dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.3.248__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/METADATA +13 -14
- dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD +298 -0
- tests/__init__.py +5 -7
- tests/conftest.py +8 -15
- tests/test_cli.py +1 -1
- tests/test_cuda.py +5 -8
- tests/test_engine.py +1 -1
- tests/test_exports.py +57 -12
- tests/test_integrations.py +4 -4
- tests/test_python.py +84 -53
- tests/test_solutions.py +160 -151
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +56 -62
- ultralytics/cfg/datasets/Argoverse.yaml +7 -6
- ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/VOC.yaml +15 -16
- ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
- ultralytics/cfg/datasets/coco-pose.yaml +21 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
- ultralytics/cfg/datasets/dog-pose.yaml +28 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/dota8.yaml +2 -2
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
- ultralytics/cfg/datasets/xView.yaml +16 -16
- ultralytics/cfg/default.yaml +1 -1
- ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
- ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
- ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
- ultralytics/cfg/models/v6/yolov6.yaml +1 -1
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
- ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
- ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
- ultralytics/data/__init__.py +4 -4
- ultralytics/data/annotator.py +3 -4
- ultralytics/data/augment.py +285 -475
- ultralytics/data/base.py +18 -26
- ultralytics/data/build.py +147 -25
- ultralytics/data/converter.py +36 -46
- ultralytics/data/dataset.py +46 -74
- ultralytics/data/loaders.py +42 -49
- ultralytics/data/split.py +5 -6
- ultralytics/data/split_dota.py +8 -15
- ultralytics/data/utils.py +34 -43
- ultralytics/engine/exporter.py +319 -237
- ultralytics/engine/model.py +148 -188
- ultralytics/engine/predictor.py +29 -38
- ultralytics/engine/results.py +177 -311
- ultralytics/engine/trainer.py +83 -59
- ultralytics/engine/tuner.py +23 -34
- ultralytics/engine/validator.py +39 -22
- ultralytics/hub/__init__.py +16 -19
- ultralytics/hub/auth.py +6 -12
- ultralytics/hub/google/__init__.py +7 -10
- ultralytics/hub/session.py +15 -25
- ultralytics/hub/utils.py +5 -8
- ultralytics/models/__init__.py +1 -1
- ultralytics/models/fastsam/__init__.py +1 -1
- ultralytics/models/fastsam/model.py +8 -10
- ultralytics/models/fastsam/predict.py +17 -29
- ultralytics/models/fastsam/utils.py +1 -2
- ultralytics/models/fastsam/val.py +5 -7
- ultralytics/models/nas/__init__.py +1 -1
- ultralytics/models/nas/model.py +5 -8
- ultralytics/models/nas/predict.py +7 -9
- ultralytics/models/nas/val.py +1 -2
- ultralytics/models/rtdetr/__init__.py +1 -1
- ultralytics/models/rtdetr/model.py +5 -8
- ultralytics/models/rtdetr/predict.py +15 -19
- ultralytics/models/rtdetr/train.py +10 -13
- ultralytics/models/rtdetr/val.py +21 -23
- ultralytics/models/sam/__init__.py +15 -2
- ultralytics/models/sam/amg.py +14 -20
- ultralytics/models/sam/build.py +26 -19
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +29 -32
- ultralytics/models/sam/modules/blocks.py +83 -144
- ultralytics/models/sam/modules/decoders.py +19 -37
- ultralytics/models/sam/modules/encoders.py +44 -101
- ultralytics/models/sam/modules/memory_attention.py +16 -30
- ultralytics/models/sam/modules/sam.py +200 -73
- ultralytics/models/sam/modules/tiny_encoder.py +64 -83
- ultralytics/models/sam/modules/transformer.py +18 -28
- ultralytics/models/sam/modules/utils.py +174 -50
- ultralytics/models/sam/predict.py +2248 -350
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/loss.py +14 -26
- ultralytics/models/utils/ops.py +13 -17
- ultralytics/models/yolo/__init__.py +1 -1
- ultralytics/models/yolo/classify/predict.py +9 -12
- ultralytics/models/yolo/classify/train.py +11 -32
- ultralytics/models/yolo/classify/val.py +29 -28
- ultralytics/models/yolo/detect/predict.py +7 -10
- ultralytics/models/yolo/detect/train.py +11 -20
- ultralytics/models/yolo/detect/val.py +70 -58
- ultralytics/models/yolo/model.py +36 -53
- ultralytics/models/yolo/obb/predict.py +5 -14
- ultralytics/models/yolo/obb/train.py +11 -14
- ultralytics/models/yolo/obb/val.py +39 -36
- ultralytics/models/yolo/pose/__init__.py +1 -1
- ultralytics/models/yolo/pose/predict.py +6 -21
- ultralytics/models/yolo/pose/train.py +10 -15
- ultralytics/models/yolo/pose/val.py +38 -57
- ultralytics/models/yolo/segment/predict.py +14 -18
- ultralytics/models/yolo/segment/train.py +3 -6
- ultralytics/models/yolo/segment/val.py +93 -45
- ultralytics/models/yolo/world/train.py +8 -14
- ultralytics/models/yolo/world/train_world.py +11 -34
- ultralytics/models/yolo/yoloe/__init__.py +7 -7
- ultralytics/models/yolo/yoloe/predict.py +16 -23
- ultralytics/models/yolo/yoloe/train.py +30 -43
- ultralytics/models/yolo/yoloe/train_seg.py +5 -10
- ultralytics/models/yolo/yoloe/val.py +15 -20
- ultralytics/nn/__init__.py +7 -7
- ultralytics/nn/autobackend.py +145 -77
- ultralytics/nn/modules/__init__.py +60 -60
- ultralytics/nn/modules/activation.py +4 -6
- ultralytics/nn/modules/block.py +132 -216
- ultralytics/nn/modules/conv.py +52 -97
- ultralytics/nn/modules/head.py +50 -103
- ultralytics/nn/modules/transformer.py +76 -88
- ultralytics/nn/modules/utils.py +16 -21
- ultralytics/nn/tasks.py +94 -154
- ultralytics/nn/text_model.py +40 -67
- ultralytics/solutions/__init__.py +12 -12
- ultralytics/solutions/ai_gym.py +11 -17
- ultralytics/solutions/analytics.py +15 -16
- ultralytics/solutions/config.py +5 -6
- ultralytics/solutions/distance_calculation.py +10 -13
- ultralytics/solutions/heatmap.py +7 -13
- ultralytics/solutions/instance_segmentation.py +5 -8
- ultralytics/solutions/object_blurrer.py +7 -10
- ultralytics/solutions/object_counter.py +12 -19
- ultralytics/solutions/object_cropper.py +8 -14
- ultralytics/solutions/parking_management.py +33 -31
- ultralytics/solutions/queue_management.py +10 -12
- ultralytics/solutions/region_counter.py +9 -12
- ultralytics/solutions/security_alarm.py +15 -20
- ultralytics/solutions/similarity_search.py +10 -15
- ultralytics/solutions/solutions.py +75 -74
- ultralytics/solutions/speed_estimation.py +7 -10
- ultralytics/solutions/streamlit_inference.py +2 -4
- ultralytics/solutions/templates/similarity-search.html +7 -18
- ultralytics/solutions/trackzone.py +7 -10
- ultralytics/solutions/vision_eye.py +5 -8
- ultralytics/trackers/__init__.py +1 -1
- ultralytics/trackers/basetrack.py +3 -5
- ultralytics/trackers/bot_sort.py +10 -27
- ultralytics/trackers/byte_tracker.py +14 -30
- ultralytics/trackers/track.py +3 -6
- ultralytics/trackers/utils/gmc.py +11 -22
- ultralytics/trackers/utils/kalman_filter.py +37 -48
- ultralytics/trackers/utils/matching.py +12 -15
- ultralytics/utils/__init__.py +116 -116
- ultralytics/utils/autobatch.py +2 -4
- ultralytics/utils/autodevice.py +17 -18
- ultralytics/utils/benchmarks.py +32 -46
- ultralytics/utils/callbacks/base.py +8 -10
- ultralytics/utils/callbacks/clearml.py +5 -13
- ultralytics/utils/callbacks/comet.py +32 -46
- ultralytics/utils/callbacks/dvc.py +13 -18
- ultralytics/utils/callbacks/mlflow.py +4 -5
- ultralytics/utils/callbacks/neptune.py +7 -15
- ultralytics/utils/callbacks/platform.py +314 -38
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +23 -31
- ultralytics/utils/callbacks/wb.py +10 -13
- ultralytics/utils/checks.py +99 -76
- ultralytics/utils/cpu.py +3 -8
- ultralytics/utils/dist.py +8 -12
- ultralytics/utils/downloads.py +20 -30
- ultralytics/utils/errors.py +6 -14
- ultralytics/utils/events.py +2 -4
- ultralytics/utils/export/__init__.py +4 -236
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +91 -55
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +24 -28
- ultralytics/utils/git.py +9 -11
- ultralytics/utils/instance.py +30 -51
- ultralytics/utils/logger.py +212 -114
- ultralytics/utils/loss.py +14 -22
- ultralytics/utils/metrics.py +126 -155
- ultralytics/utils/nms.py +13 -16
- ultralytics/utils/ops.py +107 -165
- ultralytics/utils/patches.py +33 -21
- ultralytics/utils/plotting.py +72 -80
- ultralytics/utils/tal.py +25 -39
- ultralytics/utils/torch_utils.py +52 -78
- ultralytics/utils/tqdm.py +20 -20
- ultralytics/utils/triton.py +13 -19
- ultralytics/utils/tuner.py +17 -5
- dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/top_level.txt +0 -0
ultralytics/data/base.py
CHANGED
|
@@ -21,11 +21,10 @@ from ultralytics.utils.patches import imread
|
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
class BaseDataset(Dataset):
|
|
24
|
-
"""
|
|
25
|
-
Base dataset class for loading and processing image data.
|
|
24
|
+
"""Base dataset class for loading and processing image data.
|
|
26
25
|
|
|
27
|
-
This class provides core functionality for loading images, caching, and preparing data for training and inference
|
|
28
|
-
|
|
26
|
+
This class provides core functionality for loading images, caching, and preparing data for training and inference in
|
|
27
|
+
object detection tasks.
|
|
29
28
|
|
|
30
29
|
Attributes:
|
|
31
30
|
img_path (str): Path to the folder containing images.
|
|
@@ -34,7 +33,8 @@ class BaseDataset(Dataset):
|
|
|
34
33
|
single_cls (bool): Whether to treat all objects as a single class.
|
|
35
34
|
prefix (str): Prefix to print in log messages.
|
|
36
35
|
fraction (float): Fraction of dataset to utilize.
|
|
37
|
-
channels (int): Number of channels in the images (1 for grayscale, 3 for
|
|
36
|
+
channels (int): Number of channels in the images (1 for grayscale, 3 for color). Color images loaded with OpenCV
|
|
37
|
+
are in BGR channel order.
|
|
38
38
|
cv2_flag (int): OpenCV flag for reading images.
|
|
39
39
|
im_files (list[str]): List of image file paths.
|
|
40
40
|
labels (list[dict]): List of label data dictionaries.
|
|
@@ -86,8 +86,7 @@ class BaseDataset(Dataset):
|
|
|
86
86
|
fraction: float = 1.0,
|
|
87
87
|
channels: int = 3,
|
|
88
88
|
):
|
|
89
|
-
"""
|
|
90
|
-
Initialize BaseDataset with given configuration and options.
|
|
89
|
+
"""Initialize BaseDataset with given configuration and options.
|
|
91
90
|
|
|
92
91
|
Args:
|
|
93
92
|
img_path (str | list[str]): Path to the folder containing images or list of image paths.
|
|
@@ -103,7 +102,8 @@ class BaseDataset(Dataset):
|
|
|
103
102
|
single_cls (bool): If True, single class training is used.
|
|
104
103
|
classes (list[int], optional): List of included classes.
|
|
105
104
|
fraction (float): Fraction of dataset to utilize.
|
|
106
|
-
channels (int): Number of channels in the images (1 for grayscale, 3 for
|
|
105
|
+
channels (int): Number of channels in the images (1 for grayscale, 3 for color). Color images loaded with
|
|
106
|
+
OpenCV are in BGR channel order.
|
|
107
107
|
"""
|
|
108
108
|
super().__init__()
|
|
109
109
|
self.img_path = img_path
|
|
@@ -148,8 +148,7 @@ class BaseDataset(Dataset):
|
|
|
148
148
|
self.transforms = self.build_transforms(hyp=hyp)
|
|
149
149
|
|
|
150
150
|
def get_img_files(self, img_path: str | list[str]) -> list[str]:
|
|
151
|
-
"""
|
|
152
|
-
Read image files from the specified path.
|
|
151
|
+
"""Read image files from the specified path.
|
|
153
152
|
|
|
154
153
|
Args:
|
|
155
154
|
img_path (str | list[str]): Path or list of paths to image directories or files.
|
|
@@ -186,8 +185,7 @@ class BaseDataset(Dataset):
|
|
|
186
185
|
return im_files
|
|
187
186
|
|
|
188
187
|
def update_labels(self, include_class: list[int] | None) -> None:
|
|
189
|
-
"""
|
|
190
|
-
Update labels to include only specified classes.
|
|
188
|
+
"""Update labels to include only specified classes.
|
|
191
189
|
|
|
192
190
|
Args:
|
|
193
191
|
include_class (list[int], optional): List of classes to include. If None, all classes are included.
|
|
@@ -210,8 +208,7 @@ class BaseDataset(Dataset):
|
|
|
210
208
|
self.labels[i]["cls"][:, 0] = 0
|
|
211
209
|
|
|
212
210
|
def load_image(self, i: int, rect_mode: bool = True) -> tuple[np.ndarray, tuple[int, int], tuple[int, int]]:
|
|
213
|
-
"""
|
|
214
|
-
Load an image from dataset index 'i'.
|
|
211
|
+
"""Load an image from dataset index 'i'.
|
|
215
212
|
|
|
216
213
|
Args:
|
|
217
214
|
i (int): Index of the image to load.
|
|
@@ -286,8 +283,7 @@ class BaseDataset(Dataset):
|
|
|
286
283
|
np.save(f.as_posix(), imread(self.im_files[i]), allow_pickle=False)
|
|
287
284
|
|
|
288
285
|
def check_cache_disk(self, safety_margin: float = 0.5) -> bool:
|
|
289
|
-
"""
|
|
290
|
-
Check if there's enough disk space for caching images.
|
|
286
|
+
"""Check if there's enough disk space for caching images.
|
|
291
287
|
|
|
292
288
|
Args:
|
|
293
289
|
safety_margin (float): Safety margin factor for disk space calculation.
|
|
@@ -307,10 +303,10 @@ class BaseDataset(Dataset):
|
|
|
307
303
|
b += im.nbytes
|
|
308
304
|
if not os.access(Path(im_file).parent, os.W_OK):
|
|
309
305
|
self.cache = None
|
|
310
|
-
LOGGER.warning(f"{self.prefix}Skipping caching images to disk, directory not
|
|
306
|
+
LOGGER.warning(f"{self.prefix}Skipping caching images to disk, directory not writable")
|
|
311
307
|
return False
|
|
312
308
|
disk_required = b * self.ni / n * (1 + safety_margin) # bytes required to cache dataset to disk
|
|
313
|
-
total,
|
|
309
|
+
total, _used, free = shutil.disk_usage(Path(self.im_files[0]).parent)
|
|
314
310
|
if disk_required > free:
|
|
315
311
|
self.cache = None
|
|
316
312
|
LOGGER.warning(
|
|
@@ -322,8 +318,7 @@ class BaseDataset(Dataset):
|
|
|
322
318
|
return True
|
|
323
319
|
|
|
324
320
|
def check_cache_ram(self, safety_margin: float = 0.5) -> bool:
|
|
325
|
-
"""
|
|
326
|
-
Check if there's enough RAM for caching images.
|
|
321
|
+
"""Check if there's enough RAM for caching images.
|
|
327
322
|
|
|
328
323
|
Args:
|
|
329
324
|
safety_margin (float): Safety margin factor for RAM calculation.
|
|
@@ -381,8 +376,7 @@ class BaseDataset(Dataset):
|
|
|
381
376
|
return self.transforms(self.get_image_and_label(index))
|
|
382
377
|
|
|
383
378
|
def get_image_and_label(self, index: int) -> dict[str, Any]:
|
|
384
|
-
"""
|
|
385
|
-
Get and return label information from the dataset.
|
|
379
|
+
"""Get and return label information from the dataset.
|
|
386
380
|
|
|
387
381
|
Args:
|
|
388
382
|
index (int): Index of the image to retrieve.
|
|
@@ -410,8 +404,7 @@ class BaseDataset(Dataset):
|
|
|
410
404
|
return label
|
|
411
405
|
|
|
412
406
|
def build_transforms(self, hyp: dict[str, Any] | None = None):
|
|
413
|
-
"""
|
|
414
|
-
Users can customize augmentations here.
|
|
407
|
+
"""Users can customize augmentations here.
|
|
415
408
|
|
|
416
409
|
Examples:
|
|
417
410
|
>>> if self.augment:
|
|
@@ -424,8 +417,7 @@ class BaseDataset(Dataset):
|
|
|
424
417
|
raise NotImplementedError
|
|
425
418
|
|
|
426
419
|
def get_labels(self) -> list[dict[str, Any]]:
|
|
427
|
-
"""
|
|
428
|
-
Users can customize their own format here.
|
|
420
|
+
"""Users can customize their own format here.
|
|
429
421
|
|
|
430
422
|
Examples:
|
|
431
423
|
Ensure output is a dictionary with the following keys:
|
ultralytics/data/build.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
from __future__ import annotations
|
|
4
4
|
|
|
5
|
+
import math
|
|
5
6
|
import os
|
|
6
7
|
import random
|
|
7
8
|
from collections.abc import Iterator
|
|
@@ -11,8 +12,9 @@ from urllib.parse import urlsplit
|
|
|
11
12
|
|
|
12
13
|
import numpy as np
|
|
13
14
|
import torch
|
|
15
|
+
import torch.distributed as dist
|
|
14
16
|
from PIL import Image
|
|
15
|
-
from torch.utils.data import dataloader, distributed
|
|
17
|
+
from torch.utils.data import Dataset, dataloader, distributed
|
|
16
18
|
|
|
17
19
|
from ultralytics.cfg import IterableSimpleNamespace
|
|
18
20
|
from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
|
|
@@ -33,8 +35,7 @@ from ultralytics.utils.torch_utils import TORCH_2_0
|
|
|
33
35
|
|
|
34
36
|
|
|
35
37
|
class InfiniteDataLoader(dataloader.DataLoader):
|
|
36
|
-
"""
|
|
37
|
-
Dataloader that reuses workers for infinite iteration.
|
|
38
|
+
"""DataLoader that reuses workers for infinite iteration.
|
|
38
39
|
|
|
39
40
|
This dataloader extends the PyTorch DataLoader to provide infinite recycling of workers, which improves efficiency
|
|
40
41
|
for training loops that need to iterate through the dataset multiple times without recreating workers.
|
|
@@ -50,7 +51,7 @@ class InfiniteDataLoader(dataloader.DataLoader):
|
|
|
50
51
|
reset: Reset the iterator, useful when modifying dataset settings during training.
|
|
51
52
|
|
|
52
53
|
Examples:
|
|
53
|
-
Create an infinite
|
|
54
|
+
Create an infinite DataLoader for training
|
|
54
55
|
>>> dataset = YOLODataset(...)
|
|
55
56
|
>>> dataloader = InfiniteDataLoader(dataset, batch_size=16, shuffle=True)
|
|
56
57
|
>>> for batch in dataloader: # Infinite iteration
|
|
@@ -75,7 +76,7 @@ class InfiniteDataLoader(dataloader.DataLoader):
|
|
|
75
76
|
yield next(self.iterator)
|
|
76
77
|
|
|
77
78
|
def __del__(self):
|
|
78
|
-
"""Ensure that workers are properly terminated when the
|
|
79
|
+
"""Ensure that workers are properly terminated when the DataLoader is deleted."""
|
|
79
80
|
try:
|
|
80
81
|
if not hasattr(self.iterator, "_workers"):
|
|
81
82
|
return
|
|
@@ -92,11 +93,10 @@ class InfiniteDataLoader(dataloader.DataLoader):
|
|
|
92
93
|
|
|
93
94
|
|
|
94
95
|
class _RepeatSampler:
|
|
95
|
-
"""
|
|
96
|
-
Sampler that repeats forever for infinite iteration.
|
|
96
|
+
"""Sampler that repeats forever for infinite iteration.
|
|
97
97
|
|
|
98
|
-
This sampler wraps another sampler and yields its contents indefinitely, allowing for infinite iteration
|
|
99
|
-
|
|
98
|
+
This sampler wraps another sampler and yields its contents indefinitely, allowing for infinite iteration over a
|
|
99
|
+
dataset without recreating the sampler.
|
|
100
100
|
|
|
101
101
|
Attributes:
|
|
102
102
|
sampler (Dataset.sampler): The sampler to repeat.
|
|
@@ -112,7 +112,109 @@ class _RepeatSampler:
|
|
|
112
112
|
yield from iter(self.sampler)
|
|
113
113
|
|
|
114
114
|
|
|
115
|
-
|
|
115
|
+
class ContiguousDistributedSampler(torch.utils.data.Sampler):
|
|
116
|
+
"""Distributed sampler that assigns contiguous batch-aligned chunks of the dataset to each GPU.
|
|
117
|
+
|
|
118
|
+
Unlike PyTorch's DistributedSampler which distributes samples in a round-robin fashion (GPU 0 gets indices
|
|
119
|
+
[0,2,4,...], GPU 1 gets [1,3,5,...]), this sampler gives each GPU contiguous batches of the dataset (GPU 0 gets
|
|
120
|
+
batches [0,1,2,...], GPU 1 gets batches [k,k+1,...], etc.). This preserves any ordering or grouping in the original
|
|
121
|
+
dataset, which is critical when samples are organized by similarity (e.g., images sorted by size to enable efficient
|
|
122
|
+
batching without padding when using rect=True).
|
|
123
|
+
|
|
124
|
+
The sampler handles uneven batch counts by distributing remainder batches to the first few ranks, ensuring all
|
|
125
|
+
samples are covered exactly once across all GPUs.
|
|
126
|
+
|
|
127
|
+
Args:
|
|
128
|
+
dataset (Dataset): Dataset to sample from. Must implement __len__.
|
|
129
|
+
num_replicas (int, optional): Number of distributed processes. Defaults to world size.
|
|
130
|
+
batch_size (int, optional): Batch size used by dataloader. Defaults to dataset batch size.
|
|
131
|
+
rank (int, optional): Rank of current process. Defaults to current rank.
|
|
132
|
+
shuffle (bool, optional): Whether to shuffle indices within each rank's chunk. Defaults to False. When True,
|
|
133
|
+
shuffling is deterministic and controlled by set_epoch() for reproducibility.
|
|
134
|
+
|
|
135
|
+
Examples:
|
|
136
|
+
>>> # For validation with size-grouped images
|
|
137
|
+
>>> sampler = ContiguousDistributedSampler(val_dataset, batch_size=32, shuffle=False)
|
|
138
|
+
>>> loader = DataLoader(val_dataset, batch_size=32, sampler=sampler)
|
|
139
|
+
>>> # For training with shuffling
|
|
140
|
+
>>> sampler = ContiguousDistributedSampler(train_dataset, batch_size=32, shuffle=True)
|
|
141
|
+
>>> for epoch in range(num_epochs):
|
|
142
|
+
... sampler.set_epoch(epoch)
|
|
143
|
+
... for batch in loader:
|
|
144
|
+
... ...
|
|
145
|
+
"""
|
|
146
|
+
|
|
147
|
+
def __init__(
|
|
148
|
+
self,
|
|
149
|
+
dataset: Dataset,
|
|
150
|
+
num_replicas: int | None = None,
|
|
151
|
+
batch_size: int | None = None,
|
|
152
|
+
rank: int | None = None,
|
|
153
|
+
shuffle: bool = False,
|
|
154
|
+
) -> None:
|
|
155
|
+
"""Initialize the sampler with dataset and distributed training parameters."""
|
|
156
|
+
if num_replicas is None:
|
|
157
|
+
num_replicas = dist.get_world_size() if dist.is_initialized() else 1
|
|
158
|
+
if rank is None:
|
|
159
|
+
rank = dist.get_rank() if dist.is_initialized() else 0
|
|
160
|
+
if batch_size is None:
|
|
161
|
+
batch_size = getattr(dataset, "batch_size", 1)
|
|
162
|
+
|
|
163
|
+
self.num_replicas = num_replicas
|
|
164
|
+
self.rank = rank
|
|
165
|
+
self.epoch = 0
|
|
166
|
+
self.shuffle = shuffle
|
|
167
|
+
self.total_size = len(dataset)
|
|
168
|
+
# ensure all ranks have a sample if batch size >= total size; degenerates to round-robin sampler
|
|
169
|
+
self.batch_size = 1 if batch_size >= self.total_size else batch_size
|
|
170
|
+
self.num_batches = math.ceil(self.total_size / self.batch_size)
|
|
171
|
+
|
|
172
|
+
def _get_rank_indices(self) -> tuple[int, int]:
|
|
173
|
+
"""Calculate the start and end sample indices for this rank."""
|
|
174
|
+
# Calculate which batches this rank handles
|
|
175
|
+
batches_per_rank_base = self.num_batches // self.num_replicas
|
|
176
|
+
remainder = self.num_batches % self.num_replicas
|
|
177
|
+
|
|
178
|
+
# This rank gets an extra batch if rank < remainder
|
|
179
|
+
batches_for_this_rank = batches_per_rank_base + (1 if self.rank < remainder else 0)
|
|
180
|
+
|
|
181
|
+
# Calculate starting batch: base position + number of extra batches given to earlier ranks
|
|
182
|
+
start_batch = self.rank * batches_per_rank_base + min(self.rank, remainder)
|
|
183
|
+
end_batch = start_batch + batches_for_this_rank
|
|
184
|
+
|
|
185
|
+
# Convert batch indices to sample indices
|
|
186
|
+
start_idx = start_batch * self.batch_size
|
|
187
|
+
end_idx = min(end_batch * self.batch_size, self.total_size)
|
|
188
|
+
|
|
189
|
+
return start_idx, end_idx
|
|
190
|
+
|
|
191
|
+
def __iter__(self) -> Iterator:
|
|
192
|
+
"""Generate indices for this rank's contiguous chunk of the dataset."""
|
|
193
|
+
start_idx, end_idx = self._get_rank_indices()
|
|
194
|
+
indices = list(range(start_idx, end_idx))
|
|
195
|
+
|
|
196
|
+
if self.shuffle:
|
|
197
|
+
g = torch.Generator()
|
|
198
|
+
g.manual_seed(self.epoch)
|
|
199
|
+
indices = [indices[i] for i in torch.randperm(len(indices), generator=g).tolist()]
|
|
200
|
+
|
|
201
|
+
return iter(indices)
|
|
202
|
+
|
|
203
|
+
def __len__(self) -> int:
|
|
204
|
+
"""Return the number of samples in this rank's chunk."""
|
|
205
|
+
start_idx, end_idx = self._get_rank_indices()
|
|
206
|
+
return end_idx - start_idx
|
|
207
|
+
|
|
208
|
+
def set_epoch(self, epoch: int) -> None:
|
|
209
|
+
"""Set the epoch for this sampler to ensure different shuffling patterns across epochs.
|
|
210
|
+
|
|
211
|
+
Args:
|
|
212
|
+
epoch (int): Epoch number to use as the random seed for shuffling.
|
|
213
|
+
"""
|
|
214
|
+
self.epoch = epoch
|
|
215
|
+
|
|
216
|
+
|
|
217
|
+
def seed_worker(worker_id: int) -> None:
|
|
116
218
|
"""Set dataloader worker seed for reproducibility across worker processes."""
|
|
117
219
|
worker_seed = torch.initial_seed() % 2**32
|
|
118
220
|
np.random.seed(worker_seed)
|
|
@@ -128,7 +230,7 @@ def build_yolo_dataset(
|
|
|
128
230
|
rect: bool = False,
|
|
129
231
|
stride: int = 32,
|
|
130
232
|
multi_modal: bool = False,
|
|
131
|
-
):
|
|
233
|
+
) -> Dataset:
|
|
132
234
|
"""Build and return a YOLO dataset based on configuration parameters."""
|
|
133
235
|
dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
|
|
134
236
|
return dataset(
|
|
@@ -159,7 +261,7 @@ def build_grounding(
|
|
|
159
261
|
rect: bool = False,
|
|
160
262
|
stride: int = 32,
|
|
161
263
|
max_samples: int = 80,
|
|
162
|
-
):
|
|
264
|
+
) -> Dataset:
|
|
163
265
|
"""Build and return a GroundingDataset based on configuration parameters."""
|
|
164
266
|
return GroundingDataset(
|
|
165
267
|
img_path=img_path,
|
|
@@ -181,9 +283,16 @@ def build_grounding(
|
|
|
181
283
|
)
|
|
182
284
|
|
|
183
285
|
|
|
184
|
-
def build_dataloader(
|
|
185
|
-
|
|
186
|
-
|
|
286
|
+
def build_dataloader(
|
|
287
|
+
dataset,
|
|
288
|
+
batch: int,
|
|
289
|
+
workers: int,
|
|
290
|
+
shuffle: bool = True,
|
|
291
|
+
rank: int = -1,
|
|
292
|
+
drop_last: bool = False,
|
|
293
|
+
pin_memory: bool = True,
|
|
294
|
+
) -> InfiniteDataLoader:
|
|
295
|
+
"""Create and return an InfiniteDataLoader or DataLoader for training or validation.
|
|
187
296
|
|
|
188
297
|
Args:
|
|
189
298
|
dataset (Dataset): Dataset to load data from.
|
|
@@ -192,6 +301,7 @@ def build_dataloader(dataset, batch: int, workers: int, shuffle: bool = True, ra
|
|
|
192
301
|
shuffle (bool, optional): Whether to shuffle the dataset.
|
|
193
302
|
rank (int, optional): Process rank in distributed training. -1 for single-GPU training.
|
|
194
303
|
drop_last (bool, optional): Whether to drop the last incomplete batch.
|
|
304
|
+
pin_memory (bool, optional): Whether to use pinned memory for dataloader.
|
|
195
305
|
|
|
196
306
|
Returns:
|
|
197
307
|
(InfiniteDataLoader): A dataloader that can be used for training or validation.
|
|
@@ -204,7 +314,13 @@ def build_dataloader(dataset, batch: int, workers: int, shuffle: bool = True, ra
|
|
|
204
314
|
batch = min(batch, len(dataset))
|
|
205
315
|
nd = torch.cuda.device_count() # number of CUDA devices
|
|
206
316
|
nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers
|
|
207
|
-
sampler =
|
|
317
|
+
sampler = (
|
|
318
|
+
None
|
|
319
|
+
if rank == -1
|
|
320
|
+
else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
|
321
|
+
if shuffle
|
|
322
|
+
else ContiguousDistributedSampler(dataset)
|
|
323
|
+
)
|
|
208
324
|
generator = torch.Generator()
|
|
209
325
|
generator.manual_seed(6148914691236517205 + RANK)
|
|
210
326
|
return InfiniteDataLoader(
|
|
@@ -214,7 +330,7 @@ def build_dataloader(dataset, batch: int, workers: int, shuffle: bool = True, ra
|
|
|
214
330
|
num_workers=nw,
|
|
215
331
|
sampler=sampler,
|
|
216
332
|
prefetch_factor=4 if nw > 0 else None, # increase over default 2
|
|
217
|
-
pin_memory=nd > 0,
|
|
333
|
+
pin_memory=nd > 0 and pin_memory,
|
|
218
334
|
collate_fn=getattr(dataset, "collate_fn", None),
|
|
219
335
|
worker_init_fn=seed_worker,
|
|
220
336
|
generator=generator,
|
|
@@ -222,9 +338,10 @@ def build_dataloader(dataset, batch: int, workers: int, shuffle: bool = True, ra
|
|
|
222
338
|
)
|
|
223
339
|
|
|
224
340
|
|
|
225
|
-
def check_source(
|
|
226
|
-
|
|
227
|
-
|
|
341
|
+
def check_source(
|
|
342
|
+
source: str | int | Path | list | tuple | np.ndarray | Image.Image | torch.Tensor,
|
|
343
|
+
) -> tuple[Any, bool, bool, bool, bool, bool]:
|
|
344
|
+
"""Check the type of input source and return corresponding flag values.
|
|
228
345
|
|
|
229
346
|
Args:
|
|
230
347
|
source (str | int | Path | list | tuple | np.ndarray | PIL.Image | torch.Tensor): The input source to check.
|
|
@@ -271,12 +388,17 @@ def check_source(source):
|
|
|
271
388
|
return source, webcam, screenshot, from_img, in_memory, tensor
|
|
272
389
|
|
|
273
390
|
|
|
274
|
-
def load_inference_source(
|
|
275
|
-
|
|
276
|
-
|
|
391
|
+
def load_inference_source(
|
|
392
|
+
source: str | int | Path | list | tuple | np.ndarray | Image.Image | torch.Tensor,
|
|
393
|
+
batch: int = 1,
|
|
394
|
+
vid_stride: int = 1,
|
|
395
|
+
buffer: bool = False,
|
|
396
|
+
channels: int = 3,
|
|
397
|
+
):
|
|
398
|
+
"""Load an inference source for object detection and apply necessary transformations.
|
|
277
399
|
|
|
278
400
|
Args:
|
|
279
|
-
source (str | Path | torch.Tensor | PIL.Image | np.ndarray
|
|
401
|
+
source (str | Path | list | tuple | torch.Tensor | PIL.Image | np.ndarray): The input source for inference.
|
|
280
402
|
batch (int, optional): Batch size for dataloaders.
|
|
281
403
|
vid_stride (int, optional): The frame interval for video sources.
|
|
282
404
|
buffer (bool, optional): Whether stream frames will be buffered.
|
|
@@ -295,7 +417,7 @@ def load_inference_source(source=None, batch: int = 1, vid_stride: int = 1, buff
|
|
|
295
417
|
source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
|
|
296
418
|
source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)
|
|
297
419
|
|
|
298
|
-
#
|
|
420
|
+
# DataLoader
|
|
299
421
|
if tensor:
|
|
300
422
|
dataset = LoadTensor(source)
|
|
301
423
|
elif in_memory:
|
ultralytics/data/converter.py
CHANGED
|
@@ -21,12 +21,11 @@ from ultralytics.utils.files import increment_path
|
|
|
21
21
|
|
|
22
22
|
|
|
23
23
|
def coco91_to_coco80_class() -> list[int]:
|
|
24
|
-
"""
|
|
25
|
-
Convert 91-index COCO class IDs to 80-index COCO class IDs.
|
|
24
|
+
"""Convert 91-index COCO class IDs to 80-index COCO class IDs.
|
|
26
25
|
|
|
27
26
|
Returns:
|
|
28
|
-
(list[int]): A list of 91 class IDs where the index represents the 80-index class ID and the value
|
|
29
|
-
|
|
27
|
+
(list[int]): A list of 91 class IDs where the index represents the 80-index class ID and the value is the
|
|
28
|
+
corresponding 91-index class ID.
|
|
30
29
|
"""
|
|
31
30
|
return [
|
|
32
31
|
0,
|
|
@@ -124,15 +123,11 @@ def coco91_to_coco80_class() -> list[int]:
|
|
|
124
123
|
|
|
125
124
|
|
|
126
125
|
def coco80_to_coco91_class() -> list[int]:
|
|
127
|
-
r"""
|
|
128
|
-
Convert 80-index (val2014) to 91-index (paper).
|
|
126
|
+
r"""Convert 80-index (val2014) to 91-index (paper).
|
|
129
127
|
|
|
130
128
|
Returns:
|
|
131
129
|
(list[int]): A list of 80 class IDs where each value is the corresponding 91-index class ID.
|
|
132
130
|
|
|
133
|
-
References:
|
|
134
|
-
https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
|
135
|
-
|
|
136
131
|
Examples:
|
|
137
132
|
>>> import numpy as np
|
|
138
133
|
>>> a = np.loadtxt("data/coco.names", dtype="str", delimiter="\n")
|
|
@@ -143,6 +138,9 @@ def coco80_to_coco91_class() -> list[int]:
|
|
|
143
138
|
|
|
144
139
|
Convert the COCO to darknet format
|
|
145
140
|
>>> x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]
|
|
141
|
+
|
|
142
|
+
References:
|
|
143
|
+
https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
|
146
144
|
"""
|
|
147
145
|
return [
|
|
148
146
|
1,
|
|
@@ -236,8 +234,7 @@ def convert_coco(
|
|
|
236
234
|
cls91to80: bool = True,
|
|
237
235
|
lvis: bool = False,
|
|
238
236
|
):
|
|
239
|
-
"""
|
|
240
|
-
Convert COCO dataset annotations to a YOLO annotation format suitable for training YOLO models.
|
|
237
|
+
"""Convert COCO dataset annotations to a YOLO annotation format suitable for training YOLO models.
|
|
241
238
|
|
|
242
239
|
Args:
|
|
243
240
|
labels_dir (str, optional): Path to directory containing COCO dataset annotation files.
|
|
@@ -308,7 +305,7 @@ def convert_coco(
|
|
|
308
305
|
continue
|
|
309
306
|
|
|
310
307
|
cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1 # class
|
|
311
|
-
box = [cls
|
|
308
|
+
box = [cls, *box.tolist()]
|
|
312
309
|
if box not in bboxes:
|
|
313
310
|
bboxes.append(box)
|
|
314
311
|
if use_segments and ann.get("segmentation") is not None:
|
|
@@ -321,7 +318,7 @@ def convert_coco(
|
|
|
321
318
|
else:
|
|
322
319
|
s = [j for i in ann["segmentation"] for j in i] # all segments concatenated
|
|
323
320
|
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist()
|
|
324
|
-
s = [cls
|
|
321
|
+
s = [cls, *s]
|
|
325
322
|
segments.append(s)
|
|
326
323
|
if use_keypoints and ann.get("keypoints") is not None:
|
|
327
324
|
keypoints.append(
|
|
@@ -348,8 +345,7 @@ def convert_coco(
|
|
|
348
345
|
|
|
349
346
|
|
|
350
347
|
def convert_segment_masks_to_yolo_seg(masks_dir: str, output_dir: str, classes: int):
|
|
351
|
-
"""
|
|
352
|
-
Convert a dataset of segmentation mask images to the YOLO segmentation format.
|
|
348
|
+
"""Convert a dataset of segmentation mask images to the YOLO segmentation format.
|
|
353
349
|
|
|
354
350
|
This function takes the directory containing the binary format mask images and converts them into YOLO segmentation
|
|
355
351
|
format. The converted masks are saved in the specified output directory.
|
|
@@ -357,7 +353,7 @@ def convert_segment_masks_to_yolo_seg(masks_dir: str, output_dir: str, classes:
|
|
|
357
353
|
Args:
|
|
358
354
|
masks_dir (str): The path to the directory where all mask images (png, jpg) are stored.
|
|
359
355
|
output_dir (str): The path to the directory where the converted YOLO segmentation masks will be stored.
|
|
360
|
-
classes (int): Total classes in the dataset
|
|
356
|
+
classes (int): Total number of classes in the dataset, e.g., 80 for COCO.
|
|
361
357
|
|
|
362
358
|
Examples:
|
|
363
359
|
>>> from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
|
|
@@ -424,8 +420,7 @@ def convert_segment_masks_to_yolo_seg(masks_dir: str, output_dir: str, classes:
|
|
|
424
420
|
|
|
425
421
|
|
|
426
422
|
def convert_dota_to_yolo_obb(dota_root_path: str):
|
|
427
|
-
"""
|
|
428
|
-
Convert DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format.
|
|
423
|
+
"""Convert DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format.
|
|
429
424
|
|
|
430
425
|
The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the
|
|
431
426
|
associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory.
|
|
@@ -517,8 +512,7 @@ def convert_dota_to_yolo_obb(dota_root_path: str):
|
|
|
517
512
|
|
|
518
513
|
|
|
519
514
|
def min_index(arr1: np.ndarray, arr2: np.ndarray):
|
|
520
|
-
"""
|
|
521
|
-
Find a pair of indexes with the shortest distance between two arrays of 2D points.
|
|
515
|
+
"""Find a pair of indexes with the shortest distance between two arrays of 2D points.
|
|
522
516
|
|
|
523
517
|
Args:
|
|
524
518
|
arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points.
|
|
@@ -533,14 +527,14 @@ def min_index(arr1: np.ndarray, arr2: np.ndarray):
|
|
|
533
527
|
|
|
534
528
|
|
|
535
529
|
def merge_multi_segment(segments: list[list]):
|
|
536
|
-
"""
|
|
537
|
-
|
|
530
|
+
"""Merge multiple segments into one list by connecting the coordinates with the minimum distance between each
|
|
531
|
+
segment.
|
|
538
532
|
|
|
539
533
|
This function connects these coordinates with a thin line to merge all segments into one.
|
|
540
534
|
|
|
541
535
|
Args:
|
|
542
|
-
segments (list[list]): Original segmentations in COCO's JSON file.
|
|
543
|
-
|
|
536
|
+
segments (list[list]): Original segmentations in COCO's JSON file. Each element is a list of coordinates, like
|
|
537
|
+
[segmentation1, segmentation2,...].
|
|
544
538
|
|
|
545
539
|
Returns:
|
|
546
540
|
s (list[np.ndarray]): A list of connected segments represented as NumPy arrays.
|
|
@@ -584,14 +578,13 @@ def merge_multi_segment(segments: list[list]):
|
|
|
584
578
|
|
|
585
579
|
|
|
586
580
|
def yolo_bbox2segment(im_dir: str | Path, save_dir: str | Path | None = None, sam_model: str = "sam_b.pt", device=None):
|
|
587
|
-
"""
|
|
588
|
-
|
|
589
|
-
YOLO format. Generate segmentation data using SAM auto-annotator as needed.
|
|
581
|
+
"""Convert existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB)
|
|
582
|
+
in YOLO format. Generate segmentation data using SAM auto-annotator as needed.
|
|
590
583
|
|
|
591
584
|
Args:
|
|
592
585
|
im_dir (str | Path): Path to image directory to convert.
|
|
593
|
-
save_dir (str | Path, optional): Path to save the generated labels, labels will be saved
|
|
594
|
-
|
|
586
|
+
save_dir (str | Path, optional): Path to save the generated labels, labels will be saved into `labels-segment`
|
|
587
|
+
in the same directory level of `im_dir` if save_dir is None.
|
|
595
588
|
sam_model (str): Segmentation model to use for intermediate segmentation data.
|
|
596
589
|
device (int | str, optional): The specific device to run SAM models.
|
|
597
590
|
|
|
@@ -648,12 +641,11 @@ def yolo_bbox2segment(im_dir: str | Path, save_dir: str | Path | None = None, sa
|
|
|
648
641
|
|
|
649
642
|
|
|
650
643
|
def create_synthetic_coco_dataset():
|
|
651
|
-
"""
|
|
652
|
-
Create a synthetic COCO dataset with random images based on filenames from label lists.
|
|
644
|
+
"""Create a synthetic COCO dataset with random images based on filenames from label lists.
|
|
653
645
|
|
|
654
|
-
This function downloads COCO labels, reads image filenames from label list files,
|
|
655
|
-
|
|
656
|
-
|
|
646
|
+
This function downloads COCO labels, reads image filenames from label list files, creates synthetic images for
|
|
647
|
+
train2017 and val2017 subsets, and organizes them in the COCO dataset structure. It uses multithreading to generate
|
|
648
|
+
images efficiently.
|
|
657
649
|
|
|
658
650
|
Examples:
|
|
659
651
|
>>> from ultralytics.data.converter import create_synthetic_coco_dataset
|
|
@@ -704,11 +696,10 @@ def create_synthetic_coco_dataset():
|
|
|
704
696
|
|
|
705
697
|
|
|
706
698
|
def convert_to_multispectral(path: str | Path, n_channels: int = 10, replace: bool = False, zip: bool = False):
|
|
707
|
-
"""
|
|
708
|
-
Convert RGB images to multispectral images by interpolating across wavelength bands.
|
|
699
|
+
"""Convert RGB images to multispectral images by interpolating across wavelength bands.
|
|
709
700
|
|
|
710
|
-
This function takes RGB images and interpolates them to create multispectral images with a specified number
|
|
711
|
-
|
|
701
|
+
This function takes RGB images and interpolates them to create multispectral images with a specified number of
|
|
702
|
+
channels. It can process either a single image or a directory of images.
|
|
712
703
|
|
|
713
704
|
Args:
|
|
714
705
|
path (str | Path): Path to an image file or directory containing images to convert.
|
|
@@ -730,7 +721,7 @@ def convert_to_multispectral(path: str | Path, n_channels: int = 10, replace: bo
|
|
|
730
721
|
path = Path(path)
|
|
731
722
|
if path.is_dir():
|
|
732
723
|
# Process directory
|
|
733
|
-
im_files =
|
|
724
|
+
im_files = [f for ext in (IMG_FORMATS - {"tif", "tiff"}) for f in path.rglob(f"*.{ext}")]
|
|
734
725
|
for im_path in im_files:
|
|
735
726
|
try:
|
|
736
727
|
convert_to_multispectral(im_path, n_channels)
|
|
@@ -756,12 +747,11 @@ def convert_to_multispectral(path: str | Path, n_channels: int = 10, replace: bo
|
|
|
756
747
|
|
|
757
748
|
|
|
758
749
|
async def convert_ndjson_to_yolo(ndjson_path: str | Path, output_path: str | Path | None = None) -> Path:
|
|
759
|
-
"""
|
|
760
|
-
Convert NDJSON dataset format to Ultralytics YOLO11 dataset structure.
|
|
750
|
+
"""Convert NDJSON dataset format to Ultralytics YOLO11 dataset structure.
|
|
761
751
|
|
|
762
|
-
This function converts datasets stored in NDJSON (Newline Delimited JSON) format to the standard YOLO
|
|
763
|
-
|
|
764
|
-
|
|
752
|
+
This function converts datasets stored in NDJSON (Newline Delimited JSON) format to the standard YOLO format with
|
|
753
|
+
separate directories for images and labels. It supports parallel processing for efficient conversion of large
|
|
754
|
+
datasets and can download images from URLs if they don't exist locally.
|
|
765
755
|
|
|
766
756
|
The NDJSON format consists of:
|
|
767
757
|
- First line: Dataset metadata with class names and configuration
|
|
@@ -769,8 +759,8 @@ async def convert_ndjson_to_yolo(ndjson_path: str | Path, output_path: str | Pat
|
|
|
769
759
|
|
|
770
760
|
Args:
|
|
771
761
|
ndjson_path (Union[str, Path]): Path to the input NDJSON file containing dataset information.
|
|
772
|
-
output_path (Optional[Union[str, Path]], optional): Directory where the converted YOLO dataset
|
|
773
|
-
|
|
762
|
+
output_path (Optional[Union[str, Path]], optional): Directory where the converted YOLO dataset will be saved. If
|
|
763
|
+
None, uses the parent directory of the NDJSON file. Defaults to None.
|
|
774
764
|
|
|
775
765
|
Returns:
|
|
776
766
|
(Path): Path to the generated data.yaml file that can be used for YOLO training.
|