dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.3.248__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (236) hide show
  1. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/METADATA +13 -14
  2. dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD +298 -0
  3. tests/__init__.py +5 -7
  4. tests/conftest.py +8 -15
  5. tests/test_cli.py +1 -1
  6. tests/test_cuda.py +5 -8
  7. tests/test_engine.py +1 -1
  8. tests/test_exports.py +57 -12
  9. tests/test_integrations.py +4 -4
  10. tests/test_python.py +84 -53
  11. tests/test_solutions.py +160 -151
  12. ultralytics/__init__.py +1 -1
  13. ultralytics/cfg/__init__.py +56 -62
  14. ultralytics/cfg/datasets/Argoverse.yaml +7 -6
  15. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  16. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  17. ultralytics/cfg/datasets/ImageNet.yaml +1 -1
  18. ultralytics/cfg/datasets/VOC.yaml +15 -16
  19. ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
  20. ultralytics/cfg/datasets/coco-pose.yaml +21 -0
  21. ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
  22. ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
  23. ultralytics/cfg/datasets/dog-pose.yaml +28 -0
  24. ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
  25. ultralytics/cfg/datasets/dota8.yaml +2 -2
  26. ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
  27. ultralytics/cfg/datasets/kitti.yaml +27 -0
  28. ultralytics/cfg/datasets/lvis.yaml +5 -5
  29. ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
  30. ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
  31. ultralytics/cfg/datasets/xView.yaml +16 -16
  32. ultralytics/cfg/default.yaml +1 -1
  33. ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
  34. ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
  35. ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
  36. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
  37. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
  38. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
  39. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
  40. ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
  41. ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
  42. ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
  43. ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
  44. ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
  45. ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
  46. ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
  47. ultralytics/cfg/models/v6/yolov6.yaml +1 -1
  48. ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
  49. ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
  50. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
  51. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
  52. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
  53. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
  54. ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
  55. ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
  56. ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
  57. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
  58. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
  59. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
  60. ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
  61. ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
  62. ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
  63. ultralytics/data/__init__.py +4 -4
  64. ultralytics/data/annotator.py +3 -4
  65. ultralytics/data/augment.py +285 -475
  66. ultralytics/data/base.py +18 -26
  67. ultralytics/data/build.py +147 -25
  68. ultralytics/data/converter.py +36 -46
  69. ultralytics/data/dataset.py +46 -74
  70. ultralytics/data/loaders.py +42 -49
  71. ultralytics/data/split.py +5 -6
  72. ultralytics/data/split_dota.py +8 -15
  73. ultralytics/data/utils.py +34 -43
  74. ultralytics/engine/exporter.py +319 -237
  75. ultralytics/engine/model.py +148 -188
  76. ultralytics/engine/predictor.py +29 -38
  77. ultralytics/engine/results.py +177 -311
  78. ultralytics/engine/trainer.py +83 -59
  79. ultralytics/engine/tuner.py +23 -34
  80. ultralytics/engine/validator.py +39 -22
  81. ultralytics/hub/__init__.py +16 -19
  82. ultralytics/hub/auth.py +6 -12
  83. ultralytics/hub/google/__init__.py +7 -10
  84. ultralytics/hub/session.py +15 -25
  85. ultralytics/hub/utils.py +5 -8
  86. ultralytics/models/__init__.py +1 -1
  87. ultralytics/models/fastsam/__init__.py +1 -1
  88. ultralytics/models/fastsam/model.py +8 -10
  89. ultralytics/models/fastsam/predict.py +17 -29
  90. ultralytics/models/fastsam/utils.py +1 -2
  91. ultralytics/models/fastsam/val.py +5 -7
  92. ultralytics/models/nas/__init__.py +1 -1
  93. ultralytics/models/nas/model.py +5 -8
  94. ultralytics/models/nas/predict.py +7 -9
  95. ultralytics/models/nas/val.py +1 -2
  96. ultralytics/models/rtdetr/__init__.py +1 -1
  97. ultralytics/models/rtdetr/model.py +5 -8
  98. ultralytics/models/rtdetr/predict.py +15 -19
  99. ultralytics/models/rtdetr/train.py +10 -13
  100. ultralytics/models/rtdetr/val.py +21 -23
  101. ultralytics/models/sam/__init__.py +15 -2
  102. ultralytics/models/sam/amg.py +14 -20
  103. ultralytics/models/sam/build.py +26 -19
  104. ultralytics/models/sam/build_sam3.py +377 -0
  105. ultralytics/models/sam/model.py +29 -32
  106. ultralytics/models/sam/modules/blocks.py +83 -144
  107. ultralytics/models/sam/modules/decoders.py +19 -37
  108. ultralytics/models/sam/modules/encoders.py +44 -101
  109. ultralytics/models/sam/modules/memory_attention.py +16 -30
  110. ultralytics/models/sam/modules/sam.py +200 -73
  111. ultralytics/models/sam/modules/tiny_encoder.py +64 -83
  112. ultralytics/models/sam/modules/transformer.py +18 -28
  113. ultralytics/models/sam/modules/utils.py +174 -50
  114. ultralytics/models/sam/predict.py +2248 -350
  115. ultralytics/models/sam/sam3/__init__.py +3 -0
  116. ultralytics/models/sam/sam3/decoder.py +546 -0
  117. ultralytics/models/sam/sam3/encoder.py +529 -0
  118. ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
  119. ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
  120. ultralytics/models/sam/sam3/model_misc.py +199 -0
  121. ultralytics/models/sam/sam3/necks.py +129 -0
  122. ultralytics/models/sam/sam3/sam3_image.py +339 -0
  123. ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
  124. ultralytics/models/sam/sam3/vitdet.py +547 -0
  125. ultralytics/models/sam/sam3/vl_combiner.py +160 -0
  126. ultralytics/models/utils/loss.py +14 -26
  127. ultralytics/models/utils/ops.py +13 -17
  128. ultralytics/models/yolo/__init__.py +1 -1
  129. ultralytics/models/yolo/classify/predict.py +9 -12
  130. ultralytics/models/yolo/classify/train.py +11 -32
  131. ultralytics/models/yolo/classify/val.py +29 -28
  132. ultralytics/models/yolo/detect/predict.py +7 -10
  133. ultralytics/models/yolo/detect/train.py +11 -20
  134. ultralytics/models/yolo/detect/val.py +70 -58
  135. ultralytics/models/yolo/model.py +36 -53
  136. ultralytics/models/yolo/obb/predict.py +5 -14
  137. ultralytics/models/yolo/obb/train.py +11 -14
  138. ultralytics/models/yolo/obb/val.py +39 -36
  139. ultralytics/models/yolo/pose/__init__.py +1 -1
  140. ultralytics/models/yolo/pose/predict.py +6 -21
  141. ultralytics/models/yolo/pose/train.py +10 -15
  142. ultralytics/models/yolo/pose/val.py +38 -57
  143. ultralytics/models/yolo/segment/predict.py +14 -18
  144. ultralytics/models/yolo/segment/train.py +3 -6
  145. ultralytics/models/yolo/segment/val.py +93 -45
  146. ultralytics/models/yolo/world/train.py +8 -14
  147. ultralytics/models/yolo/world/train_world.py +11 -34
  148. ultralytics/models/yolo/yoloe/__init__.py +7 -7
  149. ultralytics/models/yolo/yoloe/predict.py +16 -23
  150. ultralytics/models/yolo/yoloe/train.py +30 -43
  151. ultralytics/models/yolo/yoloe/train_seg.py +5 -10
  152. ultralytics/models/yolo/yoloe/val.py +15 -20
  153. ultralytics/nn/__init__.py +7 -7
  154. ultralytics/nn/autobackend.py +145 -77
  155. ultralytics/nn/modules/__init__.py +60 -60
  156. ultralytics/nn/modules/activation.py +4 -6
  157. ultralytics/nn/modules/block.py +132 -216
  158. ultralytics/nn/modules/conv.py +52 -97
  159. ultralytics/nn/modules/head.py +50 -103
  160. ultralytics/nn/modules/transformer.py +76 -88
  161. ultralytics/nn/modules/utils.py +16 -21
  162. ultralytics/nn/tasks.py +94 -154
  163. ultralytics/nn/text_model.py +40 -67
  164. ultralytics/solutions/__init__.py +12 -12
  165. ultralytics/solutions/ai_gym.py +11 -17
  166. ultralytics/solutions/analytics.py +15 -16
  167. ultralytics/solutions/config.py +5 -6
  168. ultralytics/solutions/distance_calculation.py +10 -13
  169. ultralytics/solutions/heatmap.py +7 -13
  170. ultralytics/solutions/instance_segmentation.py +5 -8
  171. ultralytics/solutions/object_blurrer.py +7 -10
  172. ultralytics/solutions/object_counter.py +12 -19
  173. ultralytics/solutions/object_cropper.py +8 -14
  174. ultralytics/solutions/parking_management.py +33 -31
  175. ultralytics/solutions/queue_management.py +10 -12
  176. ultralytics/solutions/region_counter.py +9 -12
  177. ultralytics/solutions/security_alarm.py +15 -20
  178. ultralytics/solutions/similarity_search.py +10 -15
  179. ultralytics/solutions/solutions.py +75 -74
  180. ultralytics/solutions/speed_estimation.py +7 -10
  181. ultralytics/solutions/streamlit_inference.py +2 -4
  182. ultralytics/solutions/templates/similarity-search.html +7 -18
  183. ultralytics/solutions/trackzone.py +7 -10
  184. ultralytics/solutions/vision_eye.py +5 -8
  185. ultralytics/trackers/__init__.py +1 -1
  186. ultralytics/trackers/basetrack.py +3 -5
  187. ultralytics/trackers/bot_sort.py +10 -27
  188. ultralytics/trackers/byte_tracker.py +14 -30
  189. ultralytics/trackers/track.py +3 -6
  190. ultralytics/trackers/utils/gmc.py +11 -22
  191. ultralytics/trackers/utils/kalman_filter.py +37 -48
  192. ultralytics/trackers/utils/matching.py +12 -15
  193. ultralytics/utils/__init__.py +116 -116
  194. ultralytics/utils/autobatch.py +2 -4
  195. ultralytics/utils/autodevice.py +17 -18
  196. ultralytics/utils/benchmarks.py +32 -46
  197. ultralytics/utils/callbacks/base.py +8 -10
  198. ultralytics/utils/callbacks/clearml.py +5 -13
  199. ultralytics/utils/callbacks/comet.py +32 -46
  200. ultralytics/utils/callbacks/dvc.py +13 -18
  201. ultralytics/utils/callbacks/mlflow.py +4 -5
  202. ultralytics/utils/callbacks/neptune.py +7 -15
  203. ultralytics/utils/callbacks/platform.py +314 -38
  204. ultralytics/utils/callbacks/raytune.py +3 -4
  205. ultralytics/utils/callbacks/tensorboard.py +23 -31
  206. ultralytics/utils/callbacks/wb.py +10 -13
  207. ultralytics/utils/checks.py +99 -76
  208. ultralytics/utils/cpu.py +3 -8
  209. ultralytics/utils/dist.py +8 -12
  210. ultralytics/utils/downloads.py +20 -30
  211. ultralytics/utils/errors.py +6 -14
  212. ultralytics/utils/events.py +2 -4
  213. ultralytics/utils/export/__init__.py +4 -236
  214. ultralytics/utils/export/engine.py +237 -0
  215. ultralytics/utils/export/imx.py +91 -55
  216. ultralytics/utils/export/tensorflow.py +231 -0
  217. ultralytics/utils/files.py +24 -28
  218. ultralytics/utils/git.py +9 -11
  219. ultralytics/utils/instance.py +30 -51
  220. ultralytics/utils/logger.py +212 -114
  221. ultralytics/utils/loss.py +14 -22
  222. ultralytics/utils/metrics.py +126 -155
  223. ultralytics/utils/nms.py +13 -16
  224. ultralytics/utils/ops.py +107 -165
  225. ultralytics/utils/patches.py +33 -21
  226. ultralytics/utils/plotting.py +72 -80
  227. ultralytics/utils/tal.py +25 -39
  228. ultralytics/utils/torch_utils.py +52 -78
  229. ultralytics/utils/tqdm.py +20 -20
  230. ultralytics/utils/triton.py +13 -19
  231. ultralytics/utils/tuner.py +17 -5
  232. dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
  233. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/WHEEL +0 -0
  234. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/entry_points.txt +0 -0
  235. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/licenses/LICENSE +0 -0
  236. {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/top_level.txt +0 -0
@@ -35,7 +35,7 @@ names:
35
35
  17: armband
36
36
  18: armchair
37
37
  19: armoire
38
- 20: armor/armour
38
+ 20: armor
39
39
  21: artichoke
40
40
  22: trash can/garbage can/wastebin/dustbin/trash barrel/trash bin
41
41
  23: ashtray
@@ -245,7 +245,7 @@ names:
245
245
  227: CD player
246
246
  228: celery
247
247
  229: cellular telephone/cellular phone/cellphone/mobile phone/smart phone
248
- 230: chain mail/ring mail/chain armor/chain armour/ring armor/ring armour
248
+ 230: chain mail/ring mail/chain armor/ring armor
249
249
  231: chair
250
250
  232: chaise longue/chaise/daybed
251
251
  233: chalice
@@ -305,7 +305,7 @@ names:
305
305
  287: coin
306
306
  288: colander/cullender
307
307
  289: coleslaw/slaw
308
- 290: coloring material/colouring material
308
+ 290: coloring material
309
309
  291: combination lock
310
310
  292: pacifier/teething ring
311
311
  293: comic book
@@ -401,7 +401,7 @@ names:
401
401
  383: domestic ass/donkey
402
402
  384: doorknob/doorhandle
403
403
  385: doormat/welcome mat
404
- 386: doughnut/donut
404
+ 386: donut
405
405
  387: dove
406
406
  388: dragonfly
407
407
  389: drawer
@@ -1072,7 +1072,7 @@ names:
1072
1072
  1054: tag
1073
1073
  1055: taillight/rear light
1074
1074
  1056: tambourine
1075
- 1057: army tank/armored combat vehicle/armoured combat vehicle
1075
+ 1057: army tank/armored combat vehicle
1076
1076
  1058: tank/tank storage vessel/storage tank
1077
1077
  1059: tank top/tank top clothing
1078
1078
  1060: tape/tape sticky cloth or paper
@@ -182,7 +182,7 @@ names:
182
182
  163: Dolphin
183
183
  164: Door
184
184
  165: Door handle
185
- 166: Doughnut
185
+ 166: Donut
186
186
  167: Dragonfly
187
187
  168: Drawer
188
188
  169: Dress
@@ -21,5 +21,21 @@ flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
21
21
  names:
22
22
  0: tiger
23
23
 
24
+ # Keypoint names per class
25
+ kpt_names:
26
+ 0:
27
+ - nose
28
+ - head
29
+ - withers
30
+ - tail_base
31
+ - right_hind_hock
32
+ - right_hind_paw
33
+ - left_hind_paw
34
+ - left_hind_hock
35
+ - right_front_wrist
36
+ - right_front_paw
37
+ - left_front_wrist
38
+ - left_front_paw
39
+
24
40
  # Download script/URL (optional)
25
41
  download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
@@ -1,7 +1,7 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
4
- # -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
3
+ # DIUx xView 2018 Challenge dataset https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
4
+ # -------- Download and extract data manually to `datasets/xView` before running the train command. --------
5
5
  # Documentation: https://docs.ultralytics.com/datasets/detect/xview/
6
6
  # Example usage: yolo train data=xView.yaml
7
7
  # parent
@@ -12,7 +12,7 @@
12
12
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
13
  path: xView # dataset root dir
14
14
  train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
15
- val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
15
+ val: images/autosplit_val.txt # val images (relative to 'path') 10% of 847 train images
16
16
 
17
17
  # Classes
18
18
  names:
@@ -80,8 +80,8 @@ names:
80
80
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
81
81
  download: |
82
82
  import json
83
- import os
84
83
  from pathlib import Path
84
+ import shutil
85
85
 
86
86
  import numpy as np
87
87
  from PIL import Image
@@ -92,15 +92,15 @@ download: |
92
92
 
93
93
 
94
94
  def convert_labels(fname=Path("xView/xView_train.geojson")):
95
- """Converts xView geoJSON labels to YOLO format, mapping classes to indices 0-59 and saving as text files."""
95
+ """Convert xView GeoJSON labels to YOLO format (classes 0-59) and save them as text files."""
96
96
  path = fname.parent
97
97
  with open(fname, encoding="utf-8") as f:
98
98
  print(f"Loading {fname}...")
99
99
  data = json.load(f)
100
100
 
101
101
  # Make dirs
102
- labels = Path(path / "labels" / "train")
103
- os.system(f"rm -rf {labels}")
102
+ labels = path / "labels" / "train"
103
+ shutil.rmtree(labels, ignore_errors=True)
104
104
  labels.mkdir(parents=True, exist_ok=True)
105
105
 
106
106
  # xView classes 11-94 to 0-59
@@ -113,24 +113,24 @@ download: |
113
113
  for feature in TQDM(data["features"], desc=f"Converting {fname}"):
114
114
  p = feature["properties"]
115
115
  if p["bounds_imcoords"]:
116
- id = p["image_id"]
117
- file = path / "train_images" / id
118
- if file.exists(): # 1395.tif missing
116
+ image_id = p["image_id"]
117
+ image_file = path / "train_images" / image_id
118
+ if image_file.exists(): # 1395.tif missing
119
119
  try:
120
120
  box = np.array([int(num) for num in p["bounds_imcoords"].split(",")])
121
121
  assert box.shape[0] == 4, f"incorrect box shape {box.shape[0]}"
122
122
  cls = p["type_id"]
123
- cls = xview_class2index[int(cls)] # xView class to 0-60
123
+ cls = xview_class2index[int(cls)] # xView class to 0-59
124
124
  assert 59 >= cls >= 0, f"incorrect class index {cls}"
125
125
 
126
126
  # Write YOLO label
127
- if id not in shapes:
128
- shapes[id] = Image.open(file).size
129
- box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
130
- with open((labels / id).with_suffix(".txt"), "a", encoding="utf-8") as f:
127
+ if image_id not in shapes:
128
+ shapes[image_id] = Image.open(image_file).size
129
+ box = xyxy2xywhn(box[None].astype(float), w=shapes[image_id][0], h=shapes[image_id][1], clip=True)
130
+ with open((labels / image_id).with_suffix(".txt"), "a", encoding="utf-8") as f:
131
131
  f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
132
132
  except Exception as e:
133
- print(f"WARNING: skipping one label for {file}: {e}")
133
+ print(f"WARNING: skipping one label for {image_file}: {e}")
134
134
 
135
135
 
136
136
  # Download manually from https://challenge.xviewdataset.org
@@ -80,7 +80,7 @@ show_boxes: True # (bool) draw bounding boxes on images
80
80
  line_width: # (int, optional) line width of boxes; auto-scales with image size if not set
81
81
 
82
82
  # Export settings ------------------------------------------------------------------------------------------------------
83
- format: torchscript # (str) target format, e.g. torchscript|onnx|openvino|engine|coreml|saved_model|pb|tflite|edgetpu|tfjs|paddle|mnn|ncnn|imx|rknn
83
+ format: torchscript # (str) target format, e.g. torchscript|onnx|openvino|engine|coreml|saved_model|pb|tflite|edgetpu|tfjs|paddle|mnn|ncnn|imx|rknn|executorch
84
84
  keras: False # (bool) TF SavedModel only (format=saved_model); enable Keras layers during export
85
85
  optimize: False # (bool) TorchScript only; apply mobile optimizations to the scripted model
86
86
  int8: False # (bool) INT8/PTQ where supported (openvino, tflite, tfjs, engine, imx); needs calibration data/fraction
@@ -7,7 +7,7 @@
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
9
  kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
10
- scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11-pose.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.50, 0.25, 1024] # summary: 196 layers, 2908507 parameters, 2908491 gradients, 7.7 GFLOPs
13
13
  s: [0.50, 0.50, 1024] # summary: 196 layers, 9948811 parameters, 9948795 gradients, 23.5 GFLOPs
@@ -1,10 +1,10 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # YOLO11-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment
3
+ # Ultralytics YOLOE-11-seg instance segmentation model. For usage examples, see https://docs.ultralytics.com/tasks/segment
4
4
 
5
5
  # Parameters
6
6
  nc: 80 # number of classes
7
- scales: # model compound scaling constants, i.e. 'model=yolo11n-seg.yaml' will call yolo11-seg.yaml with scale 'n'
7
+ scales: # model compound scaling constants, i.e. 'model=yoloe-11n-seg.yaml' will call yoloe-11-seg.yaml with scale 'n'
8
8
  # [depth, width, max_channels]
9
9
  n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
10
10
  s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
@@ -1,10 +1,10 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
3
+ # Ultralytics YOLOE-11 object detection model with P3/8 - P5/32 outputs. For usage examples, see https://docs.ultralytics.com/tasks/detect
4
4
 
5
5
  # Parameters
6
6
  nc: 80 # number of classes
7
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
7
+ scales: # model compound scaling constants, i.e. 'model=yoloe-11n.yaml' will call yoloe-11.yaml with scale 'n'
8
8
  # [depth, width, max_channels]
9
9
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
10
10
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=rtdetr-l.yaml' will call rtdetr-l.yaml with scale 'l'
10
10
  # [depth, width, max_channels]
11
11
  l: [1.00, 1.00, 1024]
12
12
 
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=rtdetr-resnet101.yaml' will call rtdetr-resnet101.yaml with scale 'l'
10
10
  # [depth, width, max_channels]
11
11
  l: [1.00, 1.00, 1024]
12
12
 
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=rtdetr-resnet50.yaml' will call rtdetr-resnet50.yaml with scale 'l'
10
10
  # [depth, width, max_channels]
11
11
  l: [1.00, 1.00, 1024]
12
12
 
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=rtdetr-x.yaml' will call rtdetr-x.yaml with scale 'x'
10
10
  # [depth, width, max_channels]
11
11
  x: [1.00, 1.00, 2048]
12
12
 
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
10
10
  # [depth, width, max_channels]
11
11
  b: [0.67, 1.00, 512]
12
12
 
@@ -24,7 +24,7 @@ backbone:
24
24
  - [-1, 1, SPPF, [1024, 5]] # 9
25
25
  - [-1, 1, PSA, [1024]] # 10
26
26
 
27
- # YOLOv10.0n head
27
+ # YOLOv10 head
28
28
  head:
29
29
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
30
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
10
10
  # [depth, width, max_channels]
11
11
  l: [1.00, 1.00, 512]
12
12
 
@@ -24,7 +24,7 @@ backbone:
24
24
  - [-1, 1, SPPF, [1024, 5]] # 9
25
25
  - [-1, 1, PSA, [1024]] # 10
26
26
 
27
- # YOLOv10.0n head
27
+ # YOLOv10 head
28
28
  head:
29
29
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
30
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
10
10
  # [depth, width, max_channels]
11
11
  m: [0.67, 0.75, 768]
12
12
 
@@ -24,7 +24,7 @@ backbone:
24
24
  - [-1, 1, SPPF, [1024, 5]] # 9
25
25
  - [-1, 1, PSA, [1024]] # 10
26
26
 
27
- # YOLOv10.0n head
27
+ # YOLOv10 head
28
28
  head:
29
29
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
30
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024]
12
12
 
@@ -24,7 +24,7 @@ backbone:
24
24
  - [-1, 1, SPPF, [1024, 5]] # 9
25
25
  - [-1, 1, PSA, [1024]] # 10
26
26
 
27
- # YOLOv10.0n head
27
+ # YOLOv10 head
28
28
  head:
29
29
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
30
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
10
10
  # [depth, width, max_channels]
11
11
  s: [0.33, 0.50, 1024]
12
12
 
@@ -24,7 +24,7 @@ backbone:
24
24
  - [-1, 1, SPPF, [1024, 5]] # 9
25
25
  - [-1, 1, PSA, [1024]] # 10
26
26
 
27
- # YOLOv10.0n head
27
+ # YOLOv10 head
28
28
  head:
29
29
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
30
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
10
10
  # [depth, width, max_channels]
11
11
  x: [1.00, 1.25, 512]
12
12
 
@@ -24,7 +24,7 @@ backbone:
24
24
  - [-1, 1, SPPF, [1024, 5]] # 9
25
25
  - [-1, 1, PSA, [1024]] # 10
26
26
 
27
- # YOLOv10.0n head
27
+ # YOLOv10 head
28
28
  head:
29
29
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
30
30
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Ultralytics YOLOv3-tiiny object detection model with P4/16 - P5/32 outputs
3
+ # Ultralytics YOLOv3-tiny object detection model with P4/16 - P5/32 outputs
4
4
  # Model docs: https://docs.ultralytics.com/models/yolov3
5
5
  # Task docs: https://docs.ultralytics.com/tasks/detect
6
6
 
@@ -7,7 +7,7 @@
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
9
  activation: torch.nn.ReLU() # (optional) model default activation function
10
- scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov8.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov6.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024]
13
13
  s: [0.33, 0.50, 1024]
@@ -1,14 +1,17 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
+ # Ultralytics YOLOE-v8-seg instance segmentation model with P3/8 - P5/32 outputs
4
+ # Task docs: https://docs.ultralytics.com/tasks/segment
5
+
3
6
  # Parameters
4
7
  nc: 80 # number of classes
5
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
8
+ scales: # model compound scaling constants, i.e. 'model=yoloe-v8n-seg.yaml' will call yoloe-v8-seg.yaml with scale 'n'
6
9
  # [depth, width, max_channels]
7
- n: [0.33, 0.25, 1024] # YOLOv8n-world summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
8
- s: [0.33, 0.50, 1024] # YOLOv8s-world summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
9
- m: [0.67, 0.75, 768] # YOLOv8m-world summary: 201 layers, 29065310 parameters, 29065294 gradients, 131.4 GFLOPs
10
- l: [1.00, 1.00, 512] # YOLOv8l-world summary: 241 layers, 47553970 parameters, 47553954 gradients, 225.6 GFLOPs
11
- x: [1.00, 1.25, 512] # YOLOv8x-world summary: 241 layers, 73690217 parameters, 73690201 gradients, 330.8 GFLOPs
10
+ n: [0.33, 0.25, 1024] # YOLOE-v8n-seg summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
11
+ s: [0.33, 0.50, 1024] # YOLOE-v8s-seg summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
12
+ m: [0.67, 0.75, 768] # YOLOE-v8m-seg summary: 201 layers, 29065310 parameters, 29065294 gradients, 131.4 GFLOPs
13
+ l: [1.00, 1.00, 512] # YOLOE-v8l-seg summary: 241 layers, 47553970 parameters, 47553954 gradients, 225.6 GFLOPs
14
+ x: [1.00, 1.25, 512] # YOLOE-v8x-seg summary: 241 layers, 73690217 parameters, 73690201 gradients, 330.8 GFLOPs
12
15
 
13
16
  # YOLOv8.0n backbone
14
17
  backbone:
@@ -1,14 +1,17 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
+ # Ultralytics YOLOE-v8 object detection model with P3/8 - P5/32 outputs
4
+ # Task docs: https://docs.ultralytics.com/tasks/detect
5
+
3
6
  # Parameters
4
7
  nc: 80 # number of classes
5
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
8
+ scales: # model compound scaling constants, i.e. 'model=yoloe-v8n.yaml' will call yoloe-v8.yaml with scale 'n'
6
9
  # [depth, width, max_channels]
7
- n: [0.33, 0.25, 1024] # YOLOv8n-worldv2 summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPS
8
- s: [0.33, 0.50, 1024] # YOLOv8s-worldv2 summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPS
9
- m: [0.67, 0.75, 768] # YOLOv8m-worldv2 summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPS
10
- l: [1.00, 1.00, 512] # YOLOv8l-worldv2 summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPS
11
- x: [1.00, 1.25, 512] # YOLOv8x-worldv2 summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPS
10
+ n: [0.33, 0.25, 1024] # YOLOE-v8n summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPs
11
+ s: [0.33, 0.50, 1024] # YOLOE-v8s summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPs
12
+ m: [0.67, 0.75, 768] # YOLOE-v8m summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPs
13
+ l: [1.00, 1.00, 512] # YOLOE-v8l summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPs
14
+ x: [1.00, 1.25, 512] # YOLOE-v8x summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPs
12
15
 
13
16
  # YOLOv8.0n backbone
14
17
  backbone:
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 1000 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet101.yaml' will call yolov8-cls-resnet101.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024]
12
12
  s: [0.33, 0.50, 1024]
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 1000 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet50.yaml' will call yolov8-cls-resnet50.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024]
12
12
  s: [0.33, 0.50, 1024]
@@ -1,13 +1,13 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
3
+ # Ultralytics YOLOv8-ghost object detection model with P2/4 - P5/32 outputs
4
4
  # Model docs: https://docs.ultralytics.com/models/yolov8
5
5
  # Task docs: https://docs.ultralytics.com/tasks/detect
6
6
  # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
7
 
8
8
  # Parameters
9
9
  nc: 80 # number of classes
10
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost-p2.yaml' will call yolov8-ghost-p2.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 290 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
13
13
  s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 290 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
@@ -1,13 +1,13 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
3
+ # Ultralytics YOLOv8-ghost object detection model with P3/8 - P6/64 outputs
4
4
  # Model docs: https://docs.ultralytics.com/models/yolov8
5
5
  # Task docs: https://docs.ultralytics.com/tasks/detect
6
6
  # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
7
 
8
8
  # Parameters
9
9
  nc: 80 # number of classes
10
- scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost-p6.yaml' will call yolov8-ghost-p6.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p6 summary: 312 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
13
13
  s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p6 summary: 312 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
@@ -1,13 +1,13 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- # Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
3
+ # Ultralytics YOLOv8-ghost object detection model with P3/8 - P5/32 outputs
4
4
  # Model docs: https://docs.ultralytics.com/models/yolov8
5
5
  # Task docs: https://docs.ultralytics.com/tasks/detect
6
6
  # Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
7
7
 
8
8
  # Parameters
9
9
  nc: 80 # number of classes
10
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost.yaml' will call yolov8-ghost.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024] # YOLOv8n-ghost summary: 237 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
13
13
  s: [0.33, 0.50, 1024] # YOLOv8s-ghost summary: 237 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-obb.yaml' will call yolov8-obb.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024] # YOLOv8n-obb summary: 144 layers, 3228867 parameters, 3228851 gradients, 9.1 GFLOPs
12
12
  s: [0.33, 0.50, 1024] # YOLOv8s-obb summary: 144 layers, 11452739 parameters, 11452723 gradients, 29.8 GFLOPs
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-p2.yaml' will call yolov8-p2.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024]
12
12
  s: [0.33, 0.50, 1024]
@@ -7,7 +7,7 @@
7
7
  # Parameters
8
8
  nc: 1 # number of classes
9
9
  kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
10
- scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
10
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-pose-p6.yaml' will call yolov8-pose-p6.yaml with scale 'n'
11
11
  # [depth, width, max_channels]
12
12
  n: [0.33, 0.25, 1024]
13
13
  s: [0.33, 0.50, 1024]
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-rtdetr.yaml' will call yolov8-rtdetr.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024] # YOLOv8n-rtdetr summary: 235 layers, 9643868 parameters, 9643868 gradients, 17.1 GFLOPs
12
12
  s: [0.33, 0.50, 1024] # YOLOv8s-rtdetr summary: 235 layers, 16518572 parameters, 16518572 gradients, 32.8 GFLOPs
@@ -56,4 +56,4 @@ head:
56
56
  - [[-1, 11], 1, Concat, [1]] # cat head P6
57
57
  - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
58
58
 
59
- - [[20, 23, 26, 29], 1, Segment, [nc, 32, 256]] # Pose(P3, P4, P5, P6)
59
+ - [[20, 23, 26, 29], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5, P6)
@@ -6,7 +6,7 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-world.yaml' will call yolov8-world.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
11
  n: [0.33, 0.25, 1024] # YOLOv8n-world summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
12
12
  s: [0.33, 0.50, 1024] # YOLOv8s-world summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
@@ -6,13 +6,13 @@
6
6
 
7
7
  # Parameters
8
8
  nc: 80 # number of classes
9
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
9
+ scales: # model compound scaling constants, i.e. 'model=yolov8n-worldv2.yaml' will call yolov8-worldv2.yaml with scale 'n'
10
10
  # [depth, width, max_channels]
11
- n: [0.33, 0.25, 1024] # YOLOv8n-worldv2 summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPS
12
- s: [0.33, 0.50, 1024] # YOLOv8s-worldv2 summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPS
13
- m: [0.67, 0.75, 768] # YOLOv8m-worldv2 summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPS
14
- l: [1.00, 1.00, 512] # YOLOv8l-worldv2 summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPS
15
- x: [1.00, 1.25, 512] # YOLOv8x-worldv2 summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPS
11
+ n: [0.33, 0.25, 1024] # YOLOv8n-worldv2 summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPs
12
+ s: [0.33, 0.50, 1024] # YOLOv8s-worldv2 summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPs
13
+ m: [0.67, 0.75, 768] # YOLOv8m-worldv2 summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPs
14
+ l: [1.00, 1.00, 512] # YOLOv8l-worldv2 summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPs
15
+ x: [1.00, 1.25, 512] # YOLOv8x-worldv2 summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPs
16
16
 
17
17
  # YOLOv8.0n backbone
18
18
  backbone:
@@ -38,4 +38,4 @@ head:
38
38
  - [[-1, 9], 1, Concat, [1]] # cat head P5
39
39
  - [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]] # 21 (P5/32-large)
40
40
 
41
- - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4 P5)
41
+ - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
@@ -14,13 +14,13 @@ from .dataset import (
14
14
  __all__ = (
15
15
  "BaseDataset",
16
16
  "ClassificationDataset",
17
+ "GroundingDataset",
17
18
  "SemanticDataset",
19
+ "YOLOConcatDataset",
18
20
  "YOLODataset",
19
21
  "YOLOMultiModalDataset",
20
- "YOLOConcatDataset",
21
- "GroundingDataset",
22
- "build_yolo_dataset",
23
- "build_grounding",
24
22
  "build_dataloader",
23
+ "build_grounding",
24
+ "build_yolo_dataset",
25
25
  "load_inference_source",
26
26
  )
@@ -19,8 +19,7 @@ def auto_annotate(
19
19
  classes: list[int] | None = None,
20
20
  output_dir: str | Path | None = None,
21
21
  ) -> None:
22
- """
23
- Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
22
+ """Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
24
23
 
25
24
  This function processes images in a specified directory, detects objects using a YOLO model, and then generates
26
25
  segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.
@@ -35,8 +34,8 @@ def auto_annotate(
35
34
  imgsz (int): Input image resize dimension.
36
35
  max_det (int): Maximum number of detections per image.
37
36
  classes (list[int], optional): Filter predictions to specified class IDs, returning only relevant detections.
38
- output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default
39
- directory based on the input data path.
37
+ output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default directory
38
+ based on the input data path.
40
39
 
41
40
  Examples:
42
41
  >>> from ultralytics.data.annotator import auto_annotate