dgenerate-ultralytics-headless 8.3.214__py3-none-any.whl → 8.3.248__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/METADATA +13 -14
- dgenerate_ultralytics_headless-8.3.248.dist-info/RECORD +298 -0
- tests/__init__.py +5 -7
- tests/conftest.py +8 -15
- tests/test_cli.py +1 -1
- tests/test_cuda.py +5 -8
- tests/test_engine.py +1 -1
- tests/test_exports.py +57 -12
- tests/test_integrations.py +4 -4
- tests/test_python.py +84 -53
- tests/test_solutions.py +160 -151
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +56 -62
- ultralytics/cfg/datasets/Argoverse.yaml +7 -6
- ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
- ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
- ultralytics/cfg/datasets/ImageNet.yaml +1 -1
- ultralytics/cfg/datasets/VOC.yaml +15 -16
- ultralytics/cfg/datasets/african-wildlife.yaml +1 -1
- ultralytics/cfg/datasets/coco-pose.yaml +21 -0
- ultralytics/cfg/datasets/coco128-seg.yaml +1 -1
- ultralytics/cfg/datasets/coco8-pose.yaml +21 -0
- ultralytics/cfg/datasets/dog-pose.yaml +28 -0
- ultralytics/cfg/datasets/dota8-multispectral.yaml +1 -1
- ultralytics/cfg/datasets/dota8.yaml +2 -2
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -2
- ultralytics/cfg/datasets/kitti.yaml +27 -0
- ultralytics/cfg/datasets/lvis.yaml +5 -5
- ultralytics/cfg/datasets/open-images-v7.yaml +1 -1
- ultralytics/cfg/datasets/tiger-pose.yaml +16 -0
- ultralytics/cfg/datasets/xView.yaml +16 -16
- ultralytics/cfg/default.yaml +1 -1
- ultralytics/cfg/models/11/yolo11-pose.yaml +1 -1
- ultralytics/cfg/models/11/yoloe-11-seg.yaml +2 -2
- ultralytics/cfg/models/11/yoloe-11.yaml +2 -2
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +1 -1
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +1 -1
- ultralytics/cfg/models/v10/yolov10b.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10l.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10m.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10n.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10s.yaml +2 -2
- ultralytics/cfg/models/v10/yolov10x.yaml +2 -2
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +1 -1
- ultralytics/cfg/models/v6/yolov6.yaml +1 -1
- ultralytics/cfg/models/v8/yoloe-v8-seg.yaml +9 -6
- ultralytics/cfg/models/v8/yoloe-v8.yaml +9 -6
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +2 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-p2.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-world.yaml +1 -1
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +6 -6
- ultralytics/cfg/models/v9/yolov9s.yaml +1 -1
- ultralytics/data/__init__.py +4 -4
- ultralytics/data/annotator.py +3 -4
- ultralytics/data/augment.py +285 -475
- ultralytics/data/base.py +18 -26
- ultralytics/data/build.py +147 -25
- ultralytics/data/converter.py +36 -46
- ultralytics/data/dataset.py +46 -74
- ultralytics/data/loaders.py +42 -49
- ultralytics/data/split.py +5 -6
- ultralytics/data/split_dota.py +8 -15
- ultralytics/data/utils.py +34 -43
- ultralytics/engine/exporter.py +319 -237
- ultralytics/engine/model.py +148 -188
- ultralytics/engine/predictor.py +29 -38
- ultralytics/engine/results.py +177 -311
- ultralytics/engine/trainer.py +83 -59
- ultralytics/engine/tuner.py +23 -34
- ultralytics/engine/validator.py +39 -22
- ultralytics/hub/__init__.py +16 -19
- ultralytics/hub/auth.py +6 -12
- ultralytics/hub/google/__init__.py +7 -10
- ultralytics/hub/session.py +15 -25
- ultralytics/hub/utils.py +5 -8
- ultralytics/models/__init__.py +1 -1
- ultralytics/models/fastsam/__init__.py +1 -1
- ultralytics/models/fastsam/model.py +8 -10
- ultralytics/models/fastsam/predict.py +17 -29
- ultralytics/models/fastsam/utils.py +1 -2
- ultralytics/models/fastsam/val.py +5 -7
- ultralytics/models/nas/__init__.py +1 -1
- ultralytics/models/nas/model.py +5 -8
- ultralytics/models/nas/predict.py +7 -9
- ultralytics/models/nas/val.py +1 -2
- ultralytics/models/rtdetr/__init__.py +1 -1
- ultralytics/models/rtdetr/model.py +5 -8
- ultralytics/models/rtdetr/predict.py +15 -19
- ultralytics/models/rtdetr/train.py +10 -13
- ultralytics/models/rtdetr/val.py +21 -23
- ultralytics/models/sam/__init__.py +15 -2
- ultralytics/models/sam/amg.py +14 -20
- ultralytics/models/sam/build.py +26 -19
- ultralytics/models/sam/build_sam3.py +377 -0
- ultralytics/models/sam/model.py +29 -32
- ultralytics/models/sam/modules/blocks.py +83 -144
- ultralytics/models/sam/modules/decoders.py +19 -37
- ultralytics/models/sam/modules/encoders.py +44 -101
- ultralytics/models/sam/modules/memory_attention.py +16 -30
- ultralytics/models/sam/modules/sam.py +200 -73
- ultralytics/models/sam/modules/tiny_encoder.py +64 -83
- ultralytics/models/sam/modules/transformer.py +18 -28
- ultralytics/models/sam/modules/utils.py +174 -50
- ultralytics/models/sam/predict.py +2248 -350
- ultralytics/models/sam/sam3/__init__.py +3 -0
- ultralytics/models/sam/sam3/decoder.py +546 -0
- ultralytics/models/sam/sam3/encoder.py +529 -0
- ultralytics/models/sam/sam3/geometry_encoders.py +415 -0
- ultralytics/models/sam/sam3/maskformer_segmentation.py +286 -0
- ultralytics/models/sam/sam3/model_misc.py +199 -0
- ultralytics/models/sam/sam3/necks.py +129 -0
- ultralytics/models/sam/sam3/sam3_image.py +339 -0
- ultralytics/models/sam/sam3/text_encoder_ve.py +307 -0
- ultralytics/models/sam/sam3/vitdet.py +547 -0
- ultralytics/models/sam/sam3/vl_combiner.py +160 -0
- ultralytics/models/utils/loss.py +14 -26
- ultralytics/models/utils/ops.py +13 -17
- ultralytics/models/yolo/__init__.py +1 -1
- ultralytics/models/yolo/classify/predict.py +9 -12
- ultralytics/models/yolo/classify/train.py +11 -32
- ultralytics/models/yolo/classify/val.py +29 -28
- ultralytics/models/yolo/detect/predict.py +7 -10
- ultralytics/models/yolo/detect/train.py +11 -20
- ultralytics/models/yolo/detect/val.py +70 -58
- ultralytics/models/yolo/model.py +36 -53
- ultralytics/models/yolo/obb/predict.py +5 -14
- ultralytics/models/yolo/obb/train.py +11 -14
- ultralytics/models/yolo/obb/val.py +39 -36
- ultralytics/models/yolo/pose/__init__.py +1 -1
- ultralytics/models/yolo/pose/predict.py +6 -21
- ultralytics/models/yolo/pose/train.py +10 -15
- ultralytics/models/yolo/pose/val.py +38 -57
- ultralytics/models/yolo/segment/predict.py +14 -18
- ultralytics/models/yolo/segment/train.py +3 -6
- ultralytics/models/yolo/segment/val.py +93 -45
- ultralytics/models/yolo/world/train.py +8 -14
- ultralytics/models/yolo/world/train_world.py +11 -34
- ultralytics/models/yolo/yoloe/__init__.py +7 -7
- ultralytics/models/yolo/yoloe/predict.py +16 -23
- ultralytics/models/yolo/yoloe/train.py +30 -43
- ultralytics/models/yolo/yoloe/train_seg.py +5 -10
- ultralytics/models/yolo/yoloe/val.py +15 -20
- ultralytics/nn/__init__.py +7 -7
- ultralytics/nn/autobackend.py +145 -77
- ultralytics/nn/modules/__init__.py +60 -60
- ultralytics/nn/modules/activation.py +4 -6
- ultralytics/nn/modules/block.py +132 -216
- ultralytics/nn/modules/conv.py +52 -97
- ultralytics/nn/modules/head.py +50 -103
- ultralytics/nn/modules/transformer.py +76 -88
- ultralytics/nn/modules/utils.py +16 -21
- ultralytics/nn/tasks.py +94 -154
- ultralytics/nn/text_model.py +40 -67
- ultralytics/solutions/__init__.py +12 -12
- ultralytics/solutions/ai_gym.py +11 -17
- ultralytics/solutions/analytics.py +15 -16
- ultralytics/solutions/config.py +5 -6
- ultralytics/solutions/distance_calculation.py +10 -13
- ultralytics/solutions/heatmap.py +7 -13
- ultralytics/solutions/instance_segmentation.py +5 -8
- ultralytics/solutions/object_blurrer.py +7 -10
- ultralytics/solutions/object_counter.py +12 -19
- ultralytics/solutions/object_cropper.py +8 -14
- ultralytics/solutions/parking_management.py +33 -31
- ultralytics/solutions/queue_management.py +10 -12
- ultralytics/solutions/region_counter.py +9 -12
- ultralytics/solutions/security_alarm.py +15 -20
- ultralytics/solutions/similarity_search.py +10 -15
- ultralytics/solutions/solutions.py +75 -74
- ultralytics/solutions/speed_estimation.py +7 -10
- ultralytics/solutions/streamlit_inference.py +2 -4
- ultralytics/solutions/templates/similarity-search.html +7 -18
- ultralytics/solutions/trackzone.py +7 -10
- ultralytics/solutions/vision_eye.py +5 -8
- ultralytics/trackers/__init__.py +1 -1
- ultralytics/trackers/basetrack.py +3 -5
- ultralytics/trackers/bot_sort.py +10 -27
- ultralytics/trackers/byte_tracker.py +14 -30
- ultralytics/trackers/track.py +3 -6
- ultralytics/trackers/utils/gmc.py +11 -22
- ultralytics/trackers/utils/kalman_filter.py +37 -48
- ultralytics/trackers/utils/matching.py +12 -15
- ultralytics/utils/__init__.py +116 -116
- ultralytics/utils/autobatch.py +2 -4
- ultralytics/utils/autodevice.py +17 -18
- ultralytics/utils/benchmarks.py +32 -46
- ultralytics/utils/callbacks/base.py +8 -10
- ultralytics/utils/callbacks/clearml.py +5 -13
- ultralytics/utils/callbacks/comet.py +32 -46
- ultralytics/utils/callbacks/dvc.py +13 -18
- ultralytics/utils/callbacks/mlflow.py +4 -5
- ultralytics/utils/callbacks/neptune.py +7 -15
- ultralytics/utils/callbacks/platform.py +314 -38
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +23 -31
- ultralytics/utils/callbacks/wb.py +10 -13
- ultralytics/utils/checks.py +99 -76
- ultralytics/utils/cpu.py +3 -8
- ultralytics/utils/dist.py +8 -12
- ultralytics/utils/downloads.py +20 -30
- ultralytics/utils/errors.py +6 -14
- ultralytics/utils/events.py +2 -4
- ultralytics/utils/export/__init__.py +4 -236
- ultralytics/utils/export/engine.py +237 -0
- ultralytics/utils/export/imx.py +91 -55
- ultralytics/utils/export/tensorflow.py +231 -0
- ultralytics/utils/files.py +24 -28
- ultralytics/utils/git.py +9 -11
- ultralytics/utils/instance.py +30 -51
- ultralytics/utils/logger.py +212 -114
- ultralytics/utils/loss.py +14 -22
- ultralytics/utils/metrics.py +126 -155
- ultralytics/utils/nms.py +13 -16
- ultralytics/utils/ops.py +107 -165
- ultralytics/utils/patches.py +33 -21
- ultralytics/utils/plotting.py +72 -80
- ultralytics/utils/tal.py +25 -39
- ultralytics/utils/torch_utils.py +52 -78
- ultralytics/utils/tqdm.py +20 -20
- ultralytics/utils/triton.py +13 -19
- ultralytics/utils/tuner.py +17 -5
- dgenerate_ultralytics_headless-8.3.214.dist-info/RECORD +0 -283
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/WHEEL +0 -0
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/entry_points.txt +0 -0
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/licenses/LICENSE +0 -0
- {dgenerate_ultralytics_headless-8.3.214.dist-info → dgenerate_ultralytics_headless-8.3.248.dist-info}/top_level.txt +0 -0
|
@@ -35,7 +35,7 @@ names:
|
|
|
35
35
|
17: armband
|
|
36
36
|
18: armchair
|
|
37
37
|
19: armoire
|
|
38
|
-
20: armor
|
|
38
|
+
20: armor
|
|
39
39
|
21: artichoke
|
|
40
40
|
22: trash can/garbage can/wastebin/dustbin/trash barrel/trash bin
|
|
41
41
|
23: ashtray
|
|
@@ -245,7 +245,7 @@ names:
|
|
|
245
245
|
227: CD player
|
|
246
246
|
228: celery
|
|
247
247
|
229: cellular telephone/cellular phone/cellphone/mobile phone/smart phone
|
|
248
|
-
230: chain mail/ring mail/chain armor/
|
|
248
|
+
230: chain mail/ring mail/chain armor/ring armor
|
|
249
249
|
231: chair
|
|
250
250
|
232: chaise longue/chaise/daybed
|
|
251
251
|
233: chalice
|
|
@@ -305,7 +305,7 @@ names:
|
|
|
305
305
|
287: coin
|
|
306
306
|
288: colander/cullender
|
|
307
307
|
289: coleslaw/slaw
|
|
308
|
-
290: coloring material
|
|
308
|
+
290: coloring material
|
|
309
309
|
291: combination lock
|
|
310
310
|
292: pacifier/teething ring
|
|
311
311
|
293: comic book
|
|
@@ -401,7 +401,7 @@ names:
|
|
|
401
401
|
383: domestic ass/donkey
|
|
402
402
|
384: doorknob/doorhandle
|
|
403
403
|
385: doormat/welcome mat
|
|
404
|
-
386:
|
|
404
|
+
386: donut
|
|
405
405
|
387: dove
|
|
406
406
|
388: dragonfly
|
|
407
407
|
389: drawer
|
|
@@ -1072,7 +1072,7 @@ names:
|
|
|
1072
1072
|
1054: tag
|
|
1073
1073
|
1055: taillight/rear light
|
|
1074
1074
|
1056: tambourine
|
|
1075
|
-
1057: army tank/armored combat vehicle
|
|
1075
|
+
1057: army tank/armored combat vehicle
|
|
1076
1076
|
1058: tank/tank storage vessel/storage tank
|
|
1077
1077
|
1059: tank top/tank top clothing
|
|
1078
1078
|
1060: tape/tape sticky cloth or paper
|
|
@@ -21,5 +21,21 @@ flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
|
|
|
21
21
|
names:
|
|
22
22
|
0: tiger
|
|
23
23
|
|
|
24
|
+
# Keypoint names per class
|
|
25
|
+
kpt_names:
|
|
26
|
+
0:
|
|
27
|
+
- nose
|
|
28
|
+
- head
|
|
29
|
+
- withers
|
|
30
|
+
- tail_base
|
|
31
|
+
- right_hind_hock
|
|
32
|
+
- right_hind_paw
|
|
33
|
+
- left_hind_paw
|
|
34
|
+
- left_hind_hock
|
|
35
|
+
- right_front_wrist
|
|
36
|
+
- right_front_paw
|
|
37
|
+
- left_front_wrist
|
|
38
|
+
- left_front_paw
|
|
39
|
+
|
|
24
40
|
# Download script/URL (optional)
|
|
25
41
|
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
|
4
|
-
# --------
|
|
3
|
+
# DIUx xView 2018 Challenge dataset https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
|
|
4
|
+
# -------- Download and extract data manually to `datasets/xView` before running the train command. --------
|
|
5
5
|
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
|
|
6
6
|
# Example usage: yolo train data=xView.yaml
|
|
7
7
|
# parent
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
|
|
13
13
|
path: xView # dataset root dir
|
|
14
14
|
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
|
|
15
|
-
val: images/autosplit_val.txt #
|
|
15
|
+
val: images/autosplit_val.txt # val images (relative to 'path') 10% of 847 train images
|
|
16
16
|
|
|
17
17
|
# Classes
|
|
18
18
|
names:
|
|
@@ -80,8 +80,8 @@ names:
|
|
|
80
80
|
# Download script/URL (optional) ---------------------------------------------------------------------------------------
|
|
81
81
|
download: |
|
|
82
82
|
import json
|
|
83
|
-
import os
|
|
84
83
|
from pathlib import Path
|
|
84
|
+
import shutil
|
|
85
85
|
|
|
86
86
|
import numpy as np
|
|
87
87
|
from PIL import Image
|
|
@@ -92,15 +92,15 @@ download: |
|
|
|
92
92
|
|
|
93
93
|
|
|
94
94
|
def convert_labels(fname=Path("xView/xView_train.geojson")):
|
|
95
|
-
"""
|
|
95
|
+
"""Convert xView GeoJSON labels to YOLO format (classes 0-59) and save them as text files."""
|
|
96
96
|
path = fname.parent
|
|
97
97
|
with open(fname, encoding="utf-8") as f:
|
|
98
98
|
print(f"Loading {fname}...")
|
|
99
99
|
data = json.load(f)
|
|
100
100
|
|
|
101
101
|
# Make dirs
|
|
102
|
-
labels =
|
|
103
|
-
|
|
102
|
+
labels = path / "labels" / "train"
|
|
103
|
+
shutil.rmtree(labels, ignore_errors=True)
|
|
104
104
|
labels.mkdir(parents=True, exist_ok=True)
|
|
105
105
|
|
|
106
106
|
# xView classes 11-94 to 0-59
|
|
@@ -113,24 +113,24 @@ download: |
|
|
|
113
113
|
for feature in TQDM(data["features"], desc=f"Converting {fname}"):
|
|
114
114
|
p = feature["properties"]
|
|
115
115
|
if p["bounds_imcoords"]:
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
if
|
|
116
|
+
image_id = p["image_id"]
|
|
117
|
+
image_file = path / "train_images" / image_id
|
|
118
|
+
if image_file.exists(): # 1395.tif missing
|
|
119
119
|
try:
|
|
120
120
|
box = np.array([int(num) for num in p["bounds_imcoords"].split(",")])
|
|
121
121
|
assert box.shape[0] == 4, f"incorrect box shape {box.shape[0]}"
|
|
122
122
|
cls = p["type_id"]
|
|
123
|
-
cls = xview_class2index[int(cls)] # xView class to 0-
|
|
123
|
+
cls = xview_class2index[int(cls)] # xView class to 0-59
|
|
124
124
|
assert 59 >= cls >= 0, f"incorrect class index {cls}"
|
|
125
125
|
|
|
126
126
|
# Write YOLO label
|
|
127
|
-
if
|
|
128
|
-
shapes[
|
|
129
|
-
box = xyxy2xywhn(box[None].astype(
|
|
130
|
-
with open((labels /
|
|
127
|
+
if image_id not in shapes:
|
|
128
|
+
shapes[image_id] = Image.open(image_file).size
|
|
129
|
+
box = xyxy2xywhn(box[None].astype(float), w=shapes[image_id][0], h=shapes[image_id][1], clip=True)
|
|
130
|
+
with open((labels / image_id).with_suffix(".txt"), "a", encoding="utf-8") as f:
|
|
131
131
|
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
|
|
132
132
|
except Exception as e:
|
|
133
|
-
print(f"WARNING: skipping one label for {
|
|
133
|
+
print(f"WARNING: skipping one label for {image_file}: {e}")
|
|
134
134
|
|
|
135
135
|
|
|
136
136
|
# Download manually from https://challenge.xviewdataset.org
|
ultralytics/cfg/default.yaml
CHANGED
|
@@ -80,7 +80,7 @@ show_boxes: True # (bool) draw bounding boxes on images
|
|
|
80
80
|
line_width: # (int, optional) line width of boxes; auto-scales with image size if not set
|
|
81
81
|
|
|
82
82
|
# Export settings ------------------------------------------------------------------------------------------------------
|
|
83
|
-
format: torchscript # (str) target format, e.g. torchscript|onnx|openvino|engine|coreml|saved_model|pb|tflite|edgetpu|tfjs|paddle|mnn|ncnn|imx|rknn
|
|
83
|
+
format: torchscript # (str) target format, e.g. torchscript|onnx|openvino|engine|coreml|saved_model|pb|tflite|edgetpu|tfjs|paddle|mnn|ncnn|imx|rknn|executorch
|
|
84
84
|
keras: False # (bool) TF SavedModel only (format=saved_model); enable Keras layers during export
|
|
85
85
|
optimize: False # (bool) TorchScript only; apply mobile optimizations to the scripted model
|
|
86
86
|
int8: False # (bool) INT8/PTQ where supported (openvino, tflite, tfjs, engine, imx); needs calibration data/fraction
|
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
9
|
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
|
10
|
-
scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11.yaml with scale 'n'
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolo11n-pose.yaml' will call yolo11-pose.yaml with scale 'n'
|
|
11
11
|
# [depth, width, max_channels]
|
|
12
12
|
n: [0.50, 0.25, 1024] # summary: 196 layers, 2908507 parameters, 2908491 gradients, 7.7 GFLOPs
|
|
13
13
|
s: [0.50, 0.50, 1024] # summary: 196 layers, 9948811 parameters, 9948795 gradients, 23.5 GFLOPs
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
#
|
|
3
|
+
# Ultralytics YOLOE-11-seg instance segmentation model. For usage examples, see https://docs.ultralytics.com/tasks/segment
|
|
4
4
|
|
|
5
5
|
# Parameters
|
|
6
6
|
nc: 80 # number of classes
|
|
7
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
7
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-11n-seg.yaml' will call yoloe-11-seg.yaml with scale 'n'
|
|
8
8
|
# [depth, width, max_channels]
|
|
9
9
|
n: [0.50, 0.25, 1024] # summary: 355 layers, 2876848 parameters, 2876832 gradients, 10.5 GFLOPs
|
|
10
10
|
s: [0.50, 0.50, 1024] # summary: 355 layers, 10113248 parameters, 10113232 gradients, 35.8 GFLOPs
|
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
#
|
|
3
|
+
# Ultralytics YOLOE-11 object detection model with P3/8 - P5/32 outputs. For usage examples, see https://docs.ultralytics.com/tasks/detect
|
|
4
4
|
|
|
5
5
|
# Parameters
|
|
6
6
|
nc: 80 # number of classes
|
|
7
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
7
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-11n.yaml' will call yoloe-11.yaml with scale 'n'
|
|
8
8
|
# [depth, width, max_channels]
|
|
9
9
|
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
|
|
10
10
|
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=rtdetr-l.yaml' will call rtdetr-l.yaml with scale 'l'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
l: [1.00, 1.00, 1024]
|
|
12
12
|
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=rtdetr-resnet101.yaml' will call rtdetr-resnet101.yaml with scale 'l'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
l: [1.00, 1.00, 1024]
|
|
12
12
|
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=rtdetr-resnet50.yaml' will call rtdetr-resnet50.yaml with scale 'l'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
l: [1.00, 1.00, 1024]
|
|
12
12
|
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=rtdetr-x.yaml' will call rtdetr-x.yaml with scale 'x'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
x: [1.00, 1.00, 2048]
|
|
12
12
|
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
b: [0.67, 1.00, 512]
|
|
12
12
|
|
|
@@ -24,7 +24,7 @@ backbone:
|
|
|
24
24
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
25
|
- [-1, 1, PSA, [1024]] # 10
|
|
26
26
|
|
|
27
|
-
# YOLOv10
|
|
27
|
+
# YOLOv10 head
|
|
28
28
|
head:
|
|
29
29
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
30
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
l: [1.00, 1.00, 512]
|
|
12
12
|
|
|
@@ -24,7 +24,7 @@ backbone:
|
|
|
24
24
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
25
|
- [-1, 1, PSA, [1024]] # 10
|
|
26
26
|
|
|
27
|
-
# YOLOv10
|
|
27
|
+
# YOLOv10 head
|
|
28
28
|
head:
|
|
29
29
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
30
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
m: [0.67, 0.75, 768]
|
|
12
12
|
|
|
@@ -24,7 +24,7 @@ backbone:
|
|
|
24
24
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
25
|
- [-1, 1, PSA, [1024]] # 10
|
|
26
26
|
|
|
27
|
-
# YOLOv10
|
|
27
|
+
# YOLOv10 head
|
|
28
28
|
head:
|
|
29
29
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
30
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.33, 0.25, 1024]
|
|
12
12
|
|
|
@@ -24,7 +24,7 @@ backbone:
|
|
|
24
24
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
25
|
- [-1, 1, PSA, [1024]] # 10
|
|
26
26
|
|
|
27
|
-
# YOLOv10
|
|
27
|
+
# YOLOv10 head
|
|
28
28
|
head:
|
|
29
29
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
30
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
s: [0.33, 0.50, 1024]
|
|
12
12
|
|
|
@@ -24,7 +24,7 @@ backbone:
|
|
|
24
24
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
25
|
- [-1, 1, PSA, [1024]] # 10
|
|
26
26
|
|
|
27
|
-
# YOLOv10
|
|
27
|
+
# YOLOv10 head
|
|
28
28
|
head:
|
|
29
29
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
30
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' uses the 'n' scale
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
x: [1.00, 1.25, 512]
|
|
12
12
|
|
|
@@ -24,7 +24,7 @@ backbone:
|
|
|
24
24
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
|
25
25
|
- [-1, 1, PSA, [1024]] # 10
|
|
26
26
|
|
|
27
|
-
# YOLOv10
|
|
27
|
+
# YOLOv10 head
|
|
28
28
|
head:
|
|
29
29
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
30
30
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# Ultralytics YOLOv3-
|
|
3
|
+
# Ultralytics YOLOv3-tiny object detection model with P4/16 - P5/32 outputs
|
|
4
4
|
# Model docs: https://docs.ultralytics.com/models/yolov3
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
6
|
|
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
9
|
activation: torch.nn.ReLU() # (optional) model default activation function
|
|
10
|
-
scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolov6n.yaml' will call yolov6.yaml with scale 'n'
|
|
11
11
|
# [depth, width, max_channels]
|
|
12
12
|
n: [0.33, 0.25, 1024]
|
|
13
13
|
s: [0.33, 0.50, 1024]
|
|
@@ -1,14 +1,17 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
+
# Ultralytics YOLOE-v8-seg instance segmentation model with P3/8 - P5/32 outputs
|
|
4
|
+
# Task docs: https://docs.ultralytics.com/tasks/segment
|
|
5
|
+
|
|
3
6
|
# Parameters
|
|
4
7
|
nc: 80 # number of classes
|
|
5
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
8
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-v8n-seg.yaml' will call yoloe-v8-seg.yaml with scale 'n'
|
|
6
9
|
# [depth, width, max_channels]
|
|
7
|
-
n: [0.33, 0.25, 1024] #
|
|
8
|
-
s: [0.33, 0.50, 1024] #
|
|
9
|
-
m: [0.67, 0.75, 768] #
|
|
10
|
-
l: [1.00, 1.00, 512] #
|
|
11
|
-
x: [1.00, 1.25, 512] #
|
|
10
|
+
n: [0.33, 0.25, 1024] # YOLOE-v8n-seg summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
|
|
11
|
+
s: [0.33, 0.50, 1024] # YOLOE-v8s-seg summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
|
|
12
|
+
m: [0.67, 0.75, 768] # YOLOE-v8m-seg summary: 201 layers, 29065310 parameters, 29065294 gradients, 131.4 GFLOPs
|
|
13
|
+
l: [1.00, 1.00, 512] # YOLOE-v8l-seg summary: 241 layers, 47553970 parameters, 47553954 gradients, 225.6 GFLOPs
|
|
14
|
+
x: [1.00, 1.25, 512] # YOLOE-v8x-seg summary: 241 layers, 73690217 parameters, 73690201 gradients, 330.8 GFLOPs
|
|
12
15
|
|
|
13
16
|
# YOLOv8.0n backbone
|
|
14
17
|
backbone:
|
|
@@ -1,14 +1,17 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
+
# Ultralytics YOLOE-v8 object detection model with P3/8 - P5/32 outputs
|
|
4
|
+
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
5
|
+
|
|
3
6
|
# Parameters
|
|
4
7
|
nc: 80 # number of classes
|
|
5
|
-
scales: # model compound scaling constants, i.e. 'model=
|
|
8
|
+
scales: # model compound scaling constants, i.e. 'model=yoloe-v8n.yaml' will call yoloe-v8.yaml with scale 'n'
|
|
6
9
|
# [depth, width, max_channels]
|
|
7
|
-
n: [0.33, 0.25, 1024] #
|
|
8
|
-
s: [0.33, 0.50, 1024] #
|
|
9
|
-
m: [0.67, 0.75, 768] #
|
|
10
|
-
l: [1.00, 1.00, 512] #
|
|
11
|
-
x: [1.00, 1.25, 512] #
|
|
10
|
+
n: [0.33, 0.25, 1024] # YOLOE-v8n summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPs
|
|
11
|
+
s: [0.33, 0.50, 1024] # YOLOE-v8s summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPs
|
|
12
|
+
m: [0.67, 0.75, 768] # YOLOE-v8m summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPs
|
|
13
|
+
l: [1.00, 1.00, 512] # YOLOE-v8l summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPs
|
|
14
|
+
x: [1.00, 1.25, 512] # YOLOE-v8x summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPs
|
|
12
15
|
|
|
13
16
|
# YOLOv8.0n backbone
|
|
14
17
|
backbone:
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 1000 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet101.yaml' will call yolov8-cls-resnet101.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.33, 0.25, 1024]
|
|
12
12
|
s: [0.33, 0.50, 1024]
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 1000 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls-resnet50.yaml' will call yolov8-cls-resnet50.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.33, 0.25, 1024]
|
|
12
12
|
s: [0.33, 0.50, 1024]
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# Ultralytics YOLOv8 object detection model with P2/4 - P5/32 outputs
|
|
3
|
+
# Ultralytics YOLOv8-ghost object detection model with P2/4 - P5/32 outputs
|
|
4
4
|
# Model docs: https://docs.ultralytics.com/models/yolov8
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
6
|
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
|
|
7
7
|
|
|
8
8
|
# Parameters
|
|
9
9
|
nc: 80 # number of classes
|
|
10
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost-p2.yaml' will call yolov8-ghost-p2.yaml with scale 'n'
|
|
11
11
|
# [depth, width, max_channels]
|
|
12
12
|
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p2 summary: 290 layers, 2033944 parameters, 2033928 gradients, 13.8 GFLOPs
|
|
13
13
|
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p2 summary: 290 layers, 5562080 parameters, 5562064 gradients, 25.1 GFLOPs
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# Ultralytics YOLOv8 object detection model with P3/8 - P6/64 outputs
|
|
3
|
+
# Ultralytics YOLOv8-ghost object detection model with P3/8 - P6/64 outputs
|
|
4
4
|
# Model docs: https://docs.ultralytics.com/models/yolov8
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
6
|
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
|
|
7
7
|
|
|
8
8
|
# Parameters
|
|
9
9
|
nc: 80 # number of classes
|
|
10
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost-p6.yaml' will call yolov8-ghost-p6.yaml with scale 'n'
|
|
11
11
|
# [depth, width, max_channels]
|
|
12
12
|
n: [0.33, 0.25, 1024] # YOLOv8n-ghost-p6 summary: 312 layers, 2901100 parameters, 2901084 gradients, 5.8 GFLOPs
|
|
13
13
|
s: [0.33, 0.50, 1024] # YOLOv8s-ghost-p6 summary: 312 layers, 9520008 parameters, 9519992 gradients, 16.4 GFLOPs
|
|
@@ -1,13 +1,13 @@
|
|
|
1
1
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
|
2
2
|
|
|
3
|
-
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
|
|
3
|
+
# Ultralytics YOLOv8-ghost object detection model with P3/8 - P5/32 outputs
|
|
4
4
|
# Model docs: https://docs.ultralytics.com/models/yolov8
|
|
5
5
|
# Task docs: https://docs.ultralytics.com/tasks/detect
|
|
6
6
|
# Employs Ghost convolutions and modules proposed in Huawei's GhostNet in https://arxiv.org/abs/1911.11907v2
|
|
7
7
|
|
|
8
8
|
# Parameters
|
|
9
9
|
nc: 80 # number of classes
|
|
10
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-ghost.yaml' will call yolov8-ghost.yaml with scale 'n'
|
|
11
11
|
# [depth, width, max_channels]
|
|
12
12
|
n: [0.33, 0.25, 1024] # YOLOv8n-ghost summary: 237 layers, 1865316 parameters, 1865300 gradients, 5.8 GFLOPs
|
|
13
13
|
s: [0.33, 0.50, 1024] # YOLOv8s-ghost summary: 237 layers, 5960072 parameters, 5960056 gradients, 16.4 GFLOPs
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-obb.yaml' will call yolov8-obb.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.33, 0.25, 1024] # YOLOv8n-obb summary: 144 layers, 3228867 parameters, 3228851 gradients, 9.1 GFLOPs
|
|
12
12
|
s: [0.33, 0.50, 1024] # YOLOv8s-obb summary: 144 layers, 11452739 parameters, 11452723 gradients, 29.8 GFLOPs
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-p2.yaml' will call yolov8-p2.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.33, 0.25, 1024]
|
|
12
12
|
s: [0.33, 0.50, 1024]
|
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 1 # number of classes
|
|
9
9
|
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
|
10
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n-p6.yaml' will call yolov8-p6.yaml with scale 'n'
|
|
10
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-pose-p6.yaml' will call yolov8-pose-p6.yaml with scale 'n'
|
|
11
11
|
# [depth, width, max_channels]
|
|
12
12
|
n: [0.33, 0.25, 1024]
|
|
13
13
|
s: [0.33, 0.50, 1024]
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-rtdetr.yaml' will call yolov8-rtdetr.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.33, 0.25, 1024] # YOLOv8n-rtdetr summary: 235 layers, 9643868 parameters, 9643868 gradients, 17.1 GFLOPs
|
|
12
12
|
s: [0.33, 0.50, 1024] # YOLOv8s-rtdetr summary: 235 layers, 16518572 parameters, 16518572 gradients, 32.8 GFLOPs
|
|
@@ -6,7 +6,7 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-world.yaml' will call yolov8-world.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
11
|
n: [0.33, 0.25, 1024] # YOLOv8n-world summary: 161 layers, 4204111 parameters, 4204095 gradients, 39.6 GFLOPs
|
|
12
12
|
s: [0.33, 0.50, 1024] # YOLOv8s-world summary: 161 layers, 13383496 parameters, 13383480 gradients, 71.5 GFLOPs
|
|
@@ -6,13 +6,13 @@
|
|
|
6
6
|
|
|
7
7
|
# Parameters
|
|
8
8
|
nc: 80 # number of classes
|
|
9
|
-
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
|
9
|
+
scales: # model compound scaling constants, i.e. 'model=yolov8n-worldv2.yaml' will call yolov8-worldv2.yaml with scale 'n'
|
|
10
10
|
# [depth, width, max_channels]
|
|
11
|
-
n: [0.33, 0.25, 1024] # YOLOv8n-worldv2 summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5
|
|
12
|
-
s: [0.33, 0.50, 1024] # YOLOv8s-worldv2 summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0
|
|
13
|
-
m: [0.67, 0.75, 768] # YOLOv8m-worldv2 summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5
|
|
14
|
-
l: [1.00, 1.00, 512] # YOLOv8l-worldv2 summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5
|
|
15
|
-
x: [1.00, 1.25, 512] # YOLOv8x-worldv2 summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3
|
|
11
|
+
n: [0.33, 0.25, 1024] # YOLOv8n-worldv2 summary: 148 layers, 3695183 parameters, 3695167 gradients, 19.5 GFLOPs
|
|
12
|
+
s: [0.33, 0.50, 1024] # YOLOv8s-worldv2 summary: 148 layers, 12759880 parameters, 12759864 gradients, 51.0 GFLOPs
|
|
13
|
+
m: [0.67, 0.75, 768] # YOLOv8m-worldv2 summary: 188 layers, 28376158 parameters, 28376142 gradients, 110.5 GFLOPs
|
|
14
|
+
l: [1.00, 1.00, 512] # YOLOv8l-worldv2 summary: 228 layers, 46832050 parameters, 46832034 gradients, 204.5 GFLOPs
|
|
15
|
+
x: [1.00, 1.25, 512] # YOLOv8x-worldv2 summary: 228 layers, 72886377 parameters, 72886361 gradients, 309.3 GFLOPs
|
|
16
16
|
|
|
17
17
|
# YOLOv8.0n backbone
|
|
18
18
|
backbone:
|
ultralytics/data/__init__.py
CHANGED
|
@@ -14,13 +14,13 @@ from .dataset import (
|
|
|
14
14
|
__all__ = (
|
|
15
15
|
"BaseDataset",
|
|
16
16
|
"ClassificationDataset",
|
|
17
|
+
"GroundingDataset",
|
|
17
18
|
"SemanticDataset",
|
|
19
|
+
"YOLOConcatDataset",
|
|
18
20
|
"YOLODataset",
|
|
19
21
|
"YOLOMultiModalDataset",
|
|
20
|
-
"YOLOConcatDataset",
|
|
21
|
-
"GroundingDataset",
|
|
22
|
-
"build_yolo_dataset",
|
|
23
|
-
"build_grounding",
|
|
24
22
|
"build_dataloader",
|
|
23
|
+
"build_grounding",
|
|
24
|
+
"build_yolo_dataset",
|
|
25
25
|
"load_inference_source",
|
|
26
26
|
)
|
ultralytics/data/annotator.py
CHANGED
|
@@ -19,8 +19,7 @@ def auto_annotate(
|
|
|
19
19
|
classes: list[int] | None = None,
|
|
20
20
|
output_dir: str | Path | None = None,
|
|
21
21
|
) -> None:
|
|
22
|
-
"""
|
|
23
|
-
Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
|
|
22
|
+
"""Automatically annotate images using a YOLO object detection model and a SAM segmentation model.
|
|
24
23
|
|
|
25
24
|
This function processes images in a specified directory, detects objects using a YOLO model, and then generates
|
|
26
25
|
segmentation masks using a SAM model. The resulting annotations are saved as text files in YOLO format.
|
|
@@ -35,8 +34,8 @@ def auto_annotate(
|
|
|
35
34
|
imgsz (int): Input image resize dimension.
|
|
36
35
|
max_det (int): Maximum number of detections per image.
|
|
37
36
|
classes (list[int], optional): Filter predictions to specified class IDs, returning only relevant detections.
|
|
38
|
-
output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default
|
|
39
|
-
|
|
37
|
+
output_dir (str | Path, optional): Directory to save the annotated results. If None, creates a default directory
|
|
38
|
+
based on the input data path.
|
|
40
39
|
|
|
41
40
|
Examples:
|
|
42
41
|
>>> from ultralytics.data.annotator import auto_annotate
|