dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.3.248__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (236) hide show
  1. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/METADATA +13 -14
  2. dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD +298 -0
  3. tests/__init__.py +5 -7
  4. tests/conftest.py +8 -15
  5. tests/test_cli.py +1 -1
  6. tests/test_cuda.py +5 -8
  7. tests/test_engine.py +1 -1
  8. tests/test_exports.py +57 -12
  9. tests/test_integrations.py +4 -4
  10. tests/test_python.py +84 -53
  11. tests/test_solutions.py +160 -151
  12. ultralytics/__init__.py +1 -1
  13. ultralytics/cfg/__init__.py +56 -62
  14. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  15. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  16. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  17. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  18. ultralytics/cfg/datasets/VOC.yaml +15 -16
  19. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  20. ultralytics/cfg/datasets/coco-pose.yaml +21 -0
  21. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  22. ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
  23. ultralytics/cfg/datasets/dog-pose.yaml +28 -0
  24. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  25. ultralytics/cfg/datasets/dota8.yaml +2 -2
  26. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
  27. ultralytics/cfg/datasets/kitti.yaml +27 -0
  28. ultralytics/cfg/datasets/lvis.yaml +5 -5
  29. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  30. ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
  31. ultralytics/cfg/datasets/xView.yaml +16 -16
  32. ultralytics/cfg/default.yaml +1 -1
  33. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  34. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  35. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  36. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
  37. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
  38. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
  39. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
  40. ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
  41. ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
  42. ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
  43. ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
  44. ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
  45. ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
  46. ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
  47. ultralytics/cfg/models/v6/yolov6.yaml +1 -1
  48. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  49. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  50. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  51. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  52. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  53. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  54. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  55. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  56. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  57. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  58. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  59. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
  60. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  61. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  62. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  63. ultralytics/data/__init__.py +4 -4
  64. ultralytics/data/annotator.py +3 -4
  65. ultralytics/data/augment.py +285 -475
  66. ultralytics/data/base.py +18 -26
  67. ultralytics/data/build.py +147 -25
  68. ultralytics/data/converter.py +36 -46
  69. ultralytics/data/dataset.py +46 -74
  70. ultralytics/data/loaders.py +42 -49
  71. ultralytics/data/split.py +5 -6
  72. ultralytics/data/split_dota.py +8 -15
  73. ultralytics/data/utils.py +34 -43
  74. ultralytics/engine/exporter.py +319 -237
  75. ultralytics/engine/model.py +148 -188
  76. ultralytics/engine/predictor.py +29 -38
  77. ultralytics/engine/results.py +177 -311
  78. ultralytics/engine/trainer.py +83 -59
  79. ultralytics/engine/tuner.py +23 -34
  80. ultralytics/engine/validator.py +39 -22
  81. ultralytics/hub/__init__.py +16 -19
  82. ultralytics/hub/auth.py +6 -12
  83. ultralytics/hub/google/__init__.py +7 -10
  84. ultralytics/hub/session.py +15 -25
  85. ultralytics/hub/utils.py +5 -8
  86. ultralytics/models/__init__.py +1 -1
  87. ultralytics/models/fastsam/__init__.py +1 -1
  88. ultralytics/models/fastsam/model.py +8 -10
  89. ultralytics/models/fastsam/predict.py +17 -29
  90. ultralytics/models/fastsam/utils.py +1 -2
  91. ultralytics/models/fastsam/val.py +5 -7
  92. ultralytics/models/nas/__init__.py +1 -1
  93. ultralytics/models/nas/model.py +5 -8
  94. ultralytics/models/nas/predict.py +7 -9
  95. ultralytics/models/nas/val.py +1 -2
  96. ultralytics/models/rtdetr/__init__.py +1 -1
  97. ultralytics/models/rtdetr/model.py +5 -8
  98. ultralytics/models/rtdetr/predict.py +15 -19
  99. ultralytics/models/rtdetr/train.py +10 -13
  100. ultralytics/models/rtdetr/val.py +21 -23
  101. ultralytics/models/sam/__init__.py +15 -2
  102. ultralytics/models/sam/amg.py +14 -20
  103. ultralytics/models/sam/build.py +26 -19
  104. ultralytics/models/sam/build_sam3.py +377 -0
  105. ultralytics/models/sam/model.py +29 -32
  106. ultralytics/models/sam/modules/blocks.py +83 -144
  107. ultralytics/models/sam/modules/decoders.py +19 -37
  108. ultralytics/models/sam/modules/encoders.py +44 -101
  109. ultralytics/models/sam/modules/memory_attention.py +16 -30
  110. ultralytics/models/sam/modules/sam.py +200 -73
  111. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  112. ultralytics/models/sam/modules/transformer.py +18 -28
  113. ultralytics/models/sam/modules/utils.py +174 -50
  114. ultralytics/models/sam/predict.py +2248 -350
  115. ultralytics/models/sam/sam3/__init__.py +3 -0
  116. ultralytics/models/sam/sam3/decoder.py +546 -0
  117. ultralytics/models/sam/sam3/encoder.py +529 -0
  118. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  119. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  120. ultralytics/models/sam/sam3/model_misc.py +199 -0
  121. ultralytics/models/sam/sam3/necks.py +129 -0
  122. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  123. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  124. ultralytics/models/sam/sam3/vitdet.py +547 -0
  125. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  126. ultralytics/models/utils/loss.py +14 -26
  127. ultralytics/models/utils/ops.py +13 -17
  128. ultralytics/models/yolo/__init__.py +1 -1
  129. ultralytics/models/yolo/classify/predict.py +9 -12
  130. ultralytics/models/yolo/classify/train.py +11 -32
  131. ultralytics/models/yolo/classify/val.py +29 -28
  132. ultralytics/models/yolo/detect/predict.py +7 -10
  133. ultralytics/models/yolo/detect/train.py +11 -20
  134. ultralytics/models/yolo/detect/val.py +70 -58
  135. ultralytics/models/yolo/model.py +36 -53
  136. ultralytics/models/yolo/obb/predict.py +5 -14
  137. ultralytics/models/yolo/obb/train.py +11 -14
  138. ultralytics/models/yolo/obb/val.py +39 -36
  139. ultralytics/models/yolo/pose/__init__.py +1 -1
  140. ultralytics/models/yolo/pose/predict.py +6 -21
  141. ultralytics/models/yolo/pose/train.py +10 -15
  142. ultralytics/models/yolo/pose/val.py +38 -57
  143. ultralytics/models/yolo/segment/predict.py +14 -18
  144. ultralytics/models/yolo/segment/train.py +3 -6
  145. ultralytics/models/yolo/segment/val.py +93 -45
  146. ultralytics/models/yolo/world/train.py +8 -14
  147. ultralytics/models/yolo/world/train_world.py +11 -34
  148. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  149. ultralytics/models/yolo/yoloe/predict.py +16 -23
  150. ultralytics/models/yolo/yoloe/train.py +30 -43
  151. ultralytics/models/yolo/yoloe/train_seg.py +5 -10
  152. ultralytics/models/yolo/yoloe/val.py +15 -20
  153. ultralytics/nn/__init__.py +7 -7
  154. ultralytics/nn/autobackend.py +145 -77
  155. ultralytics/nn/modules/__init__.py +60 -60
  156. ultralytics/nn/modules/activation.py +4 -6
  157. ultralytics/nn/modules/block.py +132 -216
  158. ultralytics/nn/modules/conv.py +52 -97
  159. ultralytics/nn/modules/head.py +50 -103
  160. ultralytics/nn/modules/transformer.py +76 -88
  161. ultralytics/nn/modules/utils.py +16 -21
  162. ultralytics/nn/tasks.py +94 -154
  163. ultralytics/nn/text_model.py +40 -67
  164. ultralytics/solutions/__init__.py +12 -12
  165. ultralytics/solutions/ai_gym.py +11 -17
  166. ultralytics/solutions/analytics.py +15 -16
  167. ultralytics/solutions/config.py +5 -6
  168. ultralytics/solutions/distance_calculation.py +10 -13
  169. ultralytics/solutions/heatmap.py +7 -13
  170. ultralytics/solutions/instance_segmentation.py +5 -8
  171. ultralytics/solutions/object_blurrer.py +7 -10
  172. ultralytics/solutions/object_counter.py +12 -19
  173. ultralytics/solutions/object_cropper.py +8 -14
  174. ultralytics/solutions/parking_management.py +33 -31
  175. ultralytics/solutions/queue_management.py +10 -12
  176. ultralytics/solutions/region_counter.py +9 -12
  177. ultralytics/solutions/security_alarm.py +15 -20
  178. ultralytics/solutions/similarity_search.py +10 -15
  179. ultralytics/solutions/solutions.py +75 -74
  180. ultralytics/solutions/speed_estimation.py +7 -10
  181. ultralytics/solutions/streamlit_inference.py +2 -4
  182. ultralytics/solutions/templates/similarity-search.html +7 -18
  183. ultralytics/solutions/trackzone.py +7 -10
  184. ultralytics/solutions/vision_eye.py +5 -8
  185. ultralytics/trackers/__init__.py +1 -1
  186. ultralytics/trackers/basetrack.py +3 -5
  187. ultralytics/trackers/bot_sort.py +10 -27
  188. ultralytics/trackers/byte_tracker.py +14 -30
  189. ultralytics/trackers/track.py +3 -6
  190. ultralytics/trackers/utils/gmc.py +11 -22
  191. ultralytics/trackers/utils/kalman_filter.py +37 -48
  192. ultralytics/trackers/utils/matching.py +12 -15
  193. ultralytics/utils/__init__.py +116 -116
  194. ultralytics/utils/autobatch.py +2 -4
  195. ultralytics/utils/autodevice.py +17 -18
  196. ultralytics/utils/benchmarks.py +32 -46
  197. ultralytics/utils/callbacks/base.py +8 -10
  198. ultralytics/utils/callbacks/clearml.py +5 -13
  199. ultralytics/utils/callbacks/comet.py +32 -46
  200. ultralytics/utils/callbacks/dvc.py +13 -18
  201. ultralytics/utils/callbacks/mlflow.py +4 -5
  202. ultralytics/utils/callbacks/neptune.py +7 -15
  203. ultralytics/utils/callbacks/platform.py +314 -38
  204. ultralytics/utils/callbacks/raytune.py +3 -4
  205. ultralytics/utils/callbacks/tensorboard.py +23 -31
  206. ultralytics/utils/callbacks/wb.py +10 -13
  207. ultralytics/utils/checks.py +99 -76
  208. ultralytics/utils/cpu.py +3 -8
  209. ultralytics/utils/dist.py +8 -12
  210. ultralytics/utils/downloads.py +20 -30
  211. ultralytics/utils/errors.py +6 -14
  212. ultralytics/utils/events.py +2 -4
  213. ultralytics/utils/export/__init__.py +4 -236
  214. ultralytics/utils/export/engine.py +237 -0
  215. ultralytics/utils/export/imx.py +91 -55
  216. ultralytics/utils/export/tensorflow.py +231 -0
  217. ultralytics/utils/files.py +24 -28
  218. ultralytics/utils/git.py +9 -11
  219. ultralytics/utils/instance.py +30 -51
  220. ultralytics/utils/logger.py +212 -114
  221. ultralytics/utils/loss.py +14 -22
  222. ultralytics/utils/metrics.py +126 -155
  223. ultralytics/utils/nms.py +13 -16
  224. ultralytics/utils/ops.py +107 -165
  225. ultralytics/utils/patches.py +33 -21
  226. ultralytics/utils/plotting.py +72 -80
  227. ultralytics/utils/tal.py +25 -39
  228. ultralytics/utils/torch_utils.py +52 -78
  229. ultralytics/utils/tqdm.py +20 -20
  230. ultralytics/utils/triton.py +13 -19
  231. ultralytics/utils/tuner.py +17 -5
  232. dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
  233. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/WHEEL +0 -0
  234. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/entry_points.txt +0 -0
  235. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/licenses/LICENSE +0 -0
  236. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/top_level.txt +0 -0
@@ -43,8 +43,7 @@ GITHUB_ASSETS_STEMS = frozenset(k.rpartition(".")[0] for k in GITHUB_ASSETS_NAME
43
43
 
44
44
 
45
45
  def is_url(url: str | Path, check: bool = False) -> bool:
46
- """
47
- Validate if the given string is a URL and optionally check if the URL exists online.
46
+ """Validate if the given string is a URL and optionally check if the URL exists online.
48
47
 
49
48
  Args:
50
49
  url (str): The string to be validated as a URL.
@@ -71,8 +70,7 @@ def is_url(url: str | Path, check: bool = False) -> bool:
71
70
 
72
71
 
73
72
  def delete_dsstore(path: str | Path, files_to_delete: tuple[str, ...] = (".DS_Store", "__MACOSX")) -> None:
74
- """
75
- Delete all specified system files in a directory.
73
+ """Delete all specified system files in a directory.
76
74
 
77
75
  Args:
78
76
  path (str | Path): The directory path where the files should be deleted.
@@ -83,7 +81,7 @@ def delete_dsstore(path: str | Path, files_to_delete: tuple[str, ...] = (".DS_St
83
81
  >>> delete_dsstore("path/to/dir")
84
82
 
85
83
  Notes:
86
- ".DS_store" files are created by the Apple operating system and contain metadata about folders and files. They
84
+ ".DS_Store" files are created by the Apple operating system and contain metadata about folders and files. They
87
85
  are hidden system files and can cause issues when transferring files between different operating systems.
88
86
  """
89
87
  for file in files_to_delete:
@@ -99,8 +97,7 @@ def zip_directory(
99
97
  exclude: tuple[str, ...] = (".DS_Store", "__MACOSX"),
100
98
  progress: bool = True,
101
99
  ) -> Path:
102
- """
103
- Zip the contents of a directory, excluding specified files.
100
+ """Zip the contents of a directory, excluding specified files.
104
101
 
105
102
  The resulting zip file is named after the directory and placed alongside it.
106
103
 
@@ -142,12 +139,11 @@ def unzip_file(
142
139
  exist_ok: bool = False,
143
140
  progress: bool = True,
144
141
  ) -> Path:
145
- """
146
- Unzip a *.zip file to the specified path, excluding specified files.
142
+ """Unzip a *.zip file to the specified path, excluding specified files.
147
143
 
148
- If the zipfile does not contain a single top-level directory, the function will create a new
149
- directory with the same name as the zipfile (without the extension) to extract its contents.
150
- If a path is not provided, the function will use the parent directory of the zipfile as the default path.
144
+ If the zipfile does not contain a single top-level directory, the function will create a new directory with the same
145
+ name as the zipfile (without the extension) to extract its contents. If a path is not provided, the function will
146
+ use the parent directory of the zipfile as the default path.
151
147
 
152
148
  Args:
153
149
  file (str | Path): The path to the zipfile to be extracted.
@@ -183,7 +179,7 @@ def unzip_file(
183
179
  if unzip_as_dir:
184
180
  # Zip has 1 top-level directory
185
181
  extract_path = path # i.e. ../datasets
186
- path = Path(path) / list(top_level_dirs)[0] # i.e. extract coco8/ dir to ../datasets/
182
+ path = Path(path) / next(iter(top_level_dirs)) # i.e. extract coco8/ dir to ../datasets/
187
183
  else:
188
184
  # Zip has multiple files at top level
189
185
  path = extract_path = Path(path) / Path(file).stem # i.e. extract multiple files to ../datasets/coco8/
@@ -210,8 +206,7 @@ def check_disk_space(
210
206
  sf: float = 1.5,
211
207
  hard: bool = True,
212
208
  ) -> bool:
213
- """
214
- Check if there is sufficient disk space to download and store a file.
209
+ """Check if there is sufficient disk space to download and store a file.
215
210
 
216
211
  Args:
217
212
  file_bytes (int): The file size in bytes.
@@ -222,7 +217,7 @@ def check_disk_space(
222
217
  Returns:
223
218
  (bool): True if there is sufficient disk space, False otherwise.
224
219
  """
225
- total, used, free = shutil.disk_usage(path) # bytes
220
+ _total, _used, free = shutil.disk_usage(path) # bytes
226
221
  if file_bytes * sf < free:
227
222
  return True # sufficient space
228
223
 
@@ -238,8 +233,7 @@ def check_disk_space(
238
233
 
239
234
 
240
235
  def get_google_drive_file_info(link: str) -> tuple[str, str | None]:
241
- """
242
- Retrieve the direct download link and filename for a shareable Google Drive file link.
236
+ """Retrieve the direct download link and filename for a shareable Google Drive file link.
243
237
 
244
238
  Args:
245
239
  link (str): The shareable link of the Google Drive file.
@@ -289,16 +283,15 @@ def safe_download(
289
283
  exist_ok: bool = False,
290
284
  progress: bool = True,
291
285
  ) -> Path | str:
292
- """
293
- Download files from a URL with options for retrying, unzipping, and deleting the downloaded file. Enhanced with
286
+ """Download files from a URL with options for retrying, unzipping, and deleting the downloaded file. Enhanced with
294
287
  robust partial download detection using Content-Length validation.
295
288
 
296
289
  Args:
297
290
  url (str): The URL of the file to be downloaded.
298
- file (str, optional): The filename of the downloaded file.
299
- If not provided, the file will be saved with the same name as the URL.
300
- dir (str | Path, optional): The directory to save the downloaded file.
301
- If not provided, the file will be saved in the current working directory.
291
+ file (str, optional): The filename of the downloaded file. If not provided, the file will be saved with the same
292
+ name as the URL.
293
+ dir (str | Path, optional): The directory to save the downloaded file. If not provided, the file will be saved
294
+ in the current working directory.
302
295
  unzip (bool, optional): Whether to unzip the downloaded file.
303
296
  delete (bool, optional): Whether to delete the downloaded file after unzipping.
304
297
  curl (bool, optional): Whether to use curl command line tool for downloading.
@@ -397,8 +390,7 @@ def get_github_assets(
397
390
  version: str = "latest",
398
391
  retry: bool = False,
399
392
  ) -> tuple[str, list[str]]:
400
- """
401
- Retrieve the specified version's tag and assets from a GitHub repository.
393
+ """Retrieve the specified version's tag and assets from a GitHub repository.
402
394
 
403
395
  If the version is not specified, the function fetches the latest release assets.
404
396
 
@@ -435,8 +427,7 @@ def attempt_download_asset(
435
427
  release: str = "v8.3.0",
436
428
  **kwargs,
437
429
  ) -> str:
438
- """
439
- Attempt to download a file from GitHub release assets if it is not found locally.
430
+ """Attempt to download a file from GitHub release assets if it is not found locally.
440
431
 
441
432
  Args:
442
433
  file (str | Path): The filename or file path to be downloaded.
@@ -495,8 +486,7 @@ def download(
495
486
  retry: int = 3,
496
487
  exist_ok: bool = False,
497
488
  ) -> None:
498
- """
499
- Download files from specified URLs to a given directory.
489
+ """Download files from specified URLs to a given directory.
500
490
 
501
491
  Supports concurrent downloads if multiple threads are specified.
502
492
 
@@ -4,11 +4,10 @@ from ultralytics.utils import emojis
4
4
 
5
5
 
6
6
  class HUBModelError(Exception):
7
- """
8
- Exception raised when a model cannot be found or retrieved from Ultralytics HUB.
7
+ """Exception raised when a model cannot be found or retrieved from Ultralytics HUB.
9
8
 
10
- This custom exception is used specifically for handling errors related to model fetching in Ultralytics YOLO.
11
- The error message is processed to include emojis for better user experience.
9
+ This custom exception is used specifically for handling errors related to model fetching in Ultralytics YOLO. The
10
+ error message is processed to include emojis for better user experience.
12
11
 
13
12
  Attributes:
14
13
  message (str): The error message displayed when the exception is raised.
@@ -25,19 +24,12 @@ class HUBModelError(Exception):
25
24
  """
26
25
 
27
26
  def __init__(self, message: str = "Model not found. Please check model URL and try again."):
28
- """
29
- Initialize a HUBModelError exception.
27
+ """Initialize a HUBModelError exception.
30
28
 
31
- This exception is raised when a requested model is not found or cannot be retrieved from Ultralytics HUB.
32
- The message is processed to include emojis for better user experience.
29
+ This exception is raised when a requested model is not found or cannot be retrieved from Ultralytics HUB. The
30
+ message is processed to include emojis for better user experience.
33
31
 
34
32
  Args:
35
33
  message (str, optional): The error message to display when the exception is raised.
36
-
37
- Examples:
38
- >>> try:
39
- ... raise HUBModelError("Custom model error message")
40
- ... except HUBModelError as e:
41
- ... print(e)
42
34
  """
43
35
  super().__init__(emojis(message))
@@ -24,8 +24,7 @@ def _post(url: str, data: dict, timeout: float = 5.0) -> None:
24
24
 
25
25
 
26
26
  class Events:
27
- """
28
- Collect and send anonymous usage analytics with rate-limiting.
27
+ """Collect and send anonymous usage analytics with rate-limiting.
29
28
 
30
29
  Event collection and transmission are enabled when sync is enabled in settings, the current process is rank -1 or 0,
31
30
  tests are not running, the environment is online, and the installation source is either pip or the official
@@ -71,8 +70,7 @@ class Events:
71
70
  )
72
71
 
73
72
  def __call__(self, cfg, device=None) -> None:
74
- """
75
- Queue an event and flush the queue asynchronously when the rate limit elapses.
73
+ """Queue an event and flush the queue asynchronously when the rate limit elapses.
76
74
 
77
75
  Args:
78
76
  cfg (IterableSimpleNamespace): The configuration object containing mode and task information.
@@ -1,239 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- from __future__ import annotations
3
+ from .engine import onnx2engine, torch2onnx
4
+ from .imx import torch2imx
5
+ from .tensorflow import keras2pb, onnx2saved_model, pb2tfjs, tflite2edgetpu
4
6
 
5
- import json
6
- from pathlib import Path
7
-
8
- import torch
9
-
10
- from ultralytics.utils import IS_JETSON, LOGGER
11
-
12
- from .imx import torch2imx # noqa
13
-
14
-
15
- def torch2onnx(
16
- torch_model: torch.nn.Module,
17
- im: torch.Tensor,
18
- onnx_file: str,
19
- opset: int = 14,
20
- input_names: list[str] = ["images"],
21
- output_names: list[str] = ["output0"],
22
- dynamic: bool | dict = False,
23
- ) -> None:
24
- """
25
- Export a PyTorch model to ONNX format.
26
-
27
- Args:
28
- torch_model (torch.nn.Module): The PyTorch model to export.
29
- im (torch.Tensor): Example input tensor for the model.
30
- onnx_file (str): Path to save the exported ONNX file.
31
- opset (int): ONNX opset version to use for export.
32
- input_names (list[str]): List of input tensor names.
33
- output_names (list[str]): List of output tensor names.
34
- dynamic (bool | dict, optional): Whether to enable dynamic axes.
35
-
36
- Notes:
37
- Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
38
- """
39
- torch.onnx.export(
40
- torch_model,
41
- im,
42
- onnx_file,
43
- verbose=False,
44
- opset_version=opset,
45
- do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
46
- input_names=input_names,
47
- output_names=output_names,
48
- dynamic_axes=dynamic or None,
49
- )
50
-
51
-
52
- def onnx2engine(
53
- onnx_file: str,
54
- engine_file: str | None = None,
55
- workspace: int | None = None,
56
- half: bool = False,
57
- int8: bool = False,
58
- dynamic: bool = False,
59
- shape: tuple[int, int, int, int] = (1, 3, 640, 640),
60
- dla: int | None = None,
61
- dataset=None,
62
- metadata: dict | None = None,
63
- verbose: bool = False,
64
- prefix: str = "",
65
- ) -> None:
66
- """
67
- Export a YOLO model to TensorRT engine format.
68
-
69
- Args:
70
- onnx_file (str): Path to the ONNX file to be converted.
71
- engine_file (str, optional): Path to save the generated TensorRT engine file.
72
- workspace (int, optional): Workspace size in GB for TensorRT.
73
- half (bool, optional): Enable FP16 precision.
74
- int8 (bool, optional): Enable INT8 precision.
75
- dynamic (bool, optional): Enable dynamic input shapes.
76
- shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
77
- dla (int, optional): DLA core to use (Jetson devices only).
78
- dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
79
- metadata (dict, optional): Metadata to include in the engine file.
80
- verbose (bool, optional): Enable verbose logging.
81
- prefix (str, optional): Prefix for log messages.
82
-
83
- Raises:
84
- ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
85
- RuntimeError: If the ONNX file cannot be parsed.
86
-
87
- Notes:
88
- TensorRT version compatibility is handled for workspace size and engine building.
89
- INT8 calibration requires a dataset and generates a calibration cache.
90
- Metadata is serialized and written to the engine file if provided.
91
- """
92
- import tensorrt as trt # noqa
93
-
94
- engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
95
-
96
- logger = trt.Logger(trt.Logger.INFO)
97
- if verbose:
98
- logger.min_severity = trt.Logger.Severity.VERBOSE
99
-
100
- # Engine builder
101
- builder = trt.Builder(logger)
102
- config = builder.create_builder_config()
103
- workspace_bytes = int((workspace or 0) * (1 << 30))
104
- is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
105
- if is_trt10 and workspace_bytes > 0:
106
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
107
- elif workspace_bytes > 0: # TensorRT versions 7, 8
108
- config.max_workspace_size = workspace_bytes
109
- flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
110
- network = builder.create_network(flag)
111
- half = builder.platform_has_fast_fp16 and half
112
- int8 = builder.platform_has_fast_int8 and int8
113
-
114
- # Optionally switch to DLA if enabled
115
- if dla is not None:
116
- if not IS_JETSON:
117
- raise ValueError("DLA is only available on NVIDIA Jetson devices")
118
- LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
119
- if not half and not int8:
120
- raise ValueError(
121
- "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
122
- )
123
- config.default_device_type = trt.DeviceType.DLA
124
- config.DLA_core = int(dla)
125
- config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
126
-
127
- # Read ONNX file
128
- parser = trt.OnnxParser(network, logger)
129
- if not parser.parse_from_file(onnx_file):
130
- raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
131
-
132
- # Network inputs
133
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
134
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
135
- for inp in inputs:
136
- LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
137
- for out in outputs:
138
- LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
139
-
140
- if dynamic:
141
- profile = builder.create_optimization_profile()
142
- min_shape = (1, shape[1], 32, 32) # minimum input shape
143
- max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
144
- for inp in inputs:
145
- profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
146
- config.add_optimization_profile(profile)
147
- if int8:
148
- config.set_calibration_profile(profile)
149
-
150
- LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
151
- if int8:
152
- config.set_flag(trt.BuilderFlag.INT8)
153
- config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
154
-
155
- class EngineCalibrator(trt.IInt8Calibrator):
156
- """
157
- Custom INT8 calibrator for TensorRT engine optimization.
158
-
159
- This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration
160
- using a dataset. It handles batch generation, caching, and calibration algorithm selection.
161
-
162
- Attributes:
163
- dataset: Dataset for calibration.
164
- data_iter: Iterator over the calibration dataset.
165
- algo (trt.CalibrationAlgoType): Calibration algorithm type.
166
- batch (int): Batch size for calibration.
167
- cache (Path): Path to save the calibration cache.
168
-
169
- Methods:
170
- get_algorithm: Get the calibration algorithm to use.
171
- get_batch_size: Get the batch size to use for calibration.
172
- get_batch: Get the next batch to use for calibration.
173
- read_calibration_cache: Use existing cache instead of calibrating again.
174
- write_calibration_cache: Write calibration cache to disk.
175
- """
176
-
177
- def __init__(
178
- self,
179
- dataset, # ultralytics.data.build.InfiniteDataLoader
180
- cache: str = "",
181
- ) -> None:
182
- """Initialize the INT8 calibrator with dataset and cache path."""
183
- trt.IInt8Calibrator.__init__(self)
184
- self.dataset = dataset
185
- self.data_iter = iter(dataset)
186
- self.algo = (
187
- trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
188
- if dla is not None
189
- else trt.CalibrationAlgoType.MINMAX_CALIBRATION
190
- )
191
- self.batch = dataset.batch_size
192
- self.cache = Path(cache)
193
-
194
- def get_algorithm(self) -> trt.CalibrationAlgoType:
195
- """Get the calibration algorithm to use."""
196
- return self.algo
197
-
198
- def get_batch_size(self) -> int:
199
- """Get the batch size to use for calibration."""
200
- return self.batch or 1
201
-
202
- def get_batch(self, names) -> list[int] | None:
203
- """Get the next batch to use for calibration, as a list of device memory pointers."""
204
- try:
205
- im0s = next(self.data_iter)["img"] / 255.0
206
- im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
207
- return [int(im0s.data_ptr())]
208
- except StopIteration:
209
- # Return None to signal to TensorRT there is no calibration data remaining
210
- return None
211
-
212
- def read_calibration_cache(self) -> bytes | None:
213
- """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
214
- if self.cache.exists() and self.cache.suffix == ".cache":
215
- return self.cache.read_bytes()
216
-
217
- def write_calibration_cache(self, cache: bytes) -> None:
218
- """Write calibration cache to disk."""
219
- _ = self.cache.write_bytes(cache)
220
-
221
- # Load dataset w/ builder (for batching) and calibrate
222
- config.int8_calibrator = EngineCalibrator(
223
- dataset=dataset,
224
- cache=str(Path(onnx_file).with_suffix(".cache")),
225
- )
226
-
227
- elif half:
228
- config.set_flag(trt.BuilderFlag.FP16)
229
-
230
- # Write file
231
- build = builder.build_serialized_network if is_trt10 else builder.build_engine
232
- with build(network, config) as engine, open(engine_file, "wb") as t:
233
- # Metadata
234
- if metadata is not None:
235
- meta = json.dumps(metadata)
236
- t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
237
- t.write(meta.encode())
238
- # Model
239
- t.write(engine if is_trt10 else engine.serialize())
7
+ __all__ = ["keras2pb", "onnx2engine", "onnx2saved_model", "pb2tfjs", "tflite2edgetpu", "torch2imx", "torch2onnx"]
@@ -0,0 +1,237 @@
1
+ # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ from pathlib import Path
7
+
8
+ import torch
9
+
10
+ from ultralytics.utils import IS_JETSON, LOGGER
11
+ from ultralytics.utils.torch_utils import TORCH_2_4
12
+
13
+
14
+ def torch2onnx(
15
+ torch_model: torch.nn.Module,
16
+ im: torch.Tensor,
17
+ onnx_file: str,
18
+ opset: int = 14,
19
+ input_names: list[str] = ["images"],
20
+ output_names: list[str] = ["output0"],
21
+ dynamic: bool | dict = False,
22
+ ) -> None:
23
+ """Export a PyTorch model to ONNX format.
24
+
25
+ Args:
26
+ torch_model (torch.nn.Module): The PyTorch model to export.
27
+ im (torch.Tensor): Example input tensor for the model.
28
+ onnx_file (str): Path to save the exported ONNX file.
29
+ opset (int): ONNX opset version to use for export.
30
+ input_names (list[str]): List of input tensor names.
31
+ output_names (list[str]): List of output tensor names.
32
+ dynamic (bool | dict, optional): Whether to enable dynamic axes.
33
+
34
+ Notes:
35
+ Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
36
+ """
37
+ kwargs = {"dynamo": False} if TORCH_2_4 else {}
38
+ torch.onnx.export(
39
+ torch_model,
40
+ im,
41
+ onnx_file,
42
+ verbose=False,
43
+ opset_version=opset,
44
+ do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
45
+ input_names=input_names,
46
+ output_names=output_names,
47
+ dynamic_axes=dynamic or None,
48
+ **kwargs,
49
+ )
50
+
51
+
52
+ def onnx2engine(
53
+ onnx_file: str,
54
+ engine_file: str | None = None,
55
+ workspace: int | None = None,
56
+ half: bool = False,
57
+ int8: bool = False,
58
+ dynamic: bool = False,
59
+ shape: tuple[int, int, int, int] = (1, 3, 640, 640),
60
+ dla: int | None = None,
61
+ dataset=None,
62
+ metadata: dict | None = None,
63
+ verbose: bool = False,
64
+ prefix: str = "",
65
+ ) -> None:
66
+ """Export a YOLO model to TensorRT engine format.
67
+
68
+ Args:
69
+ onnx_file (str): Path to the ONNX file to be converted.
70
+ engine_file (str, optional): Path to save the generated TensorRT engine file.
71
+ workspace (int, optional): Workspace size in GB for TensorRT.
72
+ half (bool, optional): Enable FP16 precision.
73
+ int8 (bool, optional): Enable INT8 precision.
74
+ dynamic (bool, optional): Enable dynamic input shapes.
75
+ shape (tuple[int, int, int, int], optional): Input shape (batch, channels, height, width).
76
+ dla (int, optional): DLA core to use (Jetson devices only).
77
+ dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration.
78
+ metadata (dict, optional): Metadata to include in the engine file.
79
+ verbose (bool, optional): Enable verbose logging.
80
+ prefix (str, optional): Prefix for log messages.
81
+
82
+ Raises:
83
+ ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
84
+ RuntimeError: If the ONNX file cannot be parsed.
85
+
86
+ Notes:
87
+ TensorRT version compatibility is handled for workspace size and engine building.
88
+ INT8 calibration requires a dataset and generates a calibration cache.
89
+ Metadata is serialized and written to the engine file if provided.
90
+ """
91
+ import tensorrt as trt
92
+
93
+ engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
94
+
95
+ logger = trt.Logger(trt.Logger.INFO)
96
+ if verbose:
97
+ logger.min_severity = trt.Logger.Severity.VERBOSE
98
+
99
+ # Engine builder
100
+ builder = trt.Builder(logger)
101
+ config = builder.create_builder_config()
102
+ workspace_bytes = int((workspace or 0) * (1 << 30))
103
+ is_trt10 = int(trt.__version__.split(".", 1)[0]) >= 10 # is TensorRT >= 10
104
+ if is_trt10 and workspace_bytes > 0:
105
+ config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace_bytes)
106
+ elif workspace_bytes > 0: # TensorRT versions 7, 8
107
+ config.max_workspace_size = workspace_bytes
108
+ flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
109
+ network = builder.create_network(flag)
110
+ half = builder.platform_has_fast_fp16 and half
111
+ int8 = builder.platform_has_fast_int8 and int8
112
+
113
+ # Optionally switch to DLA if enabled
114
+ if dla is not None:
115
+ if not IS_JETSON:
116
+ raise ValueError("DLA is only available on NVIDIA Jetson devices")
117
+ LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
118
+ if not half and not int8:
119
+ raise ValueError(
120
+ "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
121
+ )
122
+ config.default_device_type = trt.DeviceType.DLA
123
+ config.DLA_core = int(dla)
124
+ config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
125
+
126
+ # Read ONNX file
127
+ parser = trt.OnnxParser(network, logger)
128
+ if not parser.parse_from_file(onnx_file):
129
+ raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
130
+
131
+ # Network inputs
132
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
133
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
134
+ for inp in inputs:
135
+ LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
136
+ for out in outputs:
137
+ LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
138
+
139
+ if dynamic:
140
+ profile = builder.create_optimization_profile()
141
+ min_shape = (1, shape[1], 32, 32) # minimum input shape
142
+ max_shape = (*shape[:2], *(int(max(2, workspace or 2) * d) for d in shape[2:])) # max input shape
143
+ for inp in inputs:
144
+ profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
145
+ config.add_optimization_profile(profile)
146
+ if int8:
147
+ config.set_calibration_profile(profile)
148
+
149
+ LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
150
+ if int8:
151
+ config.set_flag(trt.BuilderFlag.INT8)
152
+ config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
153
+
154
+ class EngineCalibrator(trt.IInt8Calibrator):
155
+ """Custom INT8 calibrator for TensorRT engine optimization.
156
+
157
+ This calibrator provides the necessary interface for TensorRT to perform INT8 quantization calibration using
158
+ a dataset. It handles batch generation, caching, and calibration algorithm selection.
159
+
160
+ Attributes:
161
+ dataset: Dataset for calibration.
162
+ data_iter: Iterator over the calibration dataset.
163
+ algo (trt.CalibrationAlgoType): Calibration algorithm type.
164
+ batch (int): Batch size for calibration.
165
+ cache (Path): Path to save the calibration cache.
166
+
167
+ Methods:
168
+ get_algorithm: Get the calibration algorithm to use.
169
+ get_batch_size: Get the batch size to use for calibration.
170
+ get_batch: Get the next batch to use for calibration.
171
+ read_calibration_cache: Use existing cache instead of calibrating again.
172
+ write_calibration_cache: Write calibration cache to disk.
173
+ """
174
+
175
+ def __init__(
176
+ self,
177
+ dataset, # ultralytics.data.build.InfiniteDataLoader
178
+ cache: str = "",
179
+ ) -> None:
180
+ """Initialize the INT8 calibrator with dataset and cache path."""
181
+ trt.IInt8Calibrator.__init__(self)
182
+ self.dataset = dataset
183
+ self.data_iter = iter(dataset)
184
+ self.algo = (
185
+ trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2 # DLA quantization needs ENTROPY_CALIBRATION_2
186
+ if dla is not None
187
+ else trt.CalibrationAlgoType.MINMAX_CALIBRATION
188
+ )
189
+ self.batch = dataset.batch_size
190
+ self.cache = Path(cache)
191
+
192
+ def get_algorithm(self) -> trt.CalibrationAlgoType:
193
+ """Get the calibration algorithm to use."""
194
+ return self.algo
195
+
196
+ def get_batch_size(self) -> int:
197
+ """Get the batch size to use for calibration."""
198
+ return self.batch or 1
199
+
200
+ def get_batch(self, names) -> list[int] | None:
201
+ """Get the next batch to use for calibration, as a list of device memory pointers."""
202
+ try:
203
+ im0s = next(self.data_iter)["img"] / 255.0
204
+ im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
205
+ return [int(im0s.data_ptr())]
206
+ except StopIteration:
207
+ # Return None to signal to TensorRT there is no calibration data remaining
208
+ return None
209
+
210
+ def read_calibration_cache(self) -> bytes | None:
211
+ """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
212
+ if self.cache.exists() and self.cache.suffix == ".cache":
213
+ return self.cache.read_bytes()
214
+
215
+ def write_calibration_cache(self, cache: bytes) -> None:
216
+ """Write calibration cache to disk."""
217
+ _ = self.cache.write_bytes(cache)
218
+
219
+ # Load dataset w/ builder (for batching) and calibrate
220
+ config.int8_calibrator = EngineCalibrator(
221
+ dataset=dataset,
222
+ cache=str(Path(onnx_file).with_suffix(".cache")),
223
+ )
224
+
225
+ elif half:
226
+ config.set_flag(trt.BuilderFlag.FP16)
227
+
228
+ # Write file
229
+ build = builder.build_serialized_network if is_trt10 else builder.build_engine
230
+ with build(network, config) as engine, open(engine_file, "wb") as t:
231
+ # Metadata
232
+ if metadata is not None:
233
+ meta = json.dumps(metadata)
234
+ t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
235
+ t.write(meta.encode())
236
+ # Model
237
+ t.write(engine if is_trt10 else engine.serialize())