brainstate 0.0.1__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +45 -0
- brainstate/_module.py +1466 -0
- brainstate/_module_test.py +133 -0
- brainstate/_state.py +378 -0
- brainstate/_state_test.py +41 -0
- brainstate/_utils.py +21 -0
- brainstate/environ.py +375 -0
- brainstate/functional/__init__.py +25 -0
- brainstate/functional/_activations.py +754 -0
- brainstate/functional/_normalization.py +69 -0
- brainstate/functional/_spikes.py +90 -0
- brainstate/init/__init__.py +26 -0
- brainstate/init/_base.py +36 -0
- brainstate/init/_generic.py +175 -0
- brainstate/init/_random_inits.py +489 -0
- brainstate/init/_regular_inits.py +109 -0
- brainstate/math/__init__.py +21 -0
- brainstate/math/_einops.py +787 -0
- brainstate/math/_einops_parsing.py +169 -0
- brainstate/math/_einops_parsing_test.py +126 -0
- brainstate/math/_einops_test.py +346 -0
- brainstate/math/_misc.py +298 -0
- brainstate/math/_misc_test.py +58 -0
- brainstate/mixin.py +373 -0
- brainstate/mixin_test.py +73 -0
- brainstate/nn/__init__.py +68 -0
- brainstate/nn/_base.py +248 -0
- brainstate/nn/_connections.py +686 -0
- brainstate/nn/_dynamics.py +406 -0
- brainstate/nn/_elementwise.py +1437 -0
- brainstate/nn/_misc.py +132 -0
- brainstate/nn/_normalizations.py +389 -0
- brainstate/nn/_others.py +100 -0
- brainstate/nn/_poolings.py +1228 -0
- brainstate/nn/_poolings_test.py +231 -0
- brainstate/nn/_projection/__init__.py +32 -0
- brainstate/nn/_projection/_align_post.py +528 -0
- brainstate/nn/_projection/_align_pre.py +599 -0
- brainstate/nn/_projection/_delta.py +241 -0
- brainstate/nn/_projection/_utils.py +17 -0
- brainstate/nn/_projection/_vanilla.py +101 -0
- brainstate/nn/_rate_rnns.py +393 -0
- brainstate/nn/_readout.py +130 -0
- brainstate/nn/_synouts.py +166 -0
- brainstate/nn/functional/__init__.py +25 -0
- brainstate/nn/functional/_activations.py +754 -0
- brainstate/nn/functional/_normalization.py +69 -0
- brainstate/nn/functional/_spikes.py +90 -0
- brainstate/nn/init/__init__.py +26 -0
- brainstate/nn/init/_base.py +36 -0
- brainstate/nn/init/_generic.py +175 -0
- brainstate/nn/init/_random_inits.py +489 -0
- brainstate/nn/init/_regular_inits.py +109 -0
- brainstate/nn/surrogate.py +1740 -0
- brainstate/optim/__init__.py +23 -0
- brainstate/optim/_lr_scheduler.py +486 -0
- brainstate/optim/_lr_scheduler_test.py +36 -0
- brainstate/optim/_sgd_optimizer.py +1148 -0
- brainstate/random.py +5148 -0
- brainstate/random_test.py +576 -0
- brainstate/surrogate.py +1740 -0
- brainstate/transform/__init__.py +36 -0
- brainstate/transform/_autograd.py +585 -0
- brainstate/transform/_autograd_test.py +1183 -0
- brainstate/transform/_control.py +665 -0
- brainstate/transform/_controls_test.py +220 -0
- brainstate/transform/_jit.py +239 -0
- brainstate/transform/_jit_error.py +158 -0
- brainstate/transform/_jit_test.py +102 -0
- brainstate/transform/_make_jaxpr.py +573 -0
- brainstate/transform/_make_jaxpr_test.py +133 -0
- brainstate/transform/_progress_bar.py +113 -0
- brainstate/typing.py +69 -0
- brainstate/util.py +747 -0
- brainstate-0.0.1.dist-info/LICENSE +202 -0
- brainstate-0.0.1.dist-info/METADATA +101 -0
- brainstate-0.0.1.dist-info/RECORD +79 -0
- brainstate-0.0.1.dist-info/WHEEL +6 -0
- brainstate-0.0.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,231 @@
|
|
1
|
+
# -*- coding: utf-8 -*-
|
2
|
+
|
3
|
+
|
4
|
+
import jax
|
5
|
+
import numpy as np
|
6
|
+
from absl.testing import absltest
|
7
|
+
from absl.testing import parameterized
|
8
|
+
|
9
|
+
import brainstate as bst
|
10
|
+
import brainstate.nn as nn
|
11
|
+
|
12
|
+
|
13
|
+
class TestFlatten(parameterized.TestCase):
|
14
|
+
def test_flatten1(self):
|
15
|
+
for size in [
|
16
|
+
(16, 32, 32, 8),
|
17
|
+
(32, 8),
|
18
|
+
(10, 20, 30),
|
19
|
+
]:
|
20
|
+
arr = bst.random.rand(*size)
|
21
|
+
f = nn.Flatten(start_dim=0)
|
22
|
+
out = f(arr)
|
23
|
+
self.assertTrue(out.shape == (np.prod(size),))
|
24
|
+
|
25
|
+
def test_flatten2(self):
|
26
|
+
for size in [
|
27
|
+
(16, 32, 32, 8),
|
28
|
+
(32, 8),
|
29
|
+
(10, 20, 30),
|
30
|
+
]:
|
31
|
+
arr = bst.random.rand(*size)
|
32
|
+
f = nn.Flatten(start_dim=1)
|
33
|
+
out = f(arr)
|
34
|
+
self.assertTrue(out.shape == (size[0], np.prod(size[1:])))
|
35
|
+
|
36
|
+
def test_flatten3(self):
|
37
|
+
size = (16, 32, 32, 8)
|
38
|
+
arr = bst.random.rand(*size)
|
39
|
+
f = nn.Flatten(start_dim=0, in_size=(32, 8))
|
40
|
+
out = f(arr)
|
41
|
+
self.assertTrue(out.shape == (16, 32, 32 * 8))
|
42
|
+
|
43
|
+
def test_flatten4(self):
|
44
|
+
size = (16, 32, 32, 8)
|
45
|
+
arr = bst.random.rand(*size)
|
46
|
+
f = nn.Flatten(start_dim=1, in_size=(32, 32, 8))
|
47
|
+
out = f(arr)
|
48
|
+
self.assertTrue(out.shape == (16, 32, 32 * 8))
|
49
|
+
|
50
|
+
|
51
|
+
class TestUnflatten(parameterized.TestCase):
|
52
|
+
pass
|
53
|
+
|
54
|
+
|
55
|
+
class TestPool(parameterized.TestCase):
|
56
|
+
def __init__(self, *args, **kwargs):
|
57
|
+
super().__init__(*args, **kwargs)
|
58
|
+
|
59
|
+
def test_MaxPool2d_v1(self):
|
60
|
+
arr = bst.random.rand(16, 32, 32, 8)
|
61
|
+
|
62
|
+
out = nn.MaxPool2d(2, 2, channel_axis=-1)(arr)
|
63
|
+
self.assertTrue(out.shape == (16, 16, 16, 8))
|
64
|
+
|
65
|
+
out = nn.MaxPool2d(2, 2, channel_axis=None)(arr)
|
66
|
+
self.assertTrue(out.shape == (16, 32, 16, 4))
|
67
|
+
|
68
|
+
out = nn.MaxPool2d(2, 2, channel_axis=None, padding=1)(arr)
|
69
|
+
self.assertTrue(out.shape == (16, 32, 17, 5))
|
70
|
+
|
71
|
+
out = nn.MaxPool2d(2, 2, channel_axis=None, padding=(2, 1))(arr)
|
72
|
+
self.assertTrue(out.shape == (16, 32, 18, 5))
|
73
|
+
|
74
|
+
out = nn.MaxPool2d(2, 2, channel_axis=-1, padding=(1, 1))(arr)
|
75
|
+
self.assertTrue(out.shape == (16, 17, 17, 8))
|
76
|
+
|
77
|
+
out = nn.MaxPool2d(2, 2, channel_axis=2, padding=(1, 1))(arr)
|
78
|
+
self.assertTrue(out.shape == (16, 17, 32, 5))
|
79
|
+
bst.util.clear_buffer_memory()
|
80
|
+
|
81
|
+
def test_AvgPool2d_v1(self):
|
82
|
+
arr = bst.random.rand(16, 32, 32, 8)
|
83
|
+
|
84
|
+
out = nn.AvgPool2d(2, 2, channel_axis=-1)(arr)
|
85
|
+
self.assertTrue(out.shape == (16, 16, 16, 8))
|
86
|
+
|
87
|
+
out = nn.AvgPool2d(2, 2, channel_axis=None)(arr)
|
88
|
+
self.assertTrue(out.shape == (16, 32, 16, 4))
|
89
|
+
|
90
|
+
out = nn.AvgPool2d(2, 2, channel_axis=None, padding=1)(arr)
|
91
|
+
self.assertTrue(out.shape == (16, 32, 17, 5))
|
92
|
+
|
93
|
+
out = nn.AvgPool2d(2, 2, channel_axis=None, padding=(2, 1))(arr)
|
94
|
+
self.assertTrue(out.shape == (16, 32, 18, 5))
|
95
|
+
|
96
|
+
out = nn.AvgPool2d(2, 2, channel_axis=-1, padding=(1, 1))(arr)
|
97
|
+
self.assertTrue(out.shape == (16, 17, 17, 8))
|
98
|
+
|
99
|
+
out = nn.AvgPool2d(2, 2, channel_axis=2, padding=(1, 1))(arr)
|
100
|
+
self.assertTrue(out.shape == (16, 17, 32, 5))
|
101
|
+
bst.util.clear_buffer_memory()
|
102
|
+
|
103
|
+
@parameterized.named_parameters(
|
104
|
+
dict(testcase_name=f'target_size={target_size}',
|
105
|
+
target_size=target_size)
|
106
|
+
for target_size in [10, 9, 8, 7, 6]
|
107
|
+
)
|
108
|
+
def test_adaptive_pool1d(self, target_size):
|
109
|
+
from brainstate.nn._poolings import _adaptive_pool1d
|
110
|
+
|
111
|
+
arr = bst.random.rand(100)
|
112
|
+
op = jax.numpy.mean
|
113
|
+
|
114
|
+
out = _adaptive_pool1d(arr, target_size, op)
|
115
|
+
print(out.shape)
|
116
|
+
self.assertTrue(out.shape == (target_size,))
|
117
|
+
|
118
|
+
out = _adaptive_pool1d(arr, target_size, op)
|
119
|
+
print(out.shape)
|
120
|
+
self.assertTrue(out.shape == (target_size,))
|
121
|
+
bst.util.clear_buffer_memory()
|
122
|
+
|
123
|
+
def test_AdaptiveAvgPool2d_v1(self):
|
124
|
+
input = bst.random.randn(64, 8, 9)
|
125
|
+
|
126
|
+
output = nn.AdaptiveAvgPool2d((5, 7), channel_axis=0)(input)
|
127
|
+
self.assertTrue(output.shape == (64, 5, 7))
|
128
|
+
|
129
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=0)(input)
|
130
|
+
self.assertTrue(output.shape == (64, 2, 3))
|
131
|
+
|
132
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=-1)(input)
|
133
|
+
self.assertTrue(output.shape == (2, 3, 9))
|
134
|
+
|
135
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=1)(input)
|
136
|
+
self.assertTrue(output.shape == (2, 8, 3))
|
137
|
+
|
138
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=None)(input)
|
139
|
+
self.assertTrue(output.shape == (64, 2, 3))
|
140
|
+
bst.util.clear_buffer_memory()
|
141
|
+
|
142
|
+
def test_AdaptiveAvgPool2d_v2(self):
|
143
|
+
bst.random.seed()
|
144
|
+
input = bst.random.randn(128, 64, 32, 16)
|
145
|
+
|
146
|
+
output = nn.AdaptiveAvgPool2d((5, 7), channel_axis=0)(input)
|
147
|
+
self.assertTrue(output.shape == (128, 64, 5, 7))
|
148
|
+
|
149
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=0)(input)
|
150
|
+
self.assertTrue(output.shape == (128, 64, 2, 3))
|
151
|
+
|
152
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=-1)(input)
|
153
|
+
self.assertTrue(output.shape == (128, 2, 3, 16))
|
154
|
+
|
155
|
+
output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=1)(input)
|
156
|
+
self.assertTrue(output.shape == (128, 64, 2, 3))
|
157
|
+
print()
|
158
|
+
bst.util.clear_buffer_memory()
|
159
|
+
|
160
|
+
def test_AdaptiveAvgPool3d_v1(self):
|
161
|
+
input = bst.random.randn(10, 128, 64, 32)
|
162
|
+
net = nn.AdaptiveAvgPool3d(target_size=[6, 5, 3], channel_axis=0)
|
163
|
+
output = net(input)
|
164
|
+
self.assertTrue(output.shape == (10, 6, 5, 3))
|
165
|
+
bst.util.clear_buffer_memory()
|
166
|
+
|
167
|
+
def test_AdaptiveAvgPool3d_v2(self):
|
168
|
+
input = bst.random.randn(10, 20, 128, 64, 32)
|
169
|
+
net = nn.AdaptiveAvgPool3d(target_size=[6, 5, 3])
|
170
|
+
output = net(input)
|
171
|
+
self.assertTrue(output.shape == (10, 6, 5, 3, 32))
|
172
|
+
bst.util.clear_buffer_memory()
|
173
|
+
|
174
|
+
@parameterized.product(
|
175
|
+
axis=(-1, 0, 1)
|
176
|
+
)
|
177
|
+
def test_AdaptiveMaxPool1d_v1(self, axis):
|
178
|
+
input = bst.random.randn(32, 16)
|
179
|
+
net = nn.AdaptiveMaxPool1d(target_size=4, channel_axis=axis)
|
180
|
+
output = net(input)
|
181
|
+
bst.util.clear_buffer_memory()
|
182
|
+
|
183
|
+
@parameterized.product(
|
184
|
+
axis=(-1, 0, 1, 2)
|
185
|
+
)
|
186
|
+
def test_AdaptiveMaxPool1d_v2(self, axis):
|
187
|
+
input = bst.random.randn(2, 32, 16)
|
188
|
+
net = nn.AdaptiveMaxPool1d(target_size=4, channel_axis=axis)
|
189
|
+
output = net(input)
|
190
|
+
bst.util.clear_buffer_memory()
|
191
|
+
|
192
|
+
@parameterized.product(
|
193
|
+
axis=(-1, 0, 1, 2)
|
194
|
+
)
|
195
|
+
def test_AdaptiveMaxPool2d_v1(self, axis):
|
196
|
+
input = bst.random.randn(32, 16, 12)
|
197
|
+
net = nn.AdaptiveAvgPool2d(target_size=[5, 4], channel_axis=axis)
|
198
|
+
output = net(input)
|
199
|
+
bst.util.clear_buffer_memory()
|
200
|
+
|
201
|
+
@parameterized.product(
|
202
|
+
axis=(-1, 0, 1, 2, 3)
|
203
|
+
)
|
204
|
+
def test_AdaptiveMaxPool2d_v2(self, axis):
|
205
|
+
input = bst.random.randn(2, 32, 16, 12)
|
206
|
+
net = nn.AdaptiveAvgPool2d(target_size=[5, 4], channel_axis=axis)
|
207
|
+
output = net(input)
|
208
|
+
bst.util.clear_buffer_memory()
|
209
|
+
|
210
|
+
@parameterized.product(
|
211
|
+
axis=(-1, 0, 1, 2, 3)
|
212
|
+
)
|
213
|
+
def test_AdaptiveMaxPool3d_v1(self, axis):
|
214
|
+
input = bst.random.randn(2, 128, 64, 32)
|
215
|
+
net = nn.AdaptiveMaxPool3d(target_size=[6, 5, 4], channel_axis=axis)
|
216
|
+
output = net(input)
|
217
|
+
print()
|
218
|
+
bst.util.clear_buffer_memory()
|
219
|
+
|
220
|
+
@parameterized.product(
|
221
|
+
axis=(-1, 0, 1, 2, 3, 4)
|
222
|
+
)
|
223
|
+
def test_AdaptiveMaxPool3d_v1(self, axis):
|
224
|
+
input = bst.random.randn(2, 128, 64, 32, 16)
|
225
|
+
net = nn.AdaptiveMaxPool3d(target_size=[6, 5, 4], channel_axis=axis)
|
226
|
+
output = net(input)
|
227
|
+
bst.util.clear_buffer_memory()
|
228
|
+
|
229
|
+
|
230
|
+
if __name__ == '__main__':
|
231
|
+
absltest.main()
|
@@ -0,0 +1,32 @@
|
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""
|
17
|
+
|
18
|
+
This module defines the basic classes for synaptic projections.
|
19
|
+
|
20
|
+
"""
|
21
|
+
|
22
|
+
from ._align_post import *
|
23
|
+
from ._align_post import __all__ as align_post_all
|
24
|
+
from ._align_pre import *
|
25
|
+
from ._align_pre import __all__ as align_pre_all
|
26
|
+
from ._delta import *
|
27
|
+
from ._delta import __all__ as delta_all
|
28
|
+
from ._vanilla import *
|
29
|
+
from ._vanilla import __all__ as vanilla_all
|
30
|
+
|
31
|
+
__all__ = align_post_all + align_pre_all + delta_all + vanilla_all
|
32
|
+
del align_post_all, align_pre_all, delta_all, vanilla_all
|