get_cfg(DEFAULT_CFG)
34
34
  cfg.data = "coco8.yaml"
35
35
  cfg.imgsz = 32
@@ -71,7 +71,7 @@ def test_segment():
71
71
  """Test image segmentation training, validation, and prediction pipelines using YOLO models."""
72
72
  overrides = {
73
73
  "data": "coco8-seg.yaml",
74
- "model": "yolo11n-seg.yaml",
74
+ "model": "yolo26n-seg.yaml",
75
75
  "imgsz": 32,
76
76
  "epochs": 1,
77
77
  "save": False,
@@ -98,7 +98,7 @@ def test_segment():
98
98
  pred = segment.SegmentationPredictor(overrides={"imgsz": [64, 64]})
99
99
  pred.add_callback("on_predict_start", test_func)
100
100
  assert test_func in pred.callbacks["on_predict_start"], "callback test failed"
101
- result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo11n-seg.pt")
101
+ result = pred(source=ASSETS, model=WEIGHTS_DIR / "yolo26n-seg.pt")
102
102
  assert len(result), "predictor test failed"
103
103
 
104
104
  # Test resume functionality
@@ -115,7 +115,7 @@ def test_segment():
115
115
 
116
116
  def test_classify():
117
117
  """Test image classification including training, validation, and prediction phases."""
118
- overrides = {"data": "imagenet10", "model": "yolo11n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
118
+ overrides = {"data": "imagenet10", "model": "yolo26n-cls.yaml", "imgsz": 32, "epochs": 1, "save": False}
119
119
  cfg = get_cfg(DEFAULT_CFG)
120
120
  cfg.data = "imagenet10"
121
121
  cfg.imgsz = 32
@@ -150,7 +150,7 @@ def test_nan_recovery():
150
150
  trainer.tloss *= torch.tensor(float("nan"))
151
151
  nan_injected[0] = True
152
152
 
153
- overrides = {"data": "coco8.yaml", "model": "yolo11n.yaml", "imgsz": 32, "epochs": 3}
153
+ overrides = {"data": "coco8.yaml", "model": "yolo26n.yaml", "imgsz": 32, "epochs": 3}
154
154
  trainer = detect.DetectionTrainer(overrides=overrides)
155
155
  trainer.add_callback("on_train_batch_end", inject_nan)
156
156
  trainer.train()