desdeo 1.2__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. desdeo/__init__.py +8 -8
  2. desdeo/api/README.md +73 -0
  3. desdeo/api/__init__.py +15 -0
  4. desdeo/api/app.py +40 -0
  5. desdeo/api/config.py +69 -0
  6. desdeo/api/config.toml +53 -0
  7. desdeo/api/db.py +25 -0
  8. desdeo/api/db_init.py +79 -0
  9. desdeo/api/db_models.py +164 -0
  10. desdeo/api/malaga_db_init.py +27 -0
  11. desdeo/api/models/__init__.py +66 -0
  12. desdeo/api/models/archive.py +34 -0
  13. desdeo/api/models/preference.py +90 -0
  14. desdeo/api/models/problem.py +507 -0
  15. desdeo/api/models/reference_point_method.py +18 -0
  16. desdeo/api/models/session.py +46 -0
  17. desdeo/api/models/state.py +96 -0
  18. desdeo/api/models/user.py +51 -0
  19. desdeo/api/routers/_NAUTILUS.py +245 -0
  20. desdeo/api/routers/_NAUTILUS_navigator.py +233 -0
  21. desdeo/api/routers/_NIMBUS.py +762 -0
  22. desdeo/api/routers/__init__.py +5 -0
  23. desdeo/api/routers/problem.py +110 -0
  24. desdeo/api/routers/reference_point_method.py +117 -0
  25. desdeo/api/routers/session.py +76 -0
  26. desdeo/api/routers/test.py +16 -0
  27. desdeo/api/routers/user_authentication.py +366 -0
  28. desdeo/api/schema.py +94 -0
  29. desdeo/api/tests/__init__.py +0 -0
  30. desdeo/api/tests/conftest.py +59 -0
  31. desdeo/api/tests/test_models.py +701 -0
  32. desdeo/api/tests/test_routes.py +216 -0
  33. desdeo/api/utils/database.py +274 -0
  34. desdeo/api/utils/logger.py +29 -0
  35. desdeo/core.py +27 -0
  36. desdeo/emo/__init__.py +29 -0
  37. desdeo/emo/hooks/archivers.py +172 -0
  38. desdeo/emo/methods/EAs.py +418 -0
  39. desdeo/emo/methods/__init__.py +0 -0
  40. desdeo/emo/methods/bases.py +59 -0
  41. desdeo/emo/operators/__init__.py +1 -0
  42. desdeo/emo/operators/crossover.py +780 -0
  43. desdeo/emo/operators/evaluator.py +118 -0
  44. desdeo/emo/operators/generator.py +356 -0
  45. desdeo/emo/operators/mutation.py +1053 -0
  46. desdeo/emo/operators/selection.py +1036 -0
  47. desdeo/emo/operators/termination.py +178 -0
  48. desdeo/explanations/__init__.py +6 -0
  49. desdeo/explanations/explainer.py +100 -0
  50. desdeo/explanations/utils.py +90 -0
  51. desdeo/mcdm/__init__.py +19 -0
  52. desdeo/mcdm/nautili.py +345 -0
  53. desdeo/mcdm/nautilus.py +477 -0
  54. desdeo/mcdm/nautilus_navigator.py +655 -0
  55. desdeo/mcdm/nimbus.py +417 -0
  56. desdeo/mcdm/pareto_navigator.py +269 -0
  57. desdeo/mcdm/reference_point_method.py +116 -0
  58. desdeo/problem/__init__.py +79 -0
  59. desdeo/problem/evaluator.py +561 -0
  60. desdeo/problem/gurobipy_evaluator.py +562 -0
  61. desdeo/problem/infix_parser.py +341 -0
  62. desdeo/problem/json_parser.py +944 -0
  63. desdeo/problem/pyomo_evaluator.py +468 -0
  64. desdeo/problem/schema.py +1808 -0
  65. desdeo/problem/simulator_evaluator.py +298 -0
  66. desdeo/problem/sympy_evaluator.py +244 -0
  67. desdeo/problem/testproblems/__init__.py +73 -0
  68. desdeo/problem/testproblems/binh_and_korn_problem.py +88 -0
  69. desdeo/problem/testproblems/dtlz2_problem.py +102 -0
  70. desdeo/problem/testproblems/forest_problem.py +275 -0
  71. desdeo/problem/testproblems/knapsack_problem.py +163 -0
  72. desdeo/problem/testproblems/mcwb_problem.py +831 -0
  73. desdeo/problem/testproblems/mixed_variable_dimenrions_problem.py +83 -0
  74. desdeo/problem/testproblems/momip_problem.py +172 -0
  75. desdeo/problem/testproblems/nimbus_problem.py +143 -0
  76. desdeo/problem/testproblems/pareto_navigator_problem.py +89 -0
  77. desdeo/problem/testproblems/re_problem.py +492 -0
  78. desdeo/problem/testproblems/river_pollution_problem.py +434 -0
  79. desdeo/problem/testproblems/rocket_injector_design_problem.py +140 -0
  80. desdeo/problem/testproblems/simple_problem.py +351 -0
  81. desdeo/problem/testproblems/simulator_problem.py +92 -0
  82. desdeo/problem/testproblems/spanish_sustainability_problem.py +945 -0
  83. desdeo/problem/testproblems/zdt_problem.py +271 -0
  84. desdeo/problem/utils.py +245 -0
  85. desdeo/tools/GenerateReferencePoints.py +181 -0
  86. desdeo/tools/__init__.py +102 -0
  87. desdeo/tools/generics.py +145 -0
  88. desdeo/tools/gurobipy_solver_interfaces.py +258 -0
  89. desdeo/tools/indicators_binary.py +11 -0
  90. desdeo/tools/indicators_unary.py +375 -0
  91. desdeo/tools/interaction_schema.py +38 -0
  92. desdeo/tools/intersection.py +54 -0
  93. desdeo/tools/iterative_pareto_representer.py +99 -0
  94. desdeo/tools/message.py +234 -0
  95. desdeo/tools/ng_solver_interfaces.py +199 -0
  96. desdeo/tools/non_dominated_sorting.py +133 -0
  97. desdeo/tools/patterns.py +281 -0
  98. desdeo/tools/proximal_solver.py +99 -0
  99. desdeo/tools/pyomo_solver_interfaces.py +464 -0
  100. desdeo/tools/reference_vectors.py +462 -0
  101. desdeo/tools/scalarization.py +3138 -0
  102. desdeo/tools/scipy_solver_interfaces.py +454 -0
  103. desdeo/tools/score_bands.py +464 -0
  104. desdeo/tools/utils.py +320 -0
  105. desdeo/utopia_stuff/__init__.py +0 -0
  106. desdeo/utopia_stuff/data/1.json +15 -0
  107. desdeo/utopia_stuff/data/2.json +13 -0
  108. desdeo/utopia_stuff/data/3.json +15 -0
  109. desdeo/utopia_stuff/data/4.json +17 -0
  110. desdeo/utopia_stuff/data/5.json +15 -0
  111. desdeo/utopia_stuff/from_json.py +40 -0
  112. desdeo/utopia_stuff/reinit_user.py +38 -0
  113. desdeo/utopia_stuff/utopia_db_init.py +212 -0
  114. desdeo/utopia_stuff/utopia_problem.py +403 -0
  115. desdeo/utopia_stuff/utopia_problem_old.py +415 -0
  116. desdeo/utopia_stuff/utopia_reference_solutions.py +79 -0
  117. desdeo-2.0.0.dist-info/LICENSE +21 -0
  118. desdeo-2.0.0.dist-info/METADATA +168 -0
  119. desdeo-2.0.0.dist-info/RECORD +120 -0
  120. {desdeo-1.2.dist-info → desdeo-2.0.0.dist-info}/WHEEL +1 -1
  121. desdeo-1.2.dist-info/METADATA +0 -16
  122. desdeo-1.2.dist-info/RECORD +0 -4
@@ -0,0 +1,477 @@
1
+ """Functions related to the NAUTILUS 1/2 method are defined here.
2
+
3
+ Reference of the method:
4
+
5
+ TODO: update
6
+ """
7
+
8
+ from warnings import warn
9
+
10
+ import numpy as np
11
+ from pydantic import BaseModel, Field
12
+
13
+ from desdeo.mcdm.nautili import solve_reachable_bounds
14
+ from desdeo.mcdm.nautilus_navigator import (
15
+ calculate_distance_to_front,
16
+ calculate_navigation_point,
17
+ )
18
+ from desdeo.problem import (
19
+ Constraint,
20
+ ConstraintTypeEnum,
21
+ Problem,
22
+ get_ideal_dict,
23
+ get_nadir_dict,
24
+ )
25
+ from desdeo.tools.generics import BaseSolver, SolverResults
26
+ from desdeo.tools.scalarization import ( # create_asf, should be add_asf_nondiff probably
27
+ add_asf_generic_diff,
28
+ add_asf_generic_nondiff,
29
+ )
30
+ from desdeo.tools.utils import guess_best_solver
31
+
32
+
33
+ # TODO: check if need all of these, eg. distance to front? and do I need to change some of them?
34
+ class NAUTILUS_Response(BaseModel): # NOQA: N801
35
+ """The response of the NAUTILUS method."""
36
+
37
+ step_number: int = Field(description="The step number associted with this response.")
38
+ distance_to_front: float = Field(
39
+ description=(
40
+ "The distance travelled to the Pareto front. "
41
+ "The distance is a ratio of the distances between the nadir and navigation point, and "
42
+ "the nadir and the reachable objective vector. The distance is given in percentage."
43
+ )
44
+ )
45
+ preference: dict | None = Field(
46
+ description="The preference used in the step. For now assumed that it is a reference point"
47
+ )
48
+ # preference_method: dict | None = Field(description="The preference method used in the step.")
49
+ # improvement_direction: dict | None = Field(description="The improvement direction.")
50
+ navigation_point: dict = Field(description="The navigation point used in the step.")
51
+ reachable_solution: dict | None = Field(description="The reachable solution found in the step.")
52
+ reachable_bounds: dict = Field(description="The reachable bounds found in the step.")
53
+
54
+
55
+ class NautilusError(Exception):
56
+ """Raised when an exception is encountered with procedures related to NAUTILUS."""
57
+
58
+
59
+ def solve_reachable_solution(
60
+ problem: Problem,
61
+ weights: dict[str, float],
62
+ # improvement_direction: dict[str, float],
63
+ previous_nav_point: dict[str, float],
64
+ solver: BaseSolver | None = None,
65
+ ) -> SolverResults:
66
+ """Calculates the reachable solution on the Pareto optimal front.
67
+
68
+ For the calculation to make sense in the context of NAUTILUS, the reference point
69
+ should be bounded by the reachable bounds present at the navigation step the
70
+ reference point has been given.
71
+
72
+ In practice, the reachable solution is calculated by solving an achievement
73
+ scalarizing function.
74
+
75
+ Args:
76
+ problem (Problem): the problem being solved.
77
+ preference (dict[str, float]): the weights defining the direction of improvement. Must be calculated
78
+ from the preference provided by the DM (weights, ranks, or reference point).
79
+ previous_nav_point (dict[str, float]): the previous navigation point. The reachable solution found
80
+ is always better than the previous navigation point.
81
+ solver (BaseSolver | None, optional): solver to solve the problem.
82
+ If None, then a solver is utilized bases on the problem's properties. Defaults to None.
83
+ bounds (dict[str, float] | None, optional): the bounds of the problem. Defaults to None.
84
+
85
+ Returns:
86
+ SolverResults: the results of the projection.
87
+ """
88
+ # check solver
89
+ init_solver = guess_best_solver(problem) if solver is None else solver
90
+
91
+ # need to convert the preferences to preferential factors?
92
+
93
+ # create and add scalarization function
94
+ if problem.is_twice_differentiable:
95
+ # differentiable problem
96
+ problem_w_asf, target = add_asf_generic_diff(
97
+ problem,
98
+ symbol="asf",
99
+ reference_point=previous_nav_point,
100
+ weights=weights,
101
+ reference_point_aug=previous_nav_point,
102
+ )
103
+ else:
104
+ # non-differentiable problem
105
+ problem_w_asf, target = add_asf_generic_nondiff(
106
+ problem,
107
+ symbol="asf",
108
+ reference_point=previous_nav_point,
109
+ weights=weights,
110
+ reference_point_aug=previous_nav_point,
111
+ )
112
+
113
+ # Note: We do not solve the global problem. Instead, we solve this constrained problem:
114
+ problem_w_asf = problem_w_asf.add_constraints(
115
+ [
116
+ Constraint(
117
+ name=f"_const_{i+1}",
118
+ symbol=f"_const_{i+1}",
119
+ func=f"{obj.symbol}_min - {previous_nav_point[obj.symbol] * (-1 if obj.maximize else 1)}",
120
+ cons_type=ConstraintTypeEnum.LTE,
121
+ is_linear=obj.is_linear,
122
+ is_convex=obj.is_convex,
123
+ is_twice_differentiable=obj.is_twice_differentiable,
124
+ )
125
+ for i, obj in enumerate(problem_w_asf.objectives)
126
+ ]
127
+ )
128
+
129
+ # solve the problem
130
+ solver = init_solver(problem_w_asf)
131
+ return solver.solve(target)
132
+
133
+
134
+ # NAUTILUS initializer and steppers
135
+
136
+
137
+ def nautilus_init(problem: Problem, solver: BaseSolver | None = None) -> NAUTILUS_Response:
138
+ """Initializes the NAUTILUS method.
139
+
140
+ Creates the initial response of the method, which sets the navigation point to the nadir point
141
+ and the reachable bounds to the ideal and nadir points.
142
+
143
+ Args:
144
+ problem (Problem): The problem to be solved.
145
+ solver (BaseSolver | None, optional): The solver to use. Defaults to None.
146
+
147
+ Returns:
148
+ NAUTILUS_Response: The initial response of the method.
149
+ """
150
+ nav_point = get_nadir_dict(problem)
151
+ lower_bounds, upper_bounds = solve_reachable_bounds(problem, nav_point, solver=solver)
152
+ return NAUTILUS_Response(
153
+ distance_to_front=0,
154
+ navigation_point=nav_point,
155
+ reachable_bounds={"lower_bounds": lower_bounds, "upper_bounds": upper_bounds},
156
+ reachable_solution=None,
157
+ preference=None,
158
+ step_number=0,
159
+ )
160
+
161
+
162
+ def nautilus_step( # NOQA: PLR0913
163
+ problem: Problem,
164
+ steps_remaining: int,
165
+ step_number: int,
166
+ nav_point: dict,
167
+ solver: BaseSolver | None = None,
168
+ points: dict[str, float] | None = None,
169
+ ranks: dict[str, int] | None = None,
170
+ ) -> NAUTILUS_Response:
171
+ """Performs a step of the NAUTILUS method.
172
+
173
+ Args:
174
+ problem (Problem): The problem to be solved.
175
+ steps_remaining (int): The number of steps remaining.
176
+ step_number (int): The current step number. Just used for the response.
177
+ nav_point (dict): The current navigation point.
178
+ solver (BaseSolver | None, optional): The solver to use. Defaults to None.
179
+ points (dict[str, float] | None, optional): The points of the objectives. Defaults to None.
180
+ ranks (dict[str, int] | None, optional): The ranks of the objectives. Defaults to None.
181
+
182
+ Raises:
183
+ NautilusError: If neither preference nor reachable_solution is provided.
184
+ NautilusError: If both preference and reachable_solution are provided.
185
+
186
+ Returns:
187
+ NAUTILUS_Response: The response of the method after the step.
188
+ """
189
+ if points is None and ranks is None:
190
+ raise NautilusError("Either points or ranks must be provided.")
191
+ if points is not None and ranks is not None:
192
+ raise NautilusError("Both points and ranks cannot be provided.")
193
+
194
+ # get weights
195
+ if points is not None: # noqa: SIM108
196
+ weights = points_to_weights(points, problem)
197
+ else:
198
+ weights = ranks_to_weights(ranks, problem)
199
+
200
+ # calculate reachable solution (direction).
201
+ # This is inefficient as it is recalculated even if preferences do not change.
202
+ opt_result = solve_reachable_solution(problem, weights, nav_point, solver)
203
+
204
+ if not opt_result.success:
205
+ warn(message="The solver did not converge.", stacklevel=2)
206
+
207
+ reachable_point = opt_result.optimal_objectives
208
+
209
+ # update nav point
210
+ new_nav_point = calculate_navigation_point(problem, nav_point, reachable_point, steps_remaining)
211
+
212
+ # update_bounds
213
+ lower_bounds, upper_bounds = solve_reachable_bounds(problem, new_nav_point, solver)
214
+
215
+ distance = calculate_distance_to_front(problem, new_nav_point, reachable_point)
216
+
217
+ return NAUTILUS_Response(
218
+ step_number=step_number,
219
+ distance_to_front=distance,
220
+ navigation_point=new_nav_point,
221
+ reachable_solution=reachable_point,
222
+ preference=ranks if ranks is not None else points,
223
+ reachable_bounds={"lower_bounds": lower_bounds, "upper_bounds": upper_bounds},
224
+ )
225
+
226
+
227
+ def __nautilus_all_steps(
228
+ problem: Problem,
229
+ steps_remaining: int,
230
+ preference: dict,
231
+ previous_responses: list[NAUTILUS_Response],
232
+ solver: BaseSolver | None = None,
233
+ ):
234
+ """Performs all steps of the NAUTILUS method.
235
+
236
+ NAUTILUS needs to be initialized before calling this function. Once initialized, this function performs all
237
+ steps of the method. However, this method need not start from the beginning. The method conducts "steps_remaining"
238
+ number of steps from the last navigation point. The last navigation point is taken from the last response in
239
+ "previous_responses" list. The first step in this algorithm always involves recalculating the reachable solution.
240
+ All subsequest steps are precalculated without recalculating the reachable solution, with the assumption that the
241
+ reference point has not changed. It is up to the user to only show the steps that the DM thinks they have taken.
242
+
243
+ Args:
244
+ problem (Problem): The problem to be solved.
245
+ steps_remaining (int): The number of steps remaining.
246
+ preference (dict): The reference point provided by the DM.
247
+ bounds (dict): The bounds of the problem provided by the DM.
248
+ previous_responses (list[NAUTILUS_Response]): The previous responses of the method.
249
+ solver (BaseSolver | None, optional): The solver to use. Defaults to None, in which case the
250
+ algorithm will guess the best solver for the problem.
251
+
252
+ Returns:
253
+ list[NAUTILUS_Response]: The new responses of the method after all steps. Note, as only new responses are
254
+ returned, the length of the list is equal to "steps_remaining". The analyst should append these responses
255
+ to the "previous_responses" list to keep track of the entire process.
256
+ """
257
+ responses: list[NAUTILUS_Response] = []
258
+ nav_point = previous_responses[-1].navigation_point
259
+ step_number = previous_responses[-1].step_number + 1
260
+ first_iteration = True
261
+ reachable_solution = dict
262
+ while steps_remaining > 0:
263
+ if first_iteration:
264
+ response = nautilus_step(
265
+ problem,
266
+ steps_remaining=steps_remaining,
267
+ step_number=step_number,
268
+ nav_point=nav_point,
269
+ preference=preference,
270
+ solver=solver,
271
+ )
272
+ first_iteration = False
273
+ else:
274
+ response = nautilus_step(
275
+ problem,
276
+ steps_remaining=steps_remaining,
277
+ step_number=step_number,
278
+ nav_point=nav_point,
279
+ reachable_solution=reachable_solution,
280
+ solver=solver,
281
+ )
282
+ response.preference = preference
283
+ responses.append(response)
284
+ reachable_solution = response.reachable_solution
285
+ nav_point = response.navigation_point
286
+ steps_remaining -= 1
287
+ step_number += 1
288
+ return responses
289
+
290
+
291
+ # implement preferential factors for other preference types
292
+ def calculate_preferential_factors():
293
+ """TODO: implement"""
294
+ pass
295
+
296
+
297
+ def step_back_index(responses: list[NAUTILUS_Response], step_number: int) -> int:
298
+ """Find the index of the response with the given step number.
299
+
300
+ Note, multiple responses can have the same step
301
+ number. This may happen if the DM takes a step back. In this case, the latest response with the given step number
302
+ is returned. Note, as we precalculate all the responses, it is up to the analyst to show the steps that the DM
303
+ thinks they have taken. Without this, the DM may be confused. In the worst case, the DM may take a step "back to
304
+ the future".
305
+
306
+ Args:
307
+ responses (list[NAUTILUS_Response]): Responses returned by the NAUTILUS method.
308
+ step_number (int): The step number to go back to.
309
+
310
+ Returns:
311
+ int : The index of the response with the given step number.
312
+ """
313
+ relevant_indices = [i for i, response in enumerate(responses) if response.step_number == step_number]
314
+ # Choose latest index
315
+ return relevant_indices[-1]
316
+
317
+
318
+ def get_current_path(all_responses: list[NAUTILUS_Response]) -> list[int]:
319
+ """Get the path of the current responses.
320
+
321
+ All responses may contain steps that the DM has gone back on. This function returns the path of the current active
322
+ path being followed by the DM. The path is a list of indices of the responses in the "all_responses" list. Note that
323
+ the path includes all steps until reaching the Pareto front (or whatever the last response is). It is up to the
324
+ analyst/GUI to only show the steps that the DM has taken.
325
+
326
+ Args:
327
+ all_responses (list[NAUTILUS_Response]): All responses returned by the NAUTILUS method.
328
+
329
+ Returns:
330
+ list[int]: The path of the current active responses.
331
+ """
332
+ total_steps = all_responses[-1].step_number
333
+ current_index = len(all_responses) - 1
334
+ path: list[int] = [current_index]
335
+ total_steps -= 1
336
+
337
+ while total_steps >= 0:
338
+ found_step = False
339
+ while not found_step:
340
+ current_index -= 1
341
+ if all_responses[current_index].step_number == total_steps:
342
+ path.append(current_index)
343
+ found_step = True
344
+ total_steps -= 1
345
+ return list(reversed(path))
346
+
347
+
348
+ def ranks_to_weights(ranks: dict[str, int], problem: Problem) -> dict[str, float]:
349
+ """Convert ranks to weights.
350
+
351
+ The ranks are converted to weights using the following formula:
352
+ weight = rank * (nadir - utopian). Note that this means that a lower rank is worse.
353
+
354
+ Args:
355
+ ranks (dict[str, int]): The ranks of the objectives.
356
+ problem (Problem): The problem being solved.
357
+
358
+ Returns:
359
+ dict[str, float]: The weights calculated from the ranks.
360
+ """
361
+ nadir = get_nadir_dict(problem)
362
+ ideal = get_ideal_dict(problem)
363
+ tol = 1e-10
364
+ weights = {}
365
+ for key, rank in ranks.items():
366
+ max_mult = [obj.maximize for obj in problem.objectives if obj.symbol == key][0]
367
+ max_mult = -1 if max_mult else 1
368
+ weights[key] = rank * (nadir[key] * max_mult - ideal[key] * max_mult + tol)
369
+ return weights
370
+
371
+
372
+ def points_to_weights(points: dict[str, float], problem: Problem) -> dict[str, float]:
373
+ """Convert points to weights.
374
+
375
+ The points are converted to weights using the following formula:
376
+ weight = point * (nadir - utopian).
377
+
378
+ Args:
379
+ points (dict[str, float]): The points of the objectives.
380
+ problem (Problem): The problem being solved.
381
+
382
+ Returns:
383
+ dict[str, float]: The weights calculated from the points.
384
+ """
385
+ nadir = get_nadir_dict(problem)
386
+ ideal = get_ideal_dict(problem)
387
+ tol = 1e-6
388
+ weights = {}
389
+ check_sum = 0
390
+ for key, point in points.items():
391
+ max_mult = [obj.maximize for obj in problem.objectives if obj.symbol == key][0]
392
+ max_mult = -1 if max_mult else 1
393
+ weights[key] = point / 100 * (nadir[key] * max_mult - ideal[key] * max_mult + tol)
394
+ check_sum += point
395
+ if check_sum != 100:
396
+ raise ValueError(f"The sum of the points must be 100. The sum is {check_sum}.")
397
+ return weights
398
+
399
+
400
+ if __name__ == "__main__":
401
+ from desdeo.problem import binh_and_korn
402
+
403
+ problem = binh_and_korn()
404
+
405
+ # initialization
406
+ nav_point = get_nadir_dict(problem)
407
+ lower_bounds = get_ideal_dict(problem)
408
+ upper_bounds = get_nadir_dict(problem)
409
+
410
+ step = 1
411
+ steps_remaining = 100
412
+
413
+ # get reference point
414
+ ranks = {"f_1": 1, "f_2": 2}
415
+ weights = ranks_to_weights(ranks, problem)
416
+
417
+ # get ranking
418
+ # "preference_method": 1,
419
+ # "preference_info": np.array([2, 2, 1, 1]),
420
+ # preference = {"f_1": 100.0, "f_2": 8.0}
421
+
422
+ # calculate reachable solution (direction)
423
+ opt_result = solve_reachable_solution(problem, weights, nav_point)
424
+
425
+ assert opt_result.success
426
+
427
+ reachable_point = opt_result.optimal_objectives
428
+
429
+ # update nav point
430
+ nav_point = calculate_navigation_point(problem, nav_point, reachable_point, steps_remaining)
431
+ print(f"{nav_point=}")
432
+
433
+ # update_bounds
434
+ lower_bounds, upper_bounds = solve_reachable_bounds(problem, nav_point)
435
+
436
+ distance = calculate_distance_to_front(problem, nav_point, reachable_point)
437
+
438
+ step += 1
439
+ steps_remaining -= 1
440
+
441
+ # no new preference, reachable point (direction) stays the same
442
+ # update nav point
443
+ nav_point = calculate_navigation_point(problem, nav_point, reachable_point, steps_remaining)
444
+ print(f"{nav_point=}")
445
+
446
+ # update bounds
447
+ lower_bounds, upper_bounds = solve_reachable_bounds(problem, nav_point)
448
+
449
+ distance = calculate_distance_to_front(problem, nav_point, reachable_point)
450
+
451
+ step += 1
452
+ steps_remaining -= 1
453
+
454
+ # new reference point
455
+ points = {"f_1": 80, "f_2": 20} # Now f_1 is more important
456
+ weights = points_to_weights(points, problem)
457
+
458
+ # calculate reachable solution (direction)
459
+ opt_result = solve_reachable_solution(problem, weights, nav_point)
460
+
461
+ assert opt_result.success
462
+
463
+ reachable_point = opt_result.optimal_objectives
464
+
465
+ # update nav point
466
+ nav_point = calculate_navigation_point(problem, nav_point, reachable_point, steps_remaining)
467
+ print(f"{nav_point=}")
468
+
469
+ # update_bounds
470
+ lower_bounds, upper_bounds = solve_reachable_bounds(problem, nav_point)
471
+
472
+ distance = calculate_distance_to_front(problem, nav_point, reachable_point)
473
+
474
+ step += 1
475
+ steps_remaining -= 1
476
+
477
+ # etc...