brainstate 0.0.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. brainstate/__init__.py +45 -0
  2. brainstate/_module.py +1466 -0
  3. brainstate/_module_test.py +133 -0
  4. brainstate/_state.py +378 -0
  5. brainstate/_state_test.py +41 -0
  6. brainstate/_utils.py +21 -0
  7. brainstate/environ.py +375 -0
  8. brainstate/functional/__init__.py +25 -0
  9. brainstate/functional/_activations.py +754 -0
  10. brainstate/functional/_normalization.py +69 -0
  11. brainstate/functional/_spikes.py +90 -0
  12. brainstate/init/__init__.py +26 -0
  13. brainstate/init/_base.py +36 -0
  14. brainstate/init/_generic.py +175 -0
  15. brainstate/init/_random_inits.py +489 -0
  16. brainstate/init/_regular_inits.py +109 -0
  17. brainstate/math/__init__.py +21 -0
  18. brainstate/math/_einops.py +787 -0
  19. brainstate/math/_einops_parsing.py +169 -0
  20. brainstate/math/_einops_parsing_test.py +126 -0
  21. brainstate/math/_einops_test.py +346 -0
  22. brainstate/math/_misc.py +298 -0
  23. brainstate/math/_misc_test.py +58 -0
  24. brainstate/mixin.py +373 -0
  25. brainstate/mixin_test.py +73 -0
  26. brainstate/nn/__init__.py +68 -0
  27. brainstate/nn/_base.py +248 -0
  28. brainstate/nn/_connections.py +686 -0
  29. brainstate/nn/_dynamics.py +406 -0
  30. brainstate/nn/_elementwise.py +1437 -0
  31. brainstate/nn/_misc.py +132 -0
  32. brainstate/nn/_normalizations.py +389 -0
  33. brainstate/nn/_others.py +100 -0
  34. brainstate/nn/_poolings.py +1228 -0
  35. brainstate/nn/_poolings_test.py +231 -0
  36. brainstate/nn/_projection/__init__.py +32 -0
  37. brainstate/nn/_projection/_align_post.py +528 -0
  38. brainstate/nn/_projection/_align_pre.py +599 -0
  39. brainstate/nn/_projection/_delta.py +241 -0
  40. brainstate/nn/_projection/_utils.py +17 -0
  41. brainstate/nn/_projection/_vanilla.py +101 -0
  42. brainstate/nn/_rate_rnns.py +393 -0
  43. brainstate/nn/_readout.py +130 -0
  44. brainstate/nn/_synouts.py +166 -0
  45. brainstate/nn/functional/__init__.py +25 -0
  46. brainstate/nn/functional/_activations.py +754 -0
  47. brainstate/nn/functional/_normalization.py +69 -0
  48. brainstate/nn/functional/_spikes.py +90 -0
  49. brainstate/nn/init/__init__.py +26 -0
  50. brainstate/nn/init/_base.py +36 -0
  51. brainstate/nn/init/_generic.py +175 -0
  52. brainstate/nn/init/_random_inits.py +489 -0
  53. brainstate/nn/init/_regular_inits.py +109 -0
  54. brainstate/nn/surrogate.py +1740 -0
  55. brainstate/optim/__init__.py +23 -0
  56. brainstate/optim/_lr_scheduler.py +486 -0
  57. brainstate/optim/_lr_scheduler_test.py +36 -0
  58. brainstate/optim/_sgd_optimizer.py +1148 -0
  59. brainstate/random.py +5148 -0
  60. brainstate/random_test.py +576 -0
  61. brainstate/surrogate.py +1740 -0
  62. brainstate/transform/__init__.py +36 -0
  63. brainstate/transform/_autograd.py +585 -0
  64. brainstate/transform/_autograd_test.py +1183 -0
  65. brainstate/transform/_control.py +665 -0
  66. brainstate/transform/_controls_test.py +220 -0
  67. brainstate/transform/_jit.py +239 -0
  68. brainstate/transform/_jit_error.py +158 -0
  69. brainstate/transform/_jit_test.py +102 -0
  70. brainstate/transform/_make_jaxpr.py +573 -0
  71. brainstate/transform/_make_jaxpr_test.py +133 -0
  72. brainstate/transform/_progress_bar.py +113 -0
  73. brainstate/typing.py +69 -0
  74. brainstate/util.py +747 -0
  75. brainstate-0.0.1.dist-info/LICENSE +202 -0
  76. brainstate-0.0.1.dist-info/METADATA +101 -0
  77. brainstate-0.0.1.dist-info/RECORD +79 -0
  78. brainstate-0.0.1.dist-info/WHEEL +6 -0
  79. brainstate-0.0.1.dist-info/top_level.txt +1 -0
brainstate/nn/_base.py ADDED
@@ -0,0 +1,248 @@
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+ from __future__ import annotations
19
+
20
+ import inspect
21
+ from typing import Sequence, Optional, Tuple, Union
22
+
23
+ from .._module import Module, UpdateReturn, Container, visible_module_dict
24
+ from ..mixin import Mixin, DelayedInitializer, DelayedInit
25
+
26
+ __all__ = [
27
+ 'ExplicitInOutSize',
28
+ 'ElementWiseBlock',
29
+ 'Sequential',
30
+ 'DnnLayer',
31
+ ]
32
+
33
+
34
+ # -------------------------------------------------------------------------------------- #
35
+ # Network Related Concepts
36
+ # -------------------------------------------------------------------------------------- #
37
+
38
+
39
+ class ExplicitInOutSize(Mixin):
40
+ """
41
+ Mix-in class with the explicit input and output shape.
42
+
43
+ Attributes
44
+ ----------
45
+ in_size: tuple[int]
46
+ The input shape, without the batch size. This argument is important, since it is
47
+ used to evaluate the shape of the output.
48
+ out_size: tuple[int]
49
+ The output shape, without the batch size.
50
+ """
51
+ __module__ = 'brainstate.nn'
52
+
53
+ _in_size: Optional[Tuple[int, ...]] = None
54
+ _out_size: Optional[Tuple[int, ...]] = None
55
+
56
+ @property
57
+ def in_size(self) -> Tuple[int, ...]:
58
+ if self._in_size is None:
59
+ raise ValueError(f"The input shape is not set in this node: {self} ")
60
+ return self._in_size
61
+
62
+ @in_size.setter
63
+ def in_size(self, in_size: Sequence[int]):
64
+ self._in_size = tuple(in_size)
65
+
66
+ @property
67
+ def out_size(self) -> Tuple[int, ...]:
68
+ if self._out_size is None:
69
+ raise ValueError(f"The output shape is not set in this node: {self}")
70
+ return self._out_size
71
+
72
+ @out_size.setter
73
+ def out_size(self, out_size: Sequence[int]):
74
+ self._out_size = tuple(out_size)
75
+
76
+
77
+ class ElementWiseBlock(Mixin):
78
+ """
79
+ Mix-in class for element-wise modules.
80
+ """
81
+ __module__ = 'brainstate.nn'
82
+
83
+
84
+ class Sequential(Module, UpdateReturn, Container, ExplicitInOutSize):
85
+ """
86
+ A sequential `input-output` module.
87
+
88
+ Modules will be added to it in the order they are passed in the
89
+ constructor. Alternatively, an ``dict`` of modules can be
90
+ passed in. The ``update()`` method of ``Sequential`` accepts any
91
+ input and forwards it to the first module it contains. It then
92
+ "chains" outputs to inputs sequentially for each subsequent module,
93
+ finally returning the output of the last module.
94
+
95
+ The value a ``Sequential`` provides over manually calling a sequence
96
+ of modules is that it allows treating the whole container as a
97
+ single module, such that performing a transformation on the
98
+ ``Sequential`` applies to each of the modules it stores (which are
99
+ each a registered submodule of the ``Sequential``).
100
+
101
+ What's the difference between a ``Sequential`` and a
102
+ :py:class:`Container`? A ``Container`` is exactly what it
103
+ sounds like--a container to store :py:class:`DynamicalSystem` s!
104
+ On the other hand, the layers in a ``Sequential`` are connected
105
+ in a cascading way.
106
+
107
+ Examples
108
+ --------
109
+
110
+ >>> import jax
111
+ >>> import brainstate as bst
112
+ >>> import brainstate.nn as nn
113
+ >>>
114
+ >>> # composing ANN models
115
+ >>> l = nn.Sequential(nn.Linear(100, 10),
116
+ >>> jax.nn.relu,
117
+ >>> nn.Linear(10, 2))
118
+ >>> l(bst.random.random((256, 100)))
119
+ >>>
120
+ >>> # Using Sequential with Dict. This is functionally the
121
+ >>> # same as the above code
122
+ >>> l = nn.Sequential(l1=nn.Linear(100, 10),
123
+ >>> l2=jax.nn.relu,
124
+ >>> l3=nn.Linear(10, 2))
125
+ >>> l(bst.random.random((256, 100)))
126
+
127
+ Args:
128
+ modules_as_tuple: The children modules.
129
+ modules_as_dict: The children modules.
130
+ name: The object name.
131
+ mode: The object computing context/mode. Default is ``None``.
132
+ """
133
+ __module__ = 'brainstate.nn'
134
+
135
+ def __init__(self, first: ExplicitInOutSize, *modules_as_tuple, **modules_as_dict):
136
+ super().__init__()
137
+
138
+ assert isinstance(first, ExplicitInOutSize)
139
+ in_size = first.out_size
140
+
141
+ tuple_modules = []
142
+ for module in modules_as_tuple:
143
+ module, in_size = self._format_module(module, in_size)
144
+ tuple_modules.append(module)
145
+
146
+ dict_modules = dict()
147
+ for key, module in modules_as_dict.items():
148
+ module, in_size = self._format_module(module, in_size)
149
+ dict_modules[key] = module
150
+
151
+ # Attribute of "Container"
152
+ self.children = visible_module_dict(self.format_elements(object, first, *tuple_modules, **dict_modules))
153
+
154
+ # the input and output shape
155
+ self.in_size = tuple(first.in_size)
156
+ self.out_size = tuple(in_size)
157
+
158
+ def _format_module(self, module, in_size):
159
+ if isinstance(module, DelayedInitializer):
160
+ module = module(in_size=in_size)
161
+ assert isinstance(module, ExplicitInOutSize)
162
+ out_size = module.out_size
163
+ elif isinstance(module, ElementWiseBlock):
164
+ out_size = in_size
165
+ elif isinstance(module, ExplicitInOutSize):
166
+ out_size = module.out_size
167
+ else:
168
+ raise TypeError(f"Unsupported type {type(module)}. ")
169
+ return module, out_size
170
+
171
+ def update(self, x):
172
+ """Update function of a sequential model.
173
+ """
174
+ for m in self.children.values():
175
+ x = m(x)
176
+ return x
177
+
178
+ def update_return(self):
179
+ """
180
+ The return information of the sequence according to the final model.
181
+ """
182
+ last = self[-1]
183
+ if not isinstance(last, UpdateReturn):
184
+ raise NotImplementedError(f'The last element in the sequence is not an instance of {UpdateReturn.__name__}')
185
+ return last.update_return()
186
+
187
+ def update_return_info(self):
188
+ """
189
+ The return information of the sequence according to the final model.
190
+ """
191
+ last = self[-1]
192
+ if not isinstance(last, UpdateReturn):
193
+ raise NotImplementedError(f'The last element in the sequence is not an instance of {UpdateReturn.__name__}')
194
+ return last.update_return_info()
195
+
196
+ def __getitem__(self, key: Union[int, slice, str]):
197
+ if isinstance(key, str):
198
+ if key in self.children:
199
+ return self.children[key]
200
+ else:
201
+ raise KeyError(f'Does not find a component named {key} in\n {str(self)}')
202
+ elif isinstance(key, slice):
203
+ return Sequential(**dict(tuple(self.children.items())[key]))
204
+ elif isinstance(key, int):
205
+ return tuple(self.children.values())[key]
206
+ elif isinstance(key, (tuple, list)):
207
+ _all_nodes = tuple(self.children.items())
208
+ return Sequential(**dict(_all_nodes[k] for k in key))
209
+ else:
210
+ raise KeyError(f'Unknown type of key: {type(key)}')
211
+
212
+ def __repr__(self):
213
+ nodes = self.children.values()
214
+ entries = '\n'.join(f' [{i}] {_repr_object(x)}' for i, x in enumerate(nodes))
215
+ return f'{self.__class__.__name__}(\n{entries}\n)'
216
+
217
+
218
+ def _repr_object(x):
219
+ if isinstance(x, Module):
220
+ return repr(x)
221
+ elif callable(x):
222
+ signature = inspect.signature(x)
223
+ args = [f'{k}={v.default}' for k, v in signature.parameters.items()
224
+ if v.default is not inspect.Parameter.empty]
225
+ args = ', '.join(args)
226
+ while not hasattr(x, '__name__'):
227
+ if not hasattr(x, 'func'):
228
+ break
229
+ x = x.func # Handle functools.partial
230
+ if not hasattr(x, '__name__') and hasattr(x, '__class__'):
231
+ return x.__class__.__name__
232
+ if args:
233
+ return f'{x.__name__}(*, {args})'
234
+ return x.__name__
235
+ else:
236
+ x = repr(x).split('\n')
237
+ x = [x[0]] + [' ' + y for y in x[1:]]
238
+ return '\n'.join(x)
239
+
240
+
241
+ class DnnLayer(Module, ExplicitInOutSize, DelayedInit):
242
+ """
243
+ A DNN layer.
244
+ """
245
+ __module__ = 'brainstate.nn'
246
+
247
+ def __repr__(self):
248
+ return f"{self.__class__.__name__}(in_size={self.in_size}, out_size={self.out_size})"