brainscore-vision 2.1__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1009) hide show
  1. brainscore_vision/__init__.py +105 -0
  2. brainscore_vision/__main__.py +20 -0
  3. brainscore_vision/benchmark_helpers/__init__.py +67 -0
  4. brainscore_vision/benchmark_helpers/neural_common.py +70 -0
  5. brainscore_vision/benchmark_helpers/properties_common.py +424 -0
  6. brainscore_vision/benchmark_helpers/screen.py +126 -0
  7. brainscore_vision/benchmark_helpers/test_helper.py +160 -0
  8. brainscore_vision/benchmarks/README.md +7 -0
  9. brainscore_vision/benchmarks/__init__.py +122 -0
  10. brainscore_vision/benchmarks/baker2022/__init__.py +9 -0
  11. brainscore_vision/benchmarks/baker2022/benchmark.py +125 -0
  12. brainscore_vision/benchmarks/baker2022/requirements.txt +1 -0
  13. brainscore_vision/benchmarks/baker2022/test.py +90 -0
  14. brainscore_vision/benchmarks/bmd2024/__init__.py +8 -0
  15. brainscore_vision/benchmarks/bmd2024/benchmark.py +51 -0
  16. brainscore_vision/benchmarks/bmd2024/test.py +29 -0
  17. brainscore_vision/benchmarks/bracci2019/__init__.py +8 -0
  18. brainscore_vision/benchmarks/bracci2019/benchmark.py +286 -0
  19. brainscore_vision/benchmarks/bracci2019/requirements.txt +3 -0
  20. brainscore_vision/benchmarks/cadena2017/__init__.py +5 -0
  21. brainscore_vision/benchmarks/cadena2017/benchmark.py +91 -0
  22. brainscore_vision/benchmarks/cadena2017/test.py +35 -0
  23. brainscore_vision/benchmarks/coggan2024_behavior/__init__.py +8 -0
  24. brainscore_vision/benchmarks/coggan2024_behavior/benchmark.py +133 -0
  25. brainscore_vision/benchmarks/coggan2024_behavior/test.py +21 -0
  26. brainscore_vision/benchmarks/coggan2024_fMRI/__init__.py +15 -0
  27. brainscore_vision/benchmarks/coggan2024_fMRI/benchmark.py +201 -0
  28. brainscore_vision/benchmarks/coggan2024_fMRI/test.py +25 -0
  29. brainscore_vision/benchmarks/ferguson2024/__init__.py +24 -0
  30. brainscore_vision/benchmarks/ferguson2024/benchmark.py +210 -0
  31. brainscore_vision/benchmarks/ferguson2024/helpers/helpers.py +251 -0
  32. brainscore_vision/benchmarks/ferguson2024/requirements.txt +5 -0
  33. brainscore_vision/benchmarks/ferguson2024/test.py +114 -0
  34. brainscore_vision/benchmarks/freemanziemba2013/__init__.py +10 -0
  35. brainscore_vision/benchmarks/freemanziemba2013/benchmarks/benchmark.py +53 -0
  36. brainscore_vision/benchmarks/freemanziemba2013/benchmarks/public_benchmarks.py +37 -0
  37. brainscore_vision/benchmarks/freemanziemba2013/test.py +98 -0
  38. brainscore_vision/benchmarks/geirhos2021/__init__.py +59 -0
  39. brainscore_vision/benchmarks/geirhos2021/benchmark.py +132 -0
  40. brainscore_vision/benchmarks/geirhos2021/test.py +189 -0
  41. brainscore_vision/benchmarks/hebart2023/__init__.py +4 -0
  42. brainscore_vision/benchmarks/hebart2023/benchmark.py +72 -0
  43. brainscore_vision/benchmarks/hebart2023/test.py +19 -0
  44. brainscore_vision/benchmarks/hermann2020/__init__.py +6 -0
  45. brainscore_vision/benchmarks/hermann2020/benchmark.py +63 -0
  46. brainscore_vision/benchmarks/hermann2020/test.py +28 -0
  47. brainscore_vision/benchmarks/igustibagus2024/__init__.py +11 -0
  48. brainscore_vision/benchmarks/igustibagus2024/domain_transfer_analysis.py +306 -0
  49. brainscore_vision/benchmarks/igustibagus2024/domain_transfer_neural.py +134 -0
  50. brainscore_vision/benchmarks/igustibagus2024/test.py +45 -0
  51. brainscore_vision/benchmarks/imagenet/__init__.py +4 -0
  52. brainscore_vision/benchmarks/imagenet/benchmark.py +50 -0
  53. brainscore_vision/benchmarks/imagenet/imagenet2012.csv +50001 -0
  54. brainscore_vision/benchmarks/imagenet/test.py +32 -0
  55. brainscore_vision/benchmarks/imagenet_c/__init__.py +7 -0
  56. brainscore_vision/benchmarks/imagenet_c/benchmark.py +204 -0
  57. brainscore_vision/benchmarks/imagenet_c/test.py +57 -0
  58. brainscore_vision/benchmarks/islam2021/__init__.py +11 -0
  59. brainscore_vision/benchmarks/islam2021/benchmark.py +107 -0
  60. brainscore_vision/benchmarks/islam2021/test.py +47 -0
  61. brainscore_vision/benchmarks/kar2019/__init__.py +4 -0
  62. brainscore_vision/benchmarks/kar2019/benchmark.py +88 -0
  63. brainscore_vision/benchmarks/kar2019/test.py +93 -0
  64. brainscore_vision/benchmarks/majajhong2015/__init__.py +18 -0
  65. brainscore_vision/benchmarks/majajhong2015/benchmark.py +96 -0
  66. brainscore_vision/benchmarks/majajhong2015/test.py +103 -0
  67. brainscore_vision/benchmarks/malania2007/__init__.py +13 -0
  68. brainscore_vision/benchmarks/malania2007/benchmark.py +235 -0
  69. brainscore_vision/benchmarks/malania2007/test.py +64 -0
  70. brainscore_vision/benchmarks/maniquet2024/__init__.py +6 -0
  71. brainscore_vision/benchmarks/maniquet2024/benchmark.py +199 -0
  72. brainscore_vision/benchmarks/maniquet2024/test.py +17 -0
  73. brainscore_vision/benchmarks/marques2020/__init__.py +76 -0
  74. brainscore_vision/benchmarks/marques2020/benchmarks/cavanaugh2002a_benchmark.py +119 -0
  75. brainscore_vision/benchmarks/marques2020/benchmarks/devalois1982a_benchmark.py +84 -0
  76. brainscore_vision/benchmarks/marques2020/benchmarks/devalois1982b_benchmark.py +88 -0
  77. brainscore_vision/benchmarks/marques2020/benchmarks/freemanZiemba2013_benchmark.py +138 -0
  78. brainscore_vision/benchmarks/marques2020/benchmarks/ringach2002_benchmark.py +167 -0
  79. brainscore_vision/benchmarks/marques2020/benchmarks/schiller1976_benchmark.py +100 -0
  80. brainscore_vision/benchmarks/marques2020/test.py +135 -0
  81. brainscore_vision/benchmarks/objectnet/__init__.py +4 -0
  82. brainscore_vision/benchmarks/objectnet/benchmark.py +52 -0
  83. brainscore_vision/benchmarks/objectnet/test.py +33 -0
  84. brainscore_vision/benchmarks/rajalingham2018/__init__.py +10 -0
  85. brainscore_vision/benchmarks/rajalingham2018/benchmarks/benchmark.py +74 -0
  86. brainscore_vision/benchmarks/rajalingham2018/benchmarks/public_benchmark.py +10 -0
  87. brainscore_vision/benchmarks/rajalingham2018/test.py +125 -0
  88. brainscore_vision/benchmarks/rajalingham2018/test_resources/alexnet-probabilities.nc +0 -0
  89. brainscore_vision/benchmarks/rajalingham2018/test_resources/identifier=alexnet,stimuli_identifier=objectome-240.nc +0 -0
  90. brainscore_vision/benchmarks/rajalingham2018/test_resources/identifier=resnet18,stimuli_identifier=objectome-240.nc +0 -0
  91. brainscore_vision/benchmarks/rajalingham2018/test_resources/identifier=resnet34,stimuli_identifier=objectome-240.nc +0 -0
  92. brainscore_vision/benchmarks/rajalingham2018/test_resources/resnet18-probabilities.nc +0 -0
  93. brainscore_vision/benchmarks/rajalingham2018/test_resources/resnet34-probabilities.nc +0 -0
  94. brainscore_vision/benchmarks/rajalingham2020/__init__.py +4 -0
  95. brainscore_vision/benchmarks/rajalingham2020/benchmark.py +52 -0
  96. brainscore_vision/benchmarks/rajalingham2020/test.py +39 -0
  97. brainscore_vision/benchmarks/sanghavi2020/__init__.py +17 -0
  98. brainscore_vision/benchmarks/sanghavi2020/benchmarks/sanghavi2020_benchmark.py +44 -0
  99. brainscore_vision/benchmarks/sanghavi2020/benchmarks/sanghavijozwik2020_benchmark.py +44 -0
  100. brainscore_vision/benchmarks/sanghavi2020/benchmarks/sanghavimurty2020_benchmark.py +44 -0
  101. brainscore_vision/benchmarks/sanghavi2020/test.py +83 -0
  102. brainscore_vision/benchmarks/scialom2024/__init__.py +52 -0
  103. brainscore_vision/benchmarks/scialom2024/benchmark.py +97 -0
  104. brainscore_vision/benchmarks/scialom2024/test.py +162 -0
  105. brainscore_vision/data/__init__.py +0 -0
  106. brainscore_vision/data/baker2022/__init__.py +40 -0
  107. brainscore_vision/data/baker2022/data_packaging/inverted_distortion_data_assembly.py +43 -0
  108. brainscore_vision/data/baker2022/data_packaging/inverted_distortion_stimulus_set.py +81 -0
  109. brainscore_vision/data/baker2022/data_packaging/mapping.py +60 -0
  110. brainscore_vision/data/baker2022/data_packaging/normal_distortion_data_assembly.py +46 -0
  111. brainscore_vision/data/baker2022/data_packaging/normal_distortion_stimulus_set.py +94 -0
  112. brainscore_vision/data/baker2022/test.py +135 -0
  113. brainscore_vision/data/barbumayo2019/BarbuMayo2019.py +26 -0
  114. brainscore_vision/data/barbumayo2019/__init__.py +23 -0
  115. brainscore_vision/data/barbumayo2019/test.py +10 -0
  116. brainscore_vision/data/bashivankar2019/__init__.py +52 -0
  117. brainscore_vision/data/bashivankar2019/data_packaging/2020-08-17_npc_v4_data.h5.png +0 -0
  118. brainscore_vision/data/bashivankar2019/data_packaging/requirements.txt +4 -0
  119. brainscore_vision/data/bashivankar2019/data_packaging/synthetic.py +162 -0
  120. brainscore_vision/data/bashivankar2019/test.py +15 -0
  121. brainscore_vision/data/bmd2024/__init__.py +69 -0
  122. brainscore_vision/data/bmd2024/data_packaging/BMD_2024_data_assembly.py +91 -0
  123. brainscore_vision/data/bmd2024/data_packaging/BMD_2024_simulus_set.py +48 -0
  124. brainscore_vision/data/bmd2024/data_packaging/stim_meta.csv +401 -0
  125. brainscore_vision/data/bmd2024/test.py +130 -0
  126. brainscore_vision/data/bracci2019/__init__.py +36 -0
  127. brainscore_vision/data/bracci2019/data_packaging.py +221 -0
  128. brainscore_vision/data/bracci2019/test.py +16 -0
  129. brainscore_vision/data/cadena2017/__init__.py +52 -0
  130. brainscore_vision/data/cadena2017/data_packaging/2018-08-07_tolias_v1.ipynb +25880 -0
  131. brainscore_vision/data/cadena2017/data_packaging/analysis.py +26 -0
  132. brainscore_vision/data/cadena2017/test.py +24 -0
  133. brainscore_vision/data/cichy2019/__init__.py +38 -0
  134. brainscore_vision/data/cichy2019/test.py +8 -0
  135. brainscore_vision/data/coggan2024_behavior/__init__.py +36 -0
  136. brainscore_vision/data/coggan2024_behavior/data_packaging.py +166 -0
  137. brainscore_vision/data/coggan2024_behavior/test.py +32 -0
  138. brainscore_vision/data/coggan2024_fMRI/__init__.py +27 -0
  139. brainscore_vision/data/coggan2024_fMRI/data_packaging.py +123 -0
  140. brainscore_vision/data/coggan2024_fMRI/test.py +25 -0
  141. brainscore_vision/data/david2004/__init__.py +34 -0
  142. brainscore_vision/data/david2004/data_packaging/2018-05-10_gallant_data.ipynb +3647 -0
  143. brainscore_vision/data/david2004/data_packaging/2018-05-23_gallant_data.ipynb +3149 -0
  144. brainscore_vision/data/david2004/data_packaging/2018-06-05_gallant_data.ipynb +3628 -0
  145. brainscore_vision/data/david2004/data_packaging/__init__.py +61 -0
  146. brainscore_vision/data/david2004/data_packaging/convertGallant.m +100 -0
  147. brainscore_vision/data/david2004/data_packaging/convertGallantV1Aligned.m +58 -0
  148. brainscore_vision/data/david2004/data_packaging/lib/DataHash_20160618/DataHash.m +484 -0
  149. brainscore_vision/data/david2004/data_packaging/lib/DataHash_20160618/license.txt +24 -0
  150. brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5.c +895 -0
  151. brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5.m +107 -0
  152. brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5.mexw64 +0 -0
  153. brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5_helper.m +91 -0
  154. brainscore_vision/data/david2004/data_packaging/lib/GetMD5/InstallMex.m +307 -0
  155. brainscore_vision/data/david2004/data_packaging/lib/GetMD5/license.txt +24 -0
  156. brainscore_vision/data/david2004/data_packaging/lib/GetMD5/uTest_GetMD5.m +290 -0
  157. brainscore_vision/data/david2004/data_packaging/lib/glob/glob.m +472 -0
  158. brainscore_vision/data/david2004/data_packaging/lib/glob/license.txt +27 -0
  159. brainscore_vision/data/david2004/data_packaging/xr_align_debug.py +137 -0
  160. brainscore_vision/data/david2004/test.py +8 -0
  161. brainscore_vision/data/deng2009/__init__.py +22 -0
  162. brainscore_vision/data/deng2009/deng2009imagenet.py +33 -0
  163. brainscore_vision/data/deng2009/test.py +9 -0
  164. brainscore_vision/data/ferguson2024/__init__.py +401 -0
  165. brainscore_vision/data/ferguson2024/data_packaging/data_packaging.py +164 -0
  166. brainscore_vision/data/ferguson2024/data_packaging/fitting_stimuli.py +20 -0
  167. brainscore_vision/data/ferguson2024/requirements.txt +2 -0
  168. brainscore_vision/data/ferguson2024/test.py +155 -0
  169. brainscore_vision/data/freemanziemba2013/__init__.py +133 -0
  170. brainscore_vision/data/freemanziemba2013/data_packaging/2018-10-05_movshon.ipynb +2002 -0
  171. brainscore_vision/data/freemanziemba2013/data_packaging/2020-02-21_movshon_aperture.ipynb +4730 -0
  172. brainscore_vision/data/freemanziemba2013/data_packaging/2020-02-26_movshon_aperture_test.ipynb +2228 -0
  173. brainscore_vision/data/freemanziemba2013/data_packaging/aperture_correct.py +160 -0
  174. brainscore_vision/data/freemanziemba2013/data_packaging/data_packaging.py +57 -0
  175. brainscore_vision/data/freemanziemba2013/data_packaging/movshon.py +202 -0
  176. brainscore_vision/data/freemanziemba2013/test.py +97 -0
  177. brainscore_vision/data/geirhos2021/__init__.py +358 -0
  178. brainscore_vision/data/geirhos2021/creating_geirhos_ids.ipynb +468 -0
  179. brainscore_vision/data/geirhos2021/data_packaging/colour/colour_data_assembly.py +87 -0
  180. brainscore_vision/data/geirhos2021/data_packaging/colour/colour_stimulus_set.py +81 -0
  181. brainscore_vision/data/geirhos2021/data_packaging/contrast/contrast_data_assembly.py +83 -0
  182. brainscore_vision/data/geirhos2021/data_packaging/contrast/contrast_stimulus_set.py +82 -0
  183. brainscore_vision/data/geirhos2021/data_packaging/cue-conflict/cue-conflict_data_assembly.py +100 -0
  184. brainscore_vision/data/geirhos2021/data_packaging/cue-conflict/cue-conflict_stimulus_set.py +84 -0
  185. brainscore_vision/data/geirhos2021/data_packaging/edge/edge_data_assembly.py +96 -0
  186. brainscore_vision/data/geirhos2021/data_packaging/edge/edge_stimulus_set.py +69 -0
  187. brainscore_vision/data/geirhos2021/data_packaging/eidolonI/eidolonI_data_assembly.py +92 -0
  188. brainscore_vision/data/geirhos2021/data_packaging/eidolonI/eidolonI_stimulus_set.py +82 -0
  189. brainscore_vision/data/geirhos2021/data_packaging/eidolonII/eidolonII_data_assembly.py +92 -0
  190. brainscore_vision/data/geirhos2021/data_packaging/eidolonII/eidolonII_stimulus_set.py +82 -0
  191. brainscore_vision/data/geirhos2021/data_packaging/eidolonIII/eidolonIII_data_assembly.py +92 -0
  192. brainscore_vision/data/geirhos2021/data_packaging/eidolonIII/eidolonIII_stimulus_set.py +82 -0
  193. brainscore_vision/data/geirhos2021/data_packaging/false-colour/false-colour_data_assembly.py +83 -0
  194. brainscore_vision/data/geirhos2021/data_packaging/false-colour/false-colour_stimulus_set.py +87 -0
  195. brainscore_vision/data/geirhos2021/data_packaging/high-pass/high-pass_data_assembly.py +84 -0
  196. brainscore_vision/data/geirhos2021/data_packaging/high-pass/high-pass_stimulus_set.py +82 -0
  197. brainscore_vision/data/geirhos2021/data_packaging/low-pass/low-pass_data_assembly.py +84 -0
  198. brainscore_vision/data/geirhos2021/data_packaging/low-pass/low-pass_stimulus_set.py +81 -0
  199. brainscore_vision/data/geirhos2021/data_packaging/phase-scrambling/phase-scrambling_data_assembly.py +84 -0
  200. brainscore_vision/data/geirhos2021/data_packaging/phase-scrambling/phase-scrambling_stimulus_set.py +82 -0
  201. brainscore_vision/data/geirhos2021/data_packaging/power-equalisation/power-equalisation_data_assembly.py +88 -0
  202. brainscore_vision/data/geirhos2021/data_packaging/power-equalisation/power-equalisation_stimulus_set.py +82 -0
  203. brainscore_vision/data/geirhos2021/data_packaging/rotation/rotation_data_assembly.py +87 -0
  204. brainscore_vision/data/geirhos2021/data_packaging/rotation/rotation_stimulus_set.py +82 -0
  205. brainscore_vision/data/geirhos2021/data_packaging/silhouette/silhouette_data_assembly.py +100 -0
  206. brainscore_vision/data/geirhos2021/data_packaging/silhouette/silhouette_stimulus_set.py +71 -0
  207. brainscore_vision/data/geirhos2021/data_packaging/sketch/sketch_data_assembly.py +88 -0
  208. brainscore_vision/data/geirhos2021/data_packaging/sketch/sketch_stimulus_set.py +75 -0
  209. brainscore_vision/data/geirhos2021/data_packaging/stylized/stylized_data_assembly.py +87 -0
  210. brainscore_vision/data/geirhos2021/data_packaging/stylized/stylized_stimulus_set.py +75 -0
  211. brainscore_vision/data/geirhos2021/data_packaging/uniform-noise/uniform-noise_data_assembly.py +86 -0
  212. brainscore_vision/data/geirhos2021/data_packaging/uniform-noise/uniform-noise_stimulus_set.py +82 -0
  213. brainscore_vision/data/geirhos2021/geirhos_hashes.csv +52 -0
  214. brainscore_vision/data/geirhos2021/test.py +330 -0
  215. brainscore_vision/data/hebart2023/__init__.py +23 -0
  216. brainscore_vision/data/hebart2023/packaging/data_assembly.py +40 -0
  217. brainscore_vision/data/hebart2023/packaging/stimulus_set.py +72 -0
  218. brainscore_vision/data/hebart2023/test.py +42 -0
  219. brainscore_vision/data/hendrycks2019/__init__.py +45 -0
  220. brainscore_vision/data/hendrycks2019/test.py +26 -0
  221. brainscore_vision/data/igustibagus2024/__init__.py +23 -0
  222. brainscore_vision/data/igustibagus2024/dependencies/data_pico/stimulus_dicarlo_domain_transfer.csv +3139 -0
  223. brainscore_vision/data/igustibagus2024/investigation_consistency.ipynb +346 -0
  224. brainscore_vision/data/igustibagus2024/merged_assembly/__init__.py +0 -0
  225. brainscore_vision/data/igustibagus2024/merged_assembly/create_merged_assembly.ipynb +649 -0
  226. brainscore_vision/data/igustibagus2024/merged_assembly/create_merged_assembly_and_stim.py +152 -0
  227. brainscore_vision/data/igustibagus2024/merged_assembly/create_stimulus_set_with_background-id.py +45 -0
  228. brainscore_vision/data/igustibagus2024/merged_assembly/helpers_background_id.py +849 -0
  229. brainscore_vision/data/igustibagus2024/merged_assembly/merged_stimulus_set.csv +3139 -0
  230. brainscore_vision/data/igustibagus2024/oleo_pico_exploration.ipynb +410 -0
  231. brainscore_vision/data/igustibagus2024/test.py +26 -0
  232. brainscore_vision/data/imagenetslim15000/ImageNetSlim15000.py +30 -0
  233. brainscore_vision/data/imagenetslim15000/__init__.py +11 -0
  234. brainscore_vision/data/imagenetslim15000/test.py +8 -0
  235. brainscore_vision/data/islam2021/__init__.py +18 -0
  236. brainscore_vision/data/islam2021/data_packaging.py +64 -0
  237. brainscore_vision/data/islam2021/test.py +11 -0
  238. brainscore_vision/data/kar2018/__init__.py +58 -0
  239. brainscore_vision/data/kar2018/data_packaging/kar_coco.py +97 -0
  240. brainscore_vision/data/kar2018/data_packaging/kar_hvm.py +77 -0
  241. brainscore_vision/data/kar2018/data_packaging/requirements.txt +1 -0
  242. brainscore_vision/data/kar2018/test.py +10 -0
  243. brainscore_vision/data/kar2019/__init__.py +43 -0
  244. brainscore_vision/data/kar2019/data_packaging.py +116 -0
  245. brainscore_vision/data/kar2019/test.py +8 -0
  246. brainscore_vision/data/kuzovkin2018/__init__.py +36 -0
  247. brainscore_vision/data/kuzovkin2018/createAssembliesBrainScore.py +103 -0
  248. brainscore_vision/data/kuzovkin2018/test.py +8 -0
  249. brainscore_vision/data/majajhong2015/__init__.py +113 -0
  250. brainscore_vision/data/majajhong2015/data_packaging/darren10ms.py +32 -0
  251. brainscore_vision/data/majajhong2015/data_packaging/data_packaging.py +65 -0
  252. brainscore_vision/data/majajhong2015/test.py +38 -0
  253. brainscore_vision/data/malania2007/__init__.py +254 -0
  254. brainscore_vision/data/malania2007/data_packaging/malania_data_assembly.py +79 -0
  255. brainscore_vision/data/malania2007/data_packaging/malania_stimulus_set.py +79 -0
  256. brainscore_vision/data/malania2007/test.py +147 -0
  257. brainscore_vision/data/maniquet2024/__init__.py +57 -0
  258. brainscore_vision/data/maniquet2024/data_packaging.py +151 -0
  259. brainscore_vision/data/maniquet2024/test.py +16 -0
  260. brainscore_vision/data/marques2020/__init__.py +123 -0
  261. brainscore_vision/data/marques2020/data_packaging/marques_cavanaugh2002a.py +84 -0
  262. brainscore_vision/data/marques2020/data_packaging/marques_devalois1982a.py +44 -0
  263. brainscore_vision/data/marques2020/data_packaging/marques_devalois1982b.py +54 -0
  264. brainscore_vision/data/marques2020/data_packaging/marques_freemanZiemba2013.py +252 -0
  265. brainscore_vision/data/marques2020/data_packaging/marques_gen_stim.py +95 -0
  266. brainscore_vision/data/marques2020/data_packaging/marques_ringach2002.py +95 -0
  267. brainscore_vision/data/marques2020/data_packaging/marques_schiller1976c.py +60 -0
  268. brainscore_vision/data/marques2020/data_packaging/marques_stim_common.py +389 -0
  269. brainscore_vision/data/marques2020/data_packaging/marques_utils.py +21 -0
  270. brainscore_vision/data/marques2020/data_packaging/setup.py +13 -0
  271. brainscore_vision/data/marques2020/test.py +54 -0
  272. brainscore_vision/data/rajalingham2018/__init__.py +56 -0
  273. brainscore_vision/data/rajalingham2018/rajalingham2018objectome.py +193 -0
  274. brainscore_vision/data/rajalingham2018/test.py +10 -0
  275. brainscore_vision/data/rajalingham2020/__init__.py +39 -0
  276. brainscore_vision/data/rajalingham2020/rajalingham2020orthographic_IT.py +97 -0
  277. brainscore_vision/data/rajalingham2020/test.py +8 -0
  278. brainscore_vision/data/rust2012/2020-12-28_rust.ipynb +3301 -0
  279. brainscore_vision/data/rust2012/__init__.py +45 -0
  280. brainscore_vision/data/rust2012/rust305.py +35 -0
  281. brainscore_vision/data/rust2012/test.py +47 -0
  282. brainscore_vision/data/sanghavi2020/__init__.py +119 -0
  283. brainscore_vision/data/sanghavi2020/data_packaging/environment.yml +36 -0
  284. brainscore_vision/data/sanghavi2020/data_packaging/requirements.txt +4 -0
  285. brainscore_vision/data/sanghavi2020/data_packaging/sanghavi2020.py +101 -0
  286. brainscore_vision/data/sanghavi2020/data_packaging/sanghavijozwik2020.py +148 -0
  287. brainscore_vision/data/sanghavi2020/data_packaging/sanghavikar2020.py +131 -0
  288. brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020.py +120 -0
  289. brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020things.py +138 -0
  290. brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020things1.py +118 -0
  291. brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020things2.py +118 -0
  292. brainscore_vision/data/sanghavi2020/test.py +13 -0
  293. brainscore_vision/data/scialom2024/__init__.py +386 -0
  294. brainscore_vision/data/scialom2024/data_packaging/scialom_data_assembly.py +164 -0
  295. brainscore_vision/data/scialom2024/data_packaging/scialom_stimulus_set.py +117 -0
  296. brainscore_vision/data/scialom2024/test.py +301 -0
  297. brainscore_vision/data/seibert2019/__init__.py +25 -0
  298. brainscore_vision/data/seibert2019/data_packaging/2020-10-13_juvenile.ipynb +35703 -0
  299. brainscore_vision/data/seibert2019/data_packaging/2020-11-18_juvenile_scratch.txt +556 -0
  300. brainscore_vision/data/seibert2019/data_packaging/2020-11-22_juvenile_dldata.ipynb +3614 -0
  301. brainscore_vision/data/seibert2019/data_packaging/juvenile.py +103 -0
  302. brainscore_vision/data/seibert2019/test.py +35 -0
  303. brainscore_vision/data/zhang2018/__init__.py +38 -0
  304. brainscore_vision/data/zhang2018/test.py +29 -0
  305. brainscore_vision/data_helpers/__init__.py +0 -0
  306. brainscore_vision/data_helpers/lookup_legacy.py +15 -0
  307. brainscore_vision/data_helpers/s3.py +79 -0
  308. brainscore_vision/metric_helpers/__init__.py +5 -0
  309. brainscore_vision/metric_helpers/temporal.py +119 -0
  310. brainscore_vision/metric_helpers/transformations.py +379 -0
  311. brainscore_vision/metric_helpers/utils.py +71 -0
  312. brainscore_vision/metric_helpers/xarray_utils.py +151 -0
  313. brainscore_vision/metrics/__init__.py +7 -0
  314. brainscore_vision/metrics/accuracy/__init__.py +4 -0
  315. brainscore_vision/metrics/accuracy/metric.py +16 -0
  316. brainscore_vision/metrics/accuracy/test.py +11 -0
  317. brainscore_vision/metrics/accuracy_distance/__init__.py +4 -0
  318. brainscore_vision/metrics/accuracy_distance/metric.py +109 -0
  319. brainscore_vision/metrics/accuracy_distance/test.py +57 -0
  320. brainscore_vision/metrics/baker_accuracy_delta/__init__.py +4 -0
  321. brainscore_vision/metrics/baker_accuracy_delta/metric.py +94 -0
  322. brainscore_vision/metrics/baker_accuracy_delta/requirements.txt +1 -0
  323. brainscore_vision/metrics/baker_accuracy_delta/test.py +1 -0
  324. brainscore_vision/metrics/cka/__init__.py +14 -0
  325. brainscore_vision/metrics/cka/metric.py +105 -0
  326. brainscore_vision/metrics/cka/test.py +28 -0
  327. brainscore_vision/metrics/dimensionality/__init__.py +13 -0
  328. brainscore_vision/metrics/dimensionality/metric.py +45 -0
  329. brainscore_vision/metrics/distribution_similarity/__init__.py +14 -0
  330. brainscore_vision/metrics/distribution_similarity/metric.py +84 -0
  331. brainscore_vision/metrics/distribution_similarity/test.py +10 -0
  332. brainscore_vision/metrics/error_consistency/__init__.py +13 -0
  333. brainscore_vision/metrics/error_consistency/metric.py +93 -0
  334. brainscore_vision/metrics/error_consistency/test.py +39 -0
  335. brainscore_vision/metrics/i1i2/__init__.py +16 -0
  336. brainscore_vision/metrics/i1i2/metric.py +299 -0
  337. brainscore_vision/metrics/i1i2/requirements.txt +2 -0
  338. brainscore_vision/metrics/i1i2/test.py +36 -0
  339. brainscore_vision/metrics/i1i2/test_resources/alexnet-probabilities.nc +0 -0
  340. brainscore_vision/metrics/i1i2/test_resources/resnet18-probabilities.nc +0 -0
  341. brainscore_vision/metrics/i1i2/test_resources/resnet34-probabilities.nc +0 -0
  342. brainscore_vision/metrics/internal_consistency/__init__.py +8 -0
  343. brainscore_vision/metrics/internal_consistency/ceiling.py +127 -0
  344. brainscore_vision/metrics/internal_consistency/requirements.txt +1 -0
  345. brainscore_vision/metrics/internal_consistency/test.py +39 -0
  346. brainscore_vision/metrics/maniquet2024_metrics/__init__.py +19 -0
  347. brainscore_vision/metrics/maniquet2024_metrics/metric.py +416 -0
  348. brainscore_vision/metrics/maniquet2024_metrics/test.py +8 -0
  349. brainscore_vision/metrics/mask_regression/__init__.py +16 -0
  350. brainscore_vision/metrics/mask_regression/metric.py +242 -0
  351. brainscore_vision/metrics/mask_regression/requirements.txt +1 -0
  352. brainscore_vision/metrics/mask_regression/test.py +0 -0
  353. brainscore_vision/metrics/ost/__init__.py +23 -0
  354. brainscore_vision/metrics/ost/metric.py +350 -0
  355. brainscore_vision/metrics/ost/requirements.txt +2 -0
  356. brainscore_vision/metrics/ost/test.py +0 -0
  357. brainscore_vision/metrics/rdm/__init__.py +14 -0
  358. brainscore_vision/metrics/rdm/metric.py +101 -0
  359. brainscore_vision/metrics/rdm/requirements.txt +2 -0
  360. brainscore_vision/metrics/rdm/test.py +63 -0
  361. brainscore_vision/metrics/regression_correlation/__init__.py +48 -0
  362. brainscore_vision/metrics/regression_correlation/mask_regression.py +232 -0
  363. brainscore_vision/metrics/regression_correlation/metric.py +125 -0
  364. brainscore_vision/metrics/regression_correlation/requirements.txt +3 -0
  365. brainscore_vision/metrics/regression_correlation/test.py +36 -0
  366. brainscore_vision/metrics/threshold/__init__.py +5 -0
  367. brainscore_vision/metrics/threshold/metric.py +481 -0
  368. brainscore_vision/metrics/threshold/test.py +71 -0
  369. brainscore_vision/metrics/value_delta/__init__.py +4 -0
  370. brainscore_vision/metrics/value_delta/metric.py +30 -0
  371. brainscore_vision/metrics/value_delta/requirements.txt +1 -0
  372. brainscore_vision/metrics/value_delta/test.py +40 -0
  373. brainscore_vision/model_helpers/__init__.py +3 -0
  374. brainscore_vision/model_helpers/activations/__init__.py +1 -0
  375. brainscore_vision/model_helpers/activations/core.py +635 -0
  376. brainscore_vision/model_helpers/activations/pca.py +117 -0
  377. brainscore_vision/model_helpers/activations/pytorch.py +152 -0
  378. brainscore_vision/model_helpers/activations/temporal/__init__.py +0 -0
  379. brainscore_vision/model_helpers/activations/temporal/core/__init__.py +3 -0
  380. brainscore_vision/model_helpers/activations/temporal/core/executor.py +219 -0
  381. brainscore_vision/model_helpers/activations/temporal/core/extractor.py +282 -0
  382. brainscore_vision/model_helpers/activations/temporal/core/inferencer/__init__.py +2 -0
  383. brainscore_vision/model_helpers/activations/temporal/core/inferencer/base.py +274 -0
  384. brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/__init__.py +2 -0
  385. brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/base.py +134 -0
  386. brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/__init__.py +2 -0
  387. brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/base.py +99 -0
  388. brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/block.py +77 -0
  389. brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/causal.py +86 -0
  390. brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/time_aligner.py +73 -0
  391. brainscore_vision/model_helpers/activations/temporal/inputs/__init__.py +3 -0
  392. brainscore_vision/model_helpers/activations/temporal/inputs/base.py +17 -0
  393. brainscore_vision/model_helpers/activations/temporal/inputs/image.py +50 -0
  394. brainscore_vision/model_helpers/activations/temporal/inputs/video.py +186 -0
  395. brainscore_vision/model_helpers/activations/temporal/model/__init__.py +2 -0
  396. brainscore_vision/model_helpers/activations/temporal/model/base.py +33 -0
  397. brainscore_vision/model_helpers/activations/temporal/model/pytorch.py +107 -0
  398. brainscore_vision/model_helpers/activations/temporal/utils.py +228 -0
  399. brainscore_vision/model_helpers/brain_transformation/__init__.py +97 -0
  400. brainscore_vision/model_helpers/brain_transformation/behavior.py +348 -0
  401. brainscore_vision/model_helpers/brain_transformation/imagenet_classes.txt +1000 -0
  402. brainscore_vision/model_helpers/brain_transformation/neural.py +159 -0
  403. brainscore_vision/model_helpers/brain_transformation/temporal.py +199 -0
  404. brainscore_vision/model_helpers/check_submission/__init__.py +0 -0
  405. brainscore_vision/model_helpers/check_submission/check_models.py +87 -0
  406. brainscore_vision/model_helpers/check_submission/images/1.png +0 -0
  407. brainscore_vision/model_helpers/check_submission/images/10.png +0 -0
  408. brainscore_vision/model_helpers/check_submission/images/11.png +0 -0
  409. brainscore_vision/model_helpers/check_submission/images/12.png +0 -0
  410. brainscore_vision/model_helpers/check_submission/images/13.png +0 -0
  411. brainscore_vision/model_helpers/check_submission/images/14.png +0 -0
  412. brainscore_vision/model_helpers/check_submission/images/15.png +0 -0
  413. brainscore_vision/model_helpers/check_submission/images/16.png +0 -0
  414. brainscore_vision/model_helpers/check_submission/images/17.png +0 -0
  415. brainscore_vision/model_helpers/check_submission/images/18.png +0 -0
  416. brainscore_vision/model_helpers/check_submission/images/19.png +0 -0
  417. brainscore_vision/model_helpers/check_submission/images/2.png +0 -0
  418. brainscore_vision/model_helpers/check_submission/images/20.png +0 -0
  419. brainscore_vision/model_helpers/check_submission/images/3.png +0 -0
  420. brainscore_vision/model_helpers/check_submission/images/4.png +0 -0
  421. brainscore_vision/model_helpers/check_submission/images/5.png +0 -0
  422. brainscore_vision/model_helpers/check_submission/images/6.png +0 -0
  423. brainscore_vision/model_helpers/check_submission/images/7.png +0 -0
  424. brainscore_vision/model_helpers/check_submission/images/8.png +0 -0
  425. brainscore_vision/model_helpers/check_submission/images/9.png +0 -0
  426. brainscore_vision/model_helpers/conftest.py +3 -0
  427. brainscore_vision/model_helpers/generic_plugin_tests.py +119 -0
  428. brainscore_vision/model_helpers/s3.py +62 -0
  429. brainscore_vision/model_helpers/utils/__init__.py +15 -0
  430. brainscore_vision/model_helpers/utils/s3.py +42 -0
  431. brainscore_vision/model_interface.py +214 -0
  432. brainscore_vision/models/AdvProp_efficientne_b6/__init__.py +5 -0
  433. brainscore_vision/models/AdvProp_efficientne_b6/model.py +75 -0
  434. brainscore_vision/models/AdvProp_efficientne_b6/requirements.txt +1 -0
  435. brainscore_vision/models/AdvProp_efficientne_b6/test.py +9 -0
  436. brainscore_vision/models/AlexNet_SIN/__init__.py +8 -0
  437. brainscore_vision/models/AlexNet_SIN/model.py +29 -0
  438. brainscore_vision/models/AlexNet_SIN/requirements.txt +2 -0
  439. brainscore_vision/models/AlexNet_SIN/test.py +1 -0
  440. brainscore_vision/models/Soumyadeep_inf_1/__init__.py +5 -0
  441. brainscore_vision/models/Soumyadeep_inf_1/model.py +60 -0
  442. brainscore_vision/models/Soumyadeep_inf_1/setup.py +26 -0
  443. brainscore_vision/models/Soumyadeep_inf_1/test.py +1 -0
  444. brainscore_vision/models/ViT_L_32_imagenet1k/__init__.py +8 -0
  445. brainscore_vision/models/ViT_L_32_imagenet1k/model.py +43 -0
  446. brainscore_vision/models/ViT_L_32_imagenet1k/requirements.txt +4 -0
  447. brainscore_vision/models/ViT_L_32_imagenet1k/test.py +8 -0
  448. brainscore_vision/models/__init__.py +0 -0
  449. brainscore_vision/models/alexnet/__init__.py +8 -0
  450. brainscore_vision/models/alexnet/model.py +28 -0
  451. brainscore_vision/models/alexnet/requirements.txt +2 -0
  452. brainscore_vision/models/alexnet/test.py +15 -0
  453. brainscore_vision/models/alexnet_7be5be79/__init__.py +7 -0
  454. brainscore_vision/models/alexnet_7be5be79/model.py +44 -0
  455. brainscore_vision/models/alexnet_7be5be79/setup.py +26 -0
  456. brainscore_vision/models/alexnet_7be5be79/test.py +1 -0
  457. brainscore_vision/models/alexnet_7be5be79_convs/__init__.py +5 -0
  458. brainscore_vision/models/alexnet_7be5be79_convs/model.py +42 -0
  459. brainscore_vision/models/alexnet_7be5be79_convs/setup.py +25 -0
  460. brainscore_vision/models/alexnet_7be5be79_convs/test.py +1 -0
  461. brainscore_vision/models/alexnet_ks_torevert/__init__.py +8 -0
  462. brainscore_vision/models/alexnet_ks_torevert/model.py +28 -0
  463. brainscore_vision/models/alexnet_ks_torevert/requirements.txt +2 -0
  464. brainscore_vision/models/alexnet_ks_torevert/test.py +15 -0
  465. brainscore_vision/models/alexnet_simclr_run1/__init__.py +7 -0
  466. brainscore_vision/models/alexnet_simclr_run1/model.py +267 -0
  467. brainscore_vision/models/alexnet_simclr_run1/requirements.txt +2 -0
  468. brainscore_vision/models/alexnet_simclr_run1/test.py +1 -0
  469. brainscore_vision/models/alexnet_testing/__init__.py +8 -0
  470. brainscore_vision/models/alexnet_testing/model.py +28 -0
  471. brainscore_vision/models/alexnet_testing/requirements.txt +2 -0
  472. brainscore_vision/models/alexnet_testing/setup.py +24 -0
  473. brainscore_vision/models/alexnet_testing/test.py +15 -0
  474. brainscore_vision/models/antialias_resnet152/__init__.py +7 -0
  475. brainscore_vision/models/antialias_resnet152/model.py +35 -0
  476. brainscore_vision/models/antialias_resnet152/requirements.txt +3 -0
  477. brainscore_vision/models/antialias_resnet152/test.py +8 -0
  478. brainscore_vision/models/antialiased_rnext101_32x8d/__init__.py +7 -0
  479. brainscore_vision/models/antialiased_rnext101_32x8d/model.py +35 -0
  480. brainscore_vision/models/antialiased_rnext101_32x8d/requirements.txt +1 -0
  481. brainscore_vision/models/antialiased_rnext101_32x8d/test.py +8 -0
  482. brainscore_vision/models/bp_resnet50_julios/__init__.py +5 -0
  483. brainscore_vision/models/bp_resnet50_julios/model.py +52 -0
  484. brainscore_vision/models/bp_resnet50_julios/setup.py +24 -0
  485. brainscore_vision/models/bp_resnet50_julios/test.py +1 -0
  486. brainscore_vision/models/clip/__init__.py +5 -0
  487. brainscore_vision/models/clip/model.py +179 -0
  488. brainscore_vision/models/clip/requirements.txt +4 -0
  489. brainscore_vision/models/clip/test.py +1 -0
  490. brainscore_vision/models/clipvision/__init__.py +5 -0
  491. brainscore_vision/models/clipvision/model.py +179 -0
  492. brainscore_vision/models/clipvision/requirements.txt +4 -0
  493. brainscore_vision/models/clipvision/test.py +1 -0
  494. brainscore_vision/models/cornet_s/__init__.py +8 -0
  495. brainscore_vision/models/cornet_s/helpers/helpers.py +215 -0
  496. brainscore_vision/models/cornet_s/model.py +77 -0
  497. brainscore_vision/models/cornet_s/requirements.txt +7 -0
  498. brainscore_vision/models/cornet_s/test.py +8 -0
  499. brainscore_vision/models/cornet_s_ynshah/__init__.py +388 -0
  500. brainscore_vision/models/cornet_s_ynshah/model.py +192 -0
  501. brainscore_vision/models/cornet_s_ynshah/setup.py +24 -0
  502. brainscore_vision/models/cornet_s_ynshah/test.py +0 -0
  503. brainscore_vision/models/custom_model_cv_18_dagger_408/__init__.py +7 -0
  504. brainscore_vision/models/custom_model_cv_18_dagger_408/model.py +75 -0
  505. brainscore_vision/models/custom_model_cv_18_dagger_408/requirements.txt +4 -0
  506. brainscore_vision/models/custom_model_cv_18_dagger_408/test.py +8 -0
  507. brainscore_vision/models/cv_18_dagger_408_pretrained/__init__.py +8 -0
  508. brainscore_vision/models/cv_18_dagger_408_pretrained/model.py +57 -0
  509. brainscore_vision/models/cv_18_dagger_408_pretrained/requirements.txt +3 -0
  510. brainscore_vision/models/cv_18_dagger_408_pretrained/test.py +25 -0
  511. brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/__init__.py +9 -0
  512. brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/model.py +134 -0
  513. brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/requirements.txt +4 -0
  514. brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/test.py +8 -0
  515. brainscore_vision/models/dbp_resnet50_julios/__init__.py +5 -0
  516. brainscore_vision/models/dbp_resnet50_julios/model.py +52 -0
  517. brainscore_vision/models/dbp_resnet50_julios/setup.py +24 -0
  518. brainscore_vision/models/dbp_resnet50_julios/test.py +1 -0
  519. brainscore_vision/models/densenet_201_pytorch/__init__.py +7 -0
  520. brainscore_vision/models/densenet_201_pytorch/model.py +59 -0
  521. brainscore_vision/models/densenet_201_pytorch/requirements.txt +3 -0
  522. brainscore_vision/models/densenet_201_pytorch/test.py +8 -0
  523. brainscore_vision/models/eBarlow_Vanilla/__init__.py +9 -0
  524. brainscore_vision/models/eBarlow_Vanilla/model.py +50 -0
  525. brainscore_vision/models/eBarlow_Vanilla/requirements.txt +2 -0
  526. brainscore_vision/models/eBarlow_Vanilla/setup.py +24 -0
  527. brainscore_vision/models/eBarlow_Vanilla/test.py +1 -0
  528. brainscore_vision/models/eBarlow_Vanilla_1/__init__.py +9 -0
  529. brainscore_vision/models/eBarlow_Vanilla_1/model.py +64 -0
  530. brainscore_vision/models/eBarlow_Vanilla_1/setup.py +24 -0
  531. brainscore_vision/models/eBarlow_Vanilla_1/test.py +1 -0
  532. brainscore_vision/models/eBarlow_Vanilla_1_full/__init__.py +9 -0
  533. brainscore_vision/models/eBarlow_Vanilla_1_full/model.py +84 -0
  534. brainscore_vision/models/eBarlow_Vanilla_1_full/setup.py +25 -0
  535. brainscore_vision/models/eBarlow_Vanilla_1_full/test.py +1 -0
  536. brainscore_vision/models/eBarlow_Vanilla_2/__init__.py +9 -0
  537. brainscore_vision/models/eBarlow_Vanilla_2/model.py +64 -0
  538. brainscore_vision/models/eBarlow_Vanilla_2/setup.py +24 -0
  539. brainscore_vision/models/eBarlow_Vanilla_2/test.py +1 -0
  540. brainscore_vision/models/eBarlow_augself_linear_1/__init__.py +9 -0
  541. brainscore_vision/models/eBarlow_augself_linear_1/model.py +65 -0
  542. brainscore_vision/models/eBarlow_augself_linear_1/setup.py +24 -0
  543. brainscore_vision/models/eBarlow_augself_linear_1/test.py +1 -0
  544. brainscore_vision/models/eBarlow_augself_mlp_1/__init__.py +9 -0
  545. brainscore_vision/models/eBarlow_augself_mlp_1/model.py +65 -0
  546. brainscore_vision/models/eBarlow_augself_mlp_1/setup.py +24 -0
  547. brainscore_vision/models/eBarlow_augself_mlp_1/test.py +1 -0
  548. brainscore_vision/models/eBarlow_lmda_0001_1/__init__.py +9 -0
  549. brainscore_vision/models/eBarlow_lmda_0001_1/model.py +65 -0
  550. brainscore_vision/models/eBarlow_lmda_0001_1/setup.py +24 -0
  551. brainscore_vision/models/eBarlow_lmda_0001_1/test.py +1 -0
  552. brainscore_vision/models/eBarlow_lmda_001_1/__init__.py +9 -0
  553. brainscore_vision/models/eBarlow_lmda_001_1/model.py +65 -0
  554. brainscore_vision/models/eBarlow_lmda_001_1/setup.py +24 -0
  555. brainscore_vision/models/eBarlow_lmda_001_1/test.py +1 -0
  556. brainscore_vision/models/eBarlow_lmda_001_2/__init__.py +9 -0
  557. brainscore_vision/models/eBarlow_lmda_001_2/model.py +65 -0
  558. brainscore_vision/models/eBarlow_lmda_001_2/setup.py +24 -0
  559. brainscore_vision/models/eBarlow_lmda_001_2/test.py +1 -0
  560. brainscore_vision/models/eBarlow_lmda_001_3/__init__.py +9 -0
  561. brainscore_vision/models/eBarlow_lmda_001_3/model.py +65 -0
  562. brainscore_vision/models/eBarlow_lmda_001_3/setup.py +24 -0
  563. brainscore_vision/models/eBarlow_lmda_001_3/test.py +1 -0
  564. brainscore_vision/models/eBarlow_lmda_01/__init__.py +9 -0
  565. brainscore_vision/models/eBarlow_lmda_01/model.py +50 -0
  566. brainscore_vision/models/eBarlow_lmda_01/requirements.txt +2 -0
  567. brainscore_vision/models/eBarlow_lmda_01/setup.py +24 -0
  568. brainscore_vision/models/eBarlow_lmda_01/test.py +1 -0
  569. brainscore_vision/models/eBarlow_lmda_01_1/__init__.py +9 -0
  570. brainscore_vision/models/eBarlow_lmda_01_1/model.py +65 -0
  571. brainscore_vision/models/eBarlow_lmda_01_1/setup.py +24 -0
  572. brainscore_vision/models/eBarlow_lmda_01_1/test.py +1 -0
  573. brainscore_vision/models/eBarlow_lmda_01_2/__init__.py +9 -0
  574. brainscore_vision/models/eBarlow_lmda_01_2/model.py +65 -0
  575. brainscore_vision/models/eBarlow_lmda_01_2/setup.py +24 -0
  576. brainscore_vision/models/eBarlow_lmda_01_2/test.py +1 -0
  577. brainscore_vision/models/eBarlow_lmda_02_1/__init__.py +9 -0
  578. brainscore_vision/models/eBarlow_lmda_02_1/model.py +65 -0
  579. brainscore_vision/models/eBarlow_lmda_02_1/setup.py +24 -0
  580. brainscore_vision/models/eBarlow_lmda_02_1/test.py +1 -0
  581. brainscore_vision/models/eBarlow_lmda_02_1000ep/__init__.py +9 -0
  582. brainscore_vision/models/eBarlow_lmda_02_1000ep/model.py +84 -0
  583. brainscore_vision/models/eBarlow_lmda_02_1000ep/setup.py +25 -0
  584. brainscore_vision/models/eBarlow_lmda_02_1000ep/test.py +1 -0
  585. brainscore_vision/models/eBarlow_lmda_02_1_full/__init__.py +9 -0
  586. brainscore_vision/models/eBarlow_lmda_02_1_full/model.py +85 -0
  587. brainscore_vision/models/eBarlow_lmda_02_1_full/setup.py +25 -0
  588. brainscore_vision/models/eBarlow_lmda_02_1_full/test.py +1 -0
  589. brainscore_vision/models/eBarlow_lmda_02_200_full/__init__.py +9 -0
  590. brainscore_vision/models/eBarlow_lmda_02_200_full/model.py +85 -0
  591. brainscore_vision/models/eBarlow_lmda_02_200_full/setup.py +25 -0
  592. brainscore_vision/models/eBarlow_lmda_02_200_full/test.py +1 -0
  593. brainscore_vision/models/eBarlow_lmda_03_1/__init__.py +9 -0
  594. brainscore_vision/models/eBarlow_lmda_03_1/model.py +65 -0
  595. brainscore_vision/models/eBarlow_lmda_03_1/setup.py +24 -0
  596. brainscore_vision/models/eBarlow_lmda_03_1/test.py +1 -0
  597. brainscore_vision/models/eBarlow_lmda_04_1/__init__.py +9 -0
  598. brainscore_vision/models/eBarlow_lmda_04_1/model.py +65 -0
  599. brainscore_vision/models/eBarlow_lmda_04_1/setup.py +24 -0
  600. brainscore_vision/models/eBarlow_lmda_04_1/test.py +1 -0
  601. brainscore_vision/models/eBarlow_lmda_05_1/__init__.py +9 -0
  602. brainscore_vision/models/eBarlow_lmda_05_1/model.py +65 -0
  603. brainscore_vision/models/eBarlow_lmda_05_1/setup.py +24 -0
  604. brainscore_vision/models/eBarlow_lmda_05_1/test.py +1 -0
  605. brainscore_vision/models/eMMCR_Mom_Vanilla_1/__init__.py +9 -0
  606. brainscore_vision/models/eMMCR_Mom_Vanilla_1/model.py +64 -0
  607. brainscore_vision/models/eMMCR_Mom_Vanilla_1/setup.py +24 -0
  608. brainscore_vision/models/eMMCR_Mom_Vanilla_1/test.py +1 -0
  609. brainscore_vision/models/eMMCR_Mom_Vanilla_2/__init__.py +9 -0
  610. brainscore_vision/models/eMMCR_Mom_Vanilla_2/model.py +64 -0
  611. brainscore_vision/models/eMMCR_Mom_Vanilla_2/setup.py +24 -0
  612. brainscore_vision/models/eMMCR_Mom_Vanilla_2/test.py +1 -0
  613. brainscore_vision/models/eMMCR_Mom_lmda_0001_1/__init__.py +9 -0
  614. brainscore_vision/models/eMMCR_Mom_lmda_0001_1/model.py +65 -0
  615. brainscore_vision/models/eMMCR_Mom_lmda_0001_1/setup.py +24 -0
  616. brainscore_vision/models/eMMCR_Mom_lmda_0001_1/test.py +1 -0
  617. brainscore_vision/models/eMMCR_Mom_lmda_001_1/__init__.py +9 -0
  618. brainscore_vision/models/eMMCR_Mom_lmda_001_1/model.py +65 -0
  619. brainscore_vision/models/eMMCR_Mom_lmda_001_1/setup.py +24 -0
  620. brainscore_vision/models/eMMCR_Mom_lmda_001_1/test.py +1 -0
  621. brainscore_vision/models/eMMCR_Mom_lmda_01_1/__init__.py +9 -0
  622. brainscore_vision/models/eMMCR_Mom_lmda_01_1/model.py +65 -0
  623. brainscore_vision/models/eMMCR_Mom_lmda_01_1/setup.py +24 -0
  624. brainscore_vision/models/eMMCR_Mom_lmda_01_1/test.py +1 -0
  625. brainscore_vision/models/eMMCR_Mom_lmda_01_2/__init__.py +9 -0
  626. brainscore_vision/models/eMMCR_Mom_lmda_01_2/model.py +65 -0
  627. brainscore_vision/models/eMMCR_Mom_lmda_01_2/setup.py +24 -0
  628. brainscore_vision/models/eMMCR_Mom_lmda_01_2/test.py +1 -0
  629. brainscore_vision/models/eMMCR_Mom_lmda_02_1/__init__.py +9 -0
  630. brainscore_vision/models/eMMCR_Mom_lmda_02_1/model.py +65 -0
  631. brainscore_vision/models/eMMCR_Mom_lmda_02_1/setup.py +24 -0
  632. brainscore_vision/models/eMMCR_Mom_lmda_02_1/test.py +1 -0
  633. brainscore_vision/models/eMMCR_Mom_lmda_03_1/__init__.py +9 -0
  634. brainscore_vision/models/eMMCR_Mom_lmda_03_1/model.py +65 -0
  635. brainscore_vision/models/eMMCR_Mom_lmda_03_1/setup.py +24 -0
  636. brainscore_vision/models/eMMCR_Mom_lmda_03_1/test.py +1 -0
  637. brainscore_vision/models/eMMCR_Mom_lmda_04_1/__init__.py +9 -0
  638. brainscore_vision/models/eMMCR_Mom_lmda_04_1/model.py +65 -0
  639. brainscore_vision/models/eMMCR_Mom_lmda_04_1/setup.py +24 -0
  640. brainscore_vision/models/eMMCR_Mom_lmda_04_1/test.py +1 -0
  641. brainscore_vision/models/eMMCR_Mom_lmda_05_1/__init__.py +9 -0
  642. brainscore_vision/models/eMMCR_Mom_lmda_05_1/model.py +65 -0
  643. brainscore_vision/models/eMMCR_Mom_lmda_05_1/setup.py +24 -0
  644. brainscore_vision/models/eMMCR_Mom_lmda_05_1/test.py +1 -0
  645. brainscore_vision/models/eMMCR_Vanilla/__init__.py +9 -0
  646. brainscore_vision/models/eMMCR_Vanilla/model.py +50 -0
  647. brainscore_vision/models/eMMCR_Vanilla/setup.py +24 -0
  648. brainscore_vision/models/eMMCR_Vanilla/test.py +1 -0
  649. brainscore_vision/models/eMMCR_VanillaV2/__init__.py +9 -0
  650. brainscore_vision/models/eMMCR_VanillaV2/model.py +50 -0
  651. brainscore_vision/models/eMMCR_VanillaV2/setup.py +24 -0
  652. brainscore_vision/models/eMMCR_VanillaV2/test.py +1 -0
  653. brainscore_vision/models/eMMCR_Vanilla_1/__init__.py +9 -0
  654. brainscore_vision/models/eMMCR_Vanilla_1/model.py +64 -0
  655. brainscore_vision/models/eMMCR_Vanilla_1/setup.py +24 -0
  656. brainscore_vision/models/eMMCR_Vanilla_1/test.py +1 -0
  657. brainscore_vision/models/eMMCR_Vanilla_2/__init__.py +9 -0
  658. brainscore_vision/models/eMMCR_Vanilla_2/model.py +64 -0
  659. brainscore_vision/models/eMMCR_Vanilla_2/setup.py +24 -0
  660. brainscore_vision/models/eMMCR_Vanilla_2/test.py +1 -0
  661. brainscore_vision/models/eMMCR_lmda_01/__init__.py +9 -0
  662. brainscore_vision/models/eMMCR_lmda_01/model.py +50 -0
  663. brainscore_vision/models/eMMCR_lmda_01/setup.py +24 -0
  664. brainscore_vision/models/eMMCR_lmda_01/test.py +1 -0
  665. brainscore_vision/models/eMMCR_lmda_01V2/__init__.py +9 -0
  666. brainscore_vision/models/eMMCR_lmda_01V2/model.py +50 -0
  667. brainscore_vision/models/eMMCR_lmda_01V2/requirements.txt +2 -0
  668. brainscore_vision/models/eMMCR_lmda_01V2/setup.py +24 -0
  669. brainscore_vision/models/eMMCR_lmda_01V2/test.py +1 -0
  670. brainscore_vision/models/eMMCR_lmda_01_1/__init__.py +9 -0
  671. brainscore_vision/models/eMMCR_lmda_01_1/model.py +65 -0
  672. brainscore_vision/models/eMMCR_lmda_01_1/setup.py +24 -0
  673. brainscore_vision/models/eMMCR_lmda_01_1/test.py +1 -0
  674. brainscore_vision/models/eMMCR_lmda_01_2/__init__.py +9 -0
  675. brainscore_vision/models/eMMCR_lmda_01_2/model.py +65 -0
  676. brainscore_vision/models/eMMCR_lmda_01_2/setup.py +24 -0
  677. brainscore_vision/models/eMMCR_lmda_01_2/test.py +1 -0
  678. brainscore_vision/models/eMMCR_lmda_01_3/__init__.py +9 -0
  679. brainscore_vision/models/eMMCR_lmda_01_3/model.py +65 -0
  680. brainscore_vision/models/eMMCR_lmda_01_3/setup.py +24 -0
  681. brainscore_vision/models/eMMCR_lmda_01_3/test.py +1 -0
  682. brainscore_vision/models/eSimCLR_Vanilla_1/__init__.py +9 -0
  683. brainscore_vision/models/eSimCLR_Vanilla_1/model.py +64 -0
  684. brainscore_vision/models/eSimCLR_Vanilla_1/setup.py +24 -0
  685. brainscore_vision/models/eSimCLR_Vanilla_1/test.py +1 -0
  686. brainscore_vision/models/eSimCLR_Vanilla_2/__init__.py +9 -0
  687. brainscore_vision/models/eSimCLR_Vanilla_2/model.py +64 -0
  688. brainscore_vision/models/eSimCLR_Vanilla_2/setup.py +24 -0
  689. brainscore_vision/models/eSimCLR_Vanilla_2/test.py +1 -0
  690. brainscore_vision/models/eSimCLR_lmda_0001_1/__init__.py +9 -0
  691. brainscore_vision/models/eSimCLR_lmda_0001_1/model.py +65 -0
  692. brainscore_vision/models/eSimCLR_lmda_0001_1/setup.py +24 -0
  693. brainscore_vision/models/eSimCLR_lmda_0001_1/test.py +1 -0
  694. brainscore_vision/models/eSimCLR_lmda_001_1/__init__.py +9 -0
  695. brainscore_vision/models/eSimCLR_lmda_001_1/model.py +65 -0
  696. brainscore_vision/models/eSimCLR_lmda_001_1/setup.py +24 -0
  697. brainscore_vision/models/eSimCLR_lmda_001_1/test.py +1 -0
  698. brainscore_vision/models/eSimCLR_lmda_01_1/__init__.py +9 -0
  699. brainscore_vision/models/eSimCLR_lmda_01_1/model.py +65 -0
  700. brainscore_vision/models/eSimCLR_lmda_01_1/setup.py +24 -0
  701. brainscore_vision/models/eSimCLR_lmda_01_1/test.py +1 -0
  702. brainscore_vision/models/eSimCLR_lmda_01_2/__init__.py +9 -0
  703. brainscore_vision/models/eSimCLR_lmda_01_2/model.py +65 -0
  704. brainscore_vision/models/eSimCLR_lmda_01_2/setup.py +24 -0
  705. brainscore_vision/models/eSimCLR_lmda_01_2/test.py +1 -0
  706. brainscore_vision/models/eSimCLR_lmda_02_1/__init__.py +9 -0
  707. brainscore_vision/models/eSimCLR_lmda_02_1/model.py +65 -0
  708. brainscore_vision/models/eSimCLR_lmda_02_1/setup.py +24 -0
  709. brainscore_vision/models/eSimCLR_lmda_02_1/test.py +1 -0
  710. brainscore_vision/models/eSimCLR_lmda_02_1_1/__init__.py +9 -0
  711. brainscore_vision/models/eSimCLR_lmda_02_1_1/model.py +65 -0
  712. brainscore_vision/models/eSimCLR_lmda_02_1_1/setup.py +24 -0
  713. brainscore_vision/models/eSimCLR_lmda_02_1_1/test.py +1 -0
  714. brainscore_vision/models/eSimCLR_lmda_03_1/__init__.py +9 -0
  715. brainscore_vision/models/eSimCLR_lmda_03_1/model.py +65 -0
  716. brainscore_vision/models/eSimCLR_lmda_03_1/setup.py +24 -0
  717. brainscore_vision/models/eSimCLR_lmda_03_1/test.py +1 -0
  718. brainscore_vision/models/eSimCLR_lmda_04_1/__init__.py +9 -0
  719. brainscore_vision/models/eSimCLR_lmda_04_1/model.py +65 -0
  720. brainscore_vision/models/eSimCLR_lmda_04_1/setup.py +24 -0
  721. brainscore_vision/models/eSimCLR_lmda_04_1/test.py +1 -0
  722. brainscore_vision/models/eSimCLR_lmda_04_1_1/__init__.py +9 -0
  723. brainscore_vision/models/eSimCLR_lmda_04_1_1/model.py +65 -0
  724. brainscore_vision/models/eSimCLR_lmda_04_1_1/setup.py +24 -0
  725. brainscore_vision/models/eSimCLR_lmda_04_1_1/test.py +1 -0
  726. brainscore_vision/models/eSimCLR_lmda_05_1/__init__.py +9 -0
  727. brainscore_vision/models/eSimCLR_lmda_05_1/model.py +65 -0
  728. brainscore_vision/models/eSimCLR_lmda_05_1/setup.py +24 -0
  729. brainscore_vision/models/eSimCLR_lmda_05_1/test.py +1 -0
  730. brainscore_vision/models/effnetb1_272x240/__init__.py +5 -0
  731. brainscore_vision/models/effnetb1_272x240/model.py +126 -0
  732. brainscore_vision/models/effnetb1_272x240/requirements.txt +3 -0
  733. brainscore_vision/models/effnetb1_272x240/test.py +9 -0
  734. brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/__init__.py +9 -0
  735. brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/model.py +111 -0
  736. brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/requirements.txt +6 -0
  737. brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/test.py +8 -0
  738. brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/__init__.py +5 -0
  739. brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/model.py +142 -0
  740. brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/requirements.txt +5 -0
  741. brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/test.py +8 -0
  742. brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/__init__.py +9 -0
  743. brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/model.py +140 -0
  744. brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/requirements.txt +5 -0
  745. brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/test.py +8 -0
  746. brainscore_vision/models/focalnet_tiny_in1k_submission/__init__.py +5 -0
  747. brainscore_vision/models/focalnet_tiny_in1k_submission/model.py +62 -0
  748. brainscore_vision/models/focalnet_tiny_in1k_submission/requirements.txt +3 -0
  749. brainscore_vision/models/focalnet_tiny_in1k_submission/test.py +8 -0
  750. brainscore_vision/models/hmax/__init__.py +7 -0
  751. brainscore_vision/models/hmax/helpers/hmax.py +438 -0
  752. brainscore_vision/models/hmax/helpers/pytorch.py +216 -0
  753. brainscore_vision/models/hmax/model.py +69 -0
  754. brainscore_vision/models/hmax/requirements.txt +5 -0
  755. brainscore_vision/models/hmax/test.py +8 -0
  756. brainscore_vision/models/inception_v3_pytorch/__init__.py +7 -0
  757. brainscore_vision/models/inception_v3_pytorch/model.py +68 -0
  758. brainscore_vision/models/inception_v3_pytorch/requirements.txt +3 -0
  759. brainscore_vision/models/inception_v3_pytorch/test.py +8 -0
  760. brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/__init__.py +7 -0
  761. brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/model.py +60 -0
  762. brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/requirements.txt +3 -0
  763. brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/test.py +8 -0
  764. brainscore_vision/models/mobilevit_small/__init__.py +7 -0
  765. brainscore_vision/models/mobilevit_small/model.py +49 -0
  766. brainscore_vision/models/mobilevit_small/requirements.txt +3 -0
  767. brainscore_vision/models/mobilevit_small/test.py +8 -0
  768. brainscore_vision/models/pixels/__init__.py +8 -0
  769. brainscore_vision/models/pixels/model.py +35 -0
  770. brainscore_vision/models/pixels/test.py +15 -0
  771. brainscore_vision/models/pnasnet_large_pytorch/__init__.py +7 -0
  772. brainscore_vision/models/pnasnet_large_pytorch/model.py +59 -0
  773. brainscore_vision/models/pnasnet_large_pytorch/requirements.txt +3 -0
  774. brainscore_vision/models/pnasnet_large_pytorch/test.py +8 -0
  775. brainscore_vision/models/r101_eBarlow_Vanilla_1/__init__.py +9 -0
  776. brainscore_vision/models/r101_eBarlow_Vanilla_1/model.py +64 -0
  777. brainscore_vision/models/r101_eBarlow_Vanilla_1/setup.py +25 -0
  778. brainscore_vision/models/r101_eBarlow_Vanilla_1/test.py +1 -0
  779. brainscore_vision/models/r101_eBarlow_lmda_01_1/__init__.py +9 -0
  780. brainscore_vision/models/r101_eBarlow_lmda_01_1/model.py +65 -0
  781. brainscore_vision/models/r101_eBarlow_lmda_01_1/setup.py +25 -0
  782. brainscore_vision/models/r101_eBarlow_lmda_01_1/test.py +1 -0
  783. brainscore_vision/models/r101_eBarlow_lmda_02_1/__init__.py +9 -0
  784. brainscore_vision/models/r101_eBarlow_lmda_02_1/model.py +65 -0
  785. brainscore_vision/models/r101_eBarlow_lmda_02_1/setup.py +25 -0
  786. brainscore_vision/models/r101_eBarlow_lmda_02_1/test.py +1 -0
  787. brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/__init__.py +9 -0
  788. brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/model.py +67 -0
  789. brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/setup.py +25 -0
  790. brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/test.py +1 -0
  791. brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/__init__.py +9 -0
  792. brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/model.py +66 -0
  793. brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/setup.py +25 -0
  794. brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/test.py +1 -0
  795. brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/__init__.py +9 -0
  796. brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/model.py +66 -0
  797. brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/setup.py +25 -0
  798. brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/test.py +1 -0
  799. brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/__init__.py +9 -0
  800. brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/model.py +66 -0
  801. brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/setup.py +25 -0
  802. brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/test.py +1 -0
  803. brainscore_vision/models/r50_tvpt/__init__.py +9 -0
  804. brainscore_vision/models/r50_tvpt/model.py +47 -0
  805. brainscore_vision/models/r50_tvpt/setup.py +24 -0
  806. brainscore_vision/models/r50_tvpt/test.py +1 -0
  807. brainscore_vision/models/regnet/__init__.py +14 -0
  808. brainscore_vision/models/regnet/model.py +17 -0
  809. brainscore_vision/models/regnet/requirements.txt +2 -0
  810. brainscore_vision/models/regnet/test.py +17 -0
  811. brainscore_vision/models/resnet18_imagenet21kP/__init__.py +6 -0
  812. brainscore_vision/models/resnet18_imagenet21kP/model.py +119 -0
  813. brainscore_vision/models/resnet18_imagenet21kP/setup.py +18 -0
  814. brainscore_vision/models/resnet18_imagenet21kP/test.py +0 -0
  815. brainscore_vision/models/resnet50_eMMCR_Vanilla/__init__.py +5 -0
  816. brainscore_vision/models/resnet50_eMMCR_Vanilla/model.py +59 -0
  817. brainscore_vision/models/resnet50_eMMCR_Vanilla/setup.py +24 -0
  818. brainscore_vision/models/resnet50_eMMCR_Vanilla/test.py +1 -0
  819. brainscore_vision/models/resnet50_eMMCR_VanillaV2/__init__.py +9 -0
  820. brainscore_vision/models/resnet50_eMMCR_VanillaV2/model.py +72 -0
  821. brainscore_vision/models/resnet50_eMMCR_VanillaV2/setup.py +24 -0
  822. brainscore_vision/models/resnet50_eMMCR_VanillaV2/test.py +1 -0
  823. brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/__init__.py +9 -0
  824. brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/model.py +72 -0
  825. brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/setup.py +24 -0
  826. brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/test.py +1 -0
  827. brainscore_vision/models/resnet50_julios/__init__.py +5 -0
  828. brainscore_vision/models/resnet50_julios/model.py +54 -0
  829. brainscore_vision/models/resnet50_julios/setup.py +24 -0
  830. brainscore_vision/models/resnet50_julios/test.py +1 -0
  831. brainscore_vision/models/resnet50_tutorial/__init__.py +5 -0
  832. brainscore_vision/models/resnet50_tutorial/model.py +34 -0
  833. brainscore_vision/models/resnet50_tutorial/requirements.txt +2 -0
  834. brainscore_vision/models/resnet50_tutorial/test.py +8 -0
  835. brainscore_vision/models/resnet_152_v2_pytorch/__init__.py +7 -0
  836. brainscore_vision/models/resnet_152_v2_pytorch/model.py +59 -0
  837. brainscore_vision/models/resnet_152_v2_pytorch/requirements.txt +2 -0
  838. brainscore_vision/models/resnet_152_v2_pytorch/test.py +8 -0
  839. brainscore_vision/models/resnet_50_robust/__init__.py +7 -0
  840. brainscore_vision/models/resnet_50_robust/model.py +55 -0
  841. brainscore_vision/models/resnet_50_robust/requirements.txt +3 -0
  842. brainscore_vision/models/resnet_50_robust/test.py +8 -0
  843. brainscore_vision/models/resnext101_32x16d_wsl/__init__.py +7 -0
  844. brainscore_vision/models/resnext101_32x16d_wsl/model.py +38 -0
  845. brainscore_vision/models/resnext101_32x16d_wsl/requirements.txt +2 -0
  846. brainscore_vision/models/resnext101_32x16d_wsl/test.py +8 -0
  847. brainscore_vision/models/resnext101_32x32d_wsl/__init__.py +7 -0
  848. brainscore_vision/models/resnext101_32x32d_wsl/model.py +40 -0
  849. brainscore_vision/models/resnext101_32x32d_wsl/requirements.txt +2 -0
  850. brainscore_vision/models/resnext101_32x32d_wsl/test.py +8 -0
  851. brainscore_vision/models/resnext101_32x48d_wsl/__init__.py +7 -0
  852. brainscore_vision/models/resnext101_32x48d_wsl/model.py +38 -0
  853. brainscore_vision/models/resnext101_32x48d_wsl/requirements.txt +3 -0
  854. brainscore_vision/models/resnext101_32x48d_wsl/test.py +8 -0
  855. brainscore_vision/models/resnext101_32x8d_wsl/__init__.py +7 -0
  856. brainscore_vision/models/resnext101_32x8d_wsl/model.py +44 -0
  857. brainscore_vision/models/resnext101_32x8d_wsl/requirements.txt +2 -0
  858. brainscore_vision/models/resnext101_32x8d_wsl/test.py +8 -0
  859. brainscore_vision/models/temporal_model_AVID_CMA/__init__.py +17 -0
  860. brainscore_vision/models/temporal_model_AVID_CMA/model.py +92 -0
  861. brainscore_vision/models/temporal_model_AVID_CMA/requirements.txt +3 -0
  862. brainscore_vision/models/temporal_model_AVID_CMA/test.py +18 -0
  863. brainscore_vision/models/temporal_model_GDT/__init__.py +16 -0
  864. brainscore_vision/models/temporal_model_GDT/model.py +72 -0
  865. brainscore_vision/models/temporal_model_GDT/requirements.txt +3 -0
  866. brainscore_vision/models/temporal_model_GDT/test.py +17 -0
  867. brainscore_vision/models/temporal_model_S3D_text_video/__init__.py +14 -0
  868. brainscore_vision/models/temporal_model_S3D_text_video/model.py +65 -0
  869. brainscore_vision/models/temporal_model_S3D_text_video/requirements.txt +1 -0
  870. brainscore_vision/models/temporal_model_S3D_text_video/test.py +15 -0
  871. brainscore_vision/models/temporal_model_SeLaVi/__init__.py +17 -0
  872. brainscore_vision/models/temporal_model_SeLaVi/model.py +68 -0
  873. brainscore_vision/models/temporal_model_SeLaVi/requirements.txt +3 -0
  874. brainscore_vision/models/temporal_model_SeLaVi/test.py +18 -0
  875. brainscore_vision/models/temporal_model_VideoMAE/__init__.py +15 -0
  876. brainscore_vision/models/temporal_model_VideoMAE/model.py +100 -0
  877. brainscore_vision/models/temporal_model_VideoMAE/requirements.txt +6 -0
  878. brainscore_vision/models/temporal_model_VideoMAE/test.py +16 -0
  879. brainscore_vision/models/temporal_model_VideoMAEv2/__init__.py +14 -0
  880. brainscore_vision/models/temporal_model_VideoMAEv2/model.py +109 -0
  881. brainscore_vision/models/temporal_model_VideoMAEv2/requirements.txt +4 -0
  882. brainscore_vision/models/temporal_model_VideoMAEv2/test.py +16 -0
  883. brainscore_vision/models/temporal_model_mae_st/__init__.py +15 -0
  884. brainscore_vision/models/temporal_model_mae_st/model.py +120 -0
  885. brainscore_vision/models/temporal_model_mae_st/requirements.txt +3 -0
  886. brainscore_vision/models/temporal_model_mae_st/test.py +16 -0
  887. brainscore_vision/models/temporal_model_mmaction2/__init__.py +23 -0
  888. brainscore_vision/models/temporal_model_mmaction2/mmaction2.csv +24 -0
  889. brainscore_vision/models/temporal_model_mmaction2/model.py +226 -0
  890. brainscore_vision/models/temporal_model_mmaction2/requirements.txt +5 -0
  891. brainscore_vision/models/temporal_model_mmaction2/test.py +24 -0
  892. brainscore_vision/models/temporal_model_openstl/__init__.py +18 -0
  893. brainscore_vision/models/temporal_model_openstl/model.py +206 -0
  894. brainscore_vision/models/temporal_model_openstl/requirements.txt +3 -0
  895. brainscore_vision/models/temporal_model_openstl/test.py +19 -0
  896. brainscore_vision/models/temporal_model_torchvision/__init__.py +19 -0
  897. brainscore_vision/models/temporal_model_torchvision/model.py +92 -0
  898. brainscore_vision/models/temporal_model_torchvision/requirements.txt +2 -0
  899. brainscore_vision/models/temporal_model_torchvision/test.py +20 -0
  900. brainscore_vision/models/tv_efficientnet_b1/__init__.py +5 -0
  901. brainscore_vision/models/tv_efficientnet_b1/model.py +54 -0
  902. brainscore_vision/models/tv_efficientnet_b1/setup.py +24 -0
  903. brainscore_vision/models/tv_efficientnet_b1/test.py +1 -0
  904. brainscore_vision/models/voneresnet_50_non_stochastic/__init__.py +7 -0
  905. brainscore_vision/models/voneresnet_50_non_stochastic/model.py +104 -0
  906. brainscore_vision/models/voneresnet_50_non_stochastic/requirements.txt +8 -0
  907. brainscore_vision/models/voneresnet_50_non_stochastic/test.py +8 -0
  908. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/LICENSE +674 -0
  909. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/README.md +105 -0
  910. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/run.py +136 -0
  911. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/setup.py +41 -0
  912. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/train.py +383 -0
  913. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/__init__.py +71 -0
  914. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/back_ends.py +337 -0
  915. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/modules.py +126 -0
  916. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/params.py +100 -0
  917. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/utils.py +32 -0
  918. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/vonenet.py +68 -0
  919. brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet_tutorial-activations.ipynb +352 -0
  920. brainscore_vision/models/yudixie_resnet18_240719_0/__init__.py +11 -0
  921. brainscore_vision/models/yudixie_resnet18_240719_0/model.py +60 -0
  922. brainscore_vision/models/yudixie_resnet18_240719_0/setup.py +25 -0
  923. brainscore_vision/models/yudixie_resnet18_240719_0/test.py +1 -0
  924. brainscore_vision/models/yudixie_resnet18_240719_1/__init__.py +11 -0
  925. brainscore_vision/models/yudixie_resnet18_240719_1/model.py +60 -0
  926. brainscore_vision/models/yudixie_resnet18_240719_1/setup.py +25 -0
  927. brainscore_vision/models/yudixie_resnet18_240719_1/test.py +1 -0
  928. brainscore_vision/models/yudixie_resnet18_240719_10/__init__.py +11 -0
  929. brainscore_vision/models/yudixie_resnet18_240719_10/model.py +60 -0
  930. brainscore_vision/models/yudixie_resnet18_240719_10/setup.py +25 -0
  931. brainscore_vision/models/yudixie_resnet18_240719_10/test.py +1 -0
  932. brainscore_vision/models/yudixie_resnet18_240719_2/__init__.py +11 -0
  933. brainscore_vision/models/yudixie_resnet18_240719_2/model.py +60 -0
  934. brainscore_vision/models/yudixie_resnet18_240719_2/setup.py +25 -0
  935. brainscore_vision/models/yudixie_resnet18_240719_2/test.py +1 -0
  936. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/__init__.py +7 -0
  937. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/model.py +66 -0
  938. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/setup.py +24 -0
  939. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/test.py +1 -0
  940. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/__init__.py +7 -0
  941. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/model.py +68 -0
  942. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/setup.py +24 -0
  943. brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/test.py +1 -0
  944. brainscore_vision/submission/__init__.py +0 -0
  945. brainscore_vision/submission/actions_helpers.py +153 -0
  946. brainscore_vision/submission/config.py +7 -0
  947. brainscore_vision/submission/endpoints.py +58 -0
  948. brainscore_vision/utils/__init__.py +91 -0
  949. brainscore_vision-2.1.dist-info/LICENSE +11 -0
  950. brainscore_vision-2.1.dist-info/METADATA +152 -0
  951. brainscore_vision-2.1.dist-info/RECORD +1009 -0
  952. brainscore_vision-2.1.dist-info/WHEEL +5 -0
  953. brainscore_vision-2.1.dist-info/top_level.txt +4 -0
  954. docs/Makefile +20 -0
  955. docs/source/conf.py +78 -0
  956. docs/source/index.rst +21 -0
  957. docs/source/modules/api_reference.rst +10 -0
  958. docs/source/modules/benchmarks.rst +8 -0
  959. docs/source/modules/brainscore_submission.png +0 -0
  960. docs/source/modules/developer_clarifications.rst +36 -0
  961. docs/source/modules/metrics.rst +8 -0
  962. docs/source/modules/model_interface.rst +8 -0
  963. docs/source/modules/submission.rst +112 -0
  964. docs/source/modules/tutorial_screenshots/brain-score_logo.png +0 -0
  965. docs/source/modules/tutorial_screenshots/final_submit.png +0 -0
  966. docs/source/modules/tutorial_screenshots/init_py.png +0 -0
  967. docs/source/modules/tutorial_screenshots/mms.png +0 -0
  968. docs/source/modules/tutorial_screenshots/setup.png +0 -0
  969. docs/source/modules/tutorial_screenshots/sms.png +0 -0
  970. docs/source/modules/tutorial_screenshots/subfolders.png +0 -0
  971. docs/source/modules/utils.rst +22 -0
  972. migrations/2020-12-20_pkl_to_nc.py +90 -0
  973. tests/__init__.py +6 -0
  974. tests/conftest.py +26 -0
  975. tests/test_benchmark_helpers/__init__.py +0 -0
  976. tests/test_benchmark_helpers/test_screen.py +75 -0
  977. tests/test_examples.py +41 -0
  978. tests/test_integration.py +43 -0
  979. tests/test_metric_helpers/__init__.py +0 -0
  980. tests/test_metric_helpers/test_temporal.py +80 -0
  981. tests/test_metric_helpers/test_transformations.py +171 -0
  982. tests/test_metric_helpers/test_xarray_utils.py +85 -0
  983. tests/test_model_helpers/__init__.py +6 -0
  984. tests/test_model_helpers/activations/__init__.py +0 -0
  985. tests/test_model_helpers/activations/test___init__.py +404 -0
  986. tests/test_model_helpers/brain_transformation/__init__.py +0 -0
  987. tests/test_model_helpers/brain_transformation/test___init__.py +18 -0
  988. tests/test_model_helpers/brain_transformation/test_behavior.py +181 -0
  989. tests/test_model_helpers/brain_transformation/test_neural.py +70 -0
  990. tests/test_model_helpers/brain_transformation/test_temporal.py +66 -0
  991. tests/test_model_helpers/temporal/__init__.py +0 -0
  992. tests/test_model_helpers/temporal/activations/__init__.py +0 -0
  993. tests/test_model_helpers/temporal/activations/test_extractor.py +96 -0
  994. tests/test_model_helpers/temporal/activations/test_inferencer.py +189 -0
  995. tests/test_model_helpers/temporal/activations/test_inputs.py +103 -0
  996. tests/test_model_helpers/temporal/brain_transformation/__init__.py +0 -0
  997. tests/test_model_helpers/temporal/brain_transformation/test_temporal_ops.py +122 -0
  998. tests/test_model_helpers/temporal/test_utils.py +61 -0
  999. tests/test_model_helpers/test_generic_plugin_tests.py +310 -0
  1000. tests/test_model_helpers/test_imports.py +10 -0
  1001. tests/test_model_helpers/test_s3.py +38 -0
  1002. tests/test_models.py +15 -0
  1003. tests/test_stimuli.py +0 -0
  1004. tests/test_submission/__init__.py +0 -0
  1005. tests/test_submission/mock_config.py +3 -0
  1006. tests/test_submission/test_actions_helpers.py +67 -0
  1007. tests/test_submission/test_db.py +54 -0
  1008. tests/test_submission/test_endpoints.py +125 -0
  1009. tests/test_utils.py +21 -0
@@ -0,0 +1,410 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "## DATA EXPLORATION NOTEBOOK\n",
8
+ "\n",
9
+ "This notebook is used to explore the data and to get a better understanding of the two monkeys neural recording and stimulus set.\n",
10
+ "\n",
11
+ "The outline of this notebook is as follows:\n",
12
+ "\n",
13
+ "1. Load Oleo and Pico data\n",
14
+ "2. Explore STIMULUS SETS"
15
+ ]
16
+ },
17
+ {
18
+ "cell_type": "code",
19
+ "execution_count": 1,
20
+ "metadata": {},
21
+ "outputs": [
22
+ {
23
+ "name": "stderr",
24
+ "output_type": "stream",
25
+ "text": [
26
+ "/Users/ernestobocini/miniconda3/envs/brainscore/lib/python3.8/site-packages/brainscore/metrics/__init__.py:37: FutureWarning: xarray subclass Score should explicitly define __slots__\n",
27
+ " class Score(DataAssembly):\n"
28
+ ]
29
+ }
30
+ ],
31
+ "source": [
32
+ "# import libraries\n",
33
+ "\n",
34
+ "# general\n",
35
+ "import numpy as np\n",
36
+ "import pandas as pd\n",
37
+ "import matplotlib.pyplot as plt\n",
38
+ "from PIL import Image\n",
39
+ "import os\n",
40
+ "import matplotlib.pyplot as plt\n",
41
+ "\n",
42
+ "\n",
43
+ "# brain-score specific\n",
44
+ "import brainscore\n",
45
+ "import brainio \n",
46
+ "from brainscore.benchmarks._neural_common import average_repetition\n",
47
+ "from brainio.assemblies import NeuroidAssembly\n",
48
+ "\n",
49
+ "from brainio.packaging import write_netcdf"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "markdown",
54
+ "metadata": {},
55
+ "source": [
56
+ "## 1. Load Oleo and Pico data"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "markdown",
61
+ "metadata": {},
62
+ "source": [
63
+ "### 1.1 Load Oleo's DATA"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "code",
68
+ "execution_count": 2,
69
+ "metadata": {},
70
+ "outputs": [
71
+ {
72
+ "name": "stdout",
73
+ "output_type": "stream",
74
+ "text": [
75
+ "Loading catalog from entrypoints\n",
76
+ "Loading lookup from /Users/ernestobocini/miniconda3/envs/brainscore/lib/python3.8/site-packages/brainscore/lookup.csv\n"
77
+ ]
78
+ }
79
+ ],
80
+ "source": [
81
+ "# oleo is already on S3\n",
82
+ "\n",
83
+ "# data assembly\n",
84
+ "assembly_oleo = brainscore.get_assembly('dicarlo.Sanghavi2021.domain_transfer')\n",
85
+ "\n",
86
+ "# stimulus set\n",
87
+ "oleo_stim_set = assembly_oleo.attrs['stimulus_set']"
88
+ ]
89
+ },
90
+ {
91
+ "cell_type": "markdown",
92
+ "metadata": {},
93
+ "source": [
94
+ "### 1.2 Load Pico's DATA"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 3,
100
+ "metadata": {},
101
+ "outputs": [],
102
+ "source": [
103
+ "# pico is not on S3 yet, we load it from local \n",
104
+ "\n",
105
+ "# data assembly\n",
106
+ "file_path = './dependencies/data_pico/assy_dicarlo_pico_domain_transfer.nc'\n",
107
+ "assembly_pico = brainio.assemblies.DataAssembly.from_files(file_path)\n",
108
+ "\n",
109
+ "# stimulus set\n",
110
+ "csv_path = './dependencies/data_pico/stimulus_dicarlo_domain_transfer.csv'\n",
111
+ "imgs_dir_path = './images'\n",
112
+ "pico_stim_set = pd.read_csv(csv_path)\n"
113
+ ]
114
+ },
115
+ {
116
+ "cell_type": "markdown",
117
+ "metadata": {},
118
+ "source": [
119
+ "## 2. Explore STIMULUS SETS"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "code",
124
+ "execution_count": 4,
125
+ "metadata": {},
126
+ "outputs": [
127
+ {
128
+ "data": {
129
+ "text/plain": [
130
+ "((3138, 8), (3138, 8))"
131
+ ]
132
+ },
133
+ "execution_count": 4,
134
+ "metadata": {},
135
+ "output_type": "execute_result"
136
+ }
137
+ ],
138
+ "source": [
139
+ "oleo_stim_set.shape, pico_stim_set.shape"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": 5,
145
+ "metadata": {},
146
+ "outputs": [
147
+ {
148
+ "name": "stdout",
149
+ "output_type": "stream",
150
+ "text": [
151
+ "{'stimulus_source', 'image_id'}\n",
152
+ "{'image_current_local_file_path', 'identifier'}\n"
153
+ ]
154
+ }
155
+ ],
156
+ "source": [
157
+ "print(set(oleo_stim_set.columns) - set(pico_stim_set.columns))\n",
158
+ "print(set(pico_stim_set.columns) - set(oleo_stim_set.columns))"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": 6,
164
+ "metadata": {},
165
+ "outputs": [],
166
+ "source": [
167
+ "np.all(oleo_stim_set.stimulus_source == pico_stim_set.identifier)\n",
168
+ "\n",
169
+ "# the goal is to have the same shared timulus set. To do so, we can rename the \n",
170
+ "# identifier column in the pico stimulus set to stimulus_source, since it is exactly the same\n",
171
+ "# as the stimulus_source column in the oleo stimulus set:\n",
172
+ "# we can then drop the image_current_local_file_path, since it is of no use, and keep the\n",
173
+ "# image_id column from oleo\n",
174
+ "\n",
175
+ "shared_stim_set = oleo_stim_set\n",
176
+ "\n",
177
+ "del oleo_stim_set, pico_stim_set"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": 7,
183
+ "metadata": {},
184
+ "outputs": [
185
+ {
186
+ "data": {
187
+ "text/html": [
188
+ "<div>\n",
189
+ "<style scoped>\n",
190
+ " .dataframe tbody tr th:only-of-type {\n",
191
+ " vertical-align: middle;\n",
192
+ " }\n",
193
+ "\n",
194
+ " .dataframe tbody tr th {\n",
195
+ " vertical-align: top;\n",
196
+ " }\n",
197
+ "\n",
198
+ " .dataframe thead th {\n",
199
+ " text-align: right;\n",
200
+ " }\n",
201
+ "</style>\n",
202
+ "<table border=\"1\" class=\"dataframe\">\n",
203
+ " <thead>\n",
204
+ " <tr style=\"text-align: right;\">\n",
205
+ " <th></th>\n",
206
+ " <th>filepath</th>\n",
207
+ " <th>object_label</th>\n",
208
+ " <th>image_file_name</th>\n",
209
+ " <th>object_style</th>\n",
210
+ " <th>stimulus_source</th>\n",
211
+ " <th>filename</th>\n",
212
+ " <th>image_id</th>\n",
213
+ " <th>stimulus_id</th>\n",
214
+ " </tr>\n",
215
+ " </thead>\n",
216
+ " <tbody>\n",
217
+ " <tr>\n",
218
+ " <th>0</th>\n",
219
+ " <td>from_ko/04-art-4/im60.png</td>\n",
220
+ " <td>apple</td>\n",
221
+ " <td>im0.png</td>\n",
222
+ " <td>cartoon</td>\n",
223
+ " <td>Art</td>\n",
224
+ " <td>b0f59906243e042456b315475f987291aa665774.png</td>\n",
225
+ " <td>b0f59906243e042456b315475f987291aa665774</td>\n",
226
+ " <td>b0f59906243e042456b315475f987291aa665774</td>\n",
227
+ " </tr>\n",
228
+ " <tr>\n",
229
+ " <th>1</th>\n",
230
+ " <td>from_ko/04-art-0/im61.png</td>\n",
231
+ " <td>apple</td>\n",
232
+ " <td>im1.png</td>\n",
233
+ " <td>cartoon</td>\n",
234
+ " <td>Art</td>\n",
235
+ " <td>7ab65cd6d6b0b8399d070a541a0234c8836e1e8b.png</td>\n",
236
+ " <td>7ab65cd6d6b0b8399d070a541a0234c8836e1e8b</td>\n",
237
+ " <td>7ab65cd6d6b0b8399d070a541a0234c8836e1e8b</td>\n",
238
+ " </tr>\n",
239
+ " <tr>\n",
240
+ " <th>2</th>\n",
241
+ " <td>from_ko/04-art-3/im50.png</td>\n",
242
+ " <td>apple</td>\n",
243
+ " <td>im2.png</td>\n",
244
+ " <td>cartoon</td>\n",
245
+ " <td>Art</td>\n",
246
+ " <td>9ac7accbe9bdb749efd9604c16cfe52015c976d6.png</td>\n",
247
+ " <td>9ac7accbe9bdb749efd9604c16cfe52015c976d6</td>\n",
248
+ " <td>9ac7accbe9bdb749efd9604c16cfe52015c976d6</td>\n",
249
+ " </tr>\n",
250
+ " </tbody>\n",
251
+ "</table>\n",
252
+ "</div>"
253
+ ],
254
+ "text/plain": [
255
+ " filepath object_label image_file_name object_style \\\n",
256
+ "0 from_ko/04-art-4/im60.png apple im0.png cartoon \n",
257
+ "1 from_ko/04-art-0/im61.png apple im1.png cartoon \n",
258
+ "2 from_ko/04-art-3/im50.png apple im2.png cartoon \n",
259
+ "\n",
260
+ " stimulus_source filename \\\n",
261
+ "0 Art b0f59906243e042456b315475f987291aa665774.png \n",
262
+ "1 Art 7ab65cd6d6b0b8399d070a541a0234c8836e1e8b.png \n",
263
+ "2 Art 9ac7accbe9bdb749efd9604c16cfe52015c976d6.png \n",
264
+ "\n",
265
+ " image_id \\\n",
266
+ "0 b0f59906243e042456b315475f987291aa665774 \n",
267
+ "1 7ab65cd6d6b0b8399d070a541a0234c8836e1e8b \n",
268
+ "2 9ac7accbe9bdb749efd9604c16cfe52015c976d6 \n",
269
+ "\n",
270
+ " stimulus_id \n",
271
+ "0 b0f59906243e042456b315475f987291aa665774 \n",
272
+ "1 7ab65cd6d6b0b8399d070a541a0234c8836e1e8b \n",
273
+ "2 9ac7accbe9bdb749efd9604c16cfe52015c976d6 "
274
+ ]
275
+ },
276
+ "execution_count": 7,
277
+ "metadata": {},
278
+ "output_type": "execute_result"
279
+ }
280
+ ],
281
+ "source": [
282
+ "shared_stim_set.head(3)"
283
+ ]
284
+ },
285
+ {
286
+ "cell_type": "code",
287
+ "execution_count": 8,
288
+ "metadata": {},
289
+ "outputs": [
290
+ {
291
+ "data": {
292
+ "text/plain": [
293
+ "Text(0.5, 1.0, 'Number of images per object label')"
294
+ ]
295
+ },
296
+ "execution_count": 8,
297
+ "metadata": {},
298
+ "output_type": "execute_result"
299
+ },
300
+ {
301
+ "data": {
302
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIDCAYAAAAOgy/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABg90lEQVR4nO3deVhU5f//8deoLC6IIrIpIm6ZqbjlQuW+5m5lZeVan8oV98xUNBUzl1zKMs0tTcu0skxFRcut3LfUXMClQE3cQESB8/ujn/NtBIxj4Az4fFzXXBdzn3vOvM8RcF7c59y3xTAMQwAAAACADMtl7wIAAAAAILshSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgByFHmz58vi8UiV1dXnT59OtX2+vXrq2LFinaoTNq0aZMsFouWL19ul/c3KyoqSi1btpSHh4csFotCQkLS7VuyZEl17dr1gdWG/65kyZJq1arVv/aLioqSxWLR/Pnzs6SOGzduKDQ0VJs2bcpQ//9ST1b8DN7ZZ0brB5Bz5LF3AQCQFRITE/XOO+9o0aJF9i4l2+rfv79++eUXffbZZ/Lx8ZGvr2+6fVeuXKmCBQs+wOrwoPj6+mr79u0qXbp0luz/xo0bGj16tKS//9ABANkFQQpAjtS8eXMtWbJEgwYNUlBQkL3LeaASEhLk6uoqi8Xyn/Zz6NAh1axZU+3atfvXvlWrVv1P74WMS05OVlJSklxcXB7I+7m4uKh27doP5L0AIDvh0j4AOdKQIUNUpEgRDR069J797nWZkMViUWhoqPV5aGioLBaLDhw4oOeee07u7u7y8PDQgAEDlJSUpGPHjql58+Zyc3NTyZIlNXHixDTf8+bNmxowYIB8fHyUN29e1atXT3v37k3Vb9euXWrTpo08PDzk6uqqqlWr6ssvv7Tpc+dSxnXr1ql79+4qWrSo8uXLp8TExHSP+cyZM3r55Zfl5eUlFxcXPfroo5o8ebJSUlIk/d+lSidOnNCPP/4oi8Uii8WiqKiodPd596V9d/axZMkSDR06VL6+vipQoIBat26t8+fP6/r16/rf//4nT09PeXp6qlu3boqLi7PZ54cffqi6devKy8tL+fPnV6VKlTRx4kTdvn3bpp9hGBo/frwCAgLk6uqqGjVqKDw8XPXr1081wnHt2jUNGjRIgYGBcnZ2VrFixRQSEqL4+Hibfl999ZVq1aold3d35cuXT6VKlVL37t3TPf47LBaLevfurU8++UTlypWTi4uLKlSooKVLl6bqGxMTo9dff13FixeXs7OzAgMDNXr0aCUlJVn73Pn+nDhxosaOHavAwEC5uLgoIiIi3Rpu3rypYcOG2Rxjr169dOXKlTT7r1y5UpUrV5arq6tKlSql6dOn22xP72fk+PHj6tSpk8330Ycffphq/1euXNHAgQNVqlQpubi4yMvLS08//bSOHj2qqKgoFS1aVJI0evRo6/ea2ctET5w4oW7duqls2bLKly+fihUrptatW+vgwYPpnqPM+hkE8PBiRApAjuTm5qZ33nlH/fr108aNG9WwYcNM23fHjh318ssv6/XXX1d4eLj1w/369evVs2dPDRo0yBogypQpow4dOti8/u2331a1atU0Z84cXb16VaGhoapfv7727t2rUqVKSZIiIiLUvHlz1apVSx9//LHc3d21dOlSPf/887px40aqD5rdu3dXy5YttWjRIsXHx8vJySnN2i9evKjg4GDdunVL7777rkqWLKnvv/9egwYN0smTJ/XRRx+pWrVq2r59u9q3b6/SpUtr0qRJknTPS/vS8/bbb6tBgwaaP3++oqKiNGjQIL344ovKkyePgoKC9MUXX2jv3r16++235ebmZvMh/uTJk+rUqZM1EOzfv1/jxo3T0aNH9dlnn1n7DR8+XGFhYfrf//6nDh066OzZs3r11Vd1+/ZtlStXztrvxo0bqlevns6dO6e3335blStX1uHDhzVy5EgdPHhQ69evl8Vi0fbt2/X888/r+eefV2hoqPV+u40bN2bomL/77jtFRERozJgxyp8/vz766CPrMT/77LOS/g5RNWvWVK5cuTRy5EiVLl1a27dv19ixYxUVFaV58+bZ7HP69OkqV66cJk2apIIFC6ps2bJpvrdhGGrXrp02bNigYcOG6amnntKBAwc0atQobd++Xdu3b7cZydq3b59CQkIUGhoqHx8fLV68WP369dOtW7c0aNCgdI/xt99+U3BwsEqUKKHJkyfLx8dHa9euVd++ffXXX39p1KhRkqTr16/rySefVFRUlIYOHapatWopLi5OP/30k6KjoxUcHKw1a9aoefPm6tGjh1599VVJsoarjPrzzz9VpEgRTZgwQUWLFlVsbKwWLFigWrVqae/evXrkkUds+mfFzyCAh5ABADnIvHnzDEnGzp07jcTERKNUqVJGjRo1jJSUFMMwDKNevXrGY489Zu0fGRlpSDLmzZuXal+SjFGjRlmfjxo1ypBkTJ482aZflSpVDEnGihUrrG23b982ihYtanTo0MHaFhERYUgyqlWrZq3HMAwjKirKcHJyMl599VVrW/ny5Y2qVasat2/ftnmvVq1aGb6+vkZycrLN8Xbu3DlD5+ett94yJBm//PKLTfubb75pWCwW49ixY9a2gIAAo2XLlhnab0BAgNGlS5dUx9q6dWubfiEhIYYko2/fvjbt7dq1Mzw8PNLdf3JysnH79m1j4cKFRu7cuY3Y2FjDMAwjNjbWcHFxMZ5//nmb/tu3bzckGfXq1bO2hYWFGbly5TJ27txp03f58uWGJGP16tWGYRjGpEmTDEnGlStXMnTs/yTJyJs3rxETE2NtS0pKMsqXL2+UKVPG2vb6668bBQoUME6fPm3z+jvvffjwYcMw/u/7s3Tp0satW7f+9f3XrFljSDImTpxo075s2TJDkjF79mxrW0BAgGGxWIx9+/bZ9G3SpIlRsGBBIz4+3qaGf/6MNGvWzChevLhx9epVm9f27t3bcHV1tf77jBkzxpBkhIeHp1vzxYsXU/2s3cu9fmbvSEpKMm7dumWULVvW6N+/v7U9K34G7+wzIiIiQ/UDyDm4tA9AjuXs7KyxY8dq165dmXo5zt0znT366KOyWCxq0aKFtS1PnjwqU6ZMmjMHdurUyeb+pYCAAAUHB1sv1zpx4oSOHj2ql156SZKUlJRkfTz99NOKjo7WsWPHbPb5zDPPZKj2jRs3qkKFCqpZs6ZNe9euXWUYRoZHXTIqrXMlSS1btkzVHhsba3N53969e9WmTRsVKVJEuXPnlpOTkzp37qzk5GT9/vvvkqQdO3YoMTFRHTt2tNlf7dq1VbJkSZu277//XhUrVlSVKlVszmmzZs1sZl17/PHHJf098vjll1/qjz/+MHXMjRo1kre3t/V57ty59fzzz+vEiRM6d+6ctZYGDRrIz8/PppY730ObN2+22WebNm3SHWX8pzv/fnePljz33HPKnz+/NmzYYNP+2GOPpbqHsFOnTrp27Zr27NmT5nvcvHlTGzZsUPv27ZUvX75U3583b97Ujh07JEk//vijypUrp8aNG/9r7f9FUlKSxo8frwoVKsjZ2Vl58uSRs7Ozjh8/riNHjqTqnxU/gwAePgQpADnaCy+8oGrVqmn48OGp7q25Xx4eHjbPnZ2dlS9fPrm6uqZqv3nzZqrX+/j4pNl26dIlSdL58+clSYMGDZKTk5PNo2fPnpKkv/76y+b1Gb3s7tKlS2n29fPzs27PTGmdq3u13zlfZ86c0VNPPaU//vhD06ZN088//6ydO3da78FJSEiwqfefweWOu9vOnz+vAwcOpDqnbm5uMgzDek7r1q2rb775RklJSercubOKFy+uihUr6osvvsjQMaf37/vPes+fP69Vq1alquWxxx6T9N/+ffPkyZPq0jiLxWLzPWam1rTeIykpSTNmzEhV/9NPP21T/8WLF1W8ePEM1f5fDBgwQCNGjFC7du20atUq/fLLL9q5c6eCgoKs3yv/lBU/gwAePtwjBSBHs1gseu+999SkSRPNnj071fY74efuyRkyO1D8U0xMTJptRYoUkSR5enpKkoYNG5bq/qo77r7nI6Mz9BUpUkTR0dGp2v/880+b97a3b775RvHx8VqxYoUCAgKs7fv27bPpd+ec3fng+08xMTE2o1Kenp7Kmzevzf1V//TPY2/btq3atm2rxMRE7dixQ2FhYerUqZNKliypOnXq3LP29P59/1mvp6enKleurHHjxqW5jzvB9g4z/75JSUm6ePGiTZgyDEMxMTHW0TYztd6tcOHCyp07t1555RX16tUrzT6BgYGS/r7X6c4oXFb6/PPP1blzZ40fP96m/a+//lKhQoVS9c+Kn0EADx+CFIAcr3HjxmrSpInGjBkjf39/m23e3t5ydXXVgQMHbNq//fbbLKvniy++0IABA6wfjk+fPq1t27apc+fOkv7+gFa2bFnt378/1QfD/6pRo0YKCwvTnj17VK1aNWv7woULZbFY1KBBg0x9v/t159z8c2IEwzD06aef2vSrVauWXFxctGzZMpsPvDt27NDp06dtglSrVq00fvx4FSlSxPpB/9+4uLioXr16KlSokNauXau9e/f+a5DasGGDzp8/bx0RS05O1rJly1S6dGnr6EyrVq20evVqlS5dWoULF85QLRnRqFEjTZw4UZ9//rn69+9vbf/6668VHx+vRo0a2fQ/fPiw9u/fb3N535IlS+Tm5mbz/fFP+fLlU4MGDbR3715VrlzZOpqYlhYtWmjkyJH3nPDlzr9xWiNHGWWxWFJNB//DDz/ojz/+UJkyZVL1t+fPIICcgyAF4KHw3nvvqXr16rpw4YL18inp7w9gL7/8sj777DOVLl1aQUFB+vXXX7VkyZIsq+XChQtq3769XnvtNV29elWjRo2Sq6urhg0bZu3zySefqEWLFmrWrJm6du2qYsWKKTY2VkeOHNGePXv01Vdf3dd79+/fXwsXLlTLli01ZswYBQQE6IcfftBHH32kN99802aWO3tq0qSJnJ2d9eKLL2rIkCG6efOmZs2apcuXL9v0uzP9fFhYmAoXLqz27dvr3LlzGj16tHx9fZUr1/9dwR4SEqKvv/5adevWVf/+/VW5cmWlpKTozJkzWrdunQYOHKhatWpp5MiROnfunBo1aqTixYvrypUrmjZtmpycnFSvXr1/rd3T01MNGzbUiBEjrLP2HT161GYK9DFjxig8PFzBwcHq27evHnnkEd28eVNRUVFavXq1Pv744/u6JK5JkyZq1qyZhg4dqmvXrumJJ56wztpXtWpVvfLKKzb9/fz81KZNG4WGhsrX11eff/65wsPD9d577ylfvnzpvs+0adP05JNP6qmnntKbb76pkiVL6vr16zpx4oRWrVplvVcrJCREy5YtU9u2bfXWW2+pZs2aSkhI0ObNm9WqVSs1aNBAbm5uCggI0LfffqtGjRrJw8NDnp6eqe5xu5dWrVpp/vz5Kl++vCpXrqzdu3fr/fffT/cc2vNnEEAOYt+5LgAgc/1z1r67derUyZBkM2ufYRjG1atXjVdffdXw9vY28ufPb7Ru3dqIiopKd9a+ixcv2ry+S5cuRv78+VO9390zBN6Z3WvRokVG3759jaJFixouLi7GU089ZezatSvV6/fv32907NjR8PLyMpycnAwfHx+jYcOGxscff5yh403P6dOnjU6dOhlFihQxnJycjEceecR4//33rbOQ3ZEZs/Z99dVXNv3Sqzetc7tq1SojKCjIcHV1NYoVK2YMHjzY+PHHH1PNkJaSkmKMHTvWKF68uOHs7GxUrlzZ+P77742goCCjffv2Nu8TFxdnvPPOO8YjjzxiODs7G+7u7kalSpWM/v37W2fa+/77740WLVoYxYoVM5ydnQ0vLy/j6aefNn7++ed/PQ+SjF69ehkfffSRUbp0acPJyckoX768sXjx4lR9L168aPTt29cIDAw0nJycDA8PD6N69erG8OHDjbi4OMMw/m+Guvfff/9f3/uOhIQEY+jQoUZAQIDh5ORk+Pr6Gm+++aZx+fJlm353/n2XL19uPPbYY4azs7NRsmRJY8qUKTb97tQwf/78VO3du3c3ihUrZjg5ORlFixY1goODjbFjx9r0u3z5stGvXz+jRIkShpOTk+Hl5WW0bNnSOHr0qLXP+vXrjapVqxouLi6GJJvvpbulNWvf5cuXjR49ehheXl5Gvnz5jCeffNL4+eefjXr16tnM3JgVP4PM2gc8vCyGYRgPPL0BAJCFIiMjVb58eY0aNUpvv/32A3tfi8WiXr16aebMmQ/sPbPa/v37VaVKFa1atSrVLIwA8DDj0j4AQLa2f/9+ffHFFwoODlbBggV17NgxTZw4UQULFlSPHj3sXV62FhERoTlz5sjZ2Tnde6YA4GFFkAIAZGv58+fXrl27NHfuXF25ckXu7u6qX7++xo0bl+a06Mi4Jk2aKDAwUPPmzUs1kyAAPOy4tA8AAAAATGJBXgAAAAAwiSAFAAAAACZxj5SklJQU/fnnn3Jzc8vw6vEAAAAAch7DMHT9+nX5+fnZrEd4N4KUpD///FP+/v72LgMAAACAgzh79uw9F0cnSElyc3OT9PfJKliwoJ2rAQAAAGAv165dk7+/vzUjpIcgJVkv5ytYsCBBCgAAAMC/3vLDZBMAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACbZNUjNmjVLlStXts6WV6dOHf3444/W7V27dpXFYrF51K5d22YfiYmJ6tOnjzw9PZU/f361adNG586de9CHAgAAAOAhYtcgVbx4cU2YMEG7du3Srl271LBhQ7Vt21aHDx+29mnevLmio6Otj9WrV9vsIyQkRCtXrtTSpUu1ZcsWxcXFqVWrVkpOTn7QhwMAAADgIWExDMOwdxH/5OHhoffff189evRQ165ddeXKFX3zzTdp9r169aqKFi2qRYsW6fnnn5ck/fnnn/L399fq1avVrFmzNF+XmJioxMRE6/M7i25dvXqVdaQAAACAh9i1a9fk7u7+r9nAYe6RSk5O1tKlSxUfH686depY2zdt2iQvLy+VK1dOr732mi5cuGDdtnv3bt2+fVtNmza1tvn5+alixYratm1buu8VFhYmd3d368Pf3z9rDgoAAABAjmT3IHXw4EEVKFBALi4ueuONN7Ry5UpVqFBBktSiRQstXrxYGzdu1OTJk7Vz5041bNjQOpoUExMjZ2dnFS5c2Gaf3t7eiomJSfc9hw0bpqtXr1ofZ8+ezboDBAAAAJDj5LF3AY888oj27dunK1eu6Ouvv1aXLl20efNmVahQwXq5niRVrFhRNWrUUEBAgH744Qd16NAh3X0ahiGLxZLudhcXF7m4uGTqcQAAAAB4eNh9RMrZ2VllypRRjRo1FBYWpqCgIE2bNi3Nvr6+vgoICNDx48clST4+Prp165YuX75s0+/ChQvy9vbO8toBAAAAPJzsHqTuZhiGzUQQ/3Tp0iWdPXtWvr6+kqTq1avLyclJ4eHh1j7R0dE6dOiQgoODH0i9AAAAAB4+dr207+2331aLFi3k7++v69eva+nSpdq0aZPWrFmjuLg4hYaG6plnnpGvr6+ioqL09ttvy9PTU+3bt5ckubu7q0ePHho4cKCKFCkiDw8PDRo0SJUqVVLjxo3teWgAAAAAcjC7Bqnz58/rlVdeUXR0tNzd3VW5cmWtWbNGTZo0UUJCgg4ePKiFCxfqypUr8vX1VYMGDbRs2TK5ublZ9zF16lTlyZNHHTt2VEJCgho1aqT58+crd+7cdjwyAAAAADmZw60jZQ8ZnSseAAAAQM6W0Wxg91n7gDtKvvWDvUtIV9SElvYuIU2cs/vDecODwvca4Lj4+cR/5XCTTQAAAACAoyNIAQAAAIBJBCkAAAAAMIl7pAAAgMPgvhUA2QUjUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJySYAAP+KCQAAALDFiBQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJLsGqVmzZqly5coqWLCgChYsqDp16ujHH3+0bjcMQ6GhofLz81PevHlVv359HT582GYfiYmJ6tOnjzw9PZU/f361adNG586de9CHAgAAAOAhYtcgVbx4cU2YMEG7du3Srl271LBhQ7Vt29YaliZOnKgpU6Zo5syZ2rlzp3x8fNSkSRNdv37duo+QkBCtXLlSS5cu1ZYtWxQXF6dWrVopOTnZXocFAAAAIIeza5Bq3bq1nn76aZUrV07lypXTuHHjVKBAAe3YsUOGYeiDDz7Q8OHD1aFDB1WsWFELFizQjRs3tGTJEknS1atXNXfuXE2ePFmNGzdW1apV9fnnn+vgwYNav369PQ8NAAAAQA7mMPdIJScna+nSpYqPj1edOnUUGRmpmJgYNW3a1NrHxcVF9erV07Zt2yRJu3fv1u3bt236+Pn5qWLFitY+aUlMTNS1a9dsHgAAAACQUXYPUgcPHlSBAgXk4uKiN954QytXrlSFChUUExMjSfL29rbp7+3tbd0WExMjZ2dnFS5cON0+aQkLC5O7u7v14e/vn8lHBQAAACAns3uQeuSRR7Rv3z7t2LFDb775prp06aLffvvNut1isdj0NwwjVdvd/q3PsGHDdPXqVevj7Nmz/+0gAAAAADxU7B6knJ2dVaZMGdWoUUNhYWEKCgrStGnT5OPjI0mpRpYuXLhgHaXy8fHRrVu3dPny5XT7pMXFxcU6U+CdBwAAAABklN2D1N0Mw1BiYqICAwPl4+Oj8PBw67Zbt25p8+bNCg4OliRVr15dTk5ONn2io6N16NAhax8AAAAAyGx57Pnmb7/9tlq0aCF/f39dv35dS5cu1aZNm7RmzRpZLBaFhIRo/PjxKlu2rMqWLavx48crX7586tSpkyTJ3d1dPXr00MCBA1WkSBF5eHho0KBBqlSpkho3bmzPQwMAAACQg9k1SJ0/f16vvPKKoqOj5e7ursqVK2vNmjVq0qSJJGnIkCFKSEhQz549dfnyZdWqVUvr1q2Tm5ubdR9Tp05Vnjx51LFjRyUkJKhRo0aaP3++cufOba/DAgAAAJDD2TVIzZ07957bLRaLQkNDFRoamm4fV1dXzZgxQzNmzMjk6gAAAAAgbQ53jxQAAAAAODqCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwKQ89i4gJyr51g/2LiFdURNa2rsEAAAAINtjRAoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMsmuQCgsL0+OPPy43Nzd5eXmpXbt2OnbsmE2frl27ymKx2Dxq165t0ycxMVF9+vSRp6en8ufPrzZt2ujcuXMP8lAAAAAAPETsGqQ2b96sXr16aceOHQoPD1dSUpKaNm2q+Ph4m37NmzdXdHS09bF69Wqb7SEhIVq5cqWWLl2qLVu2KC4uTq1atVJycvKDPBwAAAAAD4k89nzzNWvW2DyfN2+evLy8tHv3btWtW9fa7uLiIh8fnzT3cfXqVc2dO1eLFi1S48aNJUmff/65/P39tX79ejVr1izVaxITE5WYmGh9fu3atcw4HAAAAAAPCYe6R+rq1auSJA8PD5v2TZs2ycvLS+XKldNrr72mCxcuWLft3r1bt2/fVtOmTa1tfn5+qlixorZt25bm+4SFhcnd3d368Pf3z4KjAQAAAJBTOUyQMgxDAwYM0JNPPqmKFSta21u0aKHFixdr48aNmjx5snbu3KmGDRtaR5RiYmLk7OyswoUL2+zP29tbMTExab7XsGHDdPXqVevj7NmzWXdgAAAAAHIcu17a90+9e/fWgQMHtGXLFpv2559/3vp1xYoVVaNGDQUEBOiHH35Qhw4d0t2fYRiyWCxpbnNxcZGLi0vmFA4AAADgoeMQI1J9+vTRd999p4iICBUvXvyefX19fRUQEKDjx49Lknx8fHTr1i1dvnzZpt+FCxfk7e2dZTUDAAAAeHjZNUgZhqHevXtrxYoV2rhxowIDA//1NZcuXdLZs2fl6+srSapevbqcnJwUHh5u7RMdHa1Dhw4pODg4y2oHAAAA8PCy66V9vXr10pIlS/Ttt9/Kzc3Nek+Tu7u78ubNq7i4OIWGhuqZZ56Rr6+voqKi9Pbbb8vT01Pt27e39u3Ro4cGDhyoIkWKyMPDQ4MGDVKlSpWss/gBAAAAQGaya5CaNWuWJKl+/fo27fPmzVPXrl2VO3duHTx4UAsXLtSVK1fk6+urBg0aaNmyZXJzc7P2nzp1qvLkyaOOHTsqISFBjRo10vz585U7d+4HeTgAAAAAHhJ2DVKGYdxze968ebV27dp/3Y+rq6tmzJihGTNmZFZpAAAAAJAuh5hsAgAAAACyE4IUAAAAAJhEkAIAAAAAkxxmQV4AAADcn5Jv/WDvEtIVNaGlvUtAJuJ77f8wIgUAAAAAJv3nIJWcnKx9+/bp8uXLmVEPAAAAADg800EqJCREc+fOlfR3iKpXr56qVasmf39/bdq0KbPrAwAAAACHYzpILV++XEFBQZKkVatWKTIyUkePHlVISIiGDx+e6QUCAAAAgKMxHaT++usv+fj4SJJWr16t5557TuXKlVOPHj108ODBTC8QAAAAAByN6SDl7e2t3377TcnJyVqzZo0aN24sSbpx44Zy586d6QUCAAAAgKMxPf15t27d1LFjR/n6+spisahJkyaSpF9++UXly5fP9AIBAAAAwNGYDlKhoaGqWLGizp49q+eee04uLi6SpNy5c+utt97K9AIBAAAAwNHc14K8zz77rCTp5s2b1rYuXbpkTkUAAAAA4OBM3yOVnJysd999V8WKFVOBAgV06tQpSdKIESOs06IDAAAAQE5mOkiNGzdO8+fP18SJE+Xs7Gxtr1SpkubMmZOpxQEAAACAIzIdpBYuXKjZs2frpZdespmlr3Llyjp69GimFgcAAAAAjsh0kPrjjz9UpkyZVO0pKSm6fft2phQFAAAAAI7MdJB67LHH9PPPP6dq/+qrr1S1atVMKQoAAAAAHJnpWftGjRqlV155RX/88YdSUlK0YsUKHTt2TAsXLtT333+fFTUCAAAAgEMxPSLVunVrLVu2TKtXr5bFYtHIkSN15MgRrVq1yro4LwAAAADkZPe1jlSzZs3UrFmzzK4FAAAAALIF0yNSAAAAAPCwMz0iVbhwYVksllTtFotFrq6uKlOmjLp27apu3bplSoEAAAAA4GhMB6mRI0dq3LhxatGihWrWrCnDMLRz506tWbNGvXr1UmRkpN58800lJSXptddey4qaAQAAAMCuTAepLVu2aOzYsXrjjTds2j/55BOtW7dOX3/9tSpXrqzp06cTpAAAAADkSKbvkVq7dq0aN26cqr1Ro0Zau3atJOnpp5/WqVOn/nt1AAAAAOCATAcpDw8PrVq1KlX7qlWr5OHhIUmKj4+Xm5vbf68OAAAAAByQ6Uv7RowYoTfffFMRERGqWbOmLBaLfv31V61evVoff/yxJCk8PFz16tXL9GIBAAAAwBGYDlKvvfaaKlSooJkzZ2rFihUyDEPly5fX5s2bFRwcLEkaOHBgphcKAAAAAI7ivhbkfeKJJ/TEE09kdi0AAAAAkC3cV5C6IyEhQbdv37ZpK1iw4H8qCAAAAAAcnenJJm7cuKHevXvLy8tLBQoUUOHChW0eAAAAAJDTmQ5SgwcP1saNG/XRRx/JxcVFc+bM0ejRo+Xn56eFCxdmRY0AAAAA4FBMX9q3atUqLVy4UPXr11f37t311FNPqUyZMgoICNDixYv10ksvZUWdAAAAAOAwTI9IxcbGKjAwUNLf90PFxsZKkp588kn99NNPmVsdAAAAADgg00GqVKlSioqKkiRVqFBBX375paS/R6oKFSqUmbUBAAAAgEMyHaS6deum/fv3S5KGDRtmvVeqf//+Gjx4cKYXCAAAAACOxvQ9Uv3797d+3aBBAx09elS7du1S6dKlFRQUlKnFAQAAAIAj+k/rSElSiRIlVKJEicyoBQAAAACyhfsKUr/++qs2bdqkCxcuKCUlxWbblClTMqUwAAAAAHBUpoPU+PHj9c477+iRRx6Rt7e3LBaLdds/vwYAAACAnMp0kJo2bZo+++wzde3aNQvKAQAAAADHZ3rWvly5cumJJ57IlDcPCwvT448/Ljc3N3l5ealdu3Y6duyYTR/DMBQaGio/Pz/lzZtX9evX1+HDh236JCYmqk+fPvL09FT+/PnVpk0bnTt3LlNqBAAAAIC7mQ5S/fv314cffpgpb75582b16tVLO3bsUHh4uJKSktS0aVPFx8db+0ycOFFTpkzRzJkztXPnTvn4+KhJkya6fv26tU9ISIhWrlyppUuXasuWLYqLi1OrVq2UnJycKXUCAAAAwD+ZvrRv0KBBatmypUqXLq0KFSrIycnJZvuKFSsyvK81a9bYPJ83b568vLy0e/du1a1bV4Zh6IMPPtDw4cPVoUMHSdKCBQvk7e2tJUuW6PXXX9fVq1c1d+5cLVq0SI0bN5Ykff755/L399f69evVrFkzs4cIAAAAAPdkekSqT58+ioiIULly5VSkSBG5u7vbPP6Lq1evSpI8PDwkSZGRkYqJiVHTpk2tfVxcXFSvXj1t27ZNkrR7927dvn3bpo+fn58qVqxo7XO3xMREXbt2zeYBAAAAABllekRq4cKF+vrrr9WyZctMLcQwDA0YMEBPPvmkKlasKEmKiYmRJHl7e9v09fb21unTp619nJ2dVbhw4VR97rz+bmFhYRo9enSm1g8AAADg4WF6RMrDw0OlS5fO9EJ69+6tAwcO6Isvvki17e5p1Q3D+Nep1u/VZ9iwYbp69ar1cfbs2fsvHAAAAMBDx3SQCg0N1ahRo3Tjxo1MK6JPnz767rvvFBERoeLFi1vbfXx8JCnVyNKFCxeso1Q+Pj66deuWLl++nG6fu7m4uKhgwYI2DwAAAADIKNNBavr06frxxx/l7e2tSpUqqVq1ajYPMwzDUO/evbVixQpt3LhRgYGBNtsDAwPl4+Oj8PBwa9utW7e0efNmBQcHS5KqV68uJycnmz7R0dE6dOiQtQ8AAAAAZCbT90i1a9cu0968V69eWrJkib799lu5ublZR57c3d2VN29eWSwWhYSEaPz48SpbtqzKli2r8ePHK1++fOrUqZO1b48ePTRw4EAVKVJEHh4eGjRokCpVqmSdxQ8AAAAAMpPpIDVq1KhMe/NZs2ZJkurXr2/TPm/ePHXt2lWSNGTIECUkJKhnz566fPmyatWqpXXr1snNzc3af+rUqcqTJ486duyohIQENWrUSPPnz1fu3LkzrVYAAAAAuMN0kMpMhmH8ax+LxaLQ0FCFhoam28fV1VUzZszQjBkzMrE6AAAAAEhbhoKUh4eHfv/9d3l6eqpw4cL3nDEvNjY204oDAAAAAEeUoSA1depU66V0H3zwQVbWAwAAAAAOL0NBqkuXLml+DQAAAAAPI9PTnwMAAADAw44gBQAAAAAmEaQAAAAAwKQMBakDBw4oJSUlq2sBAAAAgGwhQ0GqatWq+uuvvyRJpUqV0qVLl7K0KAAAAABwZBkKUoUKFVJkZKQkKSoqitEpAAAAAA+1DE1//swzz6hevXry9fWVxWJRjRo1lDt37jT7njp1KlMLBAAAAABHk6EgNXv2bHXo0EEnTpxQ37599dprr1kX6AUAAACAh02GgpQkNW/eXJK0e/du9evXjyAFAAAA4KGV4SB1x7x586xfnzt3ThaLRcWKFcvUogAAAADAkZleRyolJUVjxoyRu7u7AgICVKJECRUqVEjvvvsuk1AAAAAAeCiYHpEaPny45s6dqwkTJuiJJ56QYRjaunWrQkNDdfPmTY0bNy4r6gQAAAAAh2E6SC1YsEBz5sxRmzZtrG1BQUEqVqyYevbsSZACAAAAkOOZvrQvNjZW5cuXT9Vevnx5xcbGZkpRAAAAAODITAepoKAgzZw5M1X7zJkzFRQUlClFAQAAAIAjM31p38SJE9WyZUutX79ederUkcVi0bZt23T27FmtXr06K2oEAAAAAIdiekSqXr16+v3339W+fXtduXJFsbGx6tChg44dO6annnoqK2oEAAAAAIdiekRKkvz8/JhUAgAAAMBDy/SIFAAAAAA87AhSAAAAAGASQQoAAAAATDIVpAzD0OnTp5WQkJBV9QAAAACAwzMdpMqWLatz585lVT0AAAAA4PBMBalcuXKpbNmyunTpUlbVAwAAAAAOz/Q9UhMnTtTgwYN16NChrKgHAAAAABye6XWkXn75Zd24cUNBQUFydnZW3rx5bbbHxsZmWnEAAAAA4IhMB6kPPvggC8oAAAAAgOzDdJDq0qVLVtQBAAAAANnGfa0jdfLkSb3zzjt68cUXdeHCBUnSmjVrdPjw4UwtDgAAAAAckekgtXnzZlWqVEm//PKLVqxYobi4OEnSgQMHNGrUqEwvEAAAAAAcjekg9dZbb2ns2LEKDw+Xs7Oztb1Bgwbavn17phYHAAAAAI7IdJA6ePCg2rdvn6q9aNGirC8FAAAA4KFgOkgVKlRI0dHRqdr37t2rYsWKZUpRAAAAAODITAepTp06aejQoYqJiZHFYlFKSoq2bt2qQYMGqXPnzllRIwAAAAA4FNNBaty4cSpRooSKFSumuLg4VahQQXXr1lVwcLDeeeedrKgRAAAAAByK6XWknJyctHjxYo0ZM0Z79+5VSkqKqlatqrJly2ZFfQAAAADgcEwHqTtKly6tUqVKSZIsFkumFQQAAAAAju6+FuSdO3euKlasKFdXV7m6uqpixYqaM2dOZtcGAAAAAA7J9IjUiBEjNHXqVPXp00d16tSRJG3fvl39+/dXVFSUxo4dm+lFAgAAAIAjMT0iNWvWLH366acKCwtTmzZt1KZNG4WFhWn27Nn6+OOPTe3rp59+UuvWreXn5yeLxaJvvvnGZnvXrl1lsVhsHrVr17bpk5iYqD59+sjT01P58+dXmzZtdO7cObOHBQAAAAAZZjpIJScnq0aNGqnaq1evrqSkJFP7io+PV1BQkGbOnJlun+bNmys6Otr6WL16tc32kJAQrVy5UkuXLtWWLVsUFxenVq1aKTk52VQtAAAAAJBRpi/te/nllzVr1ixNmTLFpn327Nl66aWXTO2rRYsWatGixT37uLi4yMfHJ81tV69e1dy5c7Vo0SI1btxYkvT555/L399f69evV7NmzUzVAwAAAAAZkaEgNWDAAOvXFotFc+bM0bp166yX2e3YsUNnz57NkgV5N23aJC8vLxUqVEj16tXTuHHj5OXlJUnavXu3bt++raZNm1r7+/n5qWLFitq2bVu6QSoxMVGJiYnW59euXcv0ugEAAADkXBkKUnv37rV5Xr16dUnSyZMnJUlFixZV0aJFdfjw4UwtrkWLFnruuecUEBCgyMhIjRgxQg0bNtTu3bvl4uKimJgYOTs7q3Dhwjav8/b2VkxMTLr7DQsL0+jRozO1VgAAAAAPjwwFqYiIiKyuI03PP/+89euKFSuqRo0aCggI0A8//KAOHTqk+zrDMO65ttWwYcNsRtmuXbsmf3//zCkaAAAAQI53X+tI2Yuvr68CAgJ0/PhxSZKPj49u3bqly5cv2/S7cOGCvL29092Pi4uLChYsaPMAAAAAgIwyPdnEzZs3NWPGDEVEROjChQtKSUmx2b5nz55MK+5uly5d0tmzZ+Xr6yvp70sMnZycFB4ero4dO0qSoqOjdejQIU2cODHL6gAAAADwcDMdpLp3767w8HA9++yzqlmz5j0vofs3cXFxOnHihPV5ZGSk9u3bJw8PD3l4eCg0NFTPPPOMfH19FRUVpbfffluenp5q3769JMnd3V09evTQwIEDVaRIEXl4eGjQoEGqVKmSdRY/AAAAAMhspoPUDz/8oNWrV+uJJ574z2++a9cuNWjQwPr8zn1LXbp00axZs3Tw4EEtXLhQV65cka+vrxo0aKBly5bJzc3N+pqpU6cqT5486tixoxISEtSoUSPNnz9fuXPn/s/1AQAAAEBaTAepYsWK2QSZ/6J+/foyDCPd7WvXrv3Xfbi6umrGjBmaMWNGptQEAAAAAP/G9GQTkydP1tChQ3X69OmsqAcAAAAAHJ7pEakaNWro5s2bKlWqlPLlyycnJyeb7bGxsZlWHAAAAAA4ItNB6sUXX9Qff/yh8ePHy9vb+z9NNgEAAAAA2ZHpILVt2zZt375dQUFBWVEPAAAAADg80/dIlS9fXgkJCVlRCwAAAABkC6aD1IQJEzRw4EBt2rRJly5d0rVr12weAAAAAJDTmb60r3nz5pKkRo0a2bQbhiGLxaLk5OTMqQwAAAAAHJTpIBUREZEVdQAAAABAtmE6SNWrVy8r6gAAAACAbMN0kPrpp5/uub1u3br3XQwAAAAAZAemg1T9+vVTtf1zLSnukQIAAACQ05mete/y5cs2jwsXLmjNmjV6/PHHtW7duqyoEQAAAAAciukRKXd391RtTZo0kYuLi/r376/du3dnSmEAAAAA4KhMj0ilp2jRojp27Fhm7Q4AAAAAHJbpEakDBw7YPDcMQ9HR0ZowYYKCgoIyrTAAAAAAcFSmg1SVKlVksVhkGIZNe+3atfXZZ59lWmEAAAAA4KhMB6nIyEib57ly5VLRokXl6uqaaUUBAAAAgCMzHaQCAgKyog4AAAAAyDZMBylJ2rBhgzZs2KALFy4oJSXFZhuX9wEAAADI6UwHqdGjR2vMmDGqUaOGfH19bRbjBQAAAICHgekg9fHHH2v+/Pl65ZVXsqIeAAAAAHB4pteRunXrloKDg7OiFgAAAADIFkwHqVdffVVLlizJiloAAAAAIFswfWnfzZs3NXv2bK1fv16VK1eWk5OTzfYpU6ZkWnEAAAAA4IhMB6kDBw6oSpUqkqRDhw7ZbGPiCQAAAAAPA9NBKiIiIivqAAAAAIBsw/Q9UgAAAADwsCNIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMsmuQ+umnn9S6dWv5+fnJYrHom2++sdluGIZCQ0Pl5+envHnzqn79+jp8+LBNn8TERPXp00eenp7Knz+/2rRpo3Pnzj3AowAAAADwsLFrkIqPj1dQUJBmzpyZ5vaJEydqypQpmjlzpnbu3CkfHx81adJE169ft/YJCQnRypUrtXTpUm3ZskVxcXFq1aqVkpOTH9RhAAAAAHjI5LHnm7do0UItWrRIc5thGPrggw80fPhwdejQQZK0YMECeXt7a8mSJXr99dd19epVzZ07V4sWLVLjxo0lSZ9//rn8/f21fv16NWvWLM19JyYmKjEx0fr82rVrmXxkAAAAAHIyh71HKjIyUjExMWratKm1zcXFRfXq1dO2bdskSbt379bt27dt+vj5+alixYrWPmkJCwuTu7u79eHv7591BwIAAAAgx3HYIBUTEyNJ8vb2tmn39va2bouJiZGzs7MKFy6cbp+0DBs2TFevXrU+zp49m8nVAwAAAMjJ7HppX0ZYLBab54ZhpGq727/1cXFxkYuLS6bUBwAAAODh47AjUj4+PpKUamTpwoUL1lEqHx8f3bp1S5cvX063DwAAAABkNocNUoGBgfLx8VF4eLi17datW9q8ebOCg4MlSdWrV5eTk5NNn+joaB06dMjaBwAAAAAym10v7YuLi9OJEyeszyMjI7Vv3z55eHioRIkSCgkJ0fjx41W2bFmVLVtW48ePV758+dSpUydJkru7u3r06KGBAweqSJEi8vDw0KBBg1SpUiXrLH4AAAAAkNnsGqR27dqlBg0aWJ8PGDBAktSlSxfNnz9fQ4YMUUJCgnr27KnLly+rVq1aWrdundzc3KyvmTp1qvLkyaOOHTsqISFBjRo10vz585U7d+4HfjwAAAAAHg52DVL169eXYRjpbrdYLAoNDVVoaGi6fVxdXTVjxgzNmDEjCyoEAAAAgNQc9h4pAAAAAHBUBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwyaGDVGhoqCwWi83Dx8fHut0wDIWGhsrPz0958+ZV/fr1dfjwYTtWDAAAAOBh4NBBSpIee+wxRUdHWx8HDx60bps4caKmTJmimTNnaufOnfLx8VGTJk10/fp1O1YMAAAAIKdz+CCVJ08e+fj4WB9FixaV9Pdo1AcffKDhw4erQ4cOqlixohYsWKAbN25oyZIldq4aAAAAQE7m8EHq+PHj8vPzU2BgoF544QWdOnVKkhQZGamYmBg1bdrU2tfFxUX16tXTtm3b7rnPxMREXbt2zeYBAAAAABnl0EGqVq1aWrhwodauXatPP/1UMTExCg4O1qVLlxQTEyNJ8vb2tnmNt7e3dVt6wsLC5O7ubn34+/tn2TEAAAAAyHkcOki1aNFCzzzzjCpVqqTGjRvrhx9+kCQtWLDA2sdisdi8xjCMVG13GzZsmK5evWp9nD17NvOLBwAAAJBjOXSQulv+/PlVqVIlHT9+3Dp7392jTxcuXEg1SnU3FxcXFSxY0OYBAAAAABmVrYJUYmKijhw5Il9fXwUGBsrHx0fh4eHW7bdu3dLmzZsVHBxsxyoBAAAA5HR57F3AvQwaNEitW7dWiRIldOHCBY0dO1bXrl1Tly5dZLFYFBISovHjx6ts2bIqW7asxo8fr3z58qlTp072Lh0AAABADubQQercuXN68cUX9ddff6lo0aKqXbu2duzYoYCAAEnSkCFDlJCQoJ49e+ry5cuqVauW1q1bJzc3NztXDgAAACAnc+ggtXTp0ntut1gsCg0NVWho6IMpCAAAAACUze6RAgAAAABHQJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFAAAAACYRJACAAAAAJMIUgAAAABgEkEKAAAAAEwiSAEAAACASQQpAAAAADCJIAUAAAAAJhGkAAAAAMAkghQAAAAAmESQAgAAAACTCFIAAAAAYBJBCgAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGBSjglSH330kQIDA+Xq6qrq1avr559/tndJAAAAAHKoHBGkli1bppCQEA0fPlx79+7VU089pRYtWujMmTP2Lg0AAABADpTH3gVkhilTpqhHjx569dVXJUkffPCB1q5dq1mzZiksLCxV/8TERCUmJlqfX716VZJ07dq1TKknJfFGpuwnK2TWMWYFzpt5nLP7w3kzj3N2fzhv5nHO7g/nzTzO2f15GM7bnf0YhnHPfhbj33o4uFu3bilfvnz66quv1L59e2t7v379tG/fPm3evDnVa0JDQzV69OgHWSYAAACAbOTs2bMqXrx4utuz/YjUX3/9peTkZHl7e9u0e3t7KyYmJs3XDBs2TAMGDLA+T0lJUWxsrIoUKSKLxZKl9Zp17do1+fv76+zZsypYsKC9y8kWOGf3h/NmHufs/nDezOOc3R/Om3mcs/vDeTPPkc+ZYRi6fv26/Pz87tkv2wepO+4OQIZhpBuKXFxc5OLiYtNWqFChrCotUxQsWNDhvskcHefs/nDezOOc3R/Om3mcs/vDeTOPc3Z/OG/mOeo5c3d3/9c+2X6yCU9PT+XOnTvV6NOFCxdSjVIBAAAAQGbI9kHK2dlZ1atXV3h4uE17eHi4goOD7VQVAAAAgJwsR1zaN2DAAL3yyiuqUaOG6tSpo9mzZ+vMmTN644037F3af+bi4qJRo0aluhQR6eOc3R/Om3mcs/vDeTOPc3Z/OG/mcc7uD+fNvJxwzrL9rH13fPTRR5o4caKio6NVsWJFTZ06VXXr1rV3WQAAAAByoBwTpAAAAADgQcn290gBAAAAwINGkAIAAAAAkwhSAAAAAGASQQoAAAAATCJIAQAAAIBJBCkHd/PmTXuXAOD/S0pKUp48eXTo0CF7l5Jt3L59W926ddOpU6fsXQoeArlz59aFCxdStV+6dEm5c+e2Q0XZD587gIwjSDmglJQUvfvuuypWrJgKFChg/QAyYsQIzZ07187VOZ7bt2+rQYMG+v333+1dCnK4PHnyKCAgQMnJyfYuJdtwcnLSypUr7V1GtlS4cGF5eHikehQpUkTFihVTvXr1NG/ePHuX6VDSW9ElMTFRzs7OD7ia7IPPHXiQli9fro4dO6p27dqqVq2azSO7yWPvApDa2LFjtWDBAk2cOFGvvfaatb1SpUqaOnWqevToYcfqHI+Tk5MOHToki8Vi71KyhapVq2b4XO3ZsyeLq8l+3nnnHQ0bNkyff/65PDw87F1OttC+fXt98803GjBggL1LyVZGjhypcePGqUWLFqpZs6YMw9DOnTu1Zs0a9erVS5GRkXrzzTeVlJRk83/Fw2j69OmSJIvFojlz5qhAgQLWbcnJyfrpp59Uvnx5e5Xn8Pjccf8WLVqkjz/+WJGRkdq+fbsCAgL0wQcfKDAwUG3btrV3eQ5n+vTpGj58uLp06aJvv/1W3bp108mTJ7Vz50716tXL3uWZxoK8DqhMmTL65JNP1KhRI7m5uWn//v0qVaqUjh49qjp16ujy5cv2LtHhDBw4UE5OTpowYYK9S3F4o0ePtn598+ZNffTRR6pQoYLq1KkjSdqxY4cOHz6snj17KiwszF5lOqyqVavqxIkTun37tgICApQ/f36b7YTP1MaNG6dJkyapUaNGql69eqpz1rdvXztV5tieeeYZNWnSRG+88YZN+yeffKJ169bp66+/1owZMzR79mwdPHjQTlU6hsDAQEnS6dOnVbx4cZvL+JydnVWyZEmNGTNGtWrVsleJDo3PHfdn1qxZGjlypEJCQjRu3DgdOnRIpUqV0vz587VgwQJFRETYu0SHU758eY0aNUovvviizffayJEjFRsbq5kzZ9q7RFMIUg4ob968Onr0qAICAmy+yX777TfVrFlTcXFx9i7R4fTp00cLFy5UmTJlVKNGjVQf1KZMmWKnyhzbq6++Kl9fX7377rs27aNGjdLZs2f12Wef2akyx/XPIJqWUaNGPaBKso87H3LTYrFYuH8qHQUKFNC+fftUpkwZm/YTJ06oSpUqiouL08mTJ1W5cmXFx8fbqUrH0qBBA61YsUKFCxe2dynZCp877k+FChU0fvx4tWvXzua8HTp0SPXr19dff/1l7xIdTr58+XTkyBEFBATIy8tL4eHhCgoK0vHjx1W7dm1dunTJ3iWawqV9Duixxx7Tzz//rICAAJv2r776SlWrVrVTVY7t0KFD1mtr775Xikv+0vfVV19p165dqdpffvll1ahRgyCVBoKSeZGRkfYuIVvy8PDQqlWr1L9/f5v2VatWWS8rjY+Pl5ubmz3Kc0iMANwfPnfcn8jIyDTPj4uLC3/cSIePj48uXbqkgIAABQQEaMeOHQoKClJkZGS69zg6MoKUAxo1apReeeUV/fHHH0pJSdGKFSt07NgxLVy4UN9//729y3NI/Od5f/LmzastW7aobNmyNu1btmyRq6urnaoCIP19o/+bb76piIgI1axZUxaLRb/++qtWr16tjz/+WJIUHh6uevXq2blSx5GcnKz58+drw4YNunDhglJSUmy2b9y40U6VOTY+d9yfwMBA7du3L1UA/fHHH1WhQgU7VeXYGjZsqFWrVqlatWrq0aOH+vfvr+XLl2vXrl3q0KGDvcszjUv7HNTatWs1fvx47d69WykpKapWrZpGjhyppk2b2rs05CATJkxQaGioXn31VdWuXVvS3/dIffbZZxo5cqTeeustO1foeJKTkzV16lR9+eWXOnPmjG7dumWzPTY21k6VOZYBAwbo3XffVf78+f91kgkuvU3f1q1bNXPmTB07dkyGYah8+fLq06ePgoOD7V2aQ+rdu7fmz5+vli1bytfXN9UVCVOnTrVTZY6Pzx3mzZs3TyNGjNDkyZPVo0cPzZkzRydPnlRYWJjmzJmjF154wd4lOpyUlBSlpKQoT56/x3K+/PJLbdmyRWXKlNEbb7yR7WbXJEghx9i5c6e++uqrND/crlixwk5VOb4vv/xS06ZN05EjRyRJjz76qPr166eOHTvauTLHNHLkSM2ZM0cDBgzQiBEjNHz4cEVFRembb77RyJEjmTjh/2vQoIFWrlypQoUKqUGDBun2s1gsjBIg03h6emrhwoV6+umn7V0KHhKffvqpxo4dq7Nnz0qSihUrptDQUGY6TENSUpLGjRun7t27y9/f397lZAqCFHKEpUuXqnPnzmratKnCw8PVtGlTHT9+XDExMWrfvj1rraQhJ/5CexBKly6t6dOnq2XLlnJzc9O+ffusbTt27NCSJUvsXSJykOTkZH3zzTc6cuSILBaLKlSooDZt2rC4bDr8/Py0adMmlStXzt6lZCs7d+5USkpKqlkNf/nlF+XOnVs1atSwU2XZx19//aWUlBR5eXnZuxSHVqBAAR06dEglS5a0dymZggV5HUR6Cy+m9UBq48eP19SpU/X999/L2dnZOsLSsWNHlShRwt7lOaQ8efLo/fffZ3FZk2JiYlSpUiVJf/+HcPXqVUlSq1at9MMPP9izNOQwJ06c0KOPPqrOnTtrxYoVWr58uV5++WU99thjOnnypL3Lc0gDBw7UtGnTsuVN6/bUq1cv64jKP/3xxx/Zcm0fe/D09CREZUDjxo21adMme5eRaZhswkF88MEH9i4hWzt58qRatmwp6f9my7FYLOrfv78aNmz4r1NWP6zu/ELr2rWrvUvJNooXL67o6GiVKFFCZcqU0bp161StWjXt3LlTLi4u9i7PYXHprXl9+/ZV6dKltWPHDusf0S5duqSXX35Zffv2JbinYcuWLYqIiNCPP/6oxx57TE5OTjbb+V5L22+//Wad+fafqlatqt9++80OFWUP58+f16BBg6yTm9wd4PlDZWotWrTQsGHDdOjQoTTXFWzTpo2dKrs/BCkH0aVLF3uXkK15eHjo+vXrkv6+PvnQoUOqVKmSrly5ohs3bti5OseV036hPQjt27fXhg0bVKtWLfXr108vvvii5s6dqzNnzqSaphp/+7dLb5G2zZs324QoSSpSpIgmTJigJ554wo6VOa5ChQrxPXUfXFxcdP78eZUqVcqmPTo62jopAFLr2rWrzpw5oxEjRqQ5uQlSe/PNNyWlPcmQxWLJduGTe6QcVHJyslauXGm9Lv7RRx9V27Zt+YWWjk6dOqlGjRoaMGCAxo0bp2nTpqlt27YKDw9XtWrV+CtkOnLlSv/q3uz4C80efvnlF23dulVlypQheKajcuXKev3119WrVy/ropWBgYF6/fXX5evry4hxOjw8PPT999+nmqFv69atat26NTNEItO88MILiomJ0bfffit3d3dJ0pUrV9SuXTt5eXnpyy+/tHOFjsnNzU0///yzqlSpYu9SYCcEKQd06NAhtW3bVjExMXrkkUck/b3IbNGiRfXdd99Z78/A/4mNjdXNmzfl5+enlJQUTZo0yTqd5ogRI1jlHpkmLCxM3t7e6t69u037Z599posXL2ro0KF2qsxx5c+fX4cPH1bJkiXl6empiIgIVapUSUeOHFHDhg0VHR1t7xIdUufOnbVnzx7NnTtXNWvWlPR3cH/ttddUvXp1zZ8/374FIsf4448/VLduXV26dMm6wOy+ffvk7e2t8PBwJiRKR4UKFbR48WIWLX6IEaQcUO3ateXl5aUFCxZYA8Dly5fVtWtXXbhwQdu3b7dzhcDDq2TJklqyZEmqUYJffvlFL7zwgiIjI+1UmePy9/fX6tWrValSJQUFBemtt97Siy++qO3bt6t58+bWCTtg68qVK+rSpYtWrVplvdfn9u3batu2rebNm6dChQrZt0AHtXz58nTXeduzZ4+dqnJ88fHxWrx4sfbv36+8efOqcuXKevHFF1PdZ4b/s27dOk2ePFmffPJJjpmF7kHYsGGDpk6dar3qqnz58goJCVHjxo3tXZppBCkHlDdvXu3atUuPPfaYTfuhQ4f0+OOPKyEhwU6VObaTJ09q3rx5OnnypKZNmyYvLy+tWbNG/v7+qc7lw2z69On63//+J1dXV02fPv2efVkTKTVXV1cdOXJEgYGBNu2nTp1ShQoVdPPmTTtV5ri49Pa/OXHihI4cOSLDMFShQgWVKVPG3iU5rOnTp2v48OHq0qWLPv30U3Xr1k0nT57Uzp071atXL40bN87eJSIHKVy4sG7cuKGkpCTly5cvVejk8tvUZs6cqf79++vZZ59VnTp1JEk7duzQ8uXLNWXKFPXu3dvOFZpDkHJAVapU0ZQpU9SwYUOb9o0bN6pfv346ePCgnSpzXJs3b1aLFi30xBNP6KefftKRI0dUqlQpTZw4Ub/++quWL19u7xIdRmBgoHbt2qUiRYqkCgP/ZLFYdOrUqQdYWfZQtmxZjRo1Si+//LJN+6JFizRq1CjOWRq49DbjBgwYkOG+ad2s/bArX768Ro0apRdffNF6P16pUqU0cuRIxcbGaubMmfYu0aH99ttvaY7kcf9n2hYsWHDP7UwkllqxYsU0bNiwVIHpww8/1Lhx4/Tnn3/aqbL7Q5ByQKtXr9aQIUMUGhqq2rVrS/o7rY8ZM0YTJkzQk08+ae1bsGBBe5XpUOrUqaPnnntOAwYMsPnPc+fOnWrXrp3++OMPe5fo8O78KmDWoXt777339P777+v999+3/rFjw4YNGjJkiAYOHKhhw4bZuUJkZw0aNLB5vnv3biUnJ9vcL5s7d25Vr15dGzdutEeJDi1fvnw6cuSIAgIC5OXlpfDwcAUFBen48eOqXbu2Ll26ZO8SHdKpU6fUvn17HTx4UBaLJdX/B0w8hMzi5uamvXv3phpZP378uKpWraq4uDg7VXZ/mALOAbVq1UqS1LFjR+svsTu/1Fq3bm19zqxq/+fgwYNasmRJqvaiRYvyH+e/mDt3rqZOnarjx49L+nvEJSQkRK+++qqdK3NMQ4YMUWxsrHr27Gn9q62rq6uGDh1KiLqHlJQUnThxQhcuXFBKSorNtrp169qpKscTERFh/XrKlClyc3NLdb9st27d9NRTT9mrRIfm4+OjS5cuKSAgQAEBAdqxY4eCgoIUGRnJIr330K9fPwUGBmr9+vUqVaqUfv31V126dEkDBw7UpEmT7F1etpCQkKDbt2/btPHH7tTatGmjlStXavDgwTbt3377rfUzbnZCkHJA//yPFBlTqFAhRUdHp7pUbe/evSpWrJidqnJ8I0aM0NSpU9WnTx/rtcrbt29X//79FRUVpbFjx9q5QsdjsVj03nvvacSIETpy5Ijy5s2rsmXLshjvPezYsUOdOnXS6dOnU32Y5Q9C6Zs8ebLWrVtnc+lj4cKFNXbsWDVt2lQDBw60Y3WOqWHDhlq1apWqVaumHj16qH///lq+fLl27dqlDh062Ls8h7V9+3Zt3LhRRYsWVa5cuZQrVy49+eSTCgsLU9++fbV37157l+iQ4uPjNXToUH355Zdp/tGW321/++f92I8++qjGjRunTZs22dwjtXXr1mz5O41L+5AjDBkyRNu3b9dXX32lcuXKac+ePTp//rw6d+6szp07a9SoUfYu0SF5enpqxowZevHFF23av/jiC/Xp00d//fWXnSpDTlKlShWVK1dOo0ePTnPRyjvr1sCWm5ubvv322zTvl23btq11EXL8n5SUFKWkpFjXXPzyyy+t9+O98cYbcnZ2tnOFjqlw4cLavXu3SpUqpdKlS2vOnDlq0KCBTp48qUqVKrGwfTp69eqliIgIjRkzRp07d9aHH36oP/74Q5988okmTJigl156yd4lOoR73Y/9T9nx3myClIO6fPmy5s6da7Mgb7du3WxWuMf/uX37trp27aqlS5fKMAzlyZNHSUlJeumllzR//nzlzp3b3iU6pMKFC+vXX39V2bJlbdp///131axZU1euXLFPYchR8ufPr/379zPbnEmdO3fW5s2bNXnyZJv7ZQcPHqy6dev+643uQEY99dRTGjhwoNq1a6dOnTrp8uXLeueddzR79mzt3r1bhw4dsneJDqlEiRJauHCh6tevr4IFC2rPnj0qU6aMFi1apC+++EKrV6+2d4nIYgQpB7R582a1adNG7u7uqlGjhqS/bzi+cuWKvvvuO9WrV8/OFTquU6dOadeuXbJYLKpatSof3P5Fnz595OTklGr2r0GDBikhIUEffvihnSpDTtKwYUMNGTJEzZs3t3cp2cqNGzc0aNAgffbZZ9Z7L/LkyaMePXro/fffV/78+e1coWO6cuWKfv311zTvx+vcubOdqnI8Bw4cUMWKFZUrVy6tXbtWN27cUPv27XXq1Cm1atVKR48eVZEiRbRs2bJUo6L4W4ECBXT48GEFBASoePHiWrFihWrWrKnIyEhVqlQp202c8CDdunVLkZGRKl26tHUEOTsiSDmgihUrKjg4WLNmzbKOpCQnJ6tnz57aunUrfxlKB5MmZMw/p1dOSkrS/PnzVaJECZu/eJ89e1adO3fWjBkz7FUmsrkDBw5Yvz558qTeeecdDR48WJUqVUq11krlypUfdHnZSnx8vE6ePCnDMFSmTBkC1D2sWrVKL730kuLj4+Xm5mZzGanFYmFdn3/InTu3oqOj5eXlZZ3ltkiRItbtsbGxKly4MDO53kPlypU1Y8YM1atXT02bNlXlypU1adIkTZ8+XRMnTtS5c+fsXaLDuXHjhvr06WMdUf/9999VqlQp9e3bV35+fnrrrbfsXKE5BCkHlDdvXu3bt8863e0dx44dU5UqVViQNw3pTZowc+ZM9evXj0kT/uHu6ZXTY7FYmF4Z9y1Xrlw20yjf7c42JptAZipXrpyefvppjR8/Xvny5bN3OQ6tSJEiWr16tWrVqqVcuXLp/PnzKlq0qL3LylamTp2q3Llzq2/fvoqIiFDLli2VnJyspKQkTZkyRf369bN3iQ6nX79+2rp1qz744AM1b95cBw4cUKlSpfTdd99p1KhR2W5iE4KUA3riiSc0ePBgtWvXzqb9m2++0Xvvvaft27fbpzAHxqQJgGM5ffp0hvsGBARkYSV4mOTPn18HDx5UqVKl7F2Kw/vf//6nhQsXytfXV2fOnFHx4sXTvZ84u00AYC9nzpzRrl27VLp0aQUFBdm7HIcUEBCgZcuWqXbt2jbrfp44cULVqlXTtWvX7F2iKdn3osQcrG/fvurXr59OnDhhc7nVhx9+qAkTJthcMsMlMX9LTk623k/2T9WrV1dSUpIdKgIebv8MR2FhYfL29lb37t1t+nz22We6ePGihg4d+qDLQw7VrFkz7dq1iyCVAbNnz1aHDh104sQJ9e3bV6+99prc3NzsXVa2VqJECZUoUcLeZTi0ixcvysvLK1V7fHx8tryMlBEpB5QrV657bueSmNSYNAFwXCVLltSSJUsUHBxs0/7LL7/ohRdeUGRkpJ0qQ07w3XffWb++ePGixowZo27duqV5P16bNm0edHnZQrdu3TR9+nSCVAb8c02kf9O3b98srCR7qlevnp599ln16dNHbm5uOnDggAIDA9W7d2+dOHFCa9assXeJphCkHBCXxGQMkyYA2YOrq6uOHDmSai2RU6dOqUKFCrp586adKkNO8G9/fLyDPz4iM+TkNZEehG3btql58+bW5Wlef/11HT58WNu3b9fmzZtVvXp1e5doCpf2OaA74ei3337TmTNndOvWLes2i8Wi1q1b26s0h3L3DYl3fvhOnjwpSSpatKiKFi2qw4cPP/DaAPwff39/bd26NdUHkK1bt8rPz89OVSGnuHuKcyArpTeCfmdcIjtenvYgBQcHa9u2bXr//fdVunRprVu3TtWqVdP27dtVqVIle5dnGkHKAZ06dUrt27fXwYMHbWa9uvPDyV/U/hYREWHvEgBkwKuvvqqQkBDdvn3buh7Nhg0bNGTIEA0cONDO1QHA/WPpFXMaNmyoevXqpVpQ/PLly2rYsGG2my2YIOWA+vXrp8DAQK1fv16lSpXSL7/8otjYWA0cOFCTJk2yd3kAYMqQIUMUGxurnj17WkfYXV1dNXToUA0bNszO1SGn2bBhg6ZOnaojR47IYrGofPnyCgkJUePGje1dGnKY9JZe6d+/v6Kiolh6JQ2bNm3SwYMHtXfvXi1ZssS6TMGtW7e0efNmO1dnHvdIOSBPT09t3LhRlStXlru7u3799Vc98sgj2rhxowYOHJjt5tgHAEmKi4vTkSNHlDdvXpUtW1YuLi72Lgk5zMyZM9W/f389++yz1g+2O3bs0PLlyzVlyhT17t3bzhUiJ2HpFfNy5cqlvXv36vXXX1d8fLxWrVqlkiVL6vz58/Lz88t2V10xIuWAkpOTVaBAAUl//5D++eefeuSRRxQQEKBjx47ZuToAuD8FChTQ448/bu8ykIOFhYVp6tSpNoGpb9++euKJJzRu3DiCFDIVS6/cH19fX23evFndu3fX448/rq+++kqPPvqovcu6Lxmb6gYPVMWKFa1rRdWqVUsTJ07U1q1bNWbMGNbGAAAgHdeuXVPz5s1TtTdt2jTbLfQJx/fyyy9r1qxZqdpnz56tl156yQ4VOb479/u7uLho8eLF6tevn5o3b66PPvrIzpXdHy7tc0Br165VfHy8OnTooFOnTqlVq1Y6evSoihQpomXLlllv1gYAAP/npZdeUpUqVTR48GCb9kmTJmn37t364osv7FQZcqI+ffpo4cKF8vf3T3PplX+uY3b3OpcPq1y5cikmJsZmUd6vv/5aXbp0UUJCQra7tI8glU3ExsaqcOHCTKsJAEA6xo4dq0mTJumJJ56wuUdq69atGjhwoAoWLGjty2Kp+K8aNGiQoX4WiyXbzUaXVU6fPq0SJUqk+jx7+PBh7dq1S126dLFTZfeHIAUAAHIEFksF8CARpAAAAADAJCabAAAAOcqtW7d07NgxZk4DkKUIUgAAIEe4ceOGevTooXz58umxxx7TmTNnJP19P9SECRPsXB2AnIYgBQAAcoRhw4Zp//792rRpk1xdXa3tjRs31rJly+xYGYCciAV5AQBAjvDNN99o2bJlql27ts2sYBUqVNDJkyftWBmAnIgRKQAAkCNcvHjRZn2aO+Lj41k+BECmI0gBAIAc4fHHH9cPP/xgfX4nPH366afWdaUAILNwaR8AAMgRwsLC1Lx5c/32229KSkrStGnTdPjwYW3fvl2bN2+2d3kAchhGpAAAQI4QHBysrVu36saNGypdurTWrVsnb29vbd++XdWrV7d3eQByGBbkBQAAAACTuLQPAABkW9euXctw34IFC2ZhJQAeNoxIAQCAbCtXrlz/OiOfYRiyWCxKTk5+QFUBeBgwIgUAALKtiIgIe5cA4CHFiBQAAMgxfv75Z33yySc6efKkli9frmLFimnRokUKDAzUk08+ae/yAOQgzNoHAAByhK+//lrNmjVT3rx5tXfvXiUmJkqSrl+/rvHjx9u5OgA5DUEKAADkCGPHjtXHH3+sTz/9VE5OTtb24OBg7dmzx46VAciJCFIAACBHOHbsmOrWrZuqvWDBgrpy5cqDLwhAjkaQAgAAOYKvr69OnDiRqn3Lli0qVaqUHSoCkJMRpAAAQI7w+uuvq1+/fvrll19ksVj0559/avHixRo0aJB69uxp7/IA5DDM2gcAAHKM4cOHa+rUqbp586YkycXFRYMGDdK7775r58oA5DQEKQAAkKPcuHFDv/32m1JSUlShQgUVKFDA3iUByIEIUgAAAABgEvdIAQAAAIBJBCkAAAAAMIkgBQAAAAAmEaQAAAAAwCSCFADAoWzatEkWi0VXrlz5T32ywvz581WoUCFTrylZsqQ++OCD//S+oaGhqlKlyn/aBwAgcxGkAADZTnBwsKKjo+Xu7p4p+7NXMAMAZF957F0AAABmOTs7y8fHx95lAAAeYoxIAQAeqMTERPXt21deXl5ydXXVk08+qZ07d6bqt3XrVgUFBcnV1VW1atXSwYMHrdvSGkHatm2b6tatq7x588rf3199+/ZVfHy8zfsOGTJE/v7+cnFxUdmyZTV37lxFRUWpQYMGkqTChQvLYrGoa9euGTqWkydPqm3btvL29laBAgX0+OOPa/369an6Xb9+XZ06dVKBAgXk5+enGTNm2Gy/evWq/ve//8nLy0sFCxZUw4YNtX///gzVAACwD4IUAOCBGjJkiL7++mstWLBAe/bsUZkyZdSsWTPFxsba9Bs8eLAmTZqknTt3ysvLS23atNHt27fT3OfBgwfVrFkzdejQQQcOHNCyZcu0ZcsW9e7d29qnc+fOWrp0qaZPn64jR47o448/VoECBeTv76+vv/5aknTs2DFFR0dr2rRpGTqWuLg4Pf3001q/fr327t2rZs2aqXXr1jpz5oxNv/fff1+VK1fWnj17NGzYMPXv31/h4eGSJMMw1LJlS8XExGj16tXavXu3qlWrpkaNGqU6JwAAB2IAAPCAxMXFGU5OTsbixYutbbdu3TL8/PyMiRMnGoZhGBEREYYkY+nSpdY+ly5dMvLmzWssW7bMps/ly5cNwzCMV155xfjf//5n814///yzkStXLiMhIcE4duyYIckIDw9Ps66795eeefPmGe7u7vfsU6FCBWPGjBnW5wEBAUbz5s1t+jz//PNGixYtDMMwjA0bNhgFCxY0bt68adOndOnSxieffGIYhmGMGjXKCAoKuuf7AgAeLO6RAgA8MCdPntTt27f1xBNPWNucnJxUs2ZNHTlyxKZvnTp1rF97eHjokUceSdXnjt27d+vEiRNavHixtc0wDKWkpCgyMlIHDx5U7ty5Va9evUw9nvj4eI0ePVrff/+9/vzzTyUlJSkhISHViNQ/j+XO8zsz+e3evVtxcXEqUqSITZ+EhASdPHkyU+sFAGQeghQA4IExDEOSZLFYUrXf3ZaW9PqkpKTo9ddfV9++fVNtK1GihE6cOHEf1f67wYMHa+3atZo0aZLKlCmjvHnz6tlnn9WtW7f+9bV3jiUlJUW+vr7atGlTqj5mp1oHADw4BCkAwANTpkwZOTs7a8uWLerUqZMk6fbt29q1a5dCQkJs+u7YsUMlSpSQJF2+fFm///67ypcvn+Z+q1WrpsOHD6tMmTJpbq9UqZJSUlK0efNmNW7cONV2Z2dnSVJycrKp4/n555/VtWtXtW/fXtLf90xFRUWl6rdjx45Uz+8cS7Vq1RQTE6M8efKoZMmSpt4fAGA/TDYBAHhg8ufPrzfffFODBw/WmjVr9Ntvv+m1117TjRs31KNHD5u+Y8aM0YYNG3To0CF17dpVnp6eateuXZr7HTp0qLZv365evXpp3759On78uL777jv16dNH0t+L4nbp0kXdu3fXN998o8jISG3atElffvmlJCkgIEAWi0Xff/+9Ll68qLi4uAwdT5kyZbRixQrt27dP+/fvV6dOnZSSkpKq39atWzVx4kT9/vvv+vDDD/XVV1+pX79+kqTGjRurTp06ateundauXauoqCht27ZN77zzjnbt2pXRUwsAeMAIUgCAB2rChAl65pln9Morr6hatWo6ceKE1q5dq8KFC6fq169fP1WvXl3R0dH67rvvrCNHd6tcubI2b96s48eP66mnnlLVqlU1YsQI+fr6WvvMmjVLzz77rHr27Kny5cvrtddes06PXqxYMY0ePVpvvfWWvL29bWb7u5epU6eqcOHCCg4OVuvWrdWsWTNVq1YtVb+BAwdq9+7dqlq1qt59911NnjxZzZo1k/T3JX6rV69W3bp11b17d5UrV04vvPCCoqKi5O3tnaE6AAAPnsW4c8E6AADZxNq1a9WiRQvdvHkz3XAFAEBWYkQKAJCtnD9/Xt9++63Kli1LiAIA2A2TTQAAspWnn35a169f10cffWTvUgAADzEu7QMAAAAAk7i0DwAAAABMIkgBAAAAgEkEKQAAAAAwiSAFAAAAACYRpAAAAADAJIIUAAAAAJhEkAIAAAAAkwhSAAAAAGDS/wOQ+xiiO77kTQAAAABJRU5ErkJggg==",
303
+ "text/plain": [
304
+ "<Figure size 1000x500 with 1 Axes>"
305
+ ]
306
+ },
307
+ "metadata": {},
308
+ "output_type": "display_data"
309
+ }
310
+ ],
311
+ "source": [
312
+ "# plot the distribution of the number of images per object style\n",
313
+ "shared_stim_set.groupby('object_label').count().plot.bar(y='image_id', figsize=(10, 5), legend=False)\n",
314
+ "# add colors based on the stimulus_source column \n",
315
+ "plt.ylabel('number of images')\n",
316
+ "plt.xlabel('object label')\n",
317
+ "plt.title('Number of images per object label')\n"
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "code",
322
+ "execution_count": 9,
323
+ "metadata": {},
324
+ "outputs": [
325
+ {
326
+ "data": {
327
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAIeCAYAAACxyz6kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACBqUlEQVR4nO3dd3hT5f//8VeADkZbKKO0jLI3LUumMmQWlKlM2aACguwpUJChyIaPqGwEFEVAGTJkypJRtszSAiplQ9mU9vz+4Nd8CW2B0JEmPB/Xlesid06S12kTmnfOfb+PyTAMQwAAAACAl5bC1gEAAAAAwN5QSAEAAACAlSikAAAAAMBKFFIAAAAAYCUKKQAAAACwEoUUAAAAAFiJQgoAAAAArEQhBQAAAABWopACAAAAACtRSAFwOPPmzZPJZJKrq6vOnTsX4/aqVauqWLFiNkgmbdmyRSaTSUuXLrXJ81srNDRU9erVk6enp0wmk3r27Bnntrly5VK7du2SLBviL1euXHrnnXdeuF1oaKhMJpPmzZuXKDnu3bunwMBAbdmyJcEec+fOnQoMDNTNmzdf+TF4TQN4nlS2DgAAieXhw4f67LPP9P3339s6it3q1auX/vrrL82ZM0dZs2aVt7d3nNsuX75c7u7uSZgOScXb21u7du1S3rx5E+Xx7927pxEjRkh68kVHQti5c6dGjBihdu3aKX369AnymADwNAopAA6rTp06Wrx4sfr27St/f39bx0lS9+/fl6urq0wmU7we5+jRoypbtqwaNmz4wm1LliwZr+fCy4uMjNTjx4/l4uKSJM/n4uKi8uXLJ8lzAYC9YGofAIfVv39/ZcyYUQMGDHjuds+btmQymRQYGGi+HhgYKJPJpMOHD+v999+Xh4eHPD091bt3bz1+/FgnT55UnTp15Obmply5cmncuHGxPueDBw/Uu3dvZc2aValTp1aVKlV04MCBGNvt27dP9evXl6enp1xdXVWyZEn99NNPFttET2Vcv369OnTooMyZMytNmjR6+PBhnPt8/vx5ffDBB8qSJYtcXFxUuHBhTZgwQVFRUZL+bwrimTNn9Pvvv8tkMslkMik0NDTOx3x2GlT0YyxevFgDBgyQt7e30qVLp3fffVeXLl3S7du39eGHHypTpkzKlCmT2rdvrzt37lg85v/+9z9VrlxZWbJkUdq0aVW8eHGNGzdOERERFtsZhqExY8bI19dXrq6uKlOmjDZs2KCqVavGOMIRHh6uvn37Knfu3HJ2dla2bNnUs2dP3b1712K7n3/+WeXKlZOHh4fSpEmjPHnyqEOHDnHufzSTyaRPPvlE3377rQoUKCAXFxcVKVJEP/74Y4xtw8LC9NFHHyl79uxydnZW7ty5NWLECD1+/Ni8TfTrc9y4cRo1apRy584tFxcXbd68Oc4MDx480KBBgyz2sVu3bnFOc1u+fLn8/Pzk6uqqPHnyaOrUqRa3x/UeOX36tFq2bGnxOvrf//4X4/Fv3rypPn36KE+ePHJxcVGWLFlUt25dnThxQqGhocqcObMkacSIEebX2vOm1EVFRWnUqFEqWLCgUqdOrfTp08vPz09TpkyR9OR92q9fP0lS7ty5zY+5ZcsWdezYUZ6enrp3716Mx3377bdVtGjROJ9XevnXDwDHxxEpAA7Lzc1Nn332mT799FNt2rRJb7/9doI9dtOmTfXBBx/oo48+0oYNG8wf7v/44w917dpVffv2NRcQ+fLlU+PGjS3uP3jwYJUqVUqzZs3SrVu3FBgYqKpVq+rAgQPKkyePJGnz5s2qU6eOypUrp2+++UYeHh768ccf1axZM927dy/GB80OHTqoXr16+v7773X37l05OTnFmv3KlSuqWLGiHj16pM8//1y5cuXSqlWr1LdvXwUHB+vrr79WqVKltGvXLjVq1Eh58+bV+PHjJem5U/viMnjwYFWrVk3z5s1TaGio+vbtqxYtWihVqlTy9/fXDz/8oAMHDmjw4MFyc3Oz+BAfHBysli1bmj+0Hjp0SKNHj9aJEyc0Z84c83ZDhgzR2LFj9eGHH6px48a6cOGCOnXqpIiICBUoUMC83b1791SlShX9888/Gjx4sPz8/HTs2DENGzZMR44c0R9//CGTyaRdu3apWbNmatasmQIDA83r7TZt2vRS+/zbb79p8+bNGjlypNKmTauvv/7avM/vvfeepCdFVNmyZZUiRQoNGzZMefPm1a5duzRq1CiFhoZq7ty5Fo85depUFShQQOPHj5e7u7vy588f63MbhqGGDRtq48aNGjRokN566y0dPnxYw4cP165du7Rr1y6LI1kHDx5Uz549FRgYqKxZs2rRokX69NNP9ejRI/Xt2zfOffz7779VsWJF5cyZUxMmTFDWrFm1bt069ejRQ1evXtXw4cMlSbdv39abb76p0NBQDRgwQOXKldOdO3e0bds2Xbx4URUrVtTatWtVp04ddezYUZ06dZIkc3EVm3HjxikwMFCfffaZKleurIiICJ04ccJcKHbq1EnXr1/XtGnTtGzZMvPrtkiRIvL09NScOXO0ePFi83NF78/mzZtjLQSjvezrB8BrwgAABzN37lxDkrF3717j4cOHRp48eYwyZcoYUVFRhmEYRpUqVYyiRYuatw8JCTEkGXPnzo3xWJKM4cOHm68PHz7ckGRMmDDBYrsSJUoYkoxly5aZxyIiIozMmTMbjRs3No9t3rzZkGSUKlXKnMcwDCM0NNRwcnIyOnXqZB4rVKiQUbJkSSMiIsLiud555x3D29vbiIyMtNjfNm3avNTPZ+DAgYYk46+//rIY79Kli2EymYyTJ0+ax3x9fY169eq91OP6+voabdu2jbGv7777rsV2PXv2NCQZPXr0sBhv2LCh4enpGefjR0ZGGhEREcaCBQuMlClTGtevXzcMwzCuX79uuLi4GM2aNbPYfteuXYYko0qVKuaxsWPHGilSpDD27t1rse3SpUsNScaaNWsMwzCM8ePHG5KMmzdvvtS+P02SkTp1aiMsLMw89vjxY6NQoUJGvnz5zGMfffSRkS5dOuPcuXMW949+7mPHjhmG8X+vz7x58xqPHj164fOvXbvWkGSMGzfOYnzJkiWGJOO7774zj/n6+homk8k4ePCgxbY1a9Y03N3djbt371pkePo9Urt2bSN79uzGrVu3LO77ySefGK6urubfz8iRIw1JxoYNG+LMfOXKlRjvted55513jBIlSjx3m6+++sqQZISEhMS4rUqVKjHu36VLF8Pd3d24ffu2eezZ1/TLvn4AvB6Y2gfAoTk7O2vUqFHat29fjClx8fFsp7PChQvLZDIpICDAPJYqVSrly5cv1s6BLVu2tPjm2tfXVxUrVjRP1zpz5oxOnDihVq1aSZIeP35svtStW1cXL17UyZMnLR6zSZMmL5V906ZNKlKkiMqWLWsx3q5dOxmG8dJHXV5WbD8rSapXr16M8evXr1tM7ztw4IDq16+vjBkzKmXKlHJyclKbNm0UGRmpU6dOSZJ2796thw8fqmnTphaPV758eeXKlctibNWqVSpWrJhKlChh8TOtXbu2eeqXJL3xxhuSnhx5/Omnn/Tvv/9atc/Vq1eXl5eX+XrKlCnVrFkznTlzRv/88485S7Vq1eTj42ORJfo1tHXrVovHrF+/fpxHGZ8W/ft79ojl+++/r7Rp02rjxo0W40WLFo2xhrBly5YKDw9XUFBQrM/x4MEDbdy4UY0aNVKaNGlivD4fPHig3bt3S5J+//13FShQQDVq1Hhh9pdVtmxZHTp0SF27dtW6desUHh5u1f0//fRTHTx4UDt27JD0ZLre999/r7Zt2ypdunRx3u9lXz8AXg8UUgAcXvPmzVWqVCkNGTIkxtqaV+Xp6Wlx3dnZWWnSpJGrq2uM8QcPHsS4f9asWWMdu3btmiTp0qVLkqS+ffvKycnJ4tK1a1dJ0tWrVy3u/7LT7q5duxbrtj4+PubbE1JsP6vnjUf/vM6fP6+33npL//77r6ZMmaI///xTe/fuNU+9un//vkXepwuXaM+OXbp0SYcPH47xM3Vzc5NhGOafaeXKlbVixQo9fvxYbdq0Ufbs2VWsWDH98MMPL7XPcf1+n8576dIlrVy5MkaW6DU68fn9pkqVKsbUOJPJZPEasyZrbM/x+PFjTZs2LUb+unXrWuS/cuWKsmfP/lLZX9agQYM0fvx47d69WwEBAcqYMaOqV6+uffv2vdT9GzRooFy5cplfS/PmzdPdu3fVrVu3597vZV8/AF4PrJEC4PBMJpO+/PJL1axZU999912M26OLn2ebMyR0QfG0sLCwWMcyZswoScqUKZOkJx8Yn11fFa1gwYIW1192bUbGjBl18eLFGOP//fefxXPb2ooVK3T37l0tW7ZMvr6+5vGDBw9abBf9M4suPp8WFhZmcVQqU6ZMSp06tcX6qqc9ve8NGjRQgwYN9PDhQ+3evVtjx45Vy5YtlStXLlWoUOG52eP6/T6dN1OmTPLz89Po0aNjfYzowjaaNb/fx48f68qVKxbFlGEYCgsLMx9tsybrszJkyKCUKVOqdevWcRYfuXPnlvRkrVP0UbiEkipVKvXu3Vu9e/fWzZs39ccff2jw4MGqXbu2Lly4oDRp0jz3/ilSpFC3bt00ePBgTZgwQV9//bWqV68e4z31LGtePwAcH0ekALwWatSooZo1a2rkyJExOsN5eXnJ1dVVhw8fthj/9ddfEy3PDz/8IMMwzNfPnTunnTt3mjvMFSxYUPnz59ehQ4dUpkyZWC9ubm6v9NzVq1fX33//HWPa1oIFC2QymVStWrVX3q+EFF04PN0YwTAMzZw502K7cuXKycXFRUuWLLEY3717d4xple+8846Cg4OVMWPGWH+mz04FjH7+KlWq6Msvv5SkWLsrPmvjxo0WhV1kZKSWLFmivHnzmo/OvPPOOzp69Kjy5s0ba5ZnC6mXVb16dUnSwoULLcZ/+eUX3b1713x7tGPHjunQoUMWY4sXL5abm5tKlSoV63OkSZNG1apV04EDB+Tn5xdr/ugiLCAgQKdOnXrulNHo33H0UUZrpE+fXu+99566deum69evmztLvugxO3XqJGdnZ7Vq1UonT57UJ5988sLnepXXDwDHxREpAK+NL7/8UqVLl9bly5ctWhybTCZ98MEHmjNnjvLmzSt/f3/t2bNHixcvTrQsly9fVqNGjdS5c2fdunVLw4cPl6urqwYNGmTe5ttvv1VAQIBq166tdu3aKVu2bLp+/bqOHz+uoKAg/fzzz6/03L169dKCBQtUr149jRw5Ur6+vlq9erW+/vprdenSxaLLnS3VrFlTzs7OatGihfr3768HDx5oxowZunHjhsV20e3nx44dqwwZMqhRo0b6559/NGLECHl7eytFiv/7zrBnz5765ZdfVLlyZfXq1Ut+fn6KiorS+fPntX79evXp00flypXTsGHD9M8//6h69erKnj27bt68qSlTpsjJyUlVqlR5YfZMmTLp7bff1tChQ81d+06cOGHRAn3kyJHasGGDKlasqB49eqhgwYJ68OCBQkNDtWbNGn3zzTevNCWuZs2aql27tgYMGKDw8HBVqlTJ3LWvZMmSat26tcX2Pj4+ql+/vgIDA+Xt7a2FCxdqw4YN+vLLL597ZGfKlCl688039dZbb6lLly7KlSuXbt++rTNnzmjlypXmwqlnz55asmSJGjRooIEDB6ps2bK6f/++tm7dqnfeeUfVqlWTm5ubfH199euvv6p69ery9PRUpkyZ4ixM3n33XRUrVkxlypRR5syZde7cOU2ePFm+vr7mbobFixc352zbtq2cnJxUsGBB8xcQ6dOnV5s2bTRjxgz5+vrq3XfffeHP9mVfPwBeE7bsdAEAieHprn3PatmypSHJomufYRjGrVu3jE6dOhleXl5G2rRpjXfffdcIDQ2Ns2vflStXLO7ftm1bI23atDGe79kOgdGd7L7//nujR48eRubMmQ0XFxfjrbfeMvbt2xfj/ocOHTKaNm1qZMmSxXBycjKyZs1qvP3228Y333zzUvsbl3PnzhktW7Y0MmbMaDg5ORkFCxY0vvrqK3MnwGgJ0bXv559/ttgurryx/WxXrlxp+Pv7G66urka2bNmMfv36Gb///rshydi8ebN5u6ioKGPUqFFG9uzZDWdnZ8PPz89YtWqV4e/vbzRq1Mjiee7cuWN89tlnRsGCBQ1nZ2fDw8PDKF68uNGrVy9zp71Vq1YZAQEBRrZs2QxnZ2cjS5YsRt26dY0///zzhT8HSUa3bt2Mr7/+2sibN6/h5ORkFCpUyFi0aFGMba9cuWL06NHDyJ07t+Hk5GR4enoapUuXNoYMGWLcuXPHMIz/65j31VdfvfC5o92/f98YMGCA4evrazg5ORne3t5Gly5djBs3blhsF/37Xbp0qVG0aFHD2dnZyJUrlzFx4kSL7aIzzJs3L8Z4hw4djGzZshlOTk5G5syZjYoVKxqjRo2y2O7GjRvGp59+auTMmdNwcnIysmTJYtSrV884ceKEeZs//vjDKFmypOHi4mJIsngtPWvChAlGxYoVjUyZMhnOzs5Gzpw5jY4dOxqhoaEW2w0aNMjw8fExUqRIEeM1YxiGsWXLFkOS8cUXX8T6PM++pg3j5V4/AF4PJsN4am4JAAAOIiQkRIUKFdLw4cM1ePDgJHtek8mkbt26afr06Un2nInt0KFDKlGihFauXBmjC6M969Onj2bMmKELFy7EuR4MAOLC1D4AgN07dOiQfvjhB1WsWFHu7u46efKkxo0bJ3d3d3Xs2NHW8eza5s2bNWvWLDk7O8e5Zsre7N69W6dOndLXX3+tjz76iCIKwCuhkAIA2L20adNq3759mj17tm7evCkPDw9VrVpVo0ePjrUtOl5ezZo1lTt3bs2dO/eVG2AkNxUqVFCaNGn0zjvvaNSoUbaOA8BOMbUPAAAAAKxE+3MAAAAAsBKFFAAAAABYiUIKAAAAAKxEswlJUVFR+u+//+Tm5iaTyWTrOAAAAABsxDAM3b59Wz4+PhYndX8WhZSk//77Tzly5LB1DAAAAADJxIULF5Q9e/Y4b6eQkuTm5ibpyQ/L3d3dxmkAAAAA2Ep4eLhy5MhhrhHiQiElmafzubu7U0gBAAAAeOGSH5pNAAAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFZKZesAAIDXQ66Bq5P0+UK/qJekzwcAeL1wRAoAAAAArEQhBQAAAABWopACAAAAACtRSAEAAACAlSikAAAAAMBKFFIAAAAAYCUKKQAAAACwEoUUAAAAAFiJQgoAAAAArEQhBQAAAABWopACAAAAACtRSAEAAACAlSikAAAAAMBKFFIAAAAAYCUKKQAAAACwEoUUAAAAAFiJQgoAAAAArEQhBQAAAABWopACAAAAACtRSAEAAACAlSikAAAAAMBKFFIAAAAAYCUKKQAAAACwEoUUAAAAAFjJpoXUtm3b9O6778rHx0cmk0krVqywuN1kMsV6+eqrr8zbVK1aNcbtzZs3T+I9AQAAAPA6sWkhdffuXfn7+2v69Omx3n7x4kWLy5w5c2QymdSkSROL7Tp37myx3bfffpsU8QEAAAC8plLZ8skDAgIUEBAQ5+1Zs2a1uP7rr7+qWrVqypMnj8V4mjRpYmwLAAAAAInFbtZIXbp0SatXr1bHjh1j3LZo0SJlypRJRYsWVd++fXX79u3nPtbDhw8VHh5ucQEAAACAl2XTI1LWmD9/vtzc3NS4cWOL8VatWil37tzKmjWrjh49qkGDBunQoUPasGFDnI81duxYjRgxIrEjAwAAAHBQdlNIzZkzR61atZKrq6vFeOfOnc3/LlasmPLnz68yZcooKChIpUqVivWxBg0apN69e5uvh4eHK0eOHIkTHAAAAIDDsYtC6s8//9TJkye1ZMmSF25bqlQpOTk56fTp03EWUi4uLnJxcUnomAAAAABeE3axRmr27NkqXbq0/P39X7jtsWPHFBERIW9v7yRIBgAAAOB1ZNMjUnfu3NGZM2fM10NCQnTw4EF5enoqZ86ckp5Mu/v55581YcKEGPcPDg7WokWLVLduXWXKlEl///23+vTpo5IlS6pSpUpJth8AAAAAXi82LaT27dunatWqma9Hr1tq27at5s2bJ0n68ccfZRiGWrRoEeP+zs7O2rhxo6ZMmaI7d+4oR44cqlevnoYPH66UKVMmyT4AAAAAeP2YDMMwbB3C1sLDw+Xh4aFbt27J3d3d1nEAwCHlGrg6SZ8v9It6Sfp8AADH8LK1gV2skQIAAACA5IRCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVbFpIbdu2Te+++658fHxkMpm0YsUKi9vbtWsnk8lkcSlfvrzFNg8fPlT37t2VKVMmpU2bVvXr19c///yThHsBAAAA4HVj00Lq7t278vf31/Tp0+Pcpk6dOrp48aL5smbNGovbe/bsqeXLl+vHH3/U9u3bdefOHb3zzjuKjIxM7PgAAAAAXlOpbPnkAQEBCggIeO42Li4uypo1a6y33bp1S7Nnz9b333+vGjVqSJIWLlyoHDly6I8//lDt2rUTPDMAAAAAJPs1Ulu2bFGWLFlUoEABde7cWZcvXzbftn//fkVERKhWrVrmMR8fHxUrVkw7d+6M8zEfPnyo8PBwiwsAAAAAvKxkXUgFBARo0aJF2rRpkyZMmKC9e/fq7bff1sOHDyVJYWFhcnZ2VoYMGSzu5+XlpbCwsDgfd+zYsfLw8DBfcuTIkaj7AQAAAMCx2HRq34s0a9bM/O9ixYqpTJky8vX11erVq9W4ceM472cYhkwmU5y3Dxo0SL179zZfDw8Pp5gCAAAA8NKS9RGpZ3l7e8vX11enT5+WJGXNmlWPHj3SjRs3LLa7fPmyvLy84nwcFxcXubu7W1wAAAAA4GXZVSF17do1XbhwQd7e3pKk0qVLy8nJSRs2bDBvc/HiRR09elQVK1a0VUwAAAAADs6mU/vu3LmjM2fOmK+HhITo4MGD8vT0lKenpwIDA9WkSRN5e3srNDRUgwcPVqZMmdSoUSNJkoeHhzp27Kg+ffooY8aM8vT0VN++fVW8eHFzFz8AAAAASGg2LaT27dunatWqma9Hr1tq27atZsyYoSNHjmjBggW6efOmvL29Va1aNS1ZskRubm7m+0yaNEmpUqVS06ZNdf/+fVWvXl3z5s1TypQpk3x/AAAAALweTIZhGLYOYWvh4eHy8PDQrVu3WC8FAIkk18DVSfp8oV/US9LnAwA4hpetDexqjRQAAAAAJAcUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWCnehVRkZKQOHjyoGzduJEQeAAAAAEj2rC6kevbsqdmzZ0t6UkRVqVJFpUqVUo4cObRly5aEzgcAAAAAyY7VhdTSpUvl7+8vSVq5cqVCQkJ04sQJ9ezZU0OGDEnwgAAAAACQ3FhdSF29elVZs2aVJK1Zs0bvv/++ChQooI4dO+rIkSMJHhAAAAAAkhurCykvLy/9/fffioyM1Nq1a1WjRg1J0r1795QyZcoEDwgAAAAAyU0qa+/Qvn17NW3aVN7e3jKZTKpZs6Yk6a+//lKhQoUSPCAAAAAAJDdWF1KBgYEqVqyYLly4oPfff18uLi6SpJQpU2rgwIEJHhAAAAAAkhurCylJeu+99yRJDx48MI+1bds2YRIBAAAAQDJn9RqpyMhIff7558qWLZvSpUuns2fPSpKGDh1qbosOAAAAAI7M6kJq9OjRmjdvnsaNGydnZ2fzePHixTVr1qwEDQcAAAAAyZHVhdSCBQv03XffqVWrVhZd+vz8/HTixAmrHmvbtm1699135ePjI5PJpBUrVphvi4iI0IABA1S8eHGlTZtWPj4+atOmjf777z+Lx6hatapMJpPFpXnz5tbuFgAAAAC8NKsLqX///Vf58uWLMR4VFaWIiAirHuvu3bvy9/fX9OnTY9x27949BQUFaejQoQoKCtKyZct06tQp1a9fP8a2nTt31sWLF82Xb7/91qocAAAAAGANq5tNFC1aVH/++ad8fX0txn/++WeVLFnSqscKCAhQQEBArLd5eHhow4YNFmPTpk1T2bJldf78eeXMmdM8niZNGvNJgl/Gw4cP9fDhQ/P18PBwq3IDAAAAeL1ZXUgNHz5crVu31r///quoqCgtW7ZMJ0+e1IIFC7Rq1arEyGh269YtmUwmpU+f3mJ80aJFWrhwoby8vBQQEKDhw4fLzc0tzscZO3asRowYkahZAQAAADguq6f2vfvuu1qyZInWrFkjk8mkYcOG6fjx41q5cqX55LyJ4cGDBxo4cKBatmwpd3d383irVq30ww8/aMuWLRo6dKh++eUXNW7c+LmPNWjQIN26dct8uXDhQqLlBgAAAOB4Xuk8UrVr11bt2rUTOkucIiIi1Lx5c0VFRenrr7+2uK1z587mfxcrVkz58+dXmTJlFBQUpFKlSsX6eC4uLuYTCQMAAACAtaw+IpXUIiIi1LRpU4WEhGjDhg0WR6NiU6pUKTk5Oen06dNJlBAAAADA68bqI1IZMmSQyWSKMW4ymeTq6qp8+fKpXbt2at++fbzDRRdRp0+f1ubNm5UxY8YX3ufYsWOKiIiQt7d3vJ8fAAAAAGJjdSE1bNgwjR49WgEBASpbtqwMw9DevXu1du1adevWTSEhIerSpYseP35sMe0uNnfu3NGZM2fM10NCQnTw4EF5enrKx8dH7733noKCgrRq1SpFRkYqLCxMkuTp6SlnZ2cFBwdr0aJFqlu3rjJlyqS///5bffr0UcmSJVWpUiVrdw0AAAAAXorVhdT27ds1atQoffzxxxbj3377rdavX69ffvlFfn5+mjp16gsLqX379qlatWrm671795YktW3bVoGBgfrtt98kSSVKlLC43+bNm1W1alU5Oztr48aNmjJliu7cuaMcOXKoXr16Gj58uMXJggEAAAAgIZkMwzCsuUO6dOl08ODBGCflPXPmjEqUKKE7d+4oODhYfn5+unv3boKGTSzh4eHy8PDQrVu3XrgGCwDwanINXJ2kzxf6Rb0kfT4AgGN42drA6mYTnp6eWrlyZYzxlStXytPTU5J09+7d557HCQAAAADsmdVT+4YOHaouXbpo8+bNKlu2rEwmk/bs2aM1a9bom2++kSRt2LBBVapUSfCwAAAAAJAcWF1Ide7cWUWKFNH06dO1bNkyGYahQoUKaevWrapYsaIkqU+fPgkeFEmPaTgA8HL4/9J+8buzX0n5u+P3hti80gl5K1WqRFc8AAAAAK+tVyqkot2/f18REREWYzRrAAAAAODorG42ce/ePX3yySfKkiWL0qVLpwwZMlhcAAAAAMDRWV1I9evXT5s2bdLXX38tFxcXzZo1SyNGjJCPj48WLFiQGBkBAAAAIFmxemrfypUrtWDBAlWtWlUdOnTQW2+9pXz58snX11eLFi1Sq1atEiMnAAAAACQbVh+Run79unLnzi3pyXqo69evS5LefPNNbdu2LWHTAQAAAEAyZHUhlSdPHoWGhkqSihQpop9++knSkyNV6dOnT8hsAAAAAJAsWV1ItW/fXocOHZIkDRo0yLxWqlevXurXr1+CBwQAAACA5MbqNVK9evUy/7tatWo6ceKE9u3bp7x588rf3z9BwwEAAABAchSv80hJUs6cOZUzZ86EyAIAAAAAduGVCqk9e/Zoy5Ytunz5sqKioixumzhxYoIEAwAAAIDkyupCasyYMfrss89UsGBBeXl5yWQymW97+t8AAAAA4KisLqSmTJmiOXPmqF27dokQBwAAAACSP6u79qVIkUKVKlVKjCwAAAAAYBesLqR69eql//3vf4mRBQAAAADsgtVT+/r27at69eopb968KlKkiJycnCxuX7ZsWYKFAwAAAIDkyOpCqnv37tq8ebOqVaumjBkz0mACAAAAwGvH6kJqwYIF+uWXX1SvXr3EyAMAAAAAyZ7Va6Q8PT2VN2/exMgCAAAAAHbB6kIqMDBQw4cP17179xIjDwAAAAAke1ZP7Zs6daqCg4Pl5eWlXLlyxWg2ERQUlGDhAAAAACA5srqQatiwYSLEAAAAAAD7YXUhNXz48MTIAQAAAAB2w+o1UgAAAADwunupI1Kenp46deqUMmXKpAwZMjz33FHXr19PsHAAAAAAkBy9VCE1adIkubm5SZImT56cmHkAAAAAINl7qUKqbdu2sf4bAAAAAF5HrJECAAAAACtRSAEAAACAlSikAAAAAMBKL1VIHT58WFFRUYmdBQAAAADswksVUiVLltTVq1clSXny5NG1a9cSNRQAAAAAJGcvVUilT59eISEhkqTQ0FCOTgEAAAB4rb1U+/MmTZqoSpUq8vb2lslkUpkyZZQyZcpYtz179myCBgQAAACA5OalCqnvvvtOjRs31pkzZ9SjRw917tzZfILe+Ni2bZu++uor7d+/XxcvXtTy5cvVsGFD8+2GYWjEiBH67rvvdOPGDZUrV07/+9//VLRoUfM2Dx8+VN++ffXDDz/o/v37ql69ur7++mtlz5493vkAAAAAIDYvVUhJUp06dSRJ+/fv16effpoghdTdu3fl7++v9u3bq0mTJjFuHzdunCZOnKh58+apQIECGjVqlGrWrKmTJ0+an79nz55auXKlfvzxR2XMmFF9+vTRO++8o/3798d51AwAAAAA4uOlC6loc+fONf/7n3/+kclkUrZs2V7pyQMCAhQQEBDrbYZhaPLkyRoyZIgaN24sSZo/f768vLy0ePFiffTRR7p165Zmz56t77//XjVq1JAkLVy4UDly5NAff/yh2rVrv1IuAAAAAHgeq88jFRUVpZEjR8rDw0O+vr7KmTOn0qdPr88//zxBm1CEhIQoLCxMtWrVMo+5uLioSpUq2rlzp6QnR8ciIiIstvHx8VGxYsXM28Tm4cOHCg8Pt7gAAAAAwMuy+ojUkCFDNHv2bH3xxReqVKmSDMPQjh07FBgYqAcPHmj06NEJEiwsLEyS5OXlZTHu5eWlc+fOmbdxdnZWhgwZYmwTff/YjB07ViNGjEiQnAAAAABeP1YXUvPnz9esWbNUv35985i/v7+yZcumrl27JlghFc1kMllcNwwjxtizXrTNoEGD1Lt3b/P18PBw5ciRI35BAQAAALw2rJ7ad/36dRUqVCjGeKFChXT9+vUECSVJWbNmlaQYR5YuX75sPkqVNWtWPXr0SDdu3Ihzm9i4uLjI3d3d4gIAAAAAL8vqQsrf31/Tp0+PMT59+nT5+/snSChJyp07t7JmzaoNGzaYxx49eqStW7eqYsWKkqTSpUvLycnJYpuLFy/q6NGj5m0AAAAAIKFZPbVv3Lhxqlevnv744w9VqFBBJpNJO3fu1IULF7RmzRqrHuvOnTs6c+aM+XpISIgOHjwoT09P5cyZUz179tSYMWOUP39+5c+fX2PGjFGaNGnUsmVLSZKHh4c6duyoPn36KGPGjPL09FTfvn1VvHhxcxc/AAAAAEhoVhdSVapU0alTp/S///1PJ06ckGEYaty4sbp27SofHx+rHmvfvn2qVq2a+Xr0uqW2bdtq3rx56t+/v+7fv6+uXbuaT8i7fv16i3NYTZo0SalSpVLTpk3NJ+SdN28e55ACAAAAkGisLqSkJy3GE6KpRNWqVWUYRpy3m0wmBQYGKjAwMM5tXF1dNW3aNE2bNi3eeQAAAADgZVi9RgoAAAAAXncUUgAAAABgJQopAAAAALCSVYWUYRg6d+6c7t+/n1h5AAAAACDZs7qQyp8/v/7555/EygMAAAAAyZ5VhVSKFCmUP39+Xbt2LbHyAAAAAECyZ/UaqXHjxqlfv346evRoYuQBAAAAgGTP6vNIffDBB7p37578/f3l7Oys1KlTW9x+/fr1BAsHAAAAAMmR1YXU5MmTEyEGAAAAANgPqwuptm3bJkYOAAAAALAbr3QeqeDgYH322Wdq0aKFLl++LElau3atjh07lqDhAAAAACA5srqQ2rp1q4oXL66//vpLy5Yt0507dyRJhw8f1vDhwxM8IAAAAAAkN1YXUgMHDtSoUaO0YcMGOTs7m8erVaumXbt2JWg4AAAAAEiOrC6kjhw5okaNGsUYz5w5M+eXAgAAAPBasLqQSp8+vS5evBhj/MCBA8qWLVuChAIAAACA5MzqQqply5YaMGCAwsLCZDKZFBUVpR07dqhv375q06ZNYmQEAAAAgGTF6kJq9OjRypkzp7Jly6Y7d+6oSJEiqly5sipWrKjPPvssMTICAAAAQLJi9XmknJyctGjRIo0cOVIHDhxQVFSUSpYsqfz58ydGPgAAAABIdqwupKLlzZtXefLkkSSZTKYECwQAAAAAyd0rnZB39uzZKlasmFxdXeXq6qpixYpp1qxZCZ0NAAAAAJIlq49IDR06VJMmTVL37t1VoUIFSdKuXbvUq1cvhYaGatSoUQkeEgAAAACSE6sLqRkzZmjmzJlq0aKFeax+/fry8/NT9+7dKaQAAAAAODyrp/ZFRkaqTJkyMcZLly6tx48fJ0goAAAAAEjOrC6kPvjgA82YMSPG+HfffadWrVolSCgAAAAASM5eampf7969zf82mUyaNWuW1q9fr/Lly0uSdu/erQsXLnBCXgAAAACvhZcqpA4cOGBxvXTp0pKk4OBgSVLmzJmVOXNmHTt2LIHjAQAAAEDy81KF1ObNmxM7BwAAAADYjVc6jxQAAAAAvM6sbn/+4MEDTZs2TZs3b9bly5cVFRVlcXtQUFCChQMAAACA5MjqQqpDhw7asGGD3nvvPZUtW1YmkykxcgEAAABAsmV1IbV69WqtWbNGlSpVSow8AAAAAJDsWb1GKlu2bHJzc0uMLAAAAABgF6wupCZMmKABAwbo3LlziZEHAAAAAJI9q6f2lSlTRg8ePFCePHmUJk0aOTk5Wdx+/fr1BAsHAAAAAMmR1YVUixYt9O+//2rMmDHy8vKi2QQAAACA147VhdTOnTu1a9cu+fv7J0YeAAAAAEj2rF4jVahQId2/fz8xsgAAAACAXbC6kPriiy/Up08fbdmyRdeuXVN4eLjFJaHlypVLJpMpxqVbt26SpHbt2sW4rXz58gmeAwAAAACiWT21r06dOpKk6tWrW4wbhiGTyaTIyMiESfb/7d271+Ixjx49qpo1a+r999+3yDR37lzzdWdn5wTNAAAAAABPs7qQ2rx5c2LkiFPmzJktrn/xxRfKmzevqlSpYh5zcXFR1qxZkzQXAAAAgNeX1YXU0wVMUnv06JEWLlyo3r17W3QL3LJli7JkyaL06dOrSpUqGj16tLJkyRLn4zx8+FAPHz40X0+MKYkAAAAAHJfVhdS2bduee3vlypVfOcyLrFixQjdv3lS7du3MYwEBAXr//ffl6+urkJAQDR06VG+//bb2798vFxeXWB9n7NixGjFiRKLlBAAAAODYrC6kqlatGmPs6aNDCb1G6mmzZ89WQECAfHx8zGPNmjUz/7tYsWIqU6aMfH19tXr1ajVu3DjWxxk0aJB69+5tvh4eHq4cOXIkWm4AAAAAjsXqQurGjRsW1yMiInTgwAENHTpUo0ePTrBgzzp37pz++OMPLVu27LnbeXt7y9fXV6dPn45zGxcXlziPVgEAAADAi1hdSHl4eMQYq1mzplxcXNSrVy/t378/QYI9a+7cucqSJYvq1av33O2uXbumCxcuyNvbO1FyAAAAAIDV55GKS+bMmXXy5MmEejgLUVFRmjt3rtq2batUqf6v9rtz54769u2rXbt2KTQ0VFu2bNG7776rTJkyqVGjRomSBQAAAACsPiJ1+PBhi+uGYejixYv64osv5O/vn2DBnvbHH3/o/Pnz6tChg8V4ypQpdeTIES1YsEA3b96Ut7e3qlWrpiVLlsjNzS1RsgAAAACA1YVUiRIlZDKZZBiGxXj58uU1Z86cBAv2tFq1asV4PklKnTq11q1blyjPCQAAAABxsbqQCgkJsbieIkUKZc6cWa6urgkWCgAAAACSM6sLKV9f38TIAQAAAAB2w+pCSpI2btyojRs36vLly4qKirK4LbGm9wEAAABAcmF1ITVixAiNHDlSZcqUkbe3t8XJeAF7kWvg6iR9vtAvnt+2P6El5f4l9b4BAF6Oo/+tA2zN6kLqm2++0bx589S6devEyAMAAAAAyZ7V55F69OiRKlasmBhZAAAAAMAuWF1IderUSYsXL06MLAAAAABgF6ye2vfgwQN99913+uOPP+Tn5ycnJyeL2ydOnJhg4QAAAAAgObK6kDp8+LBKlCghSTp69KjFbTSeAAAAAPA6sLqQ2rx5c2LkAAAAAAC7YfUaKQAAAAB43VFIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgpVS2DmDvcg1cnWTPFfpFvSR7LiC5Ssr3nJT07zv+T0FyxOsSSFqO/rfOUXBECgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgpWRdSAUGBspkMllcsmbNar7dMAwFBgbKx8dHqVOnVtWqVXXs2DEbJgYAAADwOkjWhZQkFS1aVBcvXjRfjhw5Yr5t3LhxmjhxoqZPn669e/cqa9asqlmzpm7fvm3DxAAAAAAcXbIvpFKlSqWsWbOaL5kzZ5b05GjU5MmTNWTIEDVu3FjFihXT/Pnzde/ePS1evNjGqQEAAAA4smRfSJ0+fVo+Pj7KnTu3mjdvrrNnz0qSQkJCFBYWplq1apm3dXFxUZUqVbRz587nPubDhw8VHh5ucQEAAACAl5WsC6ly5cppwYIFWrdunWbOnKmwsDBVrFhR165dU1hYmCTJy8vL4j5eXl7m2+IyduxYeXh4mC85cuRItH0AAAAA4HiSdSEVEBCgJk2aqHjx4qpRo4ZWr14tSZo/f755G5PJZHEfwzBijD1r0KBBunXrlvly4cKFhA8PAAAAwGEl60LqWWnTplXx4sV1+vRpc/e+Z48+Xb58OcZRqme5uLjI3d3d4gIAAAAAL8uuCqmHDx/q+PHj8vb2Vu7cuZU1a1Zt2LDBfPujR4+0detWVaxY0YYpAQAAADi6VLYO8Dx9+/bVu+++q5w5c+ry5csaNWqUwsPD1bZtW5lMJvXs2VNjxoxR/vz5lT9/fo0ZM0Zp0qRRy5YtbR0dAAAAgANL1oXUP//8oxYtWujq1avKnDmzypcvr927d8vX11eS1L9/f92/f19du3bVjRs3VK5cOa1fv15ubm42Tg4AAADAkSXrQurHH3987u0mk0mBgYEKDAxMmkAAAAAAIDtbIwUAAAAAyQGFFAAAAABYiUIKAAAAAKxEIQUAAAAAVqKQAgAAAAArUUgBAAAAgJUopAAAAADAShRSAAAAAGAlCikAAAAAsBKFFAAAAABYiUIKAAAAAKxEIQUAAAAAVqKQAgAAAAArUUgBAAAAgJUopAAAAADAShRSAAAAAGAlCikAAAAAsBKFFAAAAABYiUIKAAAAAKxEIQUAAAAAVqKQAgAAAAArUUgBAAAAgJUopAAAAADAShRSAAAAAGAlCikAAAAAsBKFFAAAAABYiUIKAAAAAKxEIQUAAAAAVqKQAgAAAAArUUgBAAAAgJUopAAAAADAShRSAAAAAGAlCikAAAAAsBKFFAAAAABYiUIKAAAAAKxEIQUAAAAAVqKQAgAAAAArUUgBAAAAgJWSdSE1duxYvfHGG3Jzc1OWLFnUsGFDnTx50mKbdu3ayWQyWVzKly9vo8QAAAAAXgfJupDaunWrunXrpt27d2vDhg16/PixatWqpbt371psV6dOHV28eNF8WbNmjY0SAwAAAHgdpLJ1gOdZu3atxfW5c+cqS5Ys2r9/vypXrmwed3FxUdasWV/6cR8+fKiHDx+ar4eHh8c/LAAAAIDXRrI+IvWsW7duSZI8PT0txrds2aIsWbKoQIEC6ty5sy5fvvzcxxk7dqw8PDzMlxw5ciRaZgAAAACOx24KKcMw1Lt3b7355psqVqyYeTwgIECLFi3Spk2bNGHCBO3du1dvv/22xRGnZw0aNEi3bt0yXy5cuJAUuwAAAADAQSTrqX1P++STT3T48GFt377dYrxZs2bmfxcrVkxlypSRr6+vVq9ercaNG8f6WC4uLnJxcUnUvAAAAAAcl10UUt27d9dvv/2mbdu2KXv27M/d1tvbW76+vjp9+nQSpQMAAADwuknWhZRhGOrevbuWL1+uLVu2KHfu3C+8z7Vr13ThwgV5e3snQUIAAAAAr6NkvUaqW7duWrhwoRYvXiw3NzeFhYUpLCxM9+/flyTduXNHffv21a5duxQaGqotW7bo3XffVaZMmdSoUSMbpwcAAADgqJL1EakZM2ZIkqpWrWoxPnfuXLVr104pU6bUkSNHtGDBAt28eVPe3t6qVq2alixZIjc3NxskBgAAAPA6SNaFlGEYz709derUWrduXRKlAQAAAIAnknUhBQAAAMBx5Bq4OkmfL/SLeon22Ml6jRQAAAAAJEcUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICVKKQAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWMlhCqmvv/5auXPnlqurq0qXLq0///zT1pEAAAAAOCiHKKSWLFminj17asiQITpw4IDeeustBQQE6Pz587aOBgAAAMABOUQhNXHiRHXs2FGdOnVS4cKFNXnyZOXIkUMzZsywdTQAAAAADiiVrQPE16NHj7R//34NHDjQYrxWrVrauXNnrPd5+PChHj58aL5+69YtSVJ4eLjVzx/18J7V93lVr5IvPpJy36Sk3T9H3jeJ12VCcuT9c+R9k/g/JSHxukw4vC4TDq/LhMPrMvb7GIbx3O1Mxou2SOb+++8/ZcuWTTt27FDFihXN42PGjNH8+fN18uTJGPcJDAzUiBEjkjImAAAAADty4cIFZc+ePc7b7f6IVDSTyWRx3TCMGGPRBg0apN69e5uvR0VF6fr168qYMWOc90lI4eHhypEjhy5cuCB3d/dEf76kxL7ZL0feP/bNfjny/rFv9suR98+R901y7P1j3xKOYRi6ffu2fHx8nrud3RdSmTJlUsqUKRUWFmYxfvnyZXl5ecV6HxcXF7m4uFiMpU+fPrEixsnd3d3hXujR2Df75cj7x77ZL0feP/bNfjny/jnyvkmOvX/sW8Lw8PB44TZ232zC2dlZpUuX1oYNGyzGN2zYYDHVDwAAAAASit0fkZKk3r17q3Xr1ipTpowqVKig7777TufPn9fHH39s62gAAAAAHJBDFFLNmjXTtWvXNHLkSF28eFHFihXTmjVr5Ovra+tosXJxcdHw4cNjTC90BOyb/XLk/WPf7Jcj7x/7Zr8cef8ced8kx94/9i3p2X3XPgAAAABIana/RgoAAAAAkhqFFAAAAABYiUIKAAAAAKxEIQUAAAAAVqKQAgAAAAArOUT7c3vx6NEjXb58WVFRURbjOXPmtFEiWCsyMlJHjhyRr6+vMmTIYOs48Xbz5k0tXbpUwcHB6tevnzw9PRUUFCQvLy9ly5bN1vEAh/bgwQO5urraOgas8OjRI4WEhChv3rxKlcpxP0KFh4dr06ZNKliwoAoXLmzrOPEWFRWlM2fOxPoZrHLlyjZKhRcJCgqSk5OTihcvLkn69ddfNXfuXBUpUkSBgYFydna2cULanyeJ06dPq0OHDtq5c6fFuGEYMplMioyMtFGyV9e7d++X3nbixImJmCRx9ezZU8WLF1fHjh0VGRmpKlWqaOfOnUqTJo1WrVqlqlWr2jriKzt8+LBq1KghDw8PhYaG6uTJk8qTJ4+GDh2qc+fOacGCBbaOiOfYu3evoqKiVK5cOYvxv/76SylTplSZMmVslMx6JUuWlMlkeqltg4KCEjlN4oqKitLo0aP1zTff6NKlSzp16pT5fZcrVy517NjR1hERi3v37ql79+6aP3++JJl/bz169JCPj48GDhxo44Tx07RpU1WuXFmffPKJ7t+/L39/f4WGhsowDP34449q0qSJrSO+st27d6tly5Y6d+6cnv3Ia6+fwZ526dIl9e3bVxs3btTly5dj7KM9798bb7yhgQMHqkmTJjp79qyKFi2qRo0aae/evapXr54mT55s64gckUoK7dq1U6pUqbRq1Sp5e3u/9AeG5OzAgQMvtZ297+vSpUv1wQcfSJJWrlypkJAQnThxQgsWLNCQIUO0Y8cOGyd8db1791a7du00btw4ubm5mccDAgLUsmVLGyZLGHF9ODeZTHJ1dVW+fPnUrl07VatWzQbp4q9bt27q379/jELq33//1Zdffqm//vrLRsms17BhQ1tHSDKjRo3S/PnzNW7cOHXu3Nk8Xrx4cU2aNMnuCylHfd8NGjRIhw4d0pYtW1SnTh3zeI0aNTR8+HC7L6S2bdumIUOGSJKWL18uwzB08+ZNzZ8/X6NGjbLrQurjjz9WmTJltHr1aof5DPa0du3a6fz58xo6dKjD7d+pU6dUokQJSdLPP/+sypUra/HixdqxY4eaN2+eLAopGUh0adKkMY4fP27rGHgFLi4uxoULFwzDMIzOnTsbn376qWEYhnH27FnDzc3Nhsniz93d3Thz5oxhGIaRLl06Izg42DAMwwgNDTVcXFxsGS1BDBw40PDw8DDefPNNo3fv3kavXr2Mt956y/Dw8DA+/fRTo2bNmkaKFCmMFStW2DrqK0mbNq35d/a0s2fPGunSpbNBIryMvHnzGn/88YdhGJbvu+PHjxvp06e3ZbQE4ajvu5w5cxq7du0yDMPy93b69Gm7/1tgGIbh6upqnD9/3jAMw2jdurUxYMAAwzAM49y5c0batGltGS3e0qRJY5w+fdrWMRJNunTpjAMHDtg6RqJwc3MzTp06ZRiGYdSoUcOYPHmyYRhPXpeurq62jGbGEakkUKRIEV29etXWMfAKvLy89Pfff8vb21tr167V119/LenJNI+UKVPaOF38uLq6Kjw8PMb4yZMnlTlzZhskSlhXr15Vnz59NHToUIvxUaNG6dy5c1q/fr2GDx+uzz//XA0aNLBRylfn4uKiS5cuKU+ePBbjFy9edOi1G/bu33//Vb58+WKMR0VFKSIiwgaJEpajvu+uXLmiLFmyxBi/e/euQxwByJEjh3bt2iVPT0+tXbtWP/74oyTpxo0bdr+Or1y5cjpz5kys7ztHkCNHjhjT+RxFmTJlNGrUKNWoUUNbt27VjBkzJEkhISHy8vKycbon+GubBL788kv1799fY8aMUfHixeXk5GRxu7u7u42SvbrGjRu/9LbLli1LxCSJq3379mratKn5cHnNmjUlPVmHUqhQIRuni58GDRpo5MiR+umnnyQ9mXpz/vx583xke/fTTz9p//79McabN2+u0qVLa+bMmWrRooXdruGrWbOmBg0apF9//VUeHh6SnjQPGTx4sPl1ao8iIyM1adIk/fTTTzp//rwePXpkcfv169dtlCxhFC1aVH/++ad8fX0txn/++WeVLFnSRqkSjqO+79544w2tXr1a3bt3l/R/09ZnzpypChUq2DJagujZs6datWqldOnSKWfOnOb1v9u2bTMv9LdX3bt3V58+fRQWFhbrZzA/Pz8bJUsYkydP1sCBA/Xtt98qV65cto6ToCZPnqxWrVppxYoVGjJkiLkYXrp0qSpWrGjjdE9QSCWBGjVqSJKqV69uMW7YcbOJ6A9uji4wMFDFihXThQsX9P7778vFxUWSlDJlSrufEz9+/HjVrVtXWbJk0f3791WlShWFhYWpQoUKGj16tK3jxZurq6t27twZ41vInTt3mr9hjYqKMv9O7c2ECRNUuXJl+fr6mj+AHzx4UF5eXvr+++9tnO7VjRgxQrNmzVLv3r01dOhQDRkyRKGhoVqxYoWGDRtm63jxNnz4cLVu3Vr//vuvoqKitGzZMp08eVILFizQqlWrbB0v3hz1fTd27FjVqVNHf//9tx4/fqwpU6bo2LFj2rVrl7Zu3WrrePHWtWtXlS1bVhcuXFDNmjWVIsWTs+PkyZNHo0aNsnG6+In+YrBDhw7mMZPJZNefwTJkyGBxJPTu3bvKmzev0qRJE6NQtOcvn/z8/HTkyJEY41999VWymRVE174k8KL/ZKtUqZJESRAfjtqqeNOmTQoKClJUVJRKlSplLvzt3ahRozRmzBh17txZb7zxhkwmk/bs2aNZs2Zp8ODBGjJkiCZNmqQ1a9Zow4YNto77Su7evatFixbp0KFDSp06tfz8/NSiRYsYf0jtSd68eTV16lTVq1dPbm5uOnjwoHls9+7dWrx4sa0jxtu6des0ZswY7d+/3/y+GzZsmGrVqmXraPHmyO+7I0eOaPz48Ra/twEDBtj9EZunOWJ793Pnzj339mePDtuD6O6RL6Nt27aJmCTxJffTtFBIAc8RGRmpMWPG0KrYTi1atEjTp0/XyZMnJUkFCxZU9+7dzV0J79+/b+4mhuQhbdq0On78uHLmzClvb2+tXr1apUqV0tmzZ1WyZEndunXL1hHxArzv7I+jt3eHfTp8+LCqV6+u9OnTJ9vTtDjG1w124ObNm5o9e7aOHz8uk8mkIkWKqEOHDg4xRS537tzPXWx79uzZJEyTsEaPHu1QrYqnTp360tv26NEjEZMkjVatWqlVq1Zx3p46deokTBN/v/32mwICAuTk5KTffvvtudvWr18/iVIlrOzZs+vixYvKmTOn8uXLp/Xr16tUqVLau3ev3U0Hex5HPkG7o73vpCfTuS9evBij4cS1a9eUJUsWu5we9jRHb+8eHBysyZMnmz+DFS5cWJ9++qny5s1r62jxtmbNGqVMmVK1a9e2GF+/fr0iIyMVEBBgo2Tx17t3b7Vv3z5Zn6aFI1JJYN++fapdu7ZSp06tsmXLyjAM7du3T/fv3zd/SLBnU6ZMsbgeERGhAwcOaO3aterXr59d/wecL18+ffvtt6pevbrc3Nx06NAh5cmTRydOnFCFChV048YNW0e0Su7cuV9qO5PJZNcF8NMc6QNrihQpFBYWpixZspjXMMTGXuf9S9LAgQPl7u6uwYMHa+nSpWrRooVy5cql8+fPq1evXvriiy9sHTFeHPEE7bFxpPedZPnee9p///2nvHnz6v79+zZKljB8fX21ZMkSlS9f3uJv3ZkzZ1SqVKlYO7zai3Xr1ql+/foqUaKEKlWqJMMwtHPnTh06dEgrV6606+Y80pN1RF988YXq1q1rMb527VoNGDBAhw4dslGy+PPw8FBQUJDy5s1r8bo8d+6cChYsqAcPHtg6IkekkkKvXr1Uv359zZw50zzn+PHjx+rUqZN69uypbdu22Thh/Hz66aexjv/vf//Tvn37kjhNwnK0VsUhISG2jpBkHPED69MfSp/9gOooni6U3nvvPWXPnt3cvMBej7I9zRFP0P40R3vfRR/FN5lMmjVrltKlS2e+LTIyUtu2bbP7Dq6SY7d3HzhwYKxfwgwcOFADBgyw+0Lq9OnTKlKkSIzxQoUK6cyZMzZIlHDs4TQtFFJJYN++fRZFlCSlSpVK/fv3V5kyZWyYLHEFBARo0KBBmjt3rq2jvDJHb1XsyBz9A+vronz58ipfvrytYySYgwcPav/+/Q7x4Ts2jva+mzRpkqQnheA333xj0SnM2dlZuXLl0jfffGOreAnGkdu7Hz9+3Hyaj6d16NBBkydPTvpACczDw0Nnz56N0fr8zJkzSps2rW1CJRB7OE0LhVQScHd31/nz52P84bxw4YLFnE9Hs3TpUnl6eto6Rrw4eqvif/75R7/99lus5+uxt/O8PMvRP7BKT74t3rp1a6y/P3te43bq1Clt2bIl1qlh9t4C3dFP0O5o77voo/jVqlXTsmXLlCFDBhsnShyO3N49c+bMOnjwoPLnz28xfvDgwViPwtmb+vXrq2fPnlq+fLl5zdeZM2fUp08fuz+Kbw+naaGQSgLNmjVTx44dNX78eFWsWFEmk0nbt29Xv3791KJFC1vHi7eSJUtafOtoGIbCwsJ05coVff311zZMFn/vvvuulixZojFjxshkMmnYsGEqVaqUQ8yr3rhxo+rXr6/cuXPr5MmTKlasmEJDQ2UYht2v25Mc/wPrgQMHVLduXd27d093796Vp6enrl69qjRp0ihLlix2W0jNnDlTXbp0UaZMmZQ1a1aL/1ui34P2zBFP0P40R33fVatWLdZmJ/fv39dXX31l96/LihUraseOHRo/frzy5s1rXr+9a9cuu2/v3rlzZ3344Yc6e/asxWewL7/8Un369LF1vHj76quvVKdOHRUqVEjZs2eX9ORL0rfeekvjx4+3cbr4cXd31/bt25P1aVpoNpEEHj16pH79+umbb77R48ePJUlOTk7q0qWLvvjiC7vvRDVixAiL6ylSpFDmzJlVtWpVh/lW0hGVLVtWderU0ciRI82LOLNkyaJWrVqpTp066tKli60jxsumTZv02WefOewH1qpVq6pAgQKaMWOG0qdPr0OHDsnJyUkffPCBPv30UzVu3NjWEV+Jr6+vunbtqgEDBtg6SqKIbhLy7JQ3e11D9CxHfd85etc+R2YYhiZPnqwJEybov//+kyT5+PioX79+6tGjh91PP5We7OOGDRsszilYuXJlW8eKl8ePH8vV1VUHDx5UsWLFbB0nThRSSejevXsKDg6WYRjKly+f0qRJY+tIeI09fbLTDBkyaPv27SpatKgOHTqkBg0aKDQ01NYR48XRP7CmT59ef/31lwoWLKj06dNr165dKly4sP766y+1bdtWJ06csHXEV+Lu7q6DBw8qT548to6SKBz9BO2O+r5LkSKFLl26FGOB+6ZNm9SsWTNduXLFRskSxutSKN6+fVuSHGpZxYIFC9SsWbMYX8o/evRIP/74o9q0aWOjZPGXN29eLVu2TP7+/raOEiem9iWhNGnSKEOGDDKZTA5XREVFRenMmTOxrmmw529Fon9fz4o+mWS+fPnUrl07tW/f3gbp4idt2rR6+PChpCffzgUHB6to0aKS5BBTczZv3mzrCInKycnJ/Nr08vLS+fPnVbhwYXl4eOj8+fM2Tvfq3n//fa1fv14ff/yxraMkCnsvlF7E0d530X8DTCaTChQoYPH3IDIyUnfu3HGI12pc36k/fPhQzs7OSZwmYb399ttatmyZ0qdPb1FAhYeHq2HDhtq0aZMN08Vf+/btVadOnRhF8O3bt9W+fXu7LqQ+++wzDRo0SAsXLky2a+4ppJJAVFSURo0apQkTJujOnTuSnnwb0qdPHw0ZMuS554OxB7t371bLli117ty5GP8Z2/M3kNKThe2jR49WQECA+Rxge/fu1dq1a9WtWzeFhISoS5cuevz4scUJe+1B+fLltWPHDhUpUkT16tVTnz59dOTIES1btswhuqQ5+gfWkiVLat++fSpQoICqVaumYcOG6erVq/r+++/tek1Dvnz5NHToUO3evTvWqWH2uPbr8OHDKlasmFKkSKHDhw8/d1s/P78kSpU4HO19N3nyZBmGoQ4dOmjEiBHy8PAw3xbdtc+eu9q9Du3dt2zZEqMZjyQ9ePBAf/75pw0SJazoo73P+ueffyxer/Zo6tSpOnPmjHx8fOTr6xujC2FQUJCNkv0fpvYlgUGDBmn27NkaMWKE+WRwO3bsUGBgoDp37pxsOo+8qhIlSqhAgQIaMWJErO1u7fmN3KRJE9WsWTPGN47ffvut1q9fr19++UXTpk3Td999pyNHjtgo5as5e/as7ty5Iz8/P927d099+/bV9u3blS9fPk2aNClGy3d78Dp9YN23b59u376tatWq6cqVK2rbtq359zd37txkPRXieZ530mh7PVH0sydSNplMsR4BsNcvnl6H993WrVtVqVIli9OYOILo99u5c+eUPXv2WNu7jxw5UuXKlbNVxFcW/VosUaKENm3aZHFEIzIyUmvXrtW3335rt9PYoxt9HTp0SEWLFrV4bUZGRiokJER16tSJtfW7vXh2Df6zhg8fnkRJ4kYhlQR8fHz0zTffxGhD+euvv6pr1676999/bZQsYaRNm1aHDh2K9cS19i5dunQ6ePBgjH07c+aMSpQooTt37ig4OFh+fn66e/eujVIimqN/YIV9OnfunHLmzCmTyaRz5849d1t7/ALjdXnfBQcHa+7cuQoODtaUKVOUJUsWrV27Vjly5DBPi7ZXjtjePfq1KMU+dTF16tSaNm2aOnTokNTREkR0kTFixAj16dPH4mhidBHcpEkTu5+amdw51lcrydT169djPTReqFAhXb9+3QaJEla5cuV05swZhyykPD09tXLlSvXq1ctifOXKleZvt+7evWuXC1f37t2rqKioGN80/vXXX0qZMqVdniw6JCTEvBg8+vwvjur+/fsyDMO83vLcuXNavny5ihQpolq1atk4HZ72dHFkj4XSi7wO77utW7cqICBAlSpV0rZt2zR69GhlyZJFhw8f1qxZs7R06VJbR4wXR2zvHhISIsMwlCdPHu3Zs8eiUYizs7OyZMlicQTO3kQfjcmVK5eaNWsmV1dXGyd6PXFEKgmUK1dO5cqVM89Fjta9e3ft3btXu3fvtlGyV/f09I3g4GB99tln6tevX6xrGux1Kof0f+e0qVu3rsqWLSuTyaQ9e/ZozZo1+uabb9SxY0dNmDBBe/bs0ZIlS2wd1yply5ZV//799d5771mML1u2TF9++aX++usvGyXDy6hVq5YaN26sjz/+WDdv3lTBggXl7Oysq1evauLEiXbVvr537976/PPPlTZtWvXu3fu529rjiaJ/++23l97W3k+guW3bNlWsWDHGFLjHjx9r586ddtt8qEKFCnr//ffVu3dv8+ki8uTJo71796phw4Z2P7Pkdena56hu3ryppUuXKjg4WP369ZOnp6eCgoLk5eWlbNmy2TreK3v6qGJsksPrkkIqCWzdulX16tVTzpw5VaFCBZlMJu3cuVMXLlzQmjVr9NZbb9k6otWeN31Dkvk2e5/KIUk7duzQ9OnTdfLkSRmGoUKFCql79+6qWLGiraPFS7p06XT48OEYbaZDQkLk5+dnbhNrr3x8fFS1alVVrVpVVapUUcGCBW0dKUFlypRJW7duVdGiRTVr1ixNmzZNBw4c0C+//KJhw4bp+PHjto740qpVq6bly5crffr0qlatWpzbmUwmu+yw9bINhRzh/0tH/UCeLl06HTlyRLlz57YopEJDQ1WoUCE9ePDA1hHjxdHbu3///ff65ptvFBISol27dsnX11eTJk1Snjx51KBBA1vHi5fDhw+rRo0a8vDwUGhoqE6ePKk8efJo6NChOnfunBYsWGDriK/s119/tbgeERGhAwcOaP78+RoxYoQ6duxoo2T/h6l9SaBKlSo6deqU/ve//+nEiRMyDEONGzdW165d5ePjY+t4r8RRp2/EplKlSqpUqZKtYyQ4FxcXXbp0KUYhdfHiRYdYUD1hwgRt3bpVEydO1McffywvLy9VqVLFXFgVLlzY1hHj5d69e+YppevXr1fjxo2VIkUKlS9f/oXrcJKbp1tmO1r7bEkxTgnhyOLqIHbt2rUYHbfsSfr06XXx4sUYzVAOHDhg19/4vw7t3WfMmKFhw4apZ8+eGj16tLmYz5AhgyZPnmz3hVSvXr3Url07jRs3zmKZQUBAgFq2bGnDZPEX2+/mvffeU9GiRbVkyZJkUUhxRCoJnD9/Xjly5Ij1j8v58+eVM2dOG6RKevXq1dOsWbPk7e1t6yjPFR4e/tLburu7J2KSxNW8eXOFhYXp119/NXdWvHnzpho2bKgsWbLYdaefZ126dEmbN2/WqlWrtGTJEkVFRdntN+PR/Pz81KlTJzVq1EjFihXT2rVrVaFCBe3fv1/16tVTWFiYrSMiFo568szGjRtLevINcp06dSz2LzIyUocPH1bBggW1du1aW0WMl/79+2vXrl36+eefVaBAAQUFBenSpUtq06aN2rRpkyy6h72K+fPnm9u7T5482eHau0tSkSJFNGbMGDVs2NDiaOLRo0dVtWpVuz9vooeHh4KCgpQ3b16L/Tt37pwKFixo90dLY5OcmnzZ/9fOdiB37txxTnXInTu33X+ge1nbtm3T/fv3bR3jhdKnT//cOblPs+ff3YQJE1S5cmX5+vqqZMmSkqSDBw/Ky8tL33//vY3TJYw7d+5o+/bt2rp1q7Zs2aIDBw6oePHiDnGum2HDhqlly5bq1auX3n77bfOHnfXr15t/n/aoUaNGLzwJdsuWLe12qqajnjwz+gO4YRhyc3NT6tSpzbc5OzurfPnydneuvaeNHj1a7dq1U7Zs2WQYhooUKaLIyEi1bNlSn332ma3jvbK2bdtKevI5xRHbu0tPZtDE9n+ii4tLsvggHl+urq6xfgF88uTJGFM1HcH9+/c1bdo0Zc+e3dZRJFFIJYm4pjrcuXOHLivJ0NNTi0JDQzVw4EC1a9fO/EF1165dmj9/vsaOHWuriAkiW7ZsOnz4sBYtWqRDhw4pderUat++vVq0aBGjYYg9KleunPn8NlWrVtXgwYP11ltvKX369LaOliDee+89vfnmm7p48aLFOaOqV6+uRo0a2TBZ/Hh4eGjFihVKnz69SpcuLcMwdODAAd28eVO1atXSkiVL9OWXX2rjxo12OeXWUU+eOXfuXElPOoj17dvXrqfxxcbJyUmLFi3SyJEjdeDAAUVFRalkyZLKnz+/raMliCpVqjhse/fcuXPr4MGDMTpm/v777ypSpIiNUiWcBg0aaOTIkeZZJCaTSefPn9fAgQPVpEkTG6eLn+ipp9EMw9Dt27eVJk0aLVy40IbJ/g9T+xJRdPepKVOmqHPnzuY2xdKTIxnRbaZ37Nhhq4hJ6ulDzvaievXq6tSpk1q0aGExvnjxYn333XfasmWLbYLhhTw9PWUymVSjRg1z0wl7XxcVl3/++Ucmk8mu12pEGzhwoMLDwzV9+nRzk4aoqCh9+umncnNz0+jRo/Xxxx/r2LFj2r59u43TvrzX4eSZsF/Ptnc/fvy48uTJo3HjxmnPnj123d597ty5Gjp0qCZMmKCOHTtq1qxZCg4O1tixYzVr1iw1b97c1hHjJTw8XHXr1tWxY8d0+/Zt+fj4KCwsTBUqVNCaNWvs+kuNefPmWRRSKVKkUObMmVWuXLlkc84zCqlEFN19auvWrapQoYLFSdGi5x737dvXYb7RehF7LKTSpEmjQ4cOxfgdnTp1SiVKlNC9e/dslCz+5s+fr0yZMqlevXqSnqwB+O6771SkSBH98MMPDnG+m8OHD2vLli3aunWr/vzzT6VIkUJVqlRRtWrV7H4BdVRUlEaNGqUJEybozp07kp68x/r06aMhQ4a8dKe45CZz5szasWOHChQoYDF+6tQpVaxYUVevXtWRI0f01ltv6ebNm7YJ+Qpel5NnXrp0SX379tXGjRt1+fLlGJ1d7XU69ItO2jpnzpwkSpI4HL29+8yZMzVq1ChduHBB0pMZGYGBgcmiWUFC2bRpk4KCghQVFaVSpUqpRo0acR4Btxf20GOAQioJtGvXTtOmTbPLk7YmJHsspAoWLKh33nlHEyZMsBjv06ePVq1apZMnT9ooWfwVLFhQM2bM0Ntvv61du3apevXqmjx5slatWqVUqVJp2bJlto6YoPbv36/p06dr4cKFDtFsYtCgQZo9e7ZGjBihSpUqyTAM7dixQ4GBgercubNGjx5t64ivJEOGDJo/f36M8yn99ttvatu2rW7cuKHTp0+rbNmyunHjho1Svrr58+c79MkzAwICdP78eX3yySfy9vaO8QHIXjukPTtdNiIiQkePHtXNmzf19ttv2/3/l47e3j3a1atXFRUVFWONoj0bO3asBg0aFGM8MjJSH3zwgX744QcbpEoY9nA6BdZIJbLHjx9r4cKF6tu3r4oVK2brOLDSpEmT1KRJE61bt07ly5eXJO3evVtnzpyx+z+cFy5cUL58+SRJK1as0HvvvacPP/xQlSpVUtWqVW0bLgEcOHBAW7Zs0ZYtW/Tnn3/q9u3b8vf316effvrccxXZi/nz52vWrFkWBYe/v7+yZcumrl272m0h1bp1a3Xs2FGDBw/WG2+8YT4J9pgxY8yNGKLPn2WPohf3O6rt27frzz//VIkSJWwdJUEtX748xlhUVJS6du1qV18OxsVR27s/K1OmTLaOkOAmT56sjBkz6sMPPzSPRUZGqnnz5jp69KgNk8VfXMd6klOPAQqpRJYqVSr5+vomi6rZFp4+rDx48GB5enraOJF16tatq9OnT2vGjBk6fvy4DMNQgwYN9PHHHytHjhy2jhcv6dKl07Vr15QzZ06tX79evXr1kvSkA5A9dFd8kTfeeEMlS5ZUlSpV1LlzZ1WuXNmu29U/6/r16ypUqFCM8UKFCun69es2SJQwJk2aJC8vL40bN06XLl2SJHl5ealXr14aMGCAJKlWrVqqU6eOLWO+suiTmcfF3v9W5MiRI84PP44mRYoU6tWrl6pWrar+/fvbOk68tGzZUgMGDNDPP/8sk8mkqKgo7dixQ3379rXLTpLRaxJfRlBQUCKnSVxr1qxRjRo1lD59ejVt2lQRERFq1qyZTpw4Ybfn5YvuMWAymTRs2LBYewwkly9rKKSSwGeffaZBgwZp4cKFdldIvIzWrVtrxowZFnP+pScd71q3bq0///xTkmI99GwPQkJCFBoaqosXL2rp0qXKli2bvv/+e+XOnVtvvvmmreO9spo1a6pTp04qWbKkTp06ZV4rdezYMeXKlcu24RLA9evXHapwepa/v7+mT5+uqVOnWoxPnz7dooufvUmZMqWGDBmiIUOGmFv6Pvt7TA7z4l/VsmXLLD7gRURE6MCBA5o/f755HZU9mzx5sgYOHKhvv/3WIf4feZHg4GA9fvzY1jHizdHauzds2NDWEZJM6dKltXz5cjVo0EAuLi6aPXu2goODtXnzZnl5edk63is5cOCApCdfxh85ciRGjwF/f3/17dvXVvEssEYqCZQsWVJnzpxRRESEfH19Y3RQsfdvQ0qXLq3r169r4cKF5nbE8+fPV48ePVSzZk277vbzyy+/qHXr1mrVqpW+//57/f3338qTJ4++/vprrVq1SmvWrLF1xFd28+ZNffbZZ7pw4YK6dOli/oZ/+PDhcnZ21pAhQ2ycEM+zdetW1atXTzlz5lSFChVkMpm0c+dOnT9/Xr///rveeustW0eEFRYvXqwlS5bo119/tXWUeMmQIYPu3bunx48fK02aNDFOpWCvR0ujvyGPZhiGLl68qNWrV6tt27aaPn26jZIlrODgYIds7/46+O2339SkSRMVLlxYmzZtcohpjO3bt9eUKVOS9ZeiFFJJ4EXfMtrrGdGjPX78WJ999pkmTZqkPn366PTp01q7dq2mTJnywk5HyV3JkiXVq1cvtWnTxmIB7sGDB1WnTh2FhYXZOiLiEBkZqUmTJumnn37S+fPn9ejRI4vb7fUD3dP+/fdfi2mnRYoUUdeuXeXj42PraFYpVaqUNm7cqAwZMrxwSo69f/EUl+DgYPn5+dn9CULnz5//3NvtdY3Ys+sqo9swv/322+rQoYNDnsjWkdy8eVNLly5VcHCw+vXrJ09PTwUFBcnLy8su14A1btw41vHdu3crX758FkWUPa/nvnTpUpxH1Q4fPiw/P78kThQT7/wkYO+F0oukSpVKX3zxhVxcXPT5558rVapU5pbv9u7kyZOqXLlyjHF3d3e7ar0cm1y5cqlDhw5q37693a/3is2IESM0a9Ys9e7dW0OHDtWQIUMUGhqqFStWaNiwYbaOlyAyZsyo+vXrq3z58oqKipIk7du3T5JidL1LzqKnpEiv15ScaPfv39e0adOUPXt2W0eJN3stlF7EXteavCxHbu9++PBh1ahRQx4eHgoNDVXnzp3l6emp5cuX69y5c1qwYIGtI1otrpN3165dO4mTJK7ixYvHaKokSePHj9fQoUOTxXpuCinEW0REhAYOHKj//e9/GjRokLZv365GjRppzpw5qlu3rq3jxYu3t7fOnDkTY67/9u3b7b5TU58+fTRv3jyNHDlS1apVU8eOHdWoUSPzB1p7t2jRIs2cOVP16tXTiBEj1KJFC+XNm1d+fn7avXu3evToYeuI8bJ27Vq1adNG165di7G432Qy2VXTgugvmyIjI1W1alX5+fklm5MtJrQMGTJYHHEzDEO3b99WmjRptHDhQhsme3Xh4eHmqTfR69rikpyn6LyMK1eu6OTJkzKZTCpQoIAyZ85s60gJ4tlTCTzb3t2e9e7dW+3atdO4ceMsTkMTEBCgli1b2jDZq5s7d6753/fv31dUVJR52Uj0F4aFCxe2+8JqwIABatasmdq2batJkybp+vXrat26tY4dO6YlS5bYOt4TBhLd48ePja+++sp44403DC8vLyNDhgwWF3vn5+dn5MuXz9i1a5dhGIYRFRVlfPHFF4aLi4vRpUsXG6eLny+//NIoUqSIsXv3bsPNzc34888/jYULFxqZM2c2pk2bZut4CeLgwYNGjx49jMyZMxsZMmQwunXrZuzfv9/WseItTZo0xrlz5wzDMIysWbOa9yk4ONhwd3e3ZbQEkTdvXqNr165GWFiYraMkKBcXF+Ps2bO2jpFo5s6da8ybN898WbBggfH7778b169ft3W0V5YiRQrj0qVLhmEYhslkMlKkSBHjEj1ur+7cuWO0b9/eSJkypWEymQyTyWSkSpXK6NChg3H37l1bx0sUkZGRxkcffWR8+eWXto4SL+7u7saZM2cMwzCMdOnSGcHBwYZhGEZoaKjh4uJiy2gJombNmsaMGTMMwzCMGzduGF5eXkb27NkNV1dX4+uvv7Zxuvg7ePCgUaxYMSNfvnyGp6enUbdu3WT1dy+FrQu518GIESM0ceJENW3aVLdu3VLv3r3VuHFjpUiRQoGBgbaOF29lypTRwYMHzedZMplMGjBggHbv3q1t27bZOF389O/fXw0bNlS1atV0584dVa5cWZ06ddJHH32kTz75xNbxEoS/v7+mTJmif//9V8OHD9esWbP0xhtvyN/fX3PmzLHbVsbZs2fXxYsXJUn58uXT+vXrJUl79+51iKNuly9fVu/eve22K1NcihcvrrNnz9o6RqJp166dGjRooKtXr+rPP//Utm3b9PfffytFCvv9c7xp0yZzR9rNmzdr06ZNMS7R4/aqd+/e2rp1q1auXKmbN2/q5s2b+vXXX7V161b16dPH1vESRXR790mTJtk6Sry4urrGeqT05MmTDnFEMSgoyNxcaOnSpfLy8jJPWXy2q6s9ypMnj4oWLarQ0FCFh4eradOmyevvnq0ruddBnjx5jFWrVhmG8eTbkOhvRqZMmWK0aNHCltES3YMHD2wdIUHcvXvX2Lt3r/HXX38Zt2/ftnWcBPXo0SNjyZIlRp06dYyUKVMalSpVMubMmWOMGjXKyJo1q92+RgcMGGCMHj3aMAzD+Pnnn41UqVIZ+fLlM5ydnY0BAwbYOF38tW/f3pg1a5atYyS4devWGSVKlDBWrlxp/Pfff8atW7csLvZu7969RsaMGY1s2bIZjRo1Mho2bGhkz57dyJgxo0McCXZUGTNmNDZv3hxjfNOmTUamTJmSPlASWb16td3vX+fOnY2GDRsajx49MtKlS2ecPXvWOHfunFGyZEnj008/tXW8eEudOrV59sX7779vBAYGGoZhGOfPnzdSp05ty2jxtn37diNXrlxG6dKljb///tuYOXOm4ebmZrz//vvJ5ig+XfuSQNq0aXX8+HHlzJlT3t7eWr16tUqVKqWzZ8+qZMmSunXrlq0jxtv333+vb775RiEhIdq1a5d8fX01efJk5c6dWw0aNLB1PMQiKChIc+fO1Q8//KCUKVOqdevW6tSpk8VJXvfu3avKlSsniwWd8fXXX39px44dypcvn101YojLvXv39P777ytz5swqXrx4jDbT9roG7OkjM8+uJbK3tV+xeeutt5QvXz7NnDnT3Ont8ePH6tSpk86ePWv3R/Gj3bt3L9Zumcmhy9arSJMmjfbv36/ChQtbjB87dkxly5a1+26LjtzePTw8XHXr1tWxY8d0+/Zt+fj4KCwsTBUqVNCaNWtinJLG3vj5+alTp05q1KiRihUrprVr16pChQrav3+/6tWrZ9fdhV1cXNSrVy99/vnn5r9xwcHBat26tc6fP69//vnHxglpNpEkoqcY5cyZ0zzFqFSpUg4zxWjGjBkaNmyYevbsqdGjR5s/6KRPn16TJ0+mkEqm3njjDdWsWVMzZsxQw4YNY3wQl6QiRYqoefPmNkgXPxEREfrwww81dOhQc1OQcuXKqVy5cjZOlnAWL16sdevWKXXq1NqyZYtF0WEymey2kHL07mj79u2zKKKkJ51P+/fvrzJlytgwWcK4cuWK2rdvr99//z3W2+21EK5QoYKGDx+uBQsWyNXVVdKTRf4jRoxwiA610SdAjRbd3n3ChAl2fxoTd3d3bd++XZs2bVJQUJCioqJUqlQp1ahRw26nrj9t2LBhatmypXr16qXq1aubX4/r169XyZIlbZwuftavX68qVapYjOXNm1fbt2/X6NGjbZTqGTY9HvaacPQpRoULFzaWL19uGIblQs4jR44YGTNmtGEyPE9oaKitIyQqDw8P82vREXl5eRmjR482IiMjbR0lwd24ccMYP3680bFjR6NTp07GhAkTjJs3b9o6VoLIkiWLsW7duhjja9euNbJkyWKDRAmrZcuWRsWKFY09e/YYadOmNdavX298//33RsGCBc1T3O3RkSNHjGzZshkZM2Y03n77baN69ermKZpHjx61dTw8x5gxY2Idf/z4sdG8efMkTpM4Ll68aAQFBVn8Pfjrr7+M48eP2zBVwjl9+rSxdu1a4969e4ZhPGlqllwwtc8GHG2KUerUqXXixAn5+vpanLT29OnT8vPzc4hpYbA/7du3V/HixWNMWXEUnp6e2rt3r/LmzWvrKAlq3759qlOnjlxdXVW2bFkZhqF9+/bp/v375qP59qxHjx5avny5xo8fr4oVK8pkMmn79u3q16+fmjRposmTJ9s6Yrx4e3vr119/VdmyZeXu7q59+/apQIEC+u233zRu3Dht377d1hFf2f3797Vw4UKdOHHCfALsVq1aKXXq1LaOlmAcsb27l5eXPv/8c3344YfmscjISDVv3lxHjx7V8ePHbZgOz3Pt2jU1bdpUmzdvlslk0unTp5UnTx517NhRGTJk0Pjx420dkal9SWHs2LHy8vIyHx6PnmI0Z84cffnllxowYICNE8ZP7ty5dfDgQfn6+lqM//777ypSpIiNUuFFIiMjNWnSJP3000+xrmW4fv26jZIljHz58unzzz/Xzp07Vbp06Rjz4O116lu0tm3basmSJRo8eLCtoySoXr166d133411DVHPnj3tfg3R+PHjZTKZ1KZNGz1+/FiS5OTkpC5duuiLL76wcbr4u3v3rrJkySLpSbF/5coVFShQQMWLF1dQUJCN08VP6tSp1blzZ1vHSBR3795V9+7dtWDBAvPJvVOmTKk2bdpo2rRpSpMmjY0Tvro1a9aoRo0aSp8+vZo2baqIiAg1a9ZMJ06ccPipxPauV69ecnJy0vnz5y3WJzZr1ky9evWikHpdfPvtt1q8eHGM8aJFi6p58+Z2X0j169dP3bp104MHD2QYhvbs2aMffvhBY8eO1axZs2wdD3EYMWKEZs2apd69e2vo0KEaMmSI+UR+w4YNs3W8eJs1a5bSp0+v/fv3a//+/Ra32fMaomiRkZEaN26c1q1bJz8/vxhr3CZOnGijZPHj6GuInJ2dNWXKFI0dO1bBwcEyDEP58uWz6w+qTytYsKBOnjypXLlyqUSJEvr222+VK1cuffPNN/L29rZ1vHg5deqUtmzZosuXL5uLjWj2/n/m0+3dK1WqJOnJied79OihPn36aMaMGTZO+OpKly6t5cuXq0GDBnJxcdHs2bMVHByszZs3J6822ohh/fr1WrdunbJnz24xnj9/fp07d85GqSwxtS8JuLq66vjx48qdO7fF+NmzZ1WkSBE9ePDARskSzsyZMzVq1ChduHBBkpQtWzYFBgaqY8eONk6GuOTNm1dTp05VvXr15ObmpoMHD5rHdu/eHWvxj+SjWrVqcd5mMpns9pw9Xl5e+v7771WrVi2L8XXr1qlNmza6dOmSjZLhZSxatEgRERFq166dDhw4oNq1a+vq1atydnbW/Pnz1axZM1tHfCUzZ85Uly5dlClTJmXNmjVGcxd7P9qWKVMmLV26VFWrVrUY37x5s5o2baorV67YJlgC+u2339SkSRMVLlxYmzZtUqZMmWwdCS/g5uamoKAg5c+f32LpyN69e1WnTh1du3bN1hE5IpUUcuTIoR07dsQopHbs2CEfHx8bpUpYnTt3VufOnXX16lVFRUWZp3Yg+QoLC1Px4sUlSenSpTO34X/nnXc0dOhQW0bDS3DUKSnNmjVTx44dY11D1KJFC1vHwwu0atXK/O8SJUooNDRUJ06cUM6cOe36g+uoUaM0evRou59BEpd79+7FenQmS5Ysunfvng0SxU/jxo1jHc+cObPSp09vsV5q2bJlSRULVqpcubIWLFigzz//XNKTLy2ioqL01VdfPffLxKREIZUEouf2R0RE6O2335Ykbdy4Uf3793eIM6KPGDFCH3zwgfLmzWvXfyhfN47Ylt+axhL2OvXN0Tn6GqLXwezZszVp0iSdPn1a0pNpOD179lSnTp1snOzV3bhxQ++//76tYyQaR2vv7uHhEet47dq1kzgJ4uOrr75S1apVtW/fPj169Ej9+/fXsWPHdP36de3YscPW8SQxtS9JGIahgQMHaurUqeYF/a6urhowYIDdz6uWnpwM7tixY3rjjTf0wQcfqFmzZg7R6cfRDRw4UO7u7ho8eLCWLl2qFi1aKFeuXDp//rx69epllx9an/2Gav/+/YqMjFTBggUlPVnjkDJlSpUuXdpup769Lu7du+eQa4gc3dChQzVp0iR1797d/AF8165dmj59uj799FONGjXKxglfTceOHfXGG2/o448/tnWURHH06FHVqVNHDx48kL+/v0wmkw4ePChXV1etW7dORYsWtXXEV3b//n1FRUWZGw5FrwUuXLgwhVUyd/78eaVKlUrffvut9u/fbz4HWLdu3RQREaGcOXPaOiKFVFK6c+eOjh8/rtSpUyt//vx2+61/bI4dO6ZFixbpxx9/1D///KMaNWrogw8+UMOGDfkAZCccrS3/xIkTtWXLFs2fP18ZMmSQ9ORb5fbt2+utt95yiKPBQHKTKVMmTZs2LcY0zB9++EHdu3fX1atXbZTMelOnTjX/++7du5o4caLq1aun4sWLx2juYu/NayTHbe9eq1YtNW7cWB9//LFu3rypQoUKycnJSVevXtXEiRPVpUsXW0dEHFKmTKmLFy/GWC5y7do1ZcmSJVmc4JtCCglux44dWrx4sX7++Wc9ePBA4eHhto6EZ0REROjDDz/U0KFDlSdPHlvHSRTZsmXT+vXrY3yTevToUdWqVUv//fefjZIBjitDhgzas2eP8ufPbzF+6tQplS1bVjdv3rRNsFfw7LrmuJhMJp09ezaR0+BVZcqUSVu3blXRokU1a9YsTZs2TQcOHNAvv/yiYcOGcR6pZCxFihQKCwuLUUidO3dORYoU0d27d22U7P+wRgoJLm3atEqdOrWcnZ11+/ZtW8dBLJycnLR8+XKHbioRHh6uS5cuxSikLl++zOsSSCQffPCBZsyYEWMN4nfffWfRiMIehISE2DpCknLU9u737t2Tm5ubpCfttBs3bqwUKVKofPnyyaaFNixFr3c2mUwaNmyYxcymyMhI/fXXXypRooSN0lmikEKCCAkJ0eLFi7Vo0SKdOnVKlStXVmBgoEMvzrV3jRo10ooVK6xq0GBPGjVqpPbt22vChAkqX768JGn37t3q169fnB2dAMTf7NmztX79eov33YULF9SmTRuL/29o+JJ8vKi9uz0XUvny5dOKFSvUqFEjrVu3Tr169ZL05Es1d3d3G6dDbA4cOCDpSY+BI0eOyNnZ2Xybs7Oz/P391bdvX1vFs8DUPsRbhQoVtGfPHhUvXlytWrVSy5YtlS1bNlvHwguMHj1a48ePV/Xq1VW6dGnzQtxo9j7n/969e+rbt6/mzJmjiIgISU9O7NqxY0d99dVXMfYXQPy9bEtiezjX2evUBdTX11ddu3Z1yPbuS5cuVcuWLRUZGanq1atr/fr1kqSxY8dq27Zt+v33322cEHFp3769pkyZkqwLXgopxNvgwYPVqlUru+7q8zp63vx/R5rzf/fuXYvub88WUP/88498fHyUIkUKGyUEkBw5UlH4Iu7u7jp48KDDrpkNCwvTxYsX5e/vb/6/fs+ePXJ3d1ehQoVsnA72jEIKwGvN0T9AAMCLOHp7dyCxsEYK8RYZGal58+Zp48aNsS5Stfdv6hxVXNNWTCaTXF1dlS9fPjVo0ECenp5JnCxp8V0SgNfR0+3d8+XLp6FDh2r37t0O294dSAwckUK8ffLJJ5o3b57q1asnb29vi0WqkjRp0iQbJcPzVKtWTUFBQeYT1hqGodOnTytlypQqVKiQTp48KZPJpO3bt6tIkSK2jpto3NzcdOjQIY5IAbDQuHFjzZs3T+7u7i9sULNs2bIkSpVwaO8OxB9HpBBvP/74o3766SfVrVvX1lFgheijTXPnzjUv5AwPD1fHjh315ptvqnPnzmrZsqV69eqldevW2TgtACQtDw8P8xeDHh4eNk6T8F639u5AYuCIFOLNx8dHW7ZsUYECBWwdBVbIli2bNmzYEONo07Fjx1SrVi39+++/CgoKUq1atXT16lUbpUx8HJEC8CL3799XVFSUuVlNaGioVqxYocKFC6t27do2TgfAVjgihXjr06ePpkyZounTp8eY1ofk69atW7p8+XKMQurKlSsKDw+XJKVPn16PHj2yRbwkw2sWwIs0aNBAjRs31scff6ybN2+qfPnycnJy0tWrVzVx4kR16dLF1hGt9jq1dwcSC4UU4m379u3avHmzfv/9dxUtWjTGIlV7nDv+OmjQoIE6dOigCRMm6I033pDJZNKePXvUt29fNWzYUNKT9rCOfqSRg/IAXiQoKMi83nfp0qXy8vLSgQMH9Msvv2jYsGF2WUhFn/T0RfiyCYgbhRTiLX369GrUqJGtY8BK3377rXr16qXmzZvr8ePHkp6csLZt27bmDwyFChXSrFmzbBkz3s6cOaPg4GBVrlxZqVOnlmEYFh8M/v77b/n4+NgwIYDk7t69e3Jzc5MkrV+/Xo0bN1aKFClUvnx5nTt3zsbpXs3mzZttHQGwe6yRAl5zd+7c0dmzZ2UYhvLmzat06dLZOlKCuHbtmpo1a6ZNmzbJZDLp9OnTypMnjzp27Kj06dNrwoQJto4IwE74+fmpU6dOatSokYoVK6a1a9eqQoUK2r9/v+rVq6ewsDBbRwRgAxyRQoK5cuWKuWV2gQIFlDlzZltHwktIly6d/Pz8bB0jwfXq1UupUqXS+fPnVbhwYfN4s2bN1KtXLwopAC9t2LBh5i6m1atXV4UKFSQ9OTpVsmRJG6d7NY7e3h1IChRSiLe7d++qe/fuWrBggflkvClTplSbNm00bdo0pUmTxsYJ8Tpav3691q1bp+zZs1uM58+f326n4gCwjffee09vvvmmLl68KH9/f/N49erV7XZqu6O3dweSAlP7EG8fffSR/vjjD02fPl2VKlWS9KQBRY8ePVSzZk3NmDHDxgnxOnJzc1NQUJDy589v0eJ87969qlOnjq5du2briACQLNDeHXg1FFKIt0yZMmnp0qWqWrWqxfjmzZvVtGlTXblyxTbB8FqrV6+eSpUqpc8//1xubm46fPiwfH191bx5c0VFRWnp0qW2jggAyUKtWrUs2rsXKlTI7tu7A0khha0DwP7du3dPXl5eMcazZMmie/fu2SARIH311Vf69ttvFRAQoEePHql///4qVqyYtm3bpi+//NLW8QAg2QgKCtJbb70l6f/au587d04LFizQ1KlTbZwOSL4opBBvFSpU0PDhw/XgwQPz2P379zVixAjzglwgqRUpUkSHDx9W2bJlVbNmTd29e1eNGzfWgQMHlDdvXlvHA4BkwxHbuwNJgal9iLcjR44oICBADx48kL+/v0wmkw4ePCgXFxetX79eRYsWtXVEAAAQB9q7A6+GQgoJ4v79+1q4cKFOnDghwzBUpEgRtWrVSqlTp7Z1NLzGbt68qT179ujy5cvmjpLR2rRpY6NUAJC8LF26VC1btlRkZKSqV6+u9evXS5LGjh2rbdu26ffff7dxQiB5opBCvI0dO1ZeXl7q0KGDxficOXN05coVDRgwwEbJ8DpbuXKlWrVqpbt378rNzc3c5leSTCaTrl+/bsN0AJC8hIWFmdu7p0jxZOXHnj175O7urkKFCtk4HZA8UUgh3nLlyqXFixerYsWKFuN//fWXmjdvrpCQEBslw+usQIECqlu3rsaMGcO5zAAAQIKj2QTiLSwsTN7e3jHGM2fOrIsXL9ogESD9+++/6tGjB0UUAABIFBRSiLccOXJox44dMcZ37NghHx8fGyQCpNq1a2vfvn22jgEAABxUKlsHgP3r1KmTevbsqYiICL399tuSpI0bN6p///7q06ePjdPhdVWvXj3169dPf//9t4oXLy4nJyeL2+vXr2+jZAAAwBGwRgrxZhiGBg4cqKlTp+rRo0eSJFdXVw0YMEDDhg2zcTq8rqIXS8fGZDIpMjIyCdMAAABHQyGFBHPnzh0dP35cqVOnVv78+eXi4mLrSAAAAECioJACAAAAACuxRgqAw5g6dao+/PBDubq6aurUqc/dtkePHkmUCgAAOCKOSAFwGLlz59a+ffuUMWNG5c6dO87tTCaTzp49m4TJAACAo6GQAgAAAAArMbUPgMPo3bv3S21nMpk0YcKERE4DAAAcGYUUAIdx4MCBl9rOZDIlchIAAODomNoHAAAAAFaK+4yVAAAAAIBYUUgBAAAAgJUopAAAAADAShRSAAAAAGAlCikAQLKyZcsWmUwm3bx5M17b2IvAwECVKFHC1jEAAFaikAIA2J2KFSvq4sWL8vDwSJDHS4jCzJGKOwDAi3EeKQCA3XF2dlbWrFltHQMA8BrjiBQAIEk9fPhQPXr0UJYsWeTq6qo333xTe/fujbHdjh075O/vL1dXV5UrV05Hjhwx3xbb0Z+dO3eqcuXKSp06tXLkyKEePXro7t27Fs/bv39/5ciRQy4uLsqfP79mz56t0NBQVatWTZKUIUMGmUwmtWvXLtbs586d07vvvqsMGTIobdq0Klq0qNasWRPnYyxYsEAZM2bUw4cPLR6nSZMmatOmTZw/o7lz56pw4cJydXVVoUKF9PXXX7/w5woASFoUUgCAJNW/f3/98ssvmj9/voKCgpQvXz7Vrl1b169ft9iuX79+Gj9+vPbu3assWbKofv36ioiIiPUxjxw5otq1a6tx48Y6fPiwlixZou3bt+uTTz4xb9OmTRv9+OOPmjp1qo4fP65vvvlG6dKlU44cOfTLL79Ikk6ePKmLFy9qypQpsT5Pt27d9PDhQ23btk1HjhzRl19++dzHeP/99xUZGanffvvN/BhXr17VqlWr1L59+1ifY+bMmRoyZIhGjx6t48ePa8yYMRo6dKjmz5//8j9kAEDiMwAASCJ37twxnJycjEWLFpnHHj16ZPj4+Bjjxo0zDMMwNm/ebEgyfvzxR/M2165dM1KnTm0sWbLEYpsbN24YhmEYrVu3Nj788EOL5/rzzz+NFClSGPfv3zdOnjxpSDI2bNgQa65nHy8uxYsXNwIDA616jC5duhgBAQHm65MnTzby5MljREVFGYZhGMOHDzf8/f3Nt+fIkcNYvHixxWN8/vnnRoUKFZ6bDQCQtFgjBQBIMsHBwYqIiFClSpXMY05OTipbtqyOHz9usW2FChXM//b09FTBggVjbBNt//79OnPmjBYtWmQeMwxDUVFRCgkJ0ZEjR5QyZUpVqVIlXvl79OihLl26aP369apRo4aaNGkiPz+/596nc+fOeuONN/Tvv/8qW7Zsmjt3rtq1ayeTyRRj2ytXrujChQvq2LGjOnfubB5//PhxgjXWAAAkDAopAECSMQxDkmIUEYZhxFpYPCuubaKiovTRRx+pR48eMW7LmTOnzpw58wppY+rUqZNq166t1atXa/369Ro7dqwmTJig7t27x3mfkiVLyt/fXwsWLFDt2rV15MgRrVy5Ms79kJ5M7ytXrpzFbSlTpkyQfQAAJAzWSAEAkky+fPnk7Oys7du3m8ciIiK0b98+FS5c2GLb3bt3m/9948YNnTp1SoUKFYr1cUuVKqVjx44pX758MS7Ozs4qXry4oqKitHXr1ljv7+zsLEmKjIx84T7kyJFDH3/8sZYtW6Y+ffpo5syZL3yMTp06ae7cuZozZ45q1KihHDlyxPrYXl5eypYtm86ePRtjP3Lnzv3CbACApEMhBQBIMmnTplWXLl3Ur18/rV27Vn///bc6d+6se/fuqWPHjhbbjhw5Uhs3btTRo0fVrl07ZcqUSQ0bNoz1cQcMGKBdu3apW7duOnjwoE6fPq3ffvvNfKQoV65catu2rTp06KAVK1YoJCREW7Zs0U8//SRJ8vX1lclk0qpVq3TlyhXduXMn1ufp2bOn1q1bp5CQEAUFBWnTpk3mAvB5j9GqVSv9+++/mjlzpjp06PDcn1FgYKDGjh2rKVOm6NSpUzpy5Ijmzp2riRMnvtTPGACQNCikAABJ6osvvlCTJk3UunVrlSpVSmfOnNG6deuUIUOGGNt9+umnKl26tC5evKjffvvNfNTnWX5+ftq6datOnz6tt956SyVLltTQoUPl7e1t3mbGjBl677331LVrVxUqVEidO3c2t0fPli2bRowYoYEDB8rLy8ui29/TIiMj1a1bNxUuXFh16tRRwYIFza3Jn/cY7u7uatKkidKlSxdnMRitU6dOmjVrlubNm6fixYurSpUqmjdvHkekACCZMRnRE9YBALAT69atU0BAgB48eBBncZXc1KxZU4ULF9bUqVNtHQUAkABoNgEAsCuXLl3Sr7/+qvz589tFEXX9+nWtX79emzZt0vTp020dBwCQQCikAAB2pW7durp9+7Z5Sl1yV6pUKd24cUNffvmlChYsaOs4AIAEwtQ+AAAAALASzSYAAAAAwEoUUgAAAABgJQopAAAAALAShRQAAAAAWIlCCgAAAACsRCEFAAAAAFaikAIAAAAAK1FIAQAAAICV/h9PRg93GskUiwAAAABJRU5ErkJggg==",
328
+ "text/plain": [
329
+ "<Figure size 1000x500 with 1 Axes>"
330
+ ]
331
+ },
332
+ "metadata": {},
333
+ "output_type": "display_data"
334
+ }
335
+ ],
336
+ "source": [
337
+ "# plot the distribution of the number of images per category\n",
338
+ "shared_stim_set.groupby('object_style').count().plot.bar(y='image_id', figsize=(10, 5), legend=False)\n",
339
+ "plt.ylabel('number of images')\n",
340
+ "plt.xlabel('object style')\n",
341
+ "plt.title('Number of images per object style')\n",
342
+ "plt.show()"
343
+ ]
344
+ },
345
+ {
346
+ "cell_type": "code",
347
+ "execution_count": 10,
348
+ "metadata": {},
349
+ "outputs": [
350
+ {
351
+ "data": {
352
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABGoAAAJOCAYAAADvWuEcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5hdVb34//dau5w+vff0ShqBhJpQJYCAHVCUogjcr1cvegVFpfrjol6999qQIggoRSnSggQjPUAoSUjvyWR6n9N3Wev3x5CRGJAgJROyX88zzzD7rL332mdzPln7c1YRWmtNIBAIBAKBQCAQCAQCgUBgr5N7uwKBQCAQCAQCgUAgEAgEAoEhQaImEAgEAoFAIBAIBAKBQGCECBI1gUAgEAgEAoFAIBAIBAIjRJCoCQQCgUAgEAgEAoFAIBAYIYJETSAQCAQCgUAgEAgEAoHACBEkagKBQCAQCAQCgUAgEAgERoggURMIBAKBQCAQCAQCgUAgMEIEiZpAIBAIBAKBQCAQCAQCgREiSNQEAoFAIBAIBAKBQCAQCIwQH7lEzf/93/8hhGDq1Knvet/W1lauuOIKli1b9v5X7EOSyWS44oorePLJJ/d2VQKBEW2kxoonn3wSIcQun+ErrrgCIcT7fq73y/z585k/f/7ergYAt956K0IItm7durerEgjsFSM1tu2rmpqaOPvss/d2NQKBEWd/ijXvpW3xz651pLfvAnvXRy5R89vf/haAVatW8eKLL76rfVtbW7nyyiv3maDxVjKZDFdeeWWQqAkE3sG+FCu+/OUvs2TJkg/lXPu6k046iSVLllBdXb23qxII7BX7UmzbF9x///18//vf39vVCARGnP0p1ryXtsU/u9agfRf4Zz5SiZqXX36Z5cuXc9JJJwFw880379F+vu+Tz+c/yKp94LTWZLPZvV2NQGCfsK/Firq6OubOnfuhn/f95Lounud94OcpLy9n7ty5hEKhD/xcgcBIs6/Ftn3BzJkzGTNmzN6uRiAwouxvseaDalt8FNp3gQ+Q/gi54IILNKBff/11feihh+pEIqHT6fQuZbZs2aIBfd111+mrr75aNzU1acMw9MKFCzWw28/ll1/+vtVvx44d+itf+Yquq6vTlmXp6upq/alPfUq3t7drrbXOZrP64osv1tOnT9cFBQW6uLhYz507Vz/wwAO7HQvQ//Zv/6Z//etf64kTJ2rLsvSvf/3rt7yGL33pS8P7PfPMM/roo4/W8XhcRyIRfcghh+iHH354t+O//vrr+pRTTtFFRUU6FArp6dOn61tvvXWXMn/72980oP/whz/o7373u7q6ulonEgl9zDHH6LVr175v71sg8H4bybFi5+fqb3/72/C2yy+/XP9juG5sbNQnnXSSXrhwoZ45c6YOh8N6woQJ+uabb97tmG1tbfr888/XtbW12rIs3dTUpK+44grtuu67qptSSl933XW6oaFBh0IhPXPmTP3oo4/qefPm6Xnz5u12Dbfddpu++OKLdU1NjRZC6DVr1ujOzk594YUX6kmTJulYLKbLy8v1UUcdpZ9++uldzjV79mx94okn7rJt6tSpGtAvvfTS8LZ7771XA3rFihVaa61vueUWDegtW7YMl5k3b56eMmWKfumll/Thhx+uI5GIHjVqlL722mu17/u7nGPlypX6uOOO05FIRJeVlemLLrpIP/zww7vdk0BgJBrJsW3nZ/Ovf/2r/vKXv6xLSkp0IpHQZ511lk6lUrqtrU1/5jOf0YWFhbqqqkp/85vf1I7j7HKMnp4efeGFF+qamhptWZYeNWqU/u53v6tzudwu5e655x598MEH64KCguHP+znnnDP8+rtpbzU2Nu7SjtJa676+Pn3xxRfrUaNGadu2dXl5uV6wYIFes2bN+/JeBQIj3b4Qax5//HF99tln6+LiYh2NRvXJJ5+sN23atEvZxx9/XJ9yyim6trZWh0IhPWbMGH3++efrrq6utzzmu21b7GwPvd21vtf23TPPPKPnzp2rQ6GQrqmp0d/73vf0jTfeuFtdA/umj0yiJpPJ6MLCQn3QQQdprbW+6aabNLBbcmFn0KitrdVHHXWU/tOf/qQff/xxvXz58uEP4fe+9z29ZMkSvWTJEt3c3PxPz9vY2KgbGxvfsX47duzQ1dXVuqysTP/0pz/VTzzxhL777rv1ueeeO/wPe39/vz777LP17bffrhcvXqwfe+wx/a1vfUtLKfXvfve7XY638xqmTZum//CHP+jFixfrZcuW6ccee0wD+rzzzhu+ho0bN2qttX7yySe1ZVn6wAMP1Hfffbd+4IEH9PHHH6+FEPquu+4aPvbatWt1IpHQY8aM0bfddpt+5JFH9BlnnDEcbHfaGXyampr05z//ef3II4/oO++8Uzc0NOhx48Zpz/Pe8X0JBD5sIz1WvJtETV1dnZ48ebK+7bbb9F/+8hf9mc98RgP6qaeeGi7X1tam6+vrdWNjo/7Nb36jn3jiCX311VfrUCikzz777Hesz5vtrMd5552nFy5cqG+44QZdW1urq6qq3jJRU1tbqz/96U/rBx98UD/88MO6p6dHr127Vl944YX6rrvu0k8++aR++OGH9XnnnaellLtc86WXXqrj8fjwg1p7e7sGdCQS0T/84Q+Hy1144YW6srJy+O+3a0yVlpbqcePG6euvv14vWrRIX3TRRRrYJba2trbq0tJS3dDQoG+99Vb96KOP6rPOOks3NTUFiZrAiDfSY9vOY48aNUp/85vf1I8//ri+7rrrtGEY+owzztCzZs3S11xzjV60aJG+5JJLNKD/+7//e3j/bDarp02bpmOxmP7JT36iH3/8cf39739fm6a5S1L3+eef10IIffrpp+tHH31UL168WN9yyy36rLPOGi7zbtpb/5ioGRwc1FOmTNGxWExfddVV+i9/+Yu+99579de//nW9ePHid3wfAoF93b4Sa+rr6/W555473F6pqKjQ9fX1uq+vb7jsr3/9a33ttdfqBx98UD/11FP6d7/7nZ4+fbqeMGHCLonif7VtMTAw8E+v9b2075YvX67D4bCeNm2avuuuu/SDDz6oTzzxxOE2S5Co2fd9ZBI1t912mwb09ddfr7XWOplM6ng8ro844ohdyu0MGmPGjNntm5qlS5dqQN9yyy17fN4xY8boMWPGvGO5c889V1uWpVevXr3Hx/Y8T7uuq8877zw9c+bMXV4DdGFhoe7t7d1le1dX19tmpefOnasrKip0Mpnc5RxTp07VdXV1Wimltdb69NNP16FQSG/fvn2X/RcsWKCj0aju7+/XWv/9Yewfv/W+5557NKCXLFmyx9caCHxYRnqseDeJmnA4rLdt2za8LZvN6pKSEv3Vr351eNtXv/pVHY/HdymntdY/+clPNKBXrVq1R/Xv6+vT4XBYf+ITn9hl+3PPPaeBt0zUHHnkke943J1x7phjjtnl2E888YQGhnva3HHHHTqRSOiLLrpIH3XUUcPlxo0bp88888zhv9+uMQXoF198cZdzT548WX/sYx8b/vs///M/tRBit/fkYx/7WJCoCYx4Iz227fxsfu1rX9tl+2mnnaYB/dOf/nSX7TNmzNCzZs0a/vv666/XgL7nnnt2KXfdddcNf3uu9d9j2862yp74Z+2tf0zUXHXVVRrQixYt2uPjBwIfJftKrHm79so111zzlvsppbTrunrbtm0a0H/+8593O+a/0rb4Z9f6Xtp3n/nMZ3QsFtul94/v+3ry5MlBouYj4iMzR83NN99MJBLh9NNPByAej/OZz3yGZ555hg0bNuxW/pRTTsGyrPd83o0bN7Jx48Z3LLdw4UKOOuooJk2a9E/L/fGPf+Swww4jHo9jmiaWZXHzzTezZs2a3coeffTRFBcX71E90+k0L774Ip/+9KeJx+PD2w3D4KyzzmLHjh2sW7cOgMWLF3PMMcdQX1+/yzHOPvtsMpnMbpNenXLKKbv8PW3aNAC2bdu2R3ULBD5MIz1WvBszZsygoaFh+O9wOMz48eN3+ew9/PDDHHXUUdTU1OB53vDPggULAHjqqaf26FxLliwhl8vx+c9/fpfthx56KI2NjW+5z6c+9am33H799dcza9YswuHwcJz761//ukucO+ywwwiHwzzxxBMALFq0iPnz53PCCSfw/PPPk8lkaG5uZsOGDRx77LHvWP+qqioOPvjgXbZNmzZtl/fqqaeeYurUqUyePHmXcmecccY7Hj8Q2Nv2ldh28skn7/L3znbRzrku3rz9zZ/PxYsXE4vF+PSnP71LuZ0rMv31r38F4KCDDgLgs5/9LPfccw8tLS1vWY930956s4ULFzJ+/Pg9ijuBwEfRvhJr3q698re//W14W2dnJxdccAH19fXDcWBnm+adYgHsWdviX7En7bunnnqKo48+mrKysuFtUko++9nPvqdzB0aOj0SiZuPGjTz99NOcdNJJaK3p7++nv79/+B/znbOSv9mHvSJIV1cXdXV1/7TMfffdx2c/+1lqa2u54447WLJkCUuXLuXcc88ll8vtVv7dXENfXx9a67fcp6amBoCenp7h33tSbqfS0tJd/t450VYwuXFgpNkXYsW78Y+fPRj6/L35s9fR0cFDDz2EZVm7/EyZMgWA7u7uPTrXzs99VVXVbq+91TZ46/fupz/9KRdeeCFz5szh3nvv5YUXXmDp0qWccMIJu9Q7HA5z2GGHDSdq/vrXv3Lccccxf/58fN/nmWeeYdGiRQB79MC0J+9VT08PlZWVu5V7q22BwEiyL8W2kpKSXf62bfttt7+57dPT00NVVdVuS9lWVFRgmuZwjDryyCN54IEH8DyPL37xi9TV1TF16lTuvPPO4X3ebXvrzfakPRcIfFTtS7Hm7dorO2OFUorjjz+e++67j29/+9v89a9/5aWXXuKFF14A9uw5Zk/aFv+KoM0SADD3dgXeD7/97W/RWvOnP/2JP/3pT7u9/rvf/Y5rrrkGwzCGt33Ya9aXl5ezY8eOf1rmjjvuYNSoUdx999271O/tZkd/N9dQXFyMlJK2trbdXmttbQUYzsiWlpbuUblAYF+zL8SK91tZWRnTpk3jhz/84Vu+vjMB+052Nhra29t3e629vZ2mpqbdtr/Ve3fHHXcwf/58fv3rX++yPZlM7lb2mGOO4Qc/+AEvvfQSO3bs4LjjjiORSHDQQQexaNEiWltbGT9+/G69//5VpaWldHR07Lb9ra45EBhJ9ofYVlpayosvvojWepe6d3Z24nneLm2TU089lVNPPZV8Ps8LL7zAtddey5lnnklTUxOHHHLIu25vvdmetOcCgY+qfSnWvF17ZezYsQCsXLmS5cuXc+utt/KlL31puMz73fv5gxK0WT769vkeNb7v87vf/Y4xY8bwt7/9bbefb37zm7S1tbFw4cJ3PNYH2RNkwYIF/O1vfxseXvRWhBDYtr1LQGtvb+fPf/7zHp/n7a4hFosxZ84c7rvvvl1eU0pxxx13UFdXx/jx44Ghh6PFixcPJ2Z2uu2224hGo8EycoF90r4SK95vJ598MitXrmTMmDHMnj17t589TdTMnTuXcDjM73//+122P//88++qi68QYrflLVesWLHbkEoY6injeR7f//73qaurY+LEicPbn3jiCRYvXvy+Dj+YN28eK1euZPXq1btsv+uuu963cwQC77f9JbYdc8wxpFIpHnjggV2233bbbcOv/6NQKMS8efO47rrrAHjttdeA99beWrBgAevXr2fx4sX/6qUEAvukfS3WvF17Zf78+cDfE0j/2Cb5zW9+877W44O61nnz5rF48eJdekYrpfjjH//4vp4nsPfs8z1qFi5cSGtrK9ddd93wB+/Npk6dyi9+8Qtuvvnm3cZF/6MxY8YQiUT4/e9/z6RJk4jH49TU1PzTB5mdWdl3yr5eddVVLFy4kCOPPJLvfve7HHDAAfT39/PYY49x8cUXM3HiRE4++WTuu+8+LrroIj796U/T3NzM1VdfTXV19VuO+XwriUSCxsZG/vznP3PMMcdQUlJCWVkZTU1NXHvttRx33HEcddRRfOtb38K2bX71q1+xcuVK7rzzzuGAdfnllw/Pa/GDH/yAkpISfv/73/PII4/wox/9iMLCwj2qSyAwkuwrseL9dtVVV7Fo0SIOPfRQ/v3f/50JEyaQy+XYunUrjz76KNdff/0edeMvLi7mW9/6Ftdccw1f/vKX+cxnPkNzczNXXHHF2w59eisnn3wyV199NZdffjnz5s1j3bp1XHXVVYwaNQrP83Ype+CBB1JcXMzjjz/OOeecM7z92GOP5eqrrx7+7/fLN77xDX7729+yYMECrrrqKiorK/nDH/7A2rVrgaGx34HASLO/xLYvfvGL/PKXv+RLX/oSW7du5YADDuDZZ5/l//v//j9OPPHE4Vjwgx/8gB07dnDMMcdQV1dHf38///u//4tlWcybNw/gPbW3vvGNb3D33Xdz6qmncumll3LwwQeTzWZ56qmnOPnkkznqqKM+0PchENhb9rVY8/LLL+/SXrnsssuora3loosuAmDixImMGTOGSy+9FK01JSUlPPTQQ8PDqt8v/8q17onLLruMhx56iGOOOYbLLruMSCTC9ddfTzqdBoI2y0fBPn8Hb775Zmzb3qUR/2ZlZWV84hOf4OGHH37L7mFvFo1G+e1vf0tPTw/HH388Bx10EDfccMM/3WfnxJzvpLa2lpdeeomTTz6Z//qv/+KEE07ga1/7GgMDA8Pjss855xz+67/+i4ULF3LiiSdy3XXXcemll3LmmWe+4/Hf7OabbyYajXLKKadw0EEHccUVVwB/z7zGYjHOPvtsTj/9dAYGBnjwwQf53Oc+N7z/hAkTeP7555kwYQL/9m//xmmnncbKlSu55ZZb+M///M93VZdAYKTYV2LF+626upqXX36Z448/nh//+MeccMIJnHXWWfz2t79lxowZezwhOQwlfa699loef/xxTjnlFH7+859z/fXXM2HChD0+xmWXXcY3v/lNbr75Zk466SRuuukmrr/+eg4//PDdykophxuDb07IHHLIIcRiMaSU7+tDUU1NDU899RTjx4/nggsu4POf/zy2bXPVVVcBUFRU9L6dKxB4v+wvsS0cDvO3v/2Nz3/+8/z4xz9mwYIF3HrrrXzrW9/ivvvuGy43Z84c2tvbueSSSzj++OM5//zziUQiLF68eHhurvfS3kokEjz77LOcd9553HDDDZx00kl85StfYd26de/5wSsQGMn2tVhz88034zgOp59+Ov/+7//O7NmzefLJJ4efuyzL4qGHHmL8+PF89atf5YwzzqCzs3N4brz3y79yrXti+vTpLFq0iEgkwhe/+EXOP/98pkyZMpyICr5Y3/cJrbXe25UIBAKBQGCkOv/887nzzjvp6ekZnvg0EAgEAoHAyHPrrbdyzjnnsHTpUmbPnr23q/OhO/7449m6dSvr16/f21UJvEf7/NCnQCAQCATeL1dddRU1NTWMHj2aVCrFww8/zE033cT3vve9IEkTCAQCgUBgxLj44ouZOXMm9fX19Pb28vvf/55FixZx88037+2qBd4HQaImEAgE9nO+7/PPOlcKIXZZweGjzLIsfvzjH7Njxw48z2PcuHH89Kc/5etf//rerlogEAgEAoHAMN/3+cEPfkB7eztCCCZPnsztt9/OF77whb1dtcD7IBj6FAgEAvu5+fPn89RTT73t642NjWzduvXDq1AgEAgEAoFAILAf2ycmE/7Vr37FqFGjCIfDHHjggTzzzDN7u0qBQGA/sT/En9/85jcsXbr0bX8eeuihvV3FQGC/tD/En0AgMPIEsScQ2PtGfI+au+++m7POOotf/epXHHbYYfzmN7/hpptuYvXq1TQ0NOzt6gUCgY+wIP4EAoG9JYg/gUBgbwhiTyAwMoz4RM2cOXOYNWsWv/71r4e3TZo0idNOO41rr712L9YsEAh81AXxJxAI7C1B/AkEAntDEHsCgZFhRE8m7DgOr7zyCpdeeuku248//nief/75PTqGUorW1lYSiQRCiA+imvstrTXJZJKamhqk3CdG0QUCeyyIPyNbEH8CH2XvNf4EseeDFcSfwEdV0PYZ2YLYs38Z0Yma7u5ufN+nsrJyl+2VlZW0t7e/5T75fJ58Pj/8d0tLC5MnT/5A67m/a25upq6ubm9XIxB4XwXxZ98QxJ/AR9G7jT9B7Nk7gvgT+KgJ2j77hiD27B9GdKJmp3/Mxmqt3zZDe+2113LllVfutr25uZmCgoIPpH77q8HBQerr60kkEnu7KoHAByaIP++O7/skk0mam5tpa2tj06ZNrFq1ip6eHjZs2MDAwACe5wFQWlrKySefzCc+8QkuueQSlixZwqGHHsohhxzCz372M5RSw8dtaGjg//7v/zjqqKOAIP4E9g97Gn/eLvb89vqfUVJSQigcQQhB3sliGoJ8JosUJplkD83bdrBiYxsFZSUcceSRVFcMPaBJKZBSY6BJpXpY8txS5h46F8MOYyqfvu4uWppbqCgtZtzkiVihEKlMnmeefoZc1qU/mefAg+Yyflwttt3Ly+seYHJ+Ob+9oZxnB3q454GrKSq1sJ0eWpYsomvDU5TpLravCvOyF2f+nMmMmRSBcAisCJYI4WUEvvSRpialWhlY38bD9zdz3KcOpLQygTIjqLyJyodw0nl62ttY/lozdZOnMLo+Rkgp8irDYD5N67oUtfW1JCrDCKExhCank3SuXs2K1zqI19czYXQxscIQwouTN0O8/PirTJ5Ug4o4fOHyvwbxJ/CR9X60fewL70PaMTzlETM0UmmEBO15OK6PhSZiaUKWJGwqhPLx8z7K8wANGgQCpTXa1yhfozSkPEXSUSjfRyuN8oeK4ytAgFbg+EPbDAFSg++B1kNltAdKgdBDv7UG5YPngvbfeAM0CIaOp/TQbzQgQbtv7B8CFKgc4A8VUT44auh80gDDxJYSN92F9geR+AihUEIitAblgDAR0kKiESqPZRgI08ZDo4SFjUfY60XiIrRPx5bVQezZT4zoRE1ZWRmGYeyWwe3s7Nwt07vTd77zHS6++OLhv3c25gsKCvapB6WdUwftC10G94U6BgLv1v4cf/4VWmt6e3v58Y9/zN13301PTw+pVAopJcXFxUyZMoWjjz6aGTNmIKUkl8vx05/+lP/5n//htttuw/d9pJR87nOfI5fLYVkWkydP5rXXXqOhoYHHHnuMiRMn7hZvgvgT+Ch6t/HnbWNPUQHZfA47EsaQAt9xadm+DSfvoLDQhiRa3sS06onMmjadWCSEgQ8KDEMgpSI92Et3dy81dbUUxaLk0720t/YQKijl0CPnk84OECtIkM+7GHaIo084kUV/eZKIcKioLqaktJR4vJjTmhpofr6Pv659ibO/cwH1TdVYog+dc6ga5ZLwQ3Q8U8Nmx+AzJzRQVZHCVjn6+xzscAW2EaMgVgEJgxzgZ5J0tzZTV1dKfbnGLsghCONaCsftxrUk+WKDGdML6GrbzOqBUiaNq8S0LcyQxPWhtKIAKwJS+EPPc65PTFpEEmVMmVTM9q0OU4pjmFpjI4nEbCzbRISzQBB/Ah8972fbxwxHEOEYpvKICR+pXDylUZZNJAYRU2NJkNpH6KHEiyEVwhvKvEgh8XzwfU3eBV8rtAbPVNiGQmnwPI30NYZWQ/sYBghwPYUvDbQGfB98943f3tB/K38oKeN7Q4kYpUGagBpKuAgQWqB3JmmEAWjw8uAbYEqEMEA7aBFFCNCmgTBD6GwacjmwbbBMXO2DdhGZLCg1lJCRAq08kBZIG4QEYSBME+HnwEmCYaEMSTQWx0sOgp9HsO88HwbeuxGdqLFtmwMPPJBFixbxiU98Ynj7okWLOPXUU99yn1AoRCgU+rCq+IFZvnw5nZ2dHHfcccGHMRDYC/bn+PNuaa3p6uri3HPP5bHHHqO0tJTKykqmTZvG6NGjmTdvHkcddRQvvvgin/70pzEMg9dee40777yTtrY2TNPENE2UUnz3u98lk8kghGDDhg1MmzaNL3zhC0yYMCGIhYH9xruNP28Xe0KRCHYEOrs7cFODhCMxxo4Zg68VjmsSjSTozmYx48VYRghHSSxMfKUxVJbOts1ks2kaGhqJxiO0bNmM1oKZcw4lFi3CFT7ZVodc3qesqBRlROjL5Ej1p8jkHZxMFs/J4uXThBlk6ZoY+ViCT516DJbUQApNB7g50i3lPLdmM1MOixG3dtC3DRJxk+KKCK+v3sKYxknEIjlUzkAYEu3bdLXkmDghQUhnMB0HIxTBChfQl+2nbUMPnpZ4jqSkoJCW1k5WvZ5jXEMxotDEEx4DXogy00YIByXyqN5Bks15CsrjlBSVs81qo6sjT7Xv4luaSChPa9KgKhzMDRH4aHo/2z4Fwsc3NWHlY6FwNVjSQJoCJSSGKUFr9BtJGlD4+GhD4/k+vtL4WuArBUIhTYFpSMKGgdYCpTTK90CB1gqtBY4CBWgb0OB7Gq190AJ8/UbORQI+2tND2zVDPWTQYAiEEEOblUCYcuj46o0ECRJtDSVWtDJAhEEptO8M9dYRDCVrIhbYYaxoCEO7SFPhZ7bh6/xQDx4hEEiUDIFWaOVjWwLl5hA6C14WSyYw0WRSSaQLUhtYpv1+3/LACDaiEzUAF198MWeddRazZ8/mkEMO4YYbbmD79u1ccMEFe7tqHxitNXfffTd/+9vfOPjggykqKtrbVQoE9kv7Y/x5t7TWdHZ2cs455/DYY48xb948brjhBn7yk5/Q2trKli1buOyyy/jJT37CqaeeyjPPPMPy5ctZuHAhr776Ko7j0NHRAYBpmlRUVHDwwQdz1FFHcfjhh9PQ0EA8Hg+SNIH9zvsRf9asX0dhUREl5dWUNY3FEgo8H8d16O7oxJMGOV9QVVBARkn8bI5YBLLdG8kMpqhpmEBpRSmWVqQdh9Ka0TTW1mJIA43AxKSyooaurl6KzTACA2QIJQx6B3rp72vHlNWYbht6oJu/LFrH7INn0dhQh8Egvsox2NbOyuc62P5SF5MmRSiVXTQvi1LfVElFXOLl8hRagrbOJKVlJtJXmAosD+LlFq4TpTDko2xw1ABauBTX2bSvyZLtSxE1TQY7N1EakfT0ClrtOgpD1RTFFG0dg5SWV+K7Nq5pkOvL0NaWZ+JpMwkVFzD9sHpWvPg6MqcJWUkKwxabWnopKqr6AO98ILB3vV9tnyh5hPSHkhCAHbbxhIHyFWEBBmBKiUKhDYGPSV6YOJ6LJSWGVpiGRppgSRBiKBfivfFjaAnSQClQvkQrjZAaISSGUjieIoePD28kR/TQyCVvaJgVSr8xHOqN3jVSgjTRhsHwUKc3kkki66B9DwwTrDAoOVRGa5AuwNAxPQ8NCENgqAGi6Qy4KTzXwRcCJUNoERoaVaUcFBqhBUgTT2sMw0L7Hlp4hAwDYYCXy2IKhRIWvg7aQvuTEZ+o+dznPkdPTw9XXXUVbW1tTJ06lUcffZTGxsa9XbUPzODgII888girV6/mzjvv5IILLggeUgKBvWB/jD97QmuNUgrP81i+fDmXXnopr7/+OrNnz+bEE0/kueee484776SxsZEHH3yQuro6rr76arTWXHnllWzatIlMJjM8xLOmpoZTTz2VU089lZkzZ1JaWoqUMoh7gf3a+xF/7FiU8RPHs37zDqKJYiJWhKyXAeUjDJ/+wU7swnEgTSIiy2DXajb39JKoGM3EA2YTCYeROk/WSdPVMcjYUaMwTBMlACkQvkNf51a2rN9E3slSWV2P5buUxxzW922jvaOGZHoU0WgL6eY0K1e38+X//BJhM4wmTTqV5Lc3vsiUhGLmYUWEcwO4HbV09OSZNgO89CDpdAg1kCFlaJIpQSLmIJXC9KLUVsdYsa4XPaeYUEyhXIXGw8q7dO3I0zC5DmVJrPIqks4ApXmNSA8gkqB6AbEN5ZagfEFOabQn6RnIIUJxDBlHWlEmzJ7FqseeJJooxHVDRDN9bF/jf1C3PRDY696vtk9IagQeGENJF19KTMNEWmD6HlIIDHw8DJAGWmmk9gnZNoYQGHpomJItNbYEpQVZV2C80QnGQuJrje/7aIY6x0QNiac1Sccn5+0cDqVRWoAwh+ahEQKt5dDcNeKN3nGaoUyQOZSkEd7QICMh5dB0OZb4+/AoaSGkRPsOwk+DcNGe90avGxdpOAjXReVS5JwB4m4PJQWQtHyyboKcioJlI7xB8FIIAUpaeMJEGyGUDGELA++N67W0xFIOjogjDev9vNWBEW7EJ2oALrroIi666KK9XY0Pzauvvsr69evxfZ///d//5bTTTqO6unpvVysQ2C/tb/HnH+1Mpiil6OrqYtmyZbz22musX7+e119/nY0bNzIwMMBVV13F2WefTUtLC5dffjmNjY3ceOON2LaNaZqEw2F+8IMf8Pvf/x4pJT09PQDMnz+fm266iVGjRgVLTQYC/+C9xh8lBIZpUNdYzcYtW6irLMdJp9m+vYOC4gLKSmxaty1DpypQZpzC0lpGTZ2KaSWQMoyrNFIbDPQNUlpcjhUtwMcFlaVly3paWrYQj0Q4eOYEjGgh67euZuOqtXhemmnTJ5HxB/jdPTcy48AkFW0uPWmPIw8/GC0EPjl6OlvZsXUzow8oori8CNFVwIq2TqI1Jh2tPmEjSm+fQ8OkWkYnPHp71yFMA8+pYPvzXfQPuNTUuGzd6jF+moEtokgRQyuIRAqpaajCFz45FPFcmLXPbqUsGiLsWaQzGSZMa8DJuGAYKDdNfksO4WZoaWmnrCKBrXxcK87og+p57a+bKSu2iBUaNG9c9T7e5UBg5Hk/2j72UIcXPGUi0W/M8yKwtI9tGUMTFGuJKQSur1HCx5BDc9GYpoVt2AhfIFC4vsJAEzV9hNIoNFopPBRZrXA8f2hOYCXIK01ev9F7RoHSb8wJIw0Qf5+DBiXA1Qh8tDBAyqFyjod2PETERAvAdYYSPHZk6Bi8MXeNl0E7WYT23/jJI0UO6eeR+RQxb4CyfCtlIk9YGzT7mn7fRWuDrKoHI46h8gg8NGIoLgoD37TxjAJwcmjtYr/Rq0h5BqZhvPebG9hn7BOJmv2J1poHHnhgeJm79evXc9NNN3HZZZcFDzGBQOBDpbVmy5Yt/Pa3v+XVV19lzZo1pNNpwuEwAwMDDA4OYpomX/rSlzjzzDO57777uP/++ykvL+f73/8+Tz/9NI888giPPPIIoVAIwzD47ne/y1133UVhYSFbt27lwgsvZPTo0UHvmUDgA5AZTIKjqYzGcIp9Nm1dQ0HRaKYcPA9DhNE6jd/WT/noWcRjBWiy5F0PH4ucSBDGw/VcrMJaUoNdRLs20NvbwdaWFkpKK5gyaSaxiADhsb2jl2xaM2PmfLR0Gcx0MTDYzeQDyzGcR3j+FZ/RE8czduxoNBLHz5Pa0ceO7XkSBxUTLTBI9bqMmlxBvBL6W5K099pMn1GPZfSjdI6KsjC5lOS1F9uIF9ZzwOgQVKdYsayHRGkNNXWlaB3CSMQh3gN2BMPIol0fP2+R6wO7sADhmGjTpT9tYoYMkD6un6K9bZCDDmqgP92NcmuRpkFUpUnGKimJbcfLSooiYXRtCdC/l+9uIDCyhUyJkgIhDIQUKGFgoImgkEKgJfha4PkCH42vFQJNSApMMbS/bVsI30WroSFLeOArHyWGVm0yTY1gaIRS3gfvjdUiDQlSazztgVBoNdRhBhRaKDBACjm0cpRpDL2oNaAg7yKUAuTQb9NAGwVDvW98H+E7kHPQThrhOVhkMJ1ODN1PmCQWDm7WwVYuhgU9WmJkFcm+HGZYEPUG8d08TqgADAtfxNCiCOH2IxlESQMtImhMpNDEjDzCyWK7PlaocO/d0MCHLkjUjDB9fX0sXLhw+G+tNddffz2nn34648aN24s1CwQC+xOtNWvXruWMM85g5cqVnHbaaXzve99j8uTJ/OIXv2DHjh14nsf555/PKaecwnPPPcfatWtpaWnh4osvZunSpfziF7+goqKCpUuXMnfuXL761a+yevVq0uk05eXlGIbBvHnzgiRNIPABqS6tIRKNkMv1s3FTJw1TjqCsvB5hCrQrUTpEzdgZRMIGmIq8Z5Dx8pSGc4j+5TjJLXhOFiuUILWjnU1KoMrGUtgwl9ICG1/nyDp5BtIOg4OChrpJuF4eIU0KjRJ8V9O6YS3HHjaKn6x6ldPPPptYLIZSHk6fx4O/f43zPjuZWdOjeHaanr40CVPi9dv09CWoazBRoh/Pz+O7Am1JWntdGmZMpqQgghHJIhNVRE2f1GAE1zXBCCMjMawCm7ynMKIe6ayiZW0vRkLT2udQU2tTGrVZ8cLLHHjwLBJxSd7P0ip8ahKFTKoqgswgfgykY2B7mnA4zGB7P1prfC8YfhAIvBPTACwThYEQGl9pTCkwtERo0L4PhoFpSPKeh4HGlEMJFEu72D7YKFAuSuk3JhdWCAHSECAESviYCDwtsYVG+AIfkG9MLqyESQ4fR3lDE9woDWiEIYdWUDIlwpRord6YlFgMJXakGOp8IwUqHBpaQttXkMxBOg+5fmzVj3C7CeXaCOskkYigIOzTUB4jbEYoNGMUFlXQlcqyfPNWlOFjmBYmmrBM46oYihjIyNA16oI3zu8jTI0UirjTh/AHcV0HOxTFtIIeNfuTIFEzgmiteeGFF9i6desu2zs6Oli5cmWQqAkEAh+azs5OzjrrLFatWsU3vvENPvvZz7J+/Xp+/vOf4zgOl112GePGjeO///u/uf322wmFQmzZsoWzzjqL66+/nsWLF1NdXc0RRxzB1Vdfzec+9znOPPNM/vCHP7Bt2zYcx+FnP/sZFRUVe/tSA4GPrImTJxJPhHGzPhNGjcITPnZIEjUjqIgk7+Spqq7BkALpO5DpxOttZeumXiriEcoLQxi2STIDFeMmYxVV8PLGbmI6RN4zh7rlexF2tPRTXd2IEBKExPc1A71JRlc3MC6zha5mj67BMCd87EgEWSDH64tfYtoMk1kzwnhmhuwmg77OLIWNkuSWHMoJEY1qPO2jpMTTBtm8oK0vztimAvIyTzRioDKalm1JRh9Qi+sMja7QCCYfMIqNy9dQMsGmd7kiPTjA+Fn19LRkWPFyCynPpypus27JEqbNnogZyVNbafN8Sy9HlpRRlNcIO4mfcwnnLeK2JhfKYQiNymT29q0NBEa8vKeIGCEMNJYhEVoM9XjRJsrXQ8kQAKUImyae0Jj4hPGwhEYKjfb10JCmN35ADCVqpIE2QHka0wBbSFzXx1EKKTVRhlaA8rRGGgLLFPiSoUmAfY2UAg8QxlBvH3yXN1bbBt9DWxGEbaNtjWlZ6LzC7+qDvm5wB5BGCuH0UaQ7qSwwKS0qIh6DmGEiZYj+tEekvISN6Qyp9ABp4eAnomhCaKGRRghbmji+CUYU7YWGxomJMKbZhTJNTCOMIUy8dA4hJEoIwqHg0X1/EtztEeb+++/Hdd1dtpWVlTFr1qy9VKNAILA/Wr16Na+//jo/+tGP+PSnPz28OtNrr73GbbfdxkEHHUQ2myWbzfLiiy+itSafz3PdddcRiUQ455xz+MpXvsITTzzBjh07yOVyPP/88zz11FPkcjlOOeUUzj777KA3TSDwAbJCNkooelN56pomocwwyWyScGUxnrQwRZ7Bnq0M9nbT2taOrxQl5VXUjJpCVWGEqMyQV4IIIQzhkk320d/XR3lZHYYwUEYYRylcHUbKMAhwHJdMKsWWjVvZsG0j80vTbNpiUjeqjqYGC8F2nLTL+tcXcezH8ggzT75LsnZZD02NUWS4B2Vrqgs1plZkc5IdO7JEi0pp7pLEKyqQZhjLtBCmR9+mrZTZIQpdGy+twVAYuUGKikPYEY/eLRk6N/tMP34aoeIiCmsHaNuWZnrtKCIxQd7JErUUjo4Qrm+iqa+LZ17fxOHWKEq0h/Q1rhuhvN6gdXMaIy8pk8FkwoHAO1EaUo4iHjKRgCEAIfGUxtNDE/kqpREIpPaJCIVtCKQSGFLga/3G6woJCFMg0EOrzu18TQtcT2FIjbQkoFFaoxWYwgBtEPZ8PEPh+Jq8q/FQ+N7QkCnDHPqiXEuJRON7LkpIpC2RtsKQFrIvQ769A5EbhFAeQ/cSJ8uYMkVpqJQB32BDt2CgxcYTCZSQoHOwrhXDHyQUBdOyySkJ2EjDRJoWIUvg+4V4ohCBhxA+hkwTIY20YmTx0NEiRL4X6WbQTop8OpgGY38SJGpGkK6uLp544ondts+aNYva2tq9UKNAILC/0lpjmiZHHXUUiUSCV155hauuuoprr72WiRMn0tXVRXt7Ow8++CCpVArDMJg1axaTJ0/mpJNO4s9//jM33HADxx57LBs3bqSwsJCrrrqK559/nrlz5/LLX/6SeDy+ty8zEPhIEwZ09SapqhlNIlaEsEF2t5DpTZLuHaCnfQvp9AB5SilunEQsFsUQEt932d7aSVNlMblsDmkKLEuzYc0OxpbVM9jRTLawkEQkSoHM4/dvpxmfipIy+rZtYsPmZrKey5gDqtjmNNMzmKK0MI5p9gOK7Ru2EYs2Y4VM/B6LjS9laaxJEE4M4kkDldOg+3GESW9XCZEKh1Wrkuxwajh1Tg1S2UjHR2hNJgnSLsQfNFAxhRA5kC4OKSIRk9xmgSMdwok4pqnALKS8qZDBrE88XkAkZOMikL6iLFSIU1qEL7exZn0nB48pwIy54Lr4Oo2Rg1ihorQ4trdvbSAw4glpoAyDvKcREmxDYBgmnvLe+JJGg1J4novWCtsEWxgIy0Rrf2g5bIaW0LZNDWJo5SelfBzPx3M12ldIMbSythBgSgPX88k7LrYwkFIQkpqcBOUIklkP5Sl0zscMSZRShCwDxwXlD82DI2MhCNvg+Dit7ZAeANNHJDThXCejEnlmTJtIa3s3r7d5dHmleCqPlpqhyW8sEGFEPA5a48osiAy+bYJhYVmSqKEwlaIkMkAWhUYhhEIISdiNUJQIsW1Qk5dhovEqGNiKBLx8cu/e1MCHKkjUjBBaa5599ll27Nixy3YhBAsWLMAIZvkOBAIfosLCQkKhEAsXLuTZZ5+lsbGRUCjE/PnzefXVVzn77LNJJpOk02kuueQStmzZwoEHHkh9fT2NjY388pe/xDAM7rzzTh599FGeeuopNm7cyBFHHMFNN91ETU1N0JsmEPiA+SpMLBYmFhZ0da6ms20TMcNnW2eWqrqZjJk0E9MWvLimlQFlEZMmaIGlIZlSNLvd9Hc1k/d8TMOiP6upqo9ghjWZ1vX0u1k60XhOio2vLmFzvIzKhnoOPfwwCsqqKCyOUx6r4pc3PYBUemjIganobF7F6LEZVDbC64sdSqoTFJf65F2f/BaTTMajapyJnwkhEwkKGoqxOrbTEJ6CYRUgPAPp5cm5inAqxprnVrB+0yBlNTEmTygnFHHIZjRrXuyht8MkOtYaSuBoH/wQZTUG619NUlUTGRr2IDV9fb0UKINYPEbN6AKWPd1MX7aQBAovn0a6gnxOECsPk1P5vX1rA4ERzxQSrQWGBMPQCDnUm8YQEm9oQW20UpgMrbYUMiQojSEVHj5aK0xDYUgBQqOUoj/j4zpDK0AZEiQuppdGCBNlRt/otQMukqznk3M8XA8cTw1NHuz54CkM38H3bGTEQkqFlArPU0gUwrLQ6Rx+SxfaTSMSMQyRoUJ0MrrGwAzVsqkHtueb6NA+SqWHVo0yhhYNBw3SQgsLISSeiAxNFqwVwnTwTAth5JDax0MhSKG1xLJj2AYIbLr6U9jawJdR8qFCwpFitJcHHcSe/UmQqBkhdq725HneLtvj8ThHH3108EATCAT+JVprXNfF933C4fAex5Kamhri8Tjd3d0sX76cpUuX4nkeP/jBD1i6dClSSkaPHs0hhxzC2LFj8TyPp556CqUU69at4+ijj2bz5s288MILZLNZ4vE45513HldffTUVFRVBTAsEPgSZvnVkk71sSKYoqyinsbaagbYW4hVjqagZjSlSCHwSZGjucBlVOAY3mybvSQYGs1SOqqC8YBJhw8JRefoyg7jdW+nv6yFaXUHTuJlEowm0UJQ0rsZzNBPGjCceL8GMhJAihG+PwRBlOLkWlNONJkVR8TqKDZ8dL8QwC6CkUpHz+shuhZ7+EOMOrSBmp0j1x4lMiJNzfSqKQyxZtpFE2WQKfE2xbWAohw0vDyKscooViMEszzyzivFjimlfP8jKHXko0HzqgHogDyi00kQSHgPpDEqXYtk+pgwRLShl64otjKnwCJcLKsoMNrUOMKEyhMil8TMhenMOjojSlXf28p0NBPYBvgeeHlo1SWl8IUBIDEOjPRe0h9BgSQNLauTQgk0oDdrXhIyhBA9ofOUjhUZaBpZhkRDdRP312KSxjWLiEQPbNMh5Blv6LZJOmJwvyHgKrSVSDiV2QmGByPtESuJke/PgeSRiFjk/R057uLZGZ7Ootl6kzGEUuehsK/WRNKVRiZkYT0t3NzkTOnp9VC6FdnvfWPJbDiVrhAFaI7QamphYa8BDkAOlEL6Fb/tow8YXEiEkphSY2kF4GqXBihQinSzK7ScnY3h2EYIUIhh1uV8JEjUjhOd5bNu2bbftU6dOZcyYMXuhRoFAYF+ntWbFihX84Ac/oKurizPPPJOvfOUrhEKhd9w3kUhg2/bwcMyuri4A7r33XgzDoKioiG3btrF+/XocZ+ihJRqNUlRURCKRYMWKFdi2zRFHHMGhhx7KCSecwIEHHohhGEGSJhD4kGxc/TJ1TaMpKSujvKQCvH5KS2po7zEZ6BsgHLNRhKgoLWH96hW0FRQyuqIQ31PEYjFKyqoIGS6GobGUh2g1WTG4jlmHH028uBSkQkqJ62QZPWoMmzc2s2nrZhoafErMUggZGNoGEaY4HkIIBbqfiQcV07+kgRVr+jj5tDpCpVkGN/azqk0xbl4cOwS+UYIel8D3Pba/OMi2dQK543UWv/gKVU0hErEi1KBFSpRw8KxJhLx+sPMUejnWL98I4UoqS2IcfNhEiqIGhtRobaK8PJ5vYCqHbvKUYxA2fWRJMSWNxaxe28los5C6ODz+0jYSZgWVYU067ZCxYFCYtKdze/vWBgIjni1NbNvCME0M7eO6Ck97SCGQUmJgY6OQWoHWQxMMa4VSLoahME2QUiC1wgAMUpTE27BlhhI2MLm4nXElKYpsBTKJEh4Zt5i0EwOzlJb+OM3dJqs7TLqyYXxMBpSLZIBBUYsoLCJkxgmbAsjhaI3p9oAXwom6SKeXwt4WCkJ5zIzN+q44+dZ2CqJZzAIboT3QLtKQSNPBlAql0pgGSO3jeg5IUGqop44pIWRFkIZGGBaYBpYW+L6Hrzx8T6ClxMNACgnKQ+TThHUSw7TJmzEM1N6+rYEPUZCoGSGUUvj+7mnS448/fo8eqgKBQOCt/OhHP+LBBx8EYNmyZYwdO5aPfexj75gsMU2TyspKXnzxxd1e832fTCbDQQcdxIIFCzj00ENpaGggHA4Tj8cJh8NYloVpDv0TI6UMkjOBwF4wZdwRxAsTJJ1e+tu7KYmHcfOK6qICmresp2jcFEyl0RnBuISkbfXf2LFOEk6UUTdqGlhDCQ4nm2Tj1qEkzMGHHU1RafnQKiRyKFZkUmkKEoWMG2+Ry2dZ9sqLbF+/ns996XyKqxy05zK6sRppSbShkbkwa14tpLopT0nYJetnGehJ4NVkUBGFaw0NeVKhEH0rfV7Z1M3hcw8jm+/jlVc2k+oYIN2eJDfgkg/181BvG5UxkwJLEy8wqB9dxuaWARIFTRSE4yjlIfPgGw6+76AGJJ2tXQysGmBMeS3TpzVg2ZKqCaPx80lWrm2jqjTK9KowMtvLYFySdGzKKgrIh22MwjjQubdvbyAwohkyTDwaxfEdXA+U1niuP9SrRghsY2hlJ5Ao5aO0QuC9MVRKYBoKoRUR0ydmbKRIriEhW6ktcDmsro3SqIspPXxf4Hgxcn4BOTRpFSLtZXGsARrrJZObHDQmXVmTjoxJLq/o6++jtSeC4xeSdIuxZT9O3sD3U8QSkt7ediKpdhqLIZXVbO3WYJvE7E5yeQPdl0PqGIYewBJpDDsMwkJrjdAaIUBoH9sYmkDHCsVACDzPx/EdTENgMrRCnvYcpBAoQviujzR8pAYlJIYw8DAwnCQh0ngieCbcnwSJmhFkqGvc34XDYY477rjgAScQCPzL8vm/j2fOZrM899xzfOxjH3vH/QYGBujq6tolgSylpLGxkdNOO43PfvazTJ8+/V0NpwoEAh+ukCOw84KwHyLV14PWEVrae8iHPDK93aQ7ttOfStLT30ZJ3VgOPHguPb2tmIZBS+tWWmI2nTtaSGYVdbX1HPex6diGJGTZCEMgpIVhGfRpgVaSjp4+1mxYh0xnSHX3sWb1cupKRqH9JIUFcZRy6Ni8mVKziI3r+zjhqBDoFH42x+YNeV7JtdKnJnLcYWWEQhbalyx/dStzDh5LabGBZ5VzQmWUXE8Kd0BjWiDCNlqG0PlBRF8SOyzIJixmVkf469PNpPIlFLsGAoFvafJ+hsG1WTr8DJMzUZwsGNJAiBwRnaBxwiTKizez8fU2klmPyaND6LjE6dMksDHDFqF88LAUCLwT0zKRAhzXR2mN673x21eEDFBCI9BIAWiNRCOkwHhj8vK4LSiyBik2XmBCcQ+NRR4lkQhCQ8QoQBgaLQvxhUHayZH1coQNSbXdhyNz5AybnG/Rk+5EK02pDSWJGD2RIkrjYWrKc7gqxcBgK50JCPmKjn6QqTRjrT7GjQ0zZlSCRI3Nji7F9i5FS59JzgHPc8g6WbIhRSRsvzEPjoPvmxiWDcpFCAulhyZBdtXQpMi+Eni+RuTz2FJi2mHyvk/YNsg5Lr7ykNpH4BEORXB1HIWFck1EshVp7+27GvgwBYmaEWz06NFMmTJlb1cjEAiMEFprtNY4jkNLSwtdXV1s2rSJgYEBYrEYDQ0NVFZWUlhYSEVFBYZhcPzxx3P//fej1FB32SVLlqCU+qcTlKdSKS699FI2btwIQCgUYs6cOZx77rmccMIJlJWV7ZKc0VoHyZpAYAQS2sAMR9Dd3aQ6u1nf2ccgUD+uiWhEsHn7GuKVtcw5dgHhcBhpGoSjYbTyaO8a4PEnn+DII47hwMYxhEMWoZBJZ38/thCEbBPHdyAvsCMR0rksg4NJxjSNwunppGXDBppG14NOI7SHKaLgF9GywcQVirA5SFG8FOn1MdBZzPq+QUY3jqWnV7BqjcvEaQkGO3zaegc5JGaiDED4CAmWcDFDDsIywLRImwZpQnRs3Mj4mjCeEcLMZ8n19OH7/WgVwVPguB7OIKxc38G0OaMpjBVRVBTCsE2QYXBzCJUB02JsRYiNjoOwLUw7TCSWQaUklqGxZDD8IBB4JwJwXI0UkrzroJRmKG+hkVqA3tluUGiG2hGGCVZIUBERVEV2EM7/mQnFPcxsqMQ2XCzDxFEVWOHJGKYAswAbKI+1oHPrSOUF3QOtOEqhcilyuTSG62MaGu0IlDIpNwQJwmSsMvJmGSWxELXlJhNHmbS1+7z0aC8Ta8KMqS+m4cAIOSPPpCaDoh6L3mcG6OxzSKXAxyJSUkhJVQJPmbR05/HyLq4GU9rEohEMrVDZJK6TQWOR98DXEsfJ4bgu0siggGwObKFBgodE4iFkDmkYaGwcN4QtLIQIHt33J8HdHiGEELs96MybN4/CwsK9VKNAIDBSaK0ZGBjghRdeYOHChTz//PNs3LiRTCaD7/sopYYaOIaBYRiUlpYOr77U1NREKBQim80CsH37dnp7eyktLd0l5uz871wux5VXXskdd9yB1pqJEyfyta99jdGjR7Np0ybuuOMOWlpaaG9vRwhBfX09NTU1zJ49m0mTJlFUVLTL8QKBwN6jLIkM2QwMDqJMSVJaHHjgQbiex7otOwhXVzJt9hxCpgWAISXK89i0ZTumFeaTn/oUxSWVKA055SE9CKNpXfcqiXCctAfJTB8DXTvI51PkPJ/egQxuNs+Ypgpee+Zxxn3mcGTIBEcjlElhySiWPvogcw4pYdWqHRRGFS+u8Jk5eyrlhcW4UY8d25tZ9ZJDa2uayeMbkXYILAttaFzHYUdLKzHDoqC0GDtq4JhhdCJEc0ZR3q+JmgOs3ZjBihpEQlk8rXGUSd7Nkt6s8Sttph88HlFg4HT1IWyNUOAITS6fxBrIkXAEExtCKGHhyQhhI00uqzGUh/CDlVcCgXfiK/DyPgowBCgpcDyFLTS2YQM+Go3vK5QC0xCEwoKqAkldZDPZnsWUhrYyra4BoTMUhPqQwicRPRRhVyNlCIGD9nOYpDBEM4V2hFK7i95UEfmYxY4Bg/YBB6UBLTCEi68UnpvHd/L0pQdwdIxQrIBEQTltTpr6YoPikjii2mFjt8TxFFEzTX9aIKVg2qQyEoURME0yMkwoZNPR7tDVlyGrBAKJC6RyPvFIBCMRRTo5VDYNaKSwUIaFqxRS+Qh8pDTQWuE7eaRpopWD62eRZhjbMHEEeIaFkMGj+/4kuNsjxM6HrDf/PWfOnL1Yo0AgsLdprenq6uKuu+7ipptuYt26dZimyZQpUzjzzDOJRqMkk0k6OztZtmwZHR0d1NXVUVdXx3PPPccLL7yw2zE3bdrESSedRHV1NYcccggFBQVIKYGhuSbWrl3Lz3/+8+EV6LZu3cq3v/1tPM+jtraWI444gieffJJkMkkqlRpeVSoUCjF69GhOOeUUzj77bMaPHz983EAgsHds7GnB7dhOJtVHbV0dJbEEO9qaGUimiBeXMm7cOEJWCMOUSGnS19/HQH+KGTNnkSgqQviabLqftub1GPkUTgZyXo5Q2GD1+gymZTOqpoHx46Zjh03SCjZt20HHljZCtkFZgSTTm0dj4XkuTrqPguIERAXVjfX4+SwaC6NEU18VReZzJNOSilKbFx5vxigu5aCxZciQQJgGCBMRkXQOJnEdm7GJAipiFiEriq+hsClE72AIy/dZ2ZLlsEOqkBI8PHwHdC5LZ3OShpmlyISDa0h6tvQhB4qoGRUhb6XZMZikZ8MAkxIGYSuEJyJIFUKYEdLpJJaI4zv6nd/8QGA/J60Q0hT4vgKlSXsKUwgMNAqN1HqoV42WCASWrSgvEFSF1rBx1QOsWrqduRNLOGyihRnOYYlBIiEDP1wCRgiPiRi6BSlawNegwCCLZfqEzAwom4gpCduCTE7huWBIhW29sfoTeZxeQUtfiPqmCFs3O3StGGRqbTGzZhcha03yrodKb2dMrU9GaU46JEV1cQXZXIxQJEKPZ7F+IMZApozEy1GWL+tmMOnh5HzyeQfluYQjcUwrhvY8XM/BMAyktFG+D65CaAMpLRwkQiu056Hw0AZ4IoQnQEkLYRcxNK1yYH8RJGo+RDvnoPE8j76+Pnp6eli7di0DAwP4vk9HR8dw2VAoxNixYxFC7DZ3TfBNdSDw0aa1Jp/P88c//pFrr72WdevWUV1dzYUXXsjpp5/OAQccQDQa5aWXXuKaa64hm81y3HHHUVZWhmVZDA4O8vrrrw+v1GRZ1nDPG6UUS5cuBRieZPjNZXYOrwIoLy8nlUqRTqcBaGtrY926dWSzWYqLiykrK+OTn/wkHR0dLFmyhHXr1nHddddxyy23cMEFF/C1r31tt547gUDgw5PMZWgaPY6ixFR6OttIppIUl5YzacZsDAlSSEzTQkoLYdlEEpLxk8swRI5c3za2btvGYCpDVUUZsViCSKVJIp5ASJuB3HYmjG0ammtCQyabwVGwvbmVvvYkdQ2V1JaOIewaFMfL2N65A9MMMZhuo2bMWAadJOXVVTz2eDOjDirHiueR2sPKGvR3GuQcm/kH1aHDLr4BJgqhFNK2mTxvHC89sobmjE9FOEYsHsbLChpqQ6zq9Yk5UZyYpLKkFC0kwvcxcnl0xqU7Ncj48lIEGfpfyhCNJPC0S9bxUGFBUUkTr2xaTGtxlDHlBYwvLsY0QxilEYoLVrCtVxCzgoelQOAdSUnUljiexPHAkiAF2FIipQBPY0g5lKwRitIiiHorefm5+9mychuDvXn+2uVy0qHFzBgvECKKthpBJtDaRokoGoehpa9NhCjCpwMhTCzDw5UhTEOSy4ZwHZ9w1MVVkv4sGEKSymlswyNRGMNXNu2r+xldYNNUkqC03kYWQHmol0I7jO9uJ5vrxIwITFopNFyUIygQFqNKiulNlDP6yBqOPng0vZkIL7yU4pVXu3BzDul0H2asFGkVgp9F+GmkUJjhOK4VRns5PCcDgOE5GEKhtYsIxXCkja81Wik8I4IZNKf2K0Gi5gOktSadTjM4OMjy5cvp6uri2WefZevWraxatYpkMjk8dOEfGYZBPp/n3nvvJZPJ0NPTQzQaJZFIIISgqKiIKVOmEA6HKSoqwjTN4GEoEPgI0FrT3NzM9773Pe6++25c1+XEE0/kkksuIZFIMH36dDo6OnjkkUfYsmUL69ato7OzE9M0ue+++wiHw8ydO5evfOUr3HrrrUgpGT9+PAMDA7zyyitveU7btpk1axZLly4dnssGhpbo3pmkgaHJiF944QXi8ThaazKZDDfccAONjY2ce+65uK7Lb37zG5qbm7nmmmtYtGgRN954I5MnTw7iUyCwF4SiEXx8DNvE8QVFJVXUNzaihYGLgdAS3zeH5ozI95PqaqZ9+1bybo5INE7WiFJTP46KwjDS8Alrj3zGwXWTpFNpBrMucVOgfZNkHjp6ehjfVMWLrQPYoQie8NHCZOrMJu768+Nk9edJVDh4yUEcDXYM0nIztTVRfM9D58HrGEB0K4rrohSUJfBMTWdvPwUxm5gEI6eR4VoOPqKPpS/7eGYMOyKIej5+bSOZF17iycEwU8c1EI7FcYVC+Bls10PmJT2DGcJ+hsGWKH2dkoMXHIxl2zh+nnR6gNYXmqmfWsakKY14loWOFSDtKBEsJkUNXn1mNfFQeG/f2kBgxPOQhG0TyxTkXR+EQGuFFCCVBimGhlsKQdRSuH3P88raR2ld34ab8XDyLso06R8QZHMW8VAMy6gDJEK7mGxE6CQohUaCKEFKBYYmbHWhlSRkKOIxydMrosQTimgijVKQd308Bel8DN+MsnVdO6NLEyQyIaJRj8ISTdTuoCJsY+GQzjsYUiJwEb7AUwItQEoHS7RTEOqiMbqefmc169IzqDxuElNGx/jjI60MpHzcXAYpbOxwAcoPIb0MyskipIW0IgjDBNdB+s7Ql/TSQMswvhY4WmFIE0PlEcHy3PuVIFHzPtNak81mWb58OQ888ACLFy9my5YtDAwMDA8l2BOZTIZPfvKTDA4O7tajBoa+/U4kEoRCIWbNmsXRRx/NCSecwLhx47As6/28pEAg8CHRWrN+/Xo+//nP88orr9DY2Mhhhx3G5z//eWbNmoVt2wghyOfz/PznP2fVqlXkcjl836e7uxshBDt27OBPf/oTiUQCwzAwTZMdO3awdevWtz2v67osXbp0t6Tx5s2bCYVCjBkzhiOOOII1a9ZQX1/PJZdcQkNDAytWrOCWW25h06ZN3HnnnSQSCa644gry+TxXXXUVS5Ys4eMf/zi//vWvOf7444NkTSDwIfNzHsp32NbcTCJeSk1DA54G1wOcHvo716FzKVzfY1vnIMIuoqGukeqiQgwJncks2XQGEhYWmq6+LK+8up4x9Q1UlhbS3tZNQ00lPmDYYdIph7qqGrBWsnrHdoyQT3V1A2PHlYKfZdGTqzn1tBm4yT4KDYtVT7zI+LHlxOwQeaFJ6jSZ9hTbW0KMOrIaMx5GGiGqSxtZv2o5EaWoiEYI5QQiWk/CXsdg2qeyXBKOSHRNI1PHvcqm5jgzDm4CobFUBu0LtOHj5h3CcZdsJsPWVYOMnj0R07RwDJO8Uvht0NyyhYOPbyRUbhEO2Qhpo4iglSQriwmX1JBMte7lOxsIjHx5V6CUxpSSSMjCzSiklLyxyBNCG3ha4Ps+Cdbz+pL7cZKDoDSe41JYFaE4EWVTyyAHT5W0J0PURDW24YDQCN2FUj4oQJlIHQJtIWUBttmFUHkyXpiNPT5F1bC9LURfS4iCuKK+LI1SDr39kMr0gANahJHRMiYcVkk0MkBYpFB+HtcVaK+QsAmSNL7ykdoHFOYbPRO1FJjSIxreQUlkkIpkF7VTplISLePme1rpGjTQ+GgvBcLCNaKEQzHyyW5810PaMYxIAiFA+XmQggwW2ghja5+oTqNVFi2CZ7z9SZCoeZ9orenp6eHBBx/k1ltv5ZVXXiGTybyn4w0MDLzt667r0tvbC8AjjzzCI488wjXXXMPRRx/NBRdcwOGHH044HHzjEwjsK7TWrFmzhjPOOIMVK1ZQXFzM17/+dU488UTy+TyO4xCLxQBoaGjg0Ucfpb+/n+bmZrZt20ZLSwtPPvkk7e3tbNiwgWQyOZzk7e7u3uVc/zik8s3DnWAoERyJRGhqauLqq6/msMMOw/d9LrnkEs4880xmzJiBYRgcc8wxHHHEEeRyOQCWL1/OH//4R+rq6pg3bx533XUXW7Zs4dxzz+XOO+/kiCOOCJI1gcCHqLiwkM0bNzBjxhyKikoZHOghZinyg9to2bScSNiktLyWpJNg1JjxyEgcU4CnJY7nk8soiuMRTBFia0srW7Z0UlFSi2WFSPs+WmkikTCOrwlFImgySKmoq67k4Qce5plncxx/1MGccc5xfPyTh/LL//kd8+dNo2bCZAySdN39FJMm1mF5ClfZKCdJ9zZNu+Uxu74Q0zTAsMGwmDR9GhtffJlVmzcws7YOZSYYN76GzSs3Ulo/jYgU5Ask8fIq4jmFVRZGKA/hgE76CM/DsDPMOTSO12Uw2J2krDyGZ+SQOk8+o9ny1OtQKSkOFyAiYQjZIKM4KobUBjmdwo+XkZcmsGZv395AYERzHYVywRMKz9NELYOs4yKkQEiBVuBrTdRIs3n5gyS7ejGFRGlFrCRMotTCGXAZyGXYnpHkHEFhdBtKFGHbReycBs9XCkEYrQRCg1C9oDVKQ8SySSuDkGlRWyWQhk3foE82n6MoLjEMga8gn4Hevgy5qiR2SR1SgNA5UrlBRCaElwthFoYwrRwahnoLao2vhiYBNgwPwxBIqYkywJTCpTQUthBmDgPHl/Dosxmau4emTza9DIYwcDwDGSlEuXlcz8XNO0QkCAQIA2mE8F2HGCnC0iEvFMrf8y/9A/u+IFHzHmmt6evr46677uJXv/oVa9as2WXowHshLYFy93zCur6+Pu69914eeeQRjjrqKC655BIOPfTQoIdNIDDCaa3ZtGkTX/jCF1ixYgVTpkzhF7/4BbFYjDvuuIPKykrOP//84fJCCBKJBIlEgvr6eg455BDy+TyrVq3iZz/7GQC33XYbN954I3V1dbS0tHDAAQdQUVHBjBkz8H2f1tZWli1bxrJly/j4xz/O7Nmzuf/++/E8j8997nMsWLCAkpISiouLh3vxzJ8/n/r6eq688krmzp3LggULCIVChEIhAA4++GC6urr4zne+MzxB+s5zXXTRRdx///3Dc28FAoEPXmvrVhRpSLbQ1rOB7EAfhmkh7QSjJ80jHPUQ2sNP26zbNkBBCZQVleIpTVdXHyXF5ZQWhGhtbcfzNAdOm0I+nSLv5Niyo405s+dgWjaYBrF4IYUFBZgSYtEwfekBBno6uf/hPkrLLY49ehQ/+q8/8MQjL/DZs2ahXANpFmGqMvxMP8qXmNEErXYXB82egBm2UCEXU7jYuChtUyxtVEyyfbCTcZZP4ahJGP1L6Nm4jfIx5eAJWloNKkbFsWMGeB6uFPS15Cka1LjSx3RMWl7WFEyuQBgO2oGkMMi+1sO29rWYRhW+GcEyJUgDrDCGiCG0hRFLomJRVm97+y/SAoHAEFcLetN5ShI2eRekECAkvlJIrRiaQtjHzq6kfcNKIlEDX/uEExaGoZBSUF4donKMQVvaxTQMBvs3k031YxUfTmlhMWiBIozWCfCjSB1F+FHwB8i7NgV2AWOrLF7vACFySJmjs12QMCBug/INlAJfSTb2utQlMiAEvu/xlyWa6XWCEhOSyThaOxQVK7QGhIFWPkr4aAS+N9R7qCCqhxI5+MRo4dCav1AenYybreP5lRab2sAzTGzfwfTyZDFxpY1hSQyVJuynMVUW5YP20sQTheBbuHkHrQ0I5sfarwSJmvcgk8nw0EMP8eMf/5jXXnvtXSdohATDlhRU2cTKbDrWpHHSQ0MPQnGDYy4ZxZqF3exYNoiXU+g9PHwul2PhwoU888wznH766XznO99h1KhRwcNRIDACaa3p7u7mnHPO4bXXXqOpqYnbb7+dGTNmsH37dr785S9TX1//T1dQEkLQ399PUVERrusyadIkrrjiCi644AKKi4u55JJLePzxx3n55ZexbZtFixZRUlLC7NmzWbt2LU888QTPP/88Qgii0Si///3vefDBByktLaW4uJgxY8YwadIk2trauPvuuykrK+NnP/sZg4ODTJs2bbj3zbJly7j88su57rrrOPLII/n1r3/ND3/4Q3K5HKtWreI//uM/uPvuu4d7BgUCgQ/W2MmTkZZFKJzANhzqqsaTymQpLi0D8gh/kLwO88rKLRjxWkYXlyKFidIaQ1gUFkTw8mn6+7upKinDSQ2QdLK83tzGAQccTDwRQUqNzifp6OjG95IMDho8+8rLGAhiVgw/qcj2DFJTWM7s2bX8+U+PcdqJk0hnkxQ3NdHePUDUjOApB+UZlFUZdKQ0ta5Htr8POyIw7DC09yIyOaZNP4CB7g66M71E3TCTZlby0tPbEBWQTxWwraWf4w8vQcksQgyiRZ6BLodXtycZXWqjmm1aI4LZ48rwvTTZnI/TabF9+WrmHDOHbqV4feM26v1iEqW1WIUFaDuBJkJBhU/fqi20Zv/1HtOBwP7CUwpPaPrSOcAg72lsywTPQSgXKQSFkTyta54mZALCx7QNQmEJviYWEUyYZBMpsvG1wnWSbOx3mVa0knAujxM+FkEUaRhobeF6IYQKYSMQwsDXBgP5PKaTItlnsn6zYNWrObI5RbrfJhLyyTsGWmmcvAbbJmtkaetO8qfHW/jrX7q48NQIJx5YSDYnMM1iwhEHQ2ZI5TzyrsC0DMK2wDYNNA4pRxAPKUyRA8NHGUmmVLzEZZ/ezMNjJ3Hf0xW8vNYmnw+REC6m8uh3PZS0sAwLbURBDU2erpVGe3kQBkoZaGngiuDRfX8S3O1/gVKKV199lSuvvJK//OUvuK77T8tLQyAMiBZbRIpMIsUW1VPiFDWEqRgfI1ZmIU3Bvf+2hvbVQxN3FtaGGHVYEWPnFdPfkqNjdZp0r4vvatpXpejZkiXV6aC8t+9xk0qluOmmm3jiiSf4/ve/z5lnnhkMhwoERhjHcbjyyit57rnnCIVC/M///A8zZsxACEFjY+Pb7rdzuJIQAiEEZWVlfPWrX6WxsZG+vj5WrFjBkUceiZSS888/n9tuu43BwUFuueUWAHbs2MGKFSv2qI5v7h0jpSQcDhOPxznvvPOYNm0a48aN41Of+hTHH388ixYtoqqqCiEEl1xyCZ7n8cMf/hDP8/jLX/7CrbfeykUXXRQkjgOBD4EpIoTDMdo6+7FMn3hRGbF4Al+5CFPT069ZuWErJWXVdAxmhibkRCGERhiaTC6F5WSpShSxra2ZwXweO1zEuMpK8l4P+ayD9hwsy6airJrG2kY6mjfieZKiWAkDfTk85VIVLyHkWpxy8ni+f9lT7Hg9SWmDpqZpFEu2vUxFaRGW9vEyg9SWx3ly+RbqKieC20cy0060oI4CJ0xZWR1WxqOyqJTt2STN29soHBdDjM/yyua1+C9GqDogREHUwRWKvAfpXovOrTmaX2vDLylANBUxcVYNIpKhqy+PSkPylU3UzWqioqGG4oRHV/NW2je7xMoqcXQcaRSCNIkWF1JaOoqSwn/e7gsEAoCWoBRCaiypEEJgGwIn74FykQKirCXb144Vkbi+TzhkIFGUVkUpTghqa0M4nqTPE5Tamn5HsT1lMcF6HdnfiRf9NMpMYAoPw5C4rsbDwRAaJUpI5jURQ7B9Q4oVr4DvSwxLMpiRvLQ8THmVgRSSZEoRjxh0Z/Lc+qctLF7cTD7lsqG1iK4JJsoDlTLxdBFSFOMqgeMJTDNEztZYlkfYzONZLvmcJBzqxbQGEbaLYWuKo92ccehSZo8dzU2PjuYvLxSQS9lILYibHinPJY8EEUVaNr6fQWqXbDaL1kPtPI1E6aBHzf4kSNS8C1prkskk//d//8f//u//7jbvw5uZIUnJqAiNcwppOKhgKElTaBIqMIcSN298Ob7zYSXV7TDY7gzvHym0MMNDy9eVjopSOio6XAetIDfo0bM5y9YX+tn2wgC927P4+bdO2mzdupULLriARYsWcd1111FfXx88JAUCI4DWmvvuu4+bbrqJeDzOF77wBebPn79Hn89UKsW6des48MADATBNk4kTJ5JOp/nmN7/Jq6++yu233860adOorq4mGo0yODhIJBLhyCOPZM6cOUgp6ezs5OWXX6a1tZW2tjZisRglJSVs376dWCxGVVUV27dvJ5/PI4RgypQpDA4O0tPTQzabZdu2bZx88snceOONTJ8+nVGjRg3X0bIsLrnkEpYtW8aKFSvIZDL893//Nx//+MeDOBQIfAjyDiSMOB1tW5kyfhRay6Hlap0sm9duY1DBlElTSUSjdDy3lFwyRUFRAsfzyDt5tm7aTNyWeKZESpOKcBQjHMI2LUaVNRCJWChLgAW+M0Cmu49kTxt2KIEiRMyOonyHtk2dOD2NHH7QdKS1mBXLNnPy2Mm0qz6aps1i9abVjK+IIcxirGgWO7OWzZvrmFpWg0kP21asZhPVzJoxHjubQqd7qa+08VLN3PfIBgYrYYy2cYpgznRBn91MLteIv81i6xNbSBoGx556MPFik3QiS9uaViqtJrJ9Pu1bNlE3sY7C0YVoO0vMtNC1lWR7HXwzRsgwQYPUinR3P5Wl9SxL71mSOxDYr3keIj+AtCS+sIZWqPV8TJ1FaJ8iq5/Ny/5CLjeIk3UxIyEMKTClIBo1KC0xiMdMUnmNlhZ9bgER1cNmN0rUDFOc78VzN2PYoygKpfDdPKZhIHQU7fejVB99+SKWvO6xZavANAWGbaAQaATJtInb7lNRbuP5kCHH9u1p1mzN4OU8mmoiFBVA20CWkrCFpS0saWNaDjYWYaWR0sU0GFo5jxBCmSAVShUALob2Ea6P44dwgbFl27jsnAbmzIhw810ZNmwfmmzZFD4ukjwCQ4EtDMxoApUdQDk5hLDwhY0iSNTsT4JEzR7aOdHn//t//4+nn376rZfUtgTFTRHGHF7M6COKKB0dwQzJPXoYSbY7OOm/TxAlDHir3YT4e++c6IEWdbMSzD23lp7NWTY/18+W5/ro2ZLFd3ZN2riuy1133cXKlSv52c9+xjHHHBM8JAUCe5HWmtbW1uFVki6//HIuvvhiVq1axcyZM9/x8xmJRCgqKiKfz9Pc3MyYMWOQUmIYBt/85jdpa2ujubmZuro6Fi9eTE9PDwAVFRXcfPPN1NTUDNfD8zy6u7t5/fXX6e7u5thjj+Wxxx4jn8/zqU99iieffJJXX30V27ZZsGABtbW13HPPPXz729+mvb2dG2+8ESEEmzZt2iVRAxAOh7n00ks555xzKCkp4dVXX+XGG2/kqquu+mDe2EAgMMxzNYY0yeaz+BqSKk/39h46u3qIFxYya9IELGkghWD8qHq2bd3A5CnTyWXzRCIRYhEL7bq4qTz1pTWs2dbO1KbxRMOS3lQ3ZVYMZ2CAVHc32UySUHEldWOnMafXIGJG2bx6FYlkP2Yoyuq1g0yYW8Mhh4zh8ReXcdKJs6mpqidUoGhp3kIPUFpQgmEMMGFGIY8/vxb7UEGla1BkJrD6N/LUok7mzJlIuerD8joRJQPMGdeJ7BAsfEESneOx0erF7gojX4Z1S5NUTqjkkCkVhE0wEhHS3dDT1Y09sRifJOMPP4BYoY80PWw7hGUJvF6TtG9g2oVIEQLlYxsu6f4cuaTksAOP594HH93btzcQGNGEl8d3NVpoTNtCKY3n5zFUHqldurY+SVf7drTn4XsaSwpQYEcklmlRXWWTcQSOo4lHTTxhkFUFFNkZ0m6MvBOhgFYwx2Bn+zGEBqFB57GEIGTkqC1yOXGuyUGTDP7vTw6btmsMQxAOhxjoziCkZiClSKfytHRlMC2DSFhw8IxS5s8O01AD1cUaU7uYvkBrsE2JMB3SzgAKD8OIYBhZiuNJoraPViBNDyFdpARPW8i8AmWQyhuI8BaOPzjGxFF1XP6zLby0IouJBGWgjTAuNlq5oDWGHUE7WXwJ2opiqqA33/4kSNTsAa01r732GmeccQbr16/f5TUhobgxwqhDihh9RBEVE2JYkT1Lzrz5+B1rUnhv0yPmnxFCYEUMqqbEqZwc46CzqunakGHjk71sfrafvuYcvOmwK1eu5Mwzz+T2228PlssNBPYirTW//OUv2bBhAwUFBcRiMVauXMn27duZOXMmAJ7n8ec//5mjjz6a4uLiXfbv7+/noosu4vLLL6epqWl41aZwOMzUqVOZMmUK+XyeJ554gqVLl6KUoqGhgfr6ep544gm++MUvAjA4OEhBQQHV1dXDyRuAL37xi8PHLC0tZfr06Vx55ZX4vs+XvvQlpk6dyqxZs3jppZfYvn079fX1jB8/nvvuu49jjz2WgoICYChGzZgxg/r6el588UXq6+u5/fbbufDCC3c5XyAQeP8JDRHbIhISrNu4AcNWJOJxJk+aTF9ycGhuPcNECUFdXTW2JWnvaGFM0ygGB3ro7OikNFFCY10thuERCg8iCKEwcDKdvN7cQUEiQmVNEyWJMCKXJ92+lURYcMKJ81hZEUa2tdKc7KPObcKkks99dj7f/tY9NO/4PE3ji0lmeznwsENY9sqTFJQVE5Mu8aI0cw/oZt2ajQxWVzE2FqEsVEVicDOPPtHDuIl1VJflUVY7o5Xi4VWS2UfDn/7ciW4RFG7MEyrPMPGYJurrY0R0HrSBKXN4WcmsQ8YTKgoxuiyGlg7SdjBsiWkL7JBN+45e/FgVViiKacVBuljKoWnUGJ596mH+39e/DZfv7bsbCIxswvcRSiC0RhoWjuNjaoV2sxi6h+YNryGkTyadwzANpAEojW3ZREIQjQgyeY0lJQiN7wkyTjEZv4y2tMI2otSJclK5JFE/y4SCTsKWJGZYb3xx5VIcToMoIJwTxOMZ5h8SY0Ozx47NWfysIuOCm83jZn1CYQspFWXFJvNmRxlbI6gutbDNNyYQVhrfFygUpkzj+nksI4JpChADSJklEh6aUFS8sQa5BlAOpiWJ4OD6GfLZNJ5qZUzJgVzztdGc/52NbOsC03UxVAQjWk4mbyFzKdA+QhqgfISXAeW8/Rse+Mh5+9kp36Onn36aj3/849TU1CCE4IEHHtjlda01V1xxBTU1NUQiEebPn8+qVat2KZPP5/na175GWVkZsViMU045hR07dnxQVX5LWmva2tr46le/uluSJhQ3OPLfG/jcDZM54mv11M0swI4auyU/tNYIbWD8kwmgml8efM913Zm0qZmW4IivNfC5G6cw64wqDHvX+nR1dfH1r3+dlpaWXZbkDQQ+KvaF+LN161ZuueWW4ZWdLrjgAsaMGcPJJ588HEN83+ehhx6it7d3t/qXlJRw//33M3fuXGprazGMXbvDZrNZ/uM//oNbbrmFY489lrKyMiorK6mtrWX8+PHDQzn/67/+ix//+Md43q5LPu6c+8bzPObNm0dHRwdr1qzh5ptv5p577uHCCy8cnuNGCDGceNm4cSOrV6/e5VjhcJiTTjppOMnT1dXFAw88EMSfwEfSSIo/tmXi+x6TJ49nR8sGqipKmThhNMUlMeprKmlv34Hr+wgBg9k0O1rbKCpK0DfQS0dXF3VVtdRVVmAYIJVFWUkpec8lm+xmw6YNmEUJSsaPR1vQumENG1a8hvby1FYV0d/fjpSaMTNncNYXzmXOoYdihkqZd/hhjBpTxo33PoSfVVSWxagoiDNh7Hh800BHwxRWlBNJRDjoAJMiYz1rm7czkN1OUbHF0Q0d9K55iW0vdhF+UbLjBcnksYqGLo+JOc3aFxUzjqhmwcfLmTJRUxzNEg8pbEthSBg1roLahhLsqMYys1gyT1haWHaEqB3BjkToTQoqRzcRicYIhUOEEgXoaAWDfQZjJk2kqr76vfwvEgh8IEZS7AGw8IcSDAKEFNi2gdY+QuXwBraRG+zDd1ykIQnFDSxbopSHaZiUl5pDiQ4FdkjgeYpsVuMqg8Gsyea+OMvaYzyz3WDp9h083ZLl0c0+L2wZYH1niO7BOHnHImZqIqaioiTCt86sYcEhJrGYoqxKEysQ+K7CHfSRQmLbkkhIMnl0iJpSg0Q0hKcEGUeQdTUZ1yXj+uQ8E8dJIClDyBB5t5+8kyOZ0iTTkHUkrh/Gx0QjsUywpMI2FBFbELNdEnqQWPppRhcs4tLzYsRND9fzcbKDiFQvvpY42sBx3aHlx4VEKAcVNJv2Kx9YoiadTjN9+nR+8YtfvOXrP/rRj/jpT3/KL37xC5YuXUpVVRXHHXccyWRyuMw3vvEN7r//fu666y6effZZUqkUJ5988lsOO/qg+L7PddddxyuvvLLLdjtucOx3RjHzs1WEE+Y/7ZmST/m4zVEqxDgKrPLdXvfyisGOXTOke9LTxRJhbPnWkwMLIYgUmhx+QT2zTq8enhNnp/Xr1/OLX/wieFAKfCSN9PijteaPf/wjHR0dnHjiiZxwwgnYtk1RURGWZQ2Xs22b66+/ntGjR++yf3d3N1/5ylfYvn37bgmaN5f54x//iG3bzJo1CyEEy5Yt409/+hNf/OIXOemkk/jCF77AsmXLSCaTbNu2bXiC4p0ymQxf+cpXuO+++7j77ruHE9dXXHEFmzZtQqmhyQEPOOAATjvtNEzT5Jvf/CYHHXTQbvVZsGABkUiEV199lZkzZ3LnnXeSz+ff83sZCIw0Iyn+RKIRpDQpK6th8tTpmHYEOxTCsGwKY2FqK0tYu3oFLyx9iXWb2xg1YQZK2KQyLuPHjMMOWzR395DSkl7tUZIwyfWs4eklf6WsqYmKggRdK15i2TPPkvVD1I6bTri0ikzWYdP6Vo489FimzpiLVVSKL8MIokTsBr79rc/wwKKFvLx6OzLlE86nqS4pZXCgH4wMxdFBZh2gqaz2GFVvMmtsM4O929myZSvd7Rny3TmMXJYm7TK1Eub0K0r+BPMtKHBsaqM+ZXYa289ia41phzFDFp19oIkSjtrEYhCJ+azd0IrnCqKmjRG28P1ikr5NQ2MdoUiYcHEUwpWIaA0vPruEz37uDAwj6JAeGHlGUuwB0G4a33NQWiC0h2VoTKkI6QyZ7s3kU3l8xycWt6ioTRCNW0gpUL4kEQOtFGFTgNa4DrieSSYvaN7Wj5vL0dc5wI6Wdnr7sgykBZsyZazPlrKmx6I3Z5PKCnI5j0JLkTA10ZBFbVkBZxxdwNdOL+aAqTbRhIGQGiHANAWzJhfy8SPLqCqPYocshDSwTIkdBh2VOLZF3pNII0JhrBgDF3QWUxpEIha+AtdXZFUBWwamsLG3iR0DpQzko+R9A63BkgwlbSyfqNrGIVO2cehBJtoXOApKEwks5SLMGL6VwFECD/B8hXLf3QrDgX3bB/YvzYIFC1iwYMFbvqa15n/+53+47LLL+OQnPwnA7373OyorK/nDH/7AV7/6VQYGBrj55pu5/fbbOfbYYwG44447hrvtf+xjH/ugqr5LPZcsWcItt9yyy8OLGZYcdXEj444qQch3TqiYtqR7oJNEaymVTbVY0qbPaUfpoaCX6XXpb87tsk+k+O1vjSXDxGUJdq6QZKgVh7/vGzHixMwiHJUn6XZj2JI559Qw2JZn3aKeXa7ttttu4/zzz9/tITAQ2NeN9PiTTqe55557APjEJz6xS3LmzYQQb7lSWz6f58knn+T0009n0qRJu11fc3MzDz30EAMDAxQXFxONRhk9ejTt7e0AbNy4kY0bNwIwb948TjnlFG677TbKy8s55JBDmDlzJlJKpJS0trbyn//5n2zdunX4+I7jYNs2xxxzDI8//jiTJ08eHsYkpSSTyWBZFrZtD9dr9OjRHHvssdx7772UlJSQTqdZs2bN8DCvQOCjYiTFHyklWimUgtKqCgb6BzCNEKDJOjnaOnvo6h2kpnEiZqwIbAs351BVVYdvKnw8tHRJ51sI5/Msf/01BhzF9EkzcLva2bBpNQWltdROPZRYIoqn/TeWxc1QV9NILFKIpzUuEg+BqXwMx2fO7MM57cQX+O9b7uTmyy6gIDxIDIOySA2tm5Ywrl4Ri/ZSEvdxtcHSZyR14z3CaZ/W5TYxoZld6DCwBgomRenp9MinsoytlTgDeTZ3hhk1JkEkFmVLu8vmtiSeKxndVENRBEwjhETT26Gw85KSsMQybfJWnHUr+iiqrSIasrCjFq6M42Cw5K77+dgnT6OutpHBVPKd3vpA4EM3kmIPAF4GoSRagyFB6xxSZTGFwvc1Wpp4eZ9IaZxELEpKZHAsE19lMRGAxApJBOD6EiXDNG/pwcYhk+wBLbG1ImoI7HAIpV16/QK0lsQHPMYmMhTZebzsANFIISE5iGtaxJpidA6kOXl+MZaRIev6WMJmVInJSYdVUlIgcTyF8hX/P3t/Hm7bVdb5o58xxuxWv3bfnb1Pk9OkOelNTxKCBJACpSlQEERBpVHqxuYn4NWy9KqI2FUVJbdKLfSKDYKgghAMSUhLSN8nJzn92X2/+tmM5v6xkp0cEiBAkpPkrM/z7GfvNfdcc401517vnuM73vf7KqcIPEns2mRakvciCqEgCiHwIPJCgmAM4ZcIIo1yD2MZYFn/MHOpD24Va9YJEdCao89fYyisk1cJnoAogLJ+iAvO2sZXb+in03QcWV4kkTmUECACUHl8DA6H66XUHFc8Zxk134kDBw4wPz/Pq171qo1tYRhy6aWXcvPNNwNwxx13kGXZUfuMj4+ze/fujX2ea5Ik4eMf//hRSjMCTnvDMLteNfCMRBoAFQj8IqysL9Bayaj6I0zkdzIUTVHyByiF/QwNDTI4OMjYpmFOuXgzZ7/2BIp+HwWvuvHVF4wylt/OeLgTb62fuJ0Sm2b3NYTHWH47J5TPZqKwiy2lUxnLb0cg8SLJRe/bRN/U0RO++fl5/uEf/qGXVdPjuOKFEH8efPDBjfKgkZGR77ivc45ms3nU53RsbIx/+Zd/4bLLLnva/f/7f//vzMzMcPbZZ7Nt2zauvvpqXvva11IoFPjhH/5h3vSmN2143tx6661orfnQhz7Em970Jqy1OOe48sor+dSnPoVSCs/zGB8fR8ruv4zt27fjnOOrX/0q5513Hr/xG7+x4UlTr9d5//vfz6c//emjxqWU2vDFWVhYoNlscuWVV/biT4/jiuc9/jiDsd0OTnkvwCUaqwWtRoOHH3yQei1h92kXMDA6SSuu08qgNDBM5gV0jMDolFptgW/edDPX3XEnxZEpXvaySyDMM5/4TJ18CX1T20iEwykFXoSREZViFZdZnPBA+mRW0EksaRtMG1RLccV738bqygH++is3olspor5EWcfkNMwcXkOqMlFYJldQTAyCbBS5+66QbzxiGc5ZVlYc/qTHgqlyaC1POORRmvTZkrf8621rJGsetDtMjoVkWZN2w2OsUCXnLJHTtOcb3HvLDOft3ko58lEipLUSct1ND3DhubsJAsdSu0MrFdz02S9y2oXncu65FyCkoOfu1+PFxrG491E2xuoO1lrSTOOM7hoM4yGEQkkPnWqSOCNJMow1+J5A4EAIPF/i0GirEV6Olfkm9eU6ge+IE0uaGLLMkNSb6E5MqHykMaybPA/V+phuV1hPA0CAXsUTHnm1zmC4Sl+pn5G+kP/86gLvfuMIv/L2Md7y6jLbRiX9eUk1F+J7ikwYOrqFzgwlz6MQWqwwWGcwJiYIcvhBP7ny+USl7YTl07G5HwXboN8/ROg3CCOf2EDHjTInzuRBdwGHzGYyK5FAKTKctb3F8LgDHMY5UAptJdo6LD6pkVgUvTum44tjkrv5+Krut05QRkZGOHTo0MY+QRA8xUBzZGRk4/lPR5IkR6XT1+vfn/eLc46bbrqJr33ta0dtHz25yLk/M47ynrnGJYQgKilWVxdhGrYEWyj15whkjrI/yNBm+KnfnSBpGga25SiPhohv031Nx5b6Qkyj0aAVLRCWu1k5o7kTGIw2bZRMCQRD0RSeDJhv76cyLrjofZN85b/t3egI9eSsmqGhp5Zk9ejxUuRYxx/nHFdffTVxHFMqlRgYGPiO4zXG8Gu/9mv87u/+Lv39/UBX9Dj11FOfdn8hBL/zO7+D7/v86q/+KqVSif/zf/4PW7du5R3veAdhGLJr1y727NnD2toacRzzi7/4i2zbto1cLkccx/zkT/4k/f39fO1rX+Puu+9mYmKC5eVlnHMUi0UGB7vC8n/+z/+Zd73rXQwMDCCEwBjDPffcw5lnnslb3vKWo8Z1+PBhbrvtNjZt2sSBAwcAuPLKK/mVX/mVozJvevR4KfNcxZ9vF3vWVpcwWYxUgjCMGK1W2HP/ffi5ElObz0QEIbG1aHwGKqMsLc7jjVYQrTmWZg7yyL4ZBoYmOfv8V1DK5wm0Q4smq/V1+oaH8EMP5xvWF9fp7x/EOYM2Ck/4iDQj1R2SVhtPSayKEFYjXEagOgyFHr/7q+/kF//r/2X31vdy8Y6IalWRP+kUVmYTlAhQkcWFTQaV4DNXHaGvv8ilZyYUXJPiMLSsQvjj1Ow+tm2SuJJkqk9y1d5l7ts3zg9pULmIpYNNDjYl552iKXoGz2YcvmeOTX0VQuGRpNCKDf/6xRuZ2DqO5zv8UkC/HeTmr36D8y69mHPPP29DrO7R48XGsbj3EboDmcTpFKdTjMjwpMTgkS8Poq3FWUscpzQabVAWz5dIAdbZxxx5BVaE1GuaxZk2pcihhCUf+oS+pJlYmqnFNdfo7y9QreZBWtZFgTvWR8isZKrUpOIMgd/C9wv4cp2haAlrB8kCB06QE5pCECAA6xxWGoJI4IkQ30FOeTgH1kkEEiE8vNBHFc/E830oXUgiPTx9G17j0wxwiJafJ9EnUEtDEiMJwhx+OEBqE6Yp4RufSb0Pz3dsGWyzbZPh8B4IwhARRKQuwhmNtbr7mk52S616HDcc0yLbpzXd/S7eLN9tn49+9KP89m//9g88tjRN+Z//83/S6XQ2tgWFrnlwVP7eT5ufUyAdK80Fmg/VGB+bYHhomCD0kb5k4owS8FiDJgfOOKzrKqvaajrtDo21FmurNVqdBqlJGNgWAj5SKCrB4FHnRaI4qe9CJgsn0shW+eeDf4S52LLzFf08dOUTJVB79+7lc5/7HO973/t6HaB6HFccq/hjjNlYmRofH39KO+tvRSnFL/zCL1AsFjfGkGXZRrnUk42Hr7/+ei655BIKhQIA/f39OOd429veRqVS4fWvfz35fB4hBCMjI7z//e9neXmZu+++m7vuumvjNT/3uc8RRRHGGIQQrK6uEkURH/jAB3jlK1/JZz/7Wd73vvdx4YUXHuWRI6Vky5Yt/M7v/A5vfOMbKZVKWGvpdLoratVqlfPOO29DqHnooYeYmZn5ruegR4+XGs92/Pl2sadczDM82If1IjwVMd2aY3zrJNVSkbY2JMZhTYZLWiRLj7K6/1bm729RKpYYHt/KZa98DZVCCV87Gp0EnIc1BXzVRGcpUoGMAkgyOitrZAGsLc2zcOgA0zPzFEsdxkY2ka8M00kzlM4IXYbngUfIOaft4Kd/8pX8P3/6V3z6j36V7YOO2YUWuepp+IGEUCPFOgdqDTafXOfcXZJ0sYYUEluWhLUSa41lVMmhyh5ZqNg66igf0nz+riPsrGzF1dbZUoDl9SX+8d++wTmb+wnI2L5lii3bKuAylmttvn7LXmS+nze++kJ0LmRhSbNwZD8nnbKb0889B2sdQoLEYa1+mqvQo8cLn+fz3kegwWh0p4ETAj/08XFopzDBKCqKiBtNkiRjbcVS7AtwGPKBhx+Ix/w1FUnbwy4t89pTLaWS5t7FAu0UUgP1RCCEwmrHylIbnVpK5QgkLKk8d7txWnqFqdwqg4WYvPCRYhTp2lRUh7bqlkxFXlcUSZzFCYGzFs+LcCoE18BJiSVC+sNUBs8nlx/Et/eR5t+MwGFsho3vIN/5HJ7YR8eDNPOod5q0nSIxkMkQZ8HDx+g2i3IrVTNL1WtTzmVsGtFI5aHNY2KM9MA4nFA4a7sdtPg2K/k9XpIcE6FmdHQU6Cq3Y2NPOOcvLi5uKL2jo6Okacra2tpRyu7i4iIXXnjhtz32Rz7yEX75l39543G9XmdycvJ7HuPtt9/OVVdd9cQGAWf9xCjjpxa/L0HDz0miskdnXZNkMQcO72NmZppirozyupWYT6SzOay1JLqDNhnWWdL0aLNhFQiCfPfD6okA+S0pOIPRJk7vvwxPBgxFU7x164f59L7f4tyfSTh8W53WSjcIWGv5sz/7M370R3+UiYmJ7/l99ejxYuNYx584jjf8Yc455xzy+fx3HK8QglNOOeWobZ///Oc59dRTOfnkkze2SSm54IILnrLiK4TYyMQplR4ThJ3jVa96FV/5yle46667OHjwIIVCgSNHjvCFL3yBhYUF4vgJ76tqtcr/+B//g0svvZQbb7yRiy++mP7+/qfEQiEE+Xyek08+eUPAWVhY4Od//uf5y7/8S9773vcihODee+/lwQcfZHV1lSNHjvSEmh7HDc9V/Pl2sWd+vUapUsa3KWvtOQ4ffIiFhQKbp3ZQLBXQjRoH9tzJzJFD5EoFRradxMjgCIU8CM/DuQLChThlMCKj1WwxOz9LMZAs1VYZGchRjCPi+SPcduAhnKcoRTk29Y9Q9EKkdRTCkFh3SG0eiUcowAChVPjkePdPv4U77jvIL/72/+F/f/zXmdy9GV9rXLKOFutYF3B43dE3ZNHE5IdyRKFjuqkwbQ8h1ojyGXE+JJcLGJtI+C+vyXPVwSafvnued71sFxdfsJOLwypZKohtQP9AkXI1AtNkeeYIt982w/RqwNvfcyk6HKalcqzOreCM5IcuOpdO0mFpfZ2+SpXA91ldXX/2/zh69HgOORb3PuLx0madQNIicRFKGKRzVIoeYRDQ1pBlBi+TpIlGBQolIY4tuYJHlgS05pq8+ew62wbX2bM8jJ0HYw3rbTBOkcaPt80G4VKMlUSRjx9Y1lHcmw3SyCTbWaDfNuiLQqCCIcGoHF7QBwiy1ioO0zUX9nJYIUAFhNGJyGCQYm6EMBrFD4cQqoLTCo91PDNL2PoaKv480q6SGUcjkbQyjbEJ2mr6iv0kzmdhfZmBYpWCXyU1DebsMAVxkEJoOXVbDukJMqeg00JGHs7zwQmcVQjnCLD0GnQfPxwToWbr1q2Mjo5y1VVXbRhJpmnKddddx8c+9jEAzj77bHzf56qrruKtb30rAHNzc9x///384R/+4bc9dhiGhGH4A41Pa81f/dVf0W63N7aN7S5y5o+PPmNfmqcgBJWJkKxj0UnXsTs1CavNpe/9UArKYyHS745FCQ/xLW2dRnJbUeKJFfep4im8ZtPP8UXzCU5/yyo3/+/pDWXokUce4Y/+6I/4+Mc/juf1Ohn0eGlzrOPPoUOHmJmZAbrpxN9rKr0Qgje/+c1PWeH6dsbDT0eSJNx1113s3r2bs846iwMHDhDHMSeeeCK/8iu/wr/927/xH//xH2itufDCC/mRH/kRtm/fzh133MHb3va27yhWDwwM8Gd/9mcb+wwODvKJT3yCRqPBzTffzM/8zM9w++238+CDD2KM4aabbuKSSy75ns5Bjx4vVp6r+PPtYk979RDXH7yfUrWMCDyC/lH6SxF33XsjThUInSU2mjMufiXVSh8t7eN7IYYMnUAYlkAGWJGB7bDvyCF2bD6BKCdITY0Hb72JRZexeXQrZ2w+icGwAE5gnSEb7ufAgX20Gut45QqLq6v4/Vug2E9U8EGk6ECTy6d87A9/kw/8l9/ip/+fP+C//96vcsZUH9L3aM+ssby0xOaJIVq1NUQhR7lgaXXmKdghlkSTvoE2hTRj2Qo2lwcZHZ9gctMU54eSfYdW2BN7vPLkMwijKohwY3zoFkf2rXHl9QdYV4O89d2vplMeIc0kd197M6vthJ97388xMzPN8MgoE2OjYFOa9XXWlxeek7+PHj2eK47FvY8FrDG4NMEKgU4StLD0FwV+rkwY5AAJFpyFuGNRFrKcolY3lMo+K7NtXr51kROGl5Gyyr2HI2aWHBmCRuqQCLQWONf9SlNJspqSL1qKlYjUGkyo2CtGSLTH5vwCutIi9HxSyqwkirFiEWcSjPAw1nQzWJQCLArQcRuhLNp0UNkKxqwRCI00dyHjG/HcITBthIDMOuqxZC2BhpFktkS50EfoRwhrsZ2MxUaNTX2DSJFnMRtiTByhGiVMVdcpVEZZb/hIZ6C9iIgKkDWxGqwMgPgp57nHS5fnbFbebDY3Vo2ha2J1991309/fz9TUFFdccQW///u/z44dO9ixYwe///u/Tz6f5+1vfzsAlUqF97znPfzKr/wKAwMD9Pf386u/+quceuqpG07kzxWHDx/m3//93zce+znJRe+bJCx9/+lmQoAXSvq35ljZ397wifmejiEhKnmURgOCgtqYCFksOMeT3e3yXvnoUighOa3/Muba+1h+wzIPfWWZtUNPfNj/4i/+gte97nW84hWv6JVA9XjR80KOP81mk3a7vdHW+vvK0Ps2XaIeR2vNgQMH2LZt29O27w7DkHPOOYcoihBCHNX57YQTTuCKK67ggx/8INAVdTzPQynFpZde+m3H+3i3KSklExMTG/v5vs/U1BQf+MAH0FrzIz/yI0f563y/PmI9erxQeSHFHyt98vmA0b6QytAktzw6x+jYifjFKaY2TzEUSZZaMeVCgVwkWV9uEJaqhH6ZXBSgvRzGxIhknUOHZxnddCIm57GvsUzQ18dwvopZW+HU0SnWXJulWNMfVZAGAukzNbqJuJOgxTpTwwXmlmaYGJ1ACwNS4RRgE4YGI/7y/3yc/8/v/Ak/84Ff5/c+8iFeeepmQn+AkRNO5YZbD7Fz+GQGR6ro9jRJINDtKllpjsVUkY8cJilQ2jJJNLYNqlOUSwVGTyl3fSWCgFREeE4inMFkhpvveohv3PEgJ150KS/bfQoy9Dn0wEGuufI6dr/sMt7/cz9HrT7PHbfeyOL8NJVyFWMVjxzcx9zc7LP5J9Ojx7PCCyn2AJgMHBqhFKQdnIOlepPI6yMf+OQLZYQUGGNx2uFSS2wccaRZXlKUc5ozBpY4e9sCUnks1Ae5e7+llYFDopQkMRZtHSCRdMUaJRR+Lge+T6YNuqNBSQ5lFZbWHVvaHVLl01cIECZhMMtoxDFShQjf0baWODP0RwHGNgmJ8dQwQkIrXoL4VormFjyvRqZTrHRIQEpop5JmKmmZkFo2gPMrZAiSVON7Hv3FPHO1NrVOg3yYw7gSKzpHxTQ5dVvCQJ+m0/IQWYpLm0jPgQKjE6wAZ3rtuY8nnjOh5vbbbz+qI8njKXHvete7+Ou//mt+7dd+jU6nwwc+8AHW1tY477zz+I//+I+N1HyAP/3TP8XzPN761rfS6XT44R/+Yf76r//6aScezxbOOa666ioWFxc3tp1wSR8Tp5d+YAFDCEGQlwxuy7NysIOOv/uHTciuv01U8chVPPxIgji6xlTbBOMMiicmb5l9quIayIjzh3+Me1au4cy3LnLtHx3k8azEVqvFhz/8Yb7yla8wODj4A73PHj2ONS/k+LO6ugp0P8Pbt2//gY717bjvvvt45zvfydVXX72R0uycI0kSwjBECEEul3vK86ztxiQpJZ7nYa3lrrvu4rTTTqNcLuN5Hs45rrnmGqamptixY8fGc9M05QMf+ABnn302v/Vbv3VUjDLGMD09jZSSer3Oqaeeiud5aK3RWj+jGvkePV4svJDiT9KK2bVjO4KYA4dn2TY+STnMsW1ygixLkYUCuUCikybz603aHYGxdQpjQ1gJOTNPc+4RZleaDA1PsLz4CA/fP80JO3dQUT63zu7lpKFNKAWlKGJ9vcO6blHx8vjCw6gcsTOMVUcYGq4yv3KQtkmQgYdxlsB6ICKENfRXFB/9gw+x/S/+jl/5r7/Fr77vvbzrVSeRs47Gms9CGDE6UgJ/jDA/wiP7ZvGLwyzsb7B7UDAvB/DGtuNKI+igihBljF9FRCVSIZFCYDGk7QbX3noLrXbAa9/5M3ilPM35R/nyP1xLMLqN//I7f8CWzVuRyqdcrDD+hklWlg8zMzfHlVffxLmXXg4O/uovP//s/MH06PEs8UKKPQCZs+SUQ+IQOkNhyTod5pcUBenRNzTMgUcFSgmcdhCA1oY08VlZMpwzmXDpKWsEypG5EW54WLG6liFyEmM10vkEwsdKS5zp7qQJn3x/jrAYEEiJNo5MC5qNjHyo0FmO++YVeIJqIWa86jPX7ODShELkESifdQRtAnSiqXiGFI11HeLWIQ41DNXkEU5Ua7hQo6RACgikwzlBJxO0taJhKljnkxPLOOtQ4WYsGqkXqQSGRPvdrlYiYtWUmDItCl6Dcq6Nbw0IjwyHtBmZinBeiERiXO9e6XhCuJd4b9R6vU6lUqFWq220j/1OpGnKm970po2MGj8nefP/PImx3cVnbUzOOUzqaCwkxHXNk6+AEAIvknihJMgr/LzED58qzjwZgWBb6QyK/hOeETvL53Le0Ouf8pzUxPz13l/nrkPX87kPPMjyvifMkoUQ/NZv/Ra/+Zu/+YzKMb7Xc9ujx/HG031Gfu/3fo/f+I3fQErJ9ddfz0UXXfR9HdsYw/r6+tN6xdx77728973v5Utf+tJGV6k9e/bwx3/8x3z0ox992k5Tzjn+8i//kmazyRVXXIEQAufchojy+GssLS1x0UUX8Z73vIcPfehDRz1/ZmaGcrlMqfSEsO2c4/777+fVr34173jHO/jYxz5GrVbjrW99K1dddRXvfOc7N9qAfy/04k+PHt+exz8fn/3knzA4NkhsMmZqHXaedCaWDOFgbXmRvsoAYahYmZmnUChSKBY5MrvMxHCIb1rMTB+g4/KMbd/N9PQCtdkZNo+PQd7j3v0HKPdVOHdyB9bvxorZ+VmyNKWv2I/wAorlCsMDg+RzeaJcwJGlNRptwZapCaTVhFiUpwj9ABUYhN9Bu4xP/c3n+L3f/QRv+k+X819+6sfQtRlW52YpBT7SaIyLuf7Gb+KyGtuHQ2bmV9hx6rlsOfFERGUIkx8gKvRhZA6RrxIEIQ7QcZObrruGYnWQobFxIptyw5e/yDfu3sePv/9nefkrLyfwSke333YW6zqs1Vf5j+uv56Ttu2i2mlxy3it68adHj6fh8fiz640fQwaKpXZGGmcUggCtY+Ik5YztRXxziHtuuw7lWggFYVERRh6egGox4KM/7ThxdBrjBvjmoUG+eKtm74EW5b4cSId1kkwLpKcwCBJjqY5U6B8uEiiFclBbbpGkKUHORwUSkbbx0ahAEgUQBJLQc+Q8w1RfSH/RY8H6IDz6PIvTCZlfJY7KzDc7zHcEm9yjXFbZy1CU4kyML6ESOTID67HHmglx5JB+ilKWppHELiDRLazLyOWHqJtRdDBGahKq7hAX9x3AqSLv+x8ncfX1CptA3G6gwgARlEicBCNQukPr8I292HOc0DMk+RYWFxe57bbbNh5P/lCZ4V3f2ezze0UIgRcKqpMR7mmSah63m3mmK8wORy1bouj3b2yb6+wjsW0iVThqXykk/cEohUrIGW8Z5eo/PLAxBuccf/7nf86b3/xmdu/e/X29tx49enxnvlOpz+MdnTzP+65iaZIkfPKTn+Qd73gHW7ZsOep3u3fv5gtf+MJRZoDbtm3j4x//+FErZ9/KRRddxPr6+sZjIQRpmnLo0CG2bNlCEARUKhV+8zd/k9e+9rVHPVcIwaZNm57yfqCbjv26172OD3/4wzjnuPnmm/ngBz/I17/+dRYXFzHGPKeZkj16HK/47QzRTjkwvZ+pU09naWWJ6kA/Ju0wOFBl7shByrk8tWaLgcEBjEmI4wYHDy0xMzvN8NgIExMTrNbarHZCJiZ24wUOAo3VsGNyB+ukZGttfN9j65ZJVms1slhQGigzOjSIL8Nu+1rPZ3hshIdvuZfxyWHyziCVw0NgjUPoAEGACi0//TM/z0DfZn73ox/j6pu/wXve9TYuO+sMispi1ldpra9QCfpYaWtyFMlXi0wO9WNdhBJ5Htq7zKkXbef+Bw5zwrYBwjDH3kP7+frVV9NXKNM3PMzK/gN87cqrGdy5lY/9f/+MoZERkN37PeccAgHC4TCkWZs0rlNbnuaG2QMoFRzjK9ujxwufdmwJPJ9AKYQvCDxH4BIazTXm1wts6a/gKY+krbsZfn4BP3AYDIFyhDhMFrCuR3h4VmBs1zXGOIkwgpnFFlJKRkdKKAFhOU+pEuFijVfwaKx3SDoarEBbi04taVtTiCSRFDStQLcdgQ/9FZ8HVwxyHQp9IX7gWMss1kXEOsRmmjgRdGLNo3YTg7kxcmaGgtnDVNAh8sAiyAeGiJT11LGeaNpak1iLReCEw/cFLl1G6HUwS8hgM7EJsRlEfsJIX0pU7CdOWqA1Qjm8MI8xhsx6qO/R17DHi5ueUPMt3H333SwvLwNd096TXzuE9J6bNDMhBOJZmpvU0iWGoy0Eqmsm2shWuW/165w58KrHzIa770EKj/5onMgrsOMV/dz12XlWnpRVs7i4yCc+8Qn+1//6X72JU48ezzHGmKMet9ttfvmXf5mf/Mmf/K4Gu/l8ng9/+MNP+zmVUm50eHgc3/epVCrf9nhCiKO6SD3OoUOH+Nmf/Vn+5m/+hq1btxIEAT/5kz/5jNp53n///dRqNS688EJuueUWPK8bi2655RZKpRJbt26l0+nwEk/s7NHjmBFpwer8IrnIp+BLtDEsLy7S39dHK04IcwXmFuYZn9pGZjWelDTjBKcCRreeROAZUllgrpExNDKJSVokwlCOIjaNDXJg5gjbJiYYHh3E8yXCZkR+SGNljYHxUYRSSF/ifImRPgLwlWJhfpYtIwNYFNY4rE0QzkO4AOUJ/FDwhje/gQsvvoir/+Mqvn711/jiv3+ZnSefxg+dPMnUYIWdZ+4gTIbpp8kJoWVF+iwtWtya5qt37mPXBa+hrY/w1WtuZ2rHJqoWNod91Ffm+Pdv3kYwOsKPX/HLnHLyTnwvQAiPbvPtrri8vLREtVpCSUcnWeemm7/J9PQCg4PDLK+sH9sL26PHi4Ak06RtRSmy2EAQeuB5PjUf5hZb5D0PnCSJDV6gyGKNzXsoD6wVrNQydo6VWFgPaKYZzXb3fqGTZjSbhrV6wtYtfVjhyOVDqmNVhHXgYGmmRqdhyIxGCvCUBM+RtTVO+8QGpGcRstv+eqkFXqAw0idXh3JJoo2inQqsSzDGoDOH50GhFHEg88hZw4g9wpiXkBnb9cdRjuW2YSXWpA40DikFSgBSgPRInI8jRMgyUpXx0RgnUEKzY5NGCkfoK9rOgHV4SmKtRViDdt/Zo7DHS4ueUPMt3HHHHRs+DeWRkIkzfnBvmueDzCasJDOM5rY9Nl7Hw7Vvol3GqX0vp+BVusIQgrI/QF8wSrtU54w3j3DNHx08KrPnX/7lX/jIRz7C5s2bj9Xb6dHjJY+1lhtuuOEoQSafz/Nf/+t/PSoT5jvxfHRp2759O//+7/9OofBEdt63y/ZxzmGtRSmF1poPfehDDA0NMTQ0RK1Wo91uUy6XCYKAr371q5x88sksLX3vne969OjxzGhJx0rSwStWyLQiyuWoLy0xl2majQY5TzG++QS8IMAIg7MJUeSRiQAlJflSnpmlFiMDmzBLCzTa6wSjIzgiNo2Mc/2tt1Oq9FEodleEO42UtNZGOM3y8iqlUom1+hpx0iJNYzxZYmVxjq1TI1gCtBVIYRHKobM2vlBguu1opYTRkWF+8p3v4K0/8Rb277mHz33yk/zRH/wvljuOHcMBW0aHmNoxzg9vLiL9RToyY2nlTnaJjGv+/n8zuXM7/cTcf9X9PHJomksuvZSLXvl23rxphH37H2H79m1IGYHwcDwhGBeLBWqry9xy040kcYN6a40773uUV7z61eRyOdqtXueVHj2+Gw5Ju50SZ4J8LsCHbjliUKBda3HAK5Dzqki5iO8LMm3RxhKEsNq0/OXXfLZuGeLe2TbLawJrJU4IjBG0kwydaox1OCUoDBaRzqFwrK22OXS4iek4ioUA4VmksHiexDlJJ86wmcOPBOW+CJuLsLkQEyicgBTBegxGS9LY4pzGOodzljD08ZTA+B5GlcnbHL5bI80gdbBYh9hapIJQCDwnsMJhheiaATtFpqboFE7CeQWUM1jTIDUSZyyjfR2s1mjrkEoipQ/SR8oU6XkY05u6H0/0rvaTcM7xwAMPbDweP6NErvLiOUXL8TQlv5+CV+36S2B5tH47c+19bCrsYjR3AuVgAOccfeEoK8kMO354gHv+eeEor5rFxUW+8Y1vMDU19aIQqXr0eLGitT7KwFcIwcTExHP2enEcs7S0xKZNm57xZ1tK+R3LpZ7MAw88wC233MK73/1uFhcXqdVqnH/++dx6661Hdbh62ctexpe+9CXOPvtsms1mL8706PEcsZ6LEF6ehdUlBjeB0o7RwX4e2r+XfL7K8MgIRjqczlhZXWRtfZU0Bdtp4lVztOo+1YFNsLIXrGV0eIBGvUbOzwj9gGKuQpo5rA1x2pJ3BfpyAWp8gPun19DWR+XKlPwckTGgAmYGHZkJSTOHFhYjJMoY2p0m44USVoBwDvnYolOmM5ZXl9hzeIH//P/6NS54yzv58pe+zMzevaTNNv9x3SPcNtLPCVNbKFSgEkxSyufJapb5++dYbdW56Pxz+U9vewtfvvKrFKslKtUqo8NjrCytsFY7yOTkFNW+Kko4HmsqzNDwGOedX6XdblNvLTC72CJLDJEvULa3qt2jx3cjCDxasSGLUzqxweYVoUzpdFq4NKWx6oA+dEcT5gKU113ssU5grOPQMtw37bF3rs2RxQQTSzKj8ZVCa4eOHc5Bo56QL6cEVUWapiTNNspo2onDwyMIBTJU3TbgzpFYS+h7qCjARiFGKIQFJT2kBGMtOnHoRIPrevRJKcnlQ0JfEAQBSkmsjJDeIMIusBw71lOHUI7Q70aRxEBiXDeTxgMnIlywmTjaifX7kULSaLeZXc04dRCGnGG0D4qhY2nNEJQq+NVJHAIrU7QBk5nvdtp7vIR48agQzwPtdpvDhw93HwjYdGYJXkTzB+MyDjUfYFNhJyV/EPmY2U1Tr/Fw7RYern0TXwZom6GET94r0yk3OeOto1z9saO9aq6++mp+/Md//Bi+mx49XtpIKbnkkku46aabKJVKnHHGGc/asZeXl7nrrru47LLLjsq6WV5efk7bYW/dupXBwUGEEPT39/O5z32Of/qnf2LHjh2cccYZG23Fh4aGKBQKNBoNhoeHn5F5eY8ePb53skAyODbGwflDtJpr5PNlmvUmYZijo2NqnXVM0iFtdqhWqpy0/USs0UzPzDLQP0iQL7G81qYQDVCtDuCkYqDYolmfQTgYGRoi7mTgIqRwyMBibQewSBnRyRy+DEgyQWYtynkMDPWz3smoFAMUDo2lUVsiiop0tMO6jFAq4qTJocP72b9vH0EQcvqppzE5OcXOXSdy2csvQWtHHCc0mi3yhTzlQhEruyboxqQYnbF/336ifJFtW7cggeGxMa677jrOPPMsBgcH2bv3UY4cnuaG625m8+YpLrroXKrVEmma0mpmtNsx7XaKMRETk1tYWVsnF+UxJjnWl7ZHjxc8+jFvFusETmuWV1oEMibt1HDGIFKPVAaAh7MO6QlManB5hUFTa0hu29cgF3lsm/DY+2iMzSzGONKOJo0NcduwvNxg7kCNzSf0Uy75YC2VokQJR5IYjFXojiYIJGAxzqCNohB6COVhhUD4CpMZnLEY5wABrtt22zkwaUbbaMj7RPkAD4XE0TQlatYjTjIQDoXACGgmDiPASYnxHCgPGwySBptwwQjaSDqJZm65Q209IxlU3djn+5SigCWpISygohLYhMSrksQWdO3YXtQezys9oeZJtFot9u/fD4AXSsZOfXGUPT2ZzMYcbNxPye9jIJog71WRQtFdl3IYk5GZmHq2Qi1dRgjBjlf0c8/nFlh6tL1xnCNHjmCMeV5KK3r0OF4JgoBdu3Y9xavmB2VmZoZPfepTnH/++Udlw0xMTDAxMfF9x7XHS5ustRuiy5MpFAobJVK5XI4oivipn/opyuXyUV46mzdvxvd9rrrqKt7whjf0/LB69HiOCKMc5XKFkeFhjhzYS7k8wAk7t/PIwQcolIusL8wx3NfH+OQmhAxwKKTvsWXTJKv1FgsL60wMTJKPCiRAmsWILCG1jofuuZfNW3fgGZ/VtmGgEOKJjNRaQqPwvJA4U3hRHu07Yjxyvkef1+HI7BLLlYyiFxCSEacpLR2TC1aot9eYWTiC0Yax8XEuv/xHyOXy3bglupMnrR2+5+EVJTOzR+jvLyMkKOCee+7hi1/8N3bs3Mmuk3Z1O0wJAMHg4CCvfvWr+dtP/z35fIGdu3awe/dpnHXm2SwvrXDd1dfQN9DP6OgwUa5CnBharYxUa/oHhtm3fx/OWJzVx/bC9ujxIsA6sNLDDyVx1sC2OnR0B+EChEggq5NKCIMKOlsjF3noVCOdJAgU7dRwz6Mtxsd9RkoFQk/grCCJDcp2BZRmK6O2GmMTTWO1w8RkkcmtfSAsuRz4gcVoQZI5WnGGwIAC08ooNROCch4R+jhtSGKNlBLrLAjwpAIczjqy2GCNIQk8Gq0YJRI8VyNNH2RZxYQ4HILUgMvACYf1wAQBOtwMhZMxaghnFdJ5SGWxzrC01mAwtITKJzUxQgoGB/LsO9hAO59UZ/gYMgPGSKTpefodT/Rm4U/CGPNEGYIn8MIX5yqvw1LPVqhnK/gyRCBRwsM4DTiM04/93CUsKk570zDXfPwJr5o9e/awvr7O4ODgsXkTPXocB6RpysDAAPV6HWvts5ZZctppp/E3f/M3TxFaf1Dhee/evXz0ox/ltNNO44orrviu+wshNvx2Hu9m9XgK8YEDB9i7d+/Gth49ejz7RFEJVECxWCFemKe/EpGXAZsmRkkT2Dw+iBMW43yskaAEofBQgUdfn6W2vkwh75E4TZrG0F7iwT2Psh4bhgaGWJk9Ql9fP9OHWsTlCqq1QujA032srq6yVl9javM4xZxPSUDcNrSbDQpxgjy0RkM3iUNHIw1YbcR4rRLFviFOP/FUgkKeXKGA7z/eYUk8tugED91/PyftPhmEIAoCoiDEWMtdd97DV6+5mre87SfYvnXbU2OgFORzec77ofM4+eQTCfM5dGYxOiOJHVs3n8TcyioPPnSAVrvF+ORmwrCI1YacHyK1hkxD9nxfyR49Xnw0kwQtQXea2KSD0AbPCUymcCIAs4wVChX0o5NVrLFY6zDakqv6pIklaxku2V5lph4SBS3OO0FTLjY5UFZcWxd02inCWrS2CCuYOVJnaLTYzZ5RoE1GFHi0UkNqLNJB6KtuB17PBwFZK0EpSeB7j3W7NAghwTmElGRZhhQxFbmAyiTFTkLF1gldg0BmZCHgumVO2gOEQ3qQeT7W34QNTgVXxcNHKR8lJUKkOJPiuSZb+xQd69MwklosiK3EKR8RljCZwWIwJoM0w7MtesVPxw89oeZJ7Nu3j3a7m1WSq3gEuRenUPNkMvvd03Mfz6q56x/nWT3UNcir1+tkWe9OpEePZ5v+/n6gayb89a9/nZe//OX8y7/8C29+85spFovPymsIIZ424+UHZWhoiAsuuIDzzjvvqO3OObTW31F02b9/Pzt37gSg0WjQ6XR9sYKg1+a2R4/nitrcQdJ4nTS1TI3tpCoUtiMYqPZx6z13Ui1G5PIhSIcTkGhLW2giZ1mv1bA6ZmFhP33FgPr8IvNrbQZGN7G5VMHGHQJtSdcOkMU+hZFzCQrDNOMm904foK9QwVMJ04tHULmIpUaLiVI/45UBhkaq5HyB1TFKt+m3CUuPSjbvOp1AaCwBzkmEfCLb7smhxfM9Op0OQRRQrBY5NDPDffc/RKPd4ed//ucZ6qs89pwnPcl1M4utc4yPTxBFObSxGAPO+qRZTL3uGBuYopYfZNBL2ffoAzgsm6e2bbz+4cOHKT/JXL1Hjx5PjyBDOpBZi6y+ghAeUgq0sOA0TndAeqQioJQv42wdKQVxR+NcQKkEP3Z6i7MnBJXI5/LXLDJUiFlt+fzbnQG3RIpOvY3ONO6xMqs0tVjt8POKTqKxVmCVJfQgTsDgkKkhlAonQVnwlIeQ4Gz3Xgbnul3sRFekQQniqEjqEvrUNDnZQMdNpCfIXFe7FQpQAhMohDM4L8Dmz8QEU1hRQFrbVZlxYA1SWjzXYriYUPASFu0k7XSA2eV+FhebeLkSNl8mtAlp1j1XnksRpnWMr2qP55OeUPMkZmdnieOuUBEUFCp48Qs1z5So7LH7x4a5/n8eBtfNLnpctOrRo8ezx6mnnopSCmMM6+vrALz97W//nssM9+3bRz6fZ2xs7KjtzrmNOJbL5Z6VMT9OtVrlZ3/2Z5+yPU1TrrnmGl7zmtdsbLPWsn//frZv306WZQwPD2/8bv/+/czNzaGU4vzzz39Wx9ijR48nCMs++bxgfWmOuhiiHEGcGZbW16lUKizOL7N10xhtkeILjUgTltYWWWvW6B8YY3B0kk5tlYVWi77qKOObR7FOs15fInaO8tA2FrOASsljfq3GQF8FIyIuOPFsgsCnTZs0TWm0Mk7bPsVYqY+8pwh8SSAEvlVILbBBAf3gPPVOSiUnEUriSw/5pCx/60DgwFoyHfOFL34BP4ooVCqsd1LOPeM8hgcGydIYXDd7xrlvLRNwmDRjdLSbLWy1A6NxTjAyOsQDd11HtXo6AwODdLIOO088hYP7HuLuu29n10m7GR4ZZXlxkYOHDj9/F7FHjxcrOsEmTWxtCfFYOVGaZTjd7tYtATiN1oKwXEHbJhZHljqcE5y7XfOaM5sU1BqXjlt833aFF6cpRSE55ai3DSYDk3W9Z/KloJtNIyTagLWOLMsQwlLOg7YOIR1WW+J6QuCHFEsh1hiMszgH0pM46xAK3GMGvrnQJ7b9dIJhwuwBcrZJRDdzJk4dKgfGk+j8yZAtI4VFq00Iv4IQXjd2SQHGIIRFmJgsbVP0MgKliOkn1AEHpwPasaC5toBLBansxjJrc4DDWPsdT3mPlxbHjxLxDLDWbvxT13FXkT1eeDyrpjjYXYVP05SFhYVjPKoePV56PJ5RA3D//ffTarXwff97Lv/pdDrMzMw87e8+85nPcMMNNzyj4zjnmJ2dfcY+OUKIp4w1CAIuv/zyo7bV63WuueYaAG6++Wb+8R//ceN3Bw4cwBiD7/tPEZp69Ojx7OEyH5tG7Nx5EvPrsyyYlL2H99LJDNsmd5IYw1q7zcrCHPv2P8gj++9jrVZj9+7TOXnbJLl8nqltJ7P15HMojk4ifE1zfZ7m2grVwWGWW5rCxE4GJ7cR6wQBjA0M4QcK4TuCoIAvFUuzc3iygJACyJA2BRt329ZiAclgIWD20DSJltRaLdAWl7muQoNDOIc1hj0PP8DNt9zMiaeewssueRmn7z6NrSecQqU6iNWWucWloxpBNJvNjbJ2h6PZqbG8ttS95zMapw0my5DC54STtjK9MIMfWIJI4UcRU5s2M9jXx54H7iWXy7F5yxYGh4af5mz36NHjycS1FVRjGc8X4DJsvAadOTzXQEoLToLNsCjasU8Q9uGsw1lBTqVcvL1FrSPRj3VrMo9VHgpg21BMOdDoOEMnGcJ2jX+jnET5giQ1GCOwVpCkECcCbaGQd1RLmnJJEgR+N9NOCrLUIIVEehKsQymJyTTWOKwG08xwGrI4JVlfp26naDFAoMBYgUTgCR9jK1hvCivzOKF5XFaxCKzWSGvAWpIkI201iKQBqxAmxSaS/bMh1gUI6SEEZM6ROYP0JAYfbXs5FscTPaHmSTx55aW9lpG2jq8qwNJwwOQPddOFtdbUaj1n8R49nm2UUhtCxw033MC11177NKu+351TTjmFs88++2l/95rXvOYpmSpJkjxtOaPWmgceeGBjIvP90K31PrrsSQjBhRdeiHOOBx54YKMUS2vNF7/4RZxzbN68ma1bt37fr9ujR4/vjG7H9Ofy5IsDnH7qFh48vJeOF1LtG8OXRSYmp9g3PY8sV9i56xQuOud8+vsrWKOQSlEu58h5CV4yR3vxIab33onneWzfdiK12hoiCAgLRWyQY2R8lHa7judLfF+gpKOzvszBfQfwQsn09Cxag3ACTzgC1d3H8xRraw1SoVhZW+ShPY9gE4MzkCaGJMnI0piFxSN85T/+nbsfeoiLX/FqipUq+SgikCHCSOJOm7iTorMM67riDnT9sR6/n3E4SrmA+279JotL8xibok2G1hmZNvSPb2JoYuixiV4D5wz5qMSJJ+ygHMB999yJ1ppypXIMr2qPHi8SGktYZxC6jojnkMkiyrOoMMQPA6QE4TJwhthEeF4ZpTywFt3WFMOuie56W1Lr+MSZQluQyjJSzdg8LMBZnLM4Hit1FIosgyRzdKOAxDiJceBc15A88hX5KEAqhZ/zQLHRKdfpJ45nDWAsnu/hLN2vTo3V5hDTre3MidNIiAg9aCSOzGigQxZtQjsJWbub3Se6Xa+kMV3BWWuajRZkMT4OaS2e7rB/Fu56JKNZbyBUiBCCzEkybcniGKczMD0j8+OJnlDzbbDaYY83Z20Boyd3666ttb3Spx49ngPGxsYYHh5mcHAQYwy/93u/x9LS0vd8nKfLbHl8++joKOVy+ajtWuunzZrxPI9XvvKVz7qnTblc5pRTTkFrTZZlvO1tbwO6ZU/XXXcdAGecccZGl6gePXo8F0iUkAhjGJvYzM4TRllamiezEiUDhqsjDPWPM1oZI5MBHeEoRj71ekpmPUTaYHbmEQ4c2ocQEWPjJ9HfP4SVmoG+IibrkAt98qUcke8zUKmSGY2UmvrSAksL82zdcSITE1MsLc3RjBOW1+osrC5Tb9aI4zYP7t3P4ekVtk9s5pRt2zhh0xbCKCK2Gdqk1FeXufGGm/jqVdcRFKpcfOFllCp9COXhnGC92aa+UqOxUmdpbhmcIklTHr+DC8OQxcVFGo06+x7Zwy033UYxKnDrDTezuLiIcxnOpCRao52kODgCnk8hClleWMDRNVj+oVPPpCANN3z9GtbXVo7pVe3R48WAtB3oLCPiNaSwhIUcUikybUi1xQZ5kB44Q5IpQs9HihAQzC4JDi17KCHQ2qOdKjIrHk+wQ9AtaTLWgXO4x75MCrGGJLUY7bp6rXMoKclFDrBI5aOUhxcKlIIsNjgpUaFHkhhAknUMSdOg08cW8m33dVudEg29mVZDEkYlVuQUTkm0EHS0ITEJKRE22o5FAQJhLGiNMwaXpcStFo21ZdApwjmSLCPtJNy+J2Sh5pFqi1MewqS4tI1ODKQpmBTFcTY3Pc7p5U99G3RqWXq0TXVTdKyH8rxi0m4AsNaSpukxHk2PHi89BgcHGRgYYGpqipWVFc466ywWFhaO8nB5Lvh2gshz0XHJOUer1SKKIqy1vP3tb6dQKOCc43Of+xyXXXYZ//RP/8Tll1/ea83do8dzSKU6jEUhUst8s0WxOsyZYxXml5YYKYesrtSolgeRfh6FwpmMMN9P3IlZmz/C4uoCW8cm2TaxjbVamwSJesy4QQoBJqHTaqF8gU00pf4iUjqWFua5+Zu3MTa5FT2/wGBfhVZ9mflDjxIkLXzdYsZoGqklHwWEhSoCjyjKg9bYTNA2CYtpwvyROcaHJpka24oq5/ADH5yjqDsc3PMwe440mZo6hU5b02isMzzaz+p6nfGRIQTQbrdxztFudxge3sTk2HZMbNnaXubrN97IGWeeSakYkWlJ3fp4URFrDX4uTz4Xsr6+ykipiCDgovPO56a77uS6G6451pe2R48XPJ4vulksrpslE2sBNgVSnPRAdO9LJCnOeiyuKyr5iLVWA4Hi0DSctyVF4PAVaO11RRgNOEGlAOAey0ruftdGY5wB0W1nbbs/EnoZoddtm51mBqM11apEeIKknoEQOBxB4CEQtFsGnXYX7VVm8AKBJwQudqTNmL4BRd6L8Mu7aLfWyJlV0qgPrQawTpCoIQJpEcZiTYpLE5CSzArazRYmiVlvWWbnob8QI3WBm+6FzB9ElQukWiOyFjbLQAY4IZDKQ4tnv1FEjxcuPaHmSTx5wuIMrBzosP3l7rhqHdtc7oozj3dx6dGjx7OL53mcfPLJ3HTTTbz+9a/nLW95C6eeeuqxHtazinOOv/u7v+Od73wn+XyeoaEhoFt+9dBDD1GtVunv7+eyyy47ruJrjx7PNyrv00hr1NoJRvhMbd2JQbG0/DBra6sM9VXx8kVaSYrVCe1Og5wUzMwdRPeVOWPHGfi+I01jDh8+hChUyTo1dKdJywkOPbofkW4mbq7RahsWCwVSk0Crw9knnUmu2ocMCwS+YrQ6RN55bB7fTGAyUmM5OLfIyZuGyaRhzyMPUxoap+hHlMoF6nGD1VaDXZu3E3qSlm7hSdCtBvNzh2muLRNUSoxOjOKkw1hHkM9TLhbRTpBZh+60eXTvXs4+6yyCIMA6cNrhrKUgRzl5126+9rXrOfecs6n0D9Fqdyj5RYwTCCSbJjdxz213UhBQzgcoWeTss84lylX5p89+4Vhf3h49XtCEyuKSJqkBkcVIfAwKRAh4COnwnEGSkFmPettndCBPOwAvlBxYDclMikTTjAWBr4gTn5V1w/SKx3rziewSIRxOCDxfoY1BCIHBgvRwaESgyZxEOEEnBS8QSN8jSTVpaghCD+WpbtmTdBT6fFamWzjjyJVz2CzDl4pO3CHwIAw9jJUYInT+dNLWvWgreLxYxXMCPzWQtbDOIbRGKo967KjVDXsetSQxjPZLMj/izj2DHFoeRuSGCENLa22VLLOQD5D5Pjxju1VP+viy5Tje6ZU+PYkoipDyiVMyfWcdd5yZa9dmnmjn/f34ZvTo0eM7o5TijDPOYGZmhiNHjrB3717W1taO9bCewsGDB/nQhz5EvV7/np8rhOBd73oXnucd5X3TarUYGBjg4Ycf5tJLL2VqaurZHHKPHj2+hdXGArlqjlpaI7UJmcmQKkelv5/F5SMsr86ycOQR6nP72H/3nTRrDebnVxga28yWiZ1kWYeV2hoLK02CKE9fwWN5cZpG0gBrWaqtQpww0DfKmaeewWhfP+OFAaZGxlhdWsCKgHwUoYQEHVDKFfGFj80sSirWG3U6DvKVAXZum8SsHOLGm69l3+H9JEnCjskthJGH8BWlYpGVhVX2793PQLHKSTt2s3nTVtLGKhJDlM9TqQwTFIpUByt04g7fvOUblAcGUEHwmIeFwwqwQmKFx6bNJ7Bt8wRfuvIrHJiepRDl0J0GERm+1Ugh2XXyTvbPHWK10UQLgZQh4+ObjvWl7dHjBY9sz6NbKyib4JEhnQdqFKEGAAO2gbAxymmkS7CZppPk2TRSAOHYXyvx//tmlbWkwvx6nocPe/zxZxT/77/y+Y3/67jqTosx3fIma7ueNH4kUdIjCgJykU8uLxgYUIxUBf1FyEeSwIMgF4AEIaA0EBIUFdoZjLAkqSFpa8qDIbmiR1RUiMzQXumgE4PvS5yGRFvWaus0mo525WxSkcdLZ1BZA6czjIPMdf1y0tixsmZYWTEsLFgaiwl+yxIIxdyKz8OPCDwXkmWaZqeD1gYRFKA4jBWSDIFxEnoZNccVvYyaJ3H66adTqVQ2Jk3Le9us7G8zuD1/fKz6Osg6PaW2R4/nEiEEF198MZ7nceWVVzI6Osrhw4f5yEc+8qy30/5B6Ovr4/zzzz9KvH6mCCEIw5C///u/53Wve92GX86NN95IFEXcc889/M3f/E2v7KlHj+cYY2MOHt6PEZLB4QJHDu/BErFaazM0OEg+jDBJShZ36M9HuDRhaWWZ7cMjZE6Tmgy8kFq9wcSmTXg4BqpFtM44eHCeqfFNnLhlO/uWFsicZGhwFGs6pO1VDs2us7Leor9vAEtC5izFagXrNG1jSHWGlYb75g8jjszjSY+R0QlGsoDNW7dRKhRxnsAikFLgqYBGo82WLScQSIs1Buegv5Cj1VxlanQXQRRRKCgCNN+4507qznDa2OiTzogAHMhuwxnnfE475yI833H7nXdwXr7I6NgIgUhwArCGXBhy2hln8MC991HOUoqVCk711jl79PhuJO0GTkUInZHJEtobBAS4FGXX8PQqAgPKwxcxzsDqesimakir3qBVzXPPbJGH51ISbaktdDh0MCHT3YwZ6xzWOgQgHvOQ8ZViaKBKoRSCACEMWZbg2xae59PWPhoIijn8QOHodp7T2iEQSM8hfYFNLFnsiGspnZWYwJMEgUJrixASmxlWV1ZpxetEYcjJ1e2E+VMgmSbQTZznY7wArSFpZBw+sApNSf3wOv5Sk1NnWxQiydqWMb55c4fFWYEJUrJ4qZv5g0N6ATpNwaU4Z7slZPTmaccTPaHmSVQqFfr6+jaEmriuOXhLjajiUxz63tvnvthI24bWSrcrzONdXHr06PHss3PnTiYnJ9m/fz8PPfQQb3jDG7jhhht41atedayHtkGlUuGNb3zjD3SMSy+9lCzL0FrT6XT44z/+Y5aXl9myZQsXX3zxSz6m9uhxrBkZ3kKrs46VAdXKKEMDoxyePUK20GB05ATK+SJOd804k3aGDAJ2nRFw/0MPU8iFWAHNRkzf8CgoD5wGYQikZH29xmlnnokMAqrDwyws1ZiollBpgqcC+ic28+ihWXZs20wU+BTLJWSuRNJpUMs0whMMTm1hx9gEj87NcsL4JhA+C+t1rJMYBCgPT0qkcFjh8P0QYyQu8EFaUFCPDflygTDnUchLlDA88she5ubWOe3MMygWijzeA0rgiOMYrQW+H6GtIPA9dpx2PoOj27jn/gfQnXV2bB1HConDYly368v2k3Zy/XU3MrZpE7qXcdyjx3fF+kWczHXFDZ0g3CoSh2cbSJeghEM7gXUWkbZQQtNuSHRWIFJrNJbbBH6epoBMWxKnQD1Wvuhst+qh+8HGYQFBmAsoDebwI4UKBBKHkDmyJE+WOjztUEIgFWANOtV0m0EJwlDheZY0hUYtpT3bwGmLVpIO4PmQiwKkgHaSkK10cC4laRvWV9YZKQcIxtA2AHyyjqO9ntCqZ+jYQ92/SunwClvWYgoC2ueNcd8DGQceqCNKQ6QiBimQMkcYRCRJjDLJYx2oMjBxt5NUj+OG3kz8SVSrVc455xz2798PdNuwLe9tUzslRggoDL60xZqkaWgsdj1qHl8R79Gjx7NPf38/F1xwAfv37+f2229naWmJ22+/nUsuuYQoeukYmPf39+N5Hp7n0Wg0qNVqPPLII/z5n/85pVLpWA+vR4+XPMLlGB8d5siRRxHWEEUVBvonWV1tMrt4mLUgTyEsEwQBpUoFITyUJ5DKMbOyRC7KIUWEFxUwLgMLCkltdQ1yeTyVI0YyUC2xd+8sFWUoqpjUD8lyIxSqCXOL84z2lylGHg/vP0JfMc/w0Agy8FherzOz2mSwMoxSAVlqyBfLNIyhVa+BsERBQDkq4PkRubDASjsmb0Bhqa8v0VmfZnK0n8b6HK16d2yBr5iYmCAfhSghePKdW5J0WFqqMbl5C9ITGDzCIM/A8CZedn6Fhx6+l+uvv56x8XEmRsdQSmKdwfc9Tjr5RK669utUn2Pz9x49XgoYEYAFYROU0whhumbCTmOkwgn1WKaIw2Up3QATcXDaIhJD2klYSRxBWeEEmNiihOh2eDJuI0EO58A6PCGwcYJJDX4oEQiELx8TPwKU5xCZxRqLlCCVIIh8EA7PE/jSYlJHOt9BH2mS1WOsdFhfYuh+L0SKIFS0YkecZDhj0dpwzx2PsmOiQJjP4VcqRJHAdiQ6helDdeJWStGmhEqyKEFuLrKoBTdfNY0JR/GCEtbLgxBIP4dBIj2fUBiMTUmsxRMpiW0e46va4/mkJ9Q8CSkll19+OZ/5zGc2ti092sZkjvXpGHhpizXttQybdVeJlFK9trk9ejxHSCl5/etfzz/+4z+SJAmf/OQnufzyy3nkkUc47bTTjvXwfiCe7G31t3/7t/zET/wEzjk+8YlP8NBDD3HSSSfx5je/+SUbR3v0eCGhlE/gB/T1VVlaXiTKF1hcWOG0U7smwbW1deaOzBLi0wqXEZ6ig2JwdJwjM9N4rsjoyChOSISSeEjq8wdIrWV0YpBDCzNsmdwKGiJlaTdqqJymbjRODbNpUwVfNHh4/x5ElhAViyys5dk0tB0ZBORymn1HDrN5cpJmapDWEmUx6fyjFHMBOE1beSw3NF5QIGvWadWXGakUsWjaOuHkk09FRTkcHvkgYvSEYXxf0Mg63HbrnUwMXoLv+zw+qysWi9x51/1MTE4ihIcUHk5YlPJQoWDnKWcxM3OQRn2Nb95+B2Ojw4wMj2KtoG9ggO0n7mL/keljfWl79HjBI7DdFtNYLA5pOzihsCrfFWysQTqHSzuYLMMPFdamtDqSoVKe+cU1pFDY1GKkQDiHJxRSSqy1OOcQwj7hJ2ocfj0he2iRhjNEgznyIyVcIDEOlPIQSiCFwPdASAeZJpDg6iminaJblmwpIbUCGymEBJ1meIGH7wX4foD0PYpBgaTZohUbTGoxHccB2yKqphTTjHZjgUpUwcYRqbaU+/Oks2vYOCXYOYi3c5Cb/2UfiRpBhgO0nY/GR+Cw1nZLwmxK6gwYja8kykky2e0U3uP4oCfUfAsXXXQR1WqV9fV1ABoLKe31jOJgwPp0jHO8JMugnHMsPdJGJ92Pv+/79PX1HeNR9ejx0kQIwSWXXMLExASHDx/m9ttv56d+6qde9OKoc44bbriB8847j7W1Nebn5ykUCnzpS1/iT//0T7HW8sEPfpD+/v5jPdQePY4LhEywLqVSGaC2tsaBg7OU+wZwUtFKLagcIKhUyxQqA0Q+SARr7Ra6sUZLZ6SVPoIoj3AWXziWDx+GfMjg1hM5uO9ObGedMKyyuDBDZXQIZyXVSoW9991NuZLj/uk5dpz2Q2w55SQK+RyH9u/ljkcfYaBaQqQNtvX7DFVhdeZR5mZrTI5PUBobRwSKzBhUltE2bQ4vzXLS9h3sHDiLMAwe85lxBH6Akh5SBQgkyoFQ4KcJc/sP0Dj9LPqHqjgAJ1C+z6apSRaXFhkdGsNJhZUCIR3OixBCUh2cQIV5hkfHuOUbN7L/0BFOPflkOmnK1OQk4Uso87FHj+cKkbVBZyjPA+GwIsDKECc9JGCTJjZtE3gWJ+h2ZTOaREdYFRIGEqkNwvdpNXyCQOCsBicQ8rHMGiu6GTFKMNrnMRRD/v5FdACNBZ/WQ4soIdCeh7Pghx5eyac6USQUCaSayAtJ6zG2rbvuv6nDRj5SgZCCYl8ZnRrCfIAX+cjQR3oS2ZFdjxwBOIEGtFPU1lKElaTWkcSW0fEq+u5FvIebZIMF2icU+fqXH2XJDJBFg4ReAW0dJA2EUmA8hHAI3UE4gycdQnmEzuKUR6/46fihJ9R8C1u2bOHMM8/k2muvBSBrG9YOxxQHA5yF2kyMkFAYeOmJNetH4o2fgyBgZGTkGI6mR4+XNiMjI7zyla/k//7f/4uUEq01ExMTx3pYPxBZlvHZz36Wc845hwcffJAf+7Efo9Pp8MlPfpJ8Ps+WLVt461vf+pKLnT16vFDpdNqsNdZRnkI5mF9c5aTBITKTYbRkZXGNob4hcoFkZmEPQhRwLqYedyj1D5Avlmg0lmnPtWnV1vGcgXaLoXLEvfftYanRIZfTlEt5pia3gLQ0naDq5UlaCzw00+Lscy5ldHgK5fsIAVumNrE0L9BJh10nnIgvHYsLMywtr7HSXGHI30Z/TuEFPoHzsG3HUivj9LMvpJSLAIsRAonAWbBGIpzCOYmUIGR3JX96bo2zz3s5xVIVbR+zsnBdK86JqVHuu+ch+keGEL4PTuAMIAXCKXLFEpmyGJ1SHp3g4L59FKdnmZrYRCGXJ/w+TNZ79DjecLqDUjmc9HAojPCxSDACZxzKaCRsGPla53BCgXE0OzkqxTyLs3Uq1RK+8onjgCjKUMqijUWicNKCcJQLPqduqcC6Jo5hwEhY1cS+IFGSdmBJOxm+cVghyI7UKFQDxGCeVKTopRZGgp+P8EUGOkVKHyUkPgrpK6J8gFQCIQRRPoTlrpmxpySh76ECRZZahIOyn6O9bIjyjuSuRexds9j+HHZbkW9ce5jldUWSKyDwiDOLc3WEjnHSQ3g+KL+bh+Q0RgoUILMU6dJjfVl7PI/0hJpvIQxDXv/6128INc7B4sMtNp1R6qq39jFBw720yqCcg/kHn6h7VEr1PGp69HgOEULwEz/xE/zd3/0dSZLwm7/5m5xzzjlceOGFx3poT4tzjsXFRQYGBr6t0fjq6iqtVgtrLaeffjrFYpErr7ySvr4++vv7+aVf+iUqlcrzPPIePY5fDhyeZq3ZYHLTZgKpGBwY5JGH70dnGdXSAGjH0MQmrMsYKA9wcHaZbZsnGLSQOI+ZlSXWV1YYGRxj67btzBzaR2lsktGJAR458iAvO+8yAuGTOkFLW5zUaKsRScro8Cie6lAMc4RKoIQFm5GLfLZtnkRicCZjbn6JQtTH7jNP4DTq3PfIPgZ0iTCIwLRZrTVwQQk/Xya1BoVA2e5kS0gBTmJtN5PGPbaq3W52aGaGk3dswUlItMNaCJXACYHyIibHh7ntG99ky44TKRf7wFNIZ7rGptYSeT6pcHQ6MWedcRb9pQKBEIBB9ryEe/T4righsdJHE9CVYgTSGkB3S3u8CKQHNsW5DIlGqwCkR9t4DJebeKpOp9khKiriNAAh8VXX28Y6h8THOUPHOGLf4fUpag1HpgVhQZBoqGVgEPhhAB2NrxxFY5ErCSYF+kK8fIAsBOjQJyr1UexY1qebqFAhhSAMJEk9xqQJYckjsQmNepso7xMon6STknUsaWroL+VprqbQAh6qE8+3kBVJ38VVbvr6HDPTKTocwjgFVuN0jMjaRNKQaHAIrPQRYYj0fKxxuDRBJ2uge8HneKIn1HwLQghe9apXHVX+tPRIm6xjCQrdVrLO8pLzrGmvZKwdeiKjZnBw8CVlatqjxwsNIQQXXHABp59+OrfeeitZlpFl2WM11y+8mDI/P8/73/9+/uzP/owtW7Y87T6Li4ucddZZPPjgg9TrdTzP4x/+4R/453/+Zy688ELe+MY3viDfW48eL1Uyoxkfn6BcHSKKSoRhSN/wBOvLCxB3mF1dYmJsHOkphCviFTp0nEcUeAQoSlGByV3DLK836aQZC4trUCzCxATVgQKNdpN8rkpmDV5UwPd9fNfCGUexNMKhg/dhOglREKKcJI0TAhHg+5L19TqHp6eZmtxMX/8wEom0Faa2KJIMFB6J8cgJhYwCND7SKYyz5MgwCHJKYIXEOTAZaDK80GOpoZnYMkUiu4YO7TjBtWN8T4I1rC8f4tF7v8nhQ7Psf+gOor4xzjznYgYHBnAS0ClWAUjKhYj+ao6clAjb7Syjehk1PXp8V6TnYYRASIl0GqFTMBlCdT+zCAueQpHrCibGomyCVR7aeiQuR39/jrnZBvkwIBeCNoLAU2hpcNZijcE5R5o5Di9l7NiRp5WTNFqGcicjX9OUDbQ9RW64RBLX8ZxAZBasRJOiogA7WiCbrNBcbNGqZfj9Bfx8ikkzdJIRCEXa6lCvpaR+h0x17TBMaklkhkOQxCmB79NaT/AbjsJqiljpkJYclbOr3HXHHHsfaJHKIpYQqTWQgs0QVmNRBMKRpBpHDEkN43VjjXXdTlfYnlBzPPGc/af56Ec/yjnnnEOpVGJ4eJg3vOEN7Nmz56h9nHP8t//23xgfHyeXy/Hyl7+cBx544Kh9kiThgx/8IIODgxQKBX70R3+U6enn1sRt+/btnH322RuPWyspqwc7R5lkPi7WtFayo7a/WFmfjonreuPxzp07eyvfPV6UvJhiT6FQ4N3vfjdSSuI45lOf+hRZlj2rr/FsMTIywqc//Wmmpqa+7T4nnngiP/uzP8uuXbu4/vrrWVlZ4Stf+QpSSn7pl37pRe/B06PHd+OFFn9GR8fp7xvoToqkQqNARQyPTGBEjkqln8WVWZyUKC+krzyIcH53ldpaKqUChXzEUF+J2cMzKC2or3Vo1FOGB0dYnJ9FCEcQhPhBQH19FR9BbWURzwuZmtxFo5bgXLeUqVwts7Je4467H2JmYZ3hoUn6KyNgJdJKpHHkjE8hyKGFj/NKbJ6YJF6ZZ7WV0HEB1gS0nWSl3iQxjrTZ4sDeaRaTmNiHNWvxipL22hH23HYjex74Jnvvvp5/vf6f+NJ1/851V32Z/Q8/zOadp/Kj73wnr3r9D3PyzlHuv+0qbrj6KlZXF3C+IFSKUCiG+/sRxuIJgZSCntbc44XKCy3+pKqIlAIlDFJAXglKXrfbEp5HIcyxo1Si7HuPlfxEeBh80yawLVpNSakvhx8oSBLKngPpcAg8qRBCbCz+OOdYWU3pJJYgEti8R70S0ZkIkSMB+ZEAVWuhfEe0tYqJfJJqjrQcEVd8zGBE1onRUpKljpV9q5jUIBxgHHQy2vUWmYtptdsYbXHGoVPTnRRikDjILFnNIVY1ZqUFoUAN5Lnj5iUeuKONETk8P0KYFN8muLSB0k2EjdEmIXOAUl3vc6uRNsM3MZ7u4IsMyQvzHrHHc8NzJtRcd911/MIv/AK33HILV111FVprXvWqV9FqtTb2+cM//EP+5E/+hE984hPcdtttjI6Ocvnll9NoNDb2ueKKK/jCF77AP/7jP3LjjTfSbDZ53etehzHmuRr6RvnT4zgLh2+r8a16zONlUK2lDKPdi1awcc4xc3cDkz0x/h07dvRWvnu8KHkxxR4hBG94wxvYunUrAJ/73Of4xje+8YKMJVJKisUi8tusJDvnuOeeezh8+DCe5/GOd7yDz3/+82zevJkLLriAyy+/vBdTerzkeaHFn3yuiE0MSimkVN0utkjwfJo6Y3BgiOHhCVZrTXJRkUq+TORFeMJHCkkQeMSdJi5uUlutUfLzBL6g3a4jhePkE3cwM3+QWrNGpVoiFynmZ6fpq+Y5tH8fnvIZGRum1Vxjdv9elqYP88gDD4P16K+OkCv3kzhJ20BbG6yENHOsr7dZXV5g7pHbueP+O+gTy9xx7Zd54L47mJl+mKS2QrL/bh688nPcdcNV7LvnRr75mU9z4JqrOHjjdey55hr2330HxYJgKGc4vLbESsdxxo7TufCil3PW+S9jYnIL+TDE9yIGRya54OLL2HZCP3ffeBVf/dcvcdudt3Hg8AGCwCcK/G65k3VYY3G213elxwuPF1r8kX4EfoSTAU764IVEYZ6C8KgIwSbfR1mDQzGci+gPA8oKjMnI4jbrawnLK4aBoQIdrRmylpzqljxKpfAfE2uk6FpTtDuGmXlL5EHoCYwStCKfpCJJSo5ka0C2JU8WGtrjRcx4DjGRh34fIwzC95BhgM4ygkAShIJCwSf0wJMWFxqc57DOYrNudovvKQJfEAaCQuTDmsJbVMjlDD9xpFJx/z2r7N+rwSuj8mWsEEhnSLMUax3WKZz0ccLDCUAphBcgggjhhSglCDyHwOCrXuw5nhDueZoRLC0tMTw8zHXXXccll1yCc47x8XGuuOIKPvShDwFdBXdkZISPfexjvPe976VWqzE0NMTf/u3f8uM//uMAzM7OMjk5yZe//GVe/epXf9fXrdfrVCoVarUa5XL5GY/3oYce4sILL9wofwoKipf/0mbKY0/j2yJABYKo6BFVPMKCQvriRTEpcc6RNAz/8st7mLu/61EjpeSf//mf+bEf+7Hv+B6+33Pbo8fzybGKPfDMPiOPr279zu/8DgDvec97+Iu/+IsXRfx4Ms1mk0996lO85z3vIYoiPvOZz/DAAw/wmc98hj/4gz/gzW9+87P6er340+PFwLG+9/n05/6ZpYVFSv2D9A2MY50gCDwKoWTvow9QDjz6h8ep1ZuUowgnHBiLQKBJkZ6jXVvjyMF9HJqrc/bWEykqWM0aDI0OYYM8Ud7n1htvwh+cJF+qYltNcqFHuVhgbmGZ0IsoF0r05RVSaqbn19i87QQyPBqdmL5SnoFikUIQsBQ3MJlGWIeQhlwYUi0UcVHIXQ8uMjbUR311kZn9exgZ7mNqYpxqpQ8Xedx59zwnnbyLZppQLBQp5zycr1lbnuUbj+5hbGiCU7ZtJ8CRcwbfEyjlqMUd/LCAdT4dbdm7/wiFYh6p20zP7uPQoWk8odgxtZWhviGsczQaDV77xtf34k+PFzTHOv4UR08ilRFWRgirka7rVpPplCopgRcQO0fDWJSzJNaCVFgZggOlW4h4haFBj1o95iw/pJbzmVYOjcMaQ5oZjMm64qlU9A3m2T1WwCSWtC8AAYXYoFqaaFtErKG/4BPGEBZ9tJC4agEnJK22ob7SIWlqwkARKInQGmczWsTUkgQnwMsJwoLC9yW5SOJ5hkB6tBckzUMGbzWlaAyFyTL33rfI4ZolDSqIqIATApclGOdhZAEnHncheUwEk935o3SmWy6GxXcpnsvAGaRwrC0d7sWe44Tnrci2VqsBbLRlPXDgAPPz87zqVa/a2CcMQy699FJuvvlmAO644w6yLDtqn/HxcXbv3r2xz3PFtm3bjip/SluGR69dxZqn0bUcmMTRWslY2d9h/uEWK/s7NJdTstjgXqD1hM46WssZB29ZZ3nfE83exsbGOP/88190E8UePZ6OF3rsEULwjne8Y6PL2nXXXcfq6uqz+hrPNc45rr32Wnbt2kUURezdu5ff/u3f5siRIwwODh51Hnv0OJ441vHnwKH9tJMWM7NHaLcbtFqr7N1zP4/seZB6Y5Ujq/Nce+NNrKwvU1ubY23lCAeP7OXw7AHmpg9x5MABjswtsPPEM5jatIm1dh0vsEwNjdEvSgxFBfK5Al65n1N2n82unaex+7QLGBo+gYGBKXxgbKCfrRMTjA6OsHligsHRYVreAKs6ZHRonHK+QpIZMrq+NDsnTmDn5C5O2nwKU2Nb6atWKedDnBMIWWHvSoOzL7iMc897BeNTJ9IRjnbTUih5rDXXibVGSLDaYFNHo5WyZXQrm0Y3I53CswphFTa1JO2MuJkgjIQMfHyqhQrlwgiqtJnxE87lhy58Bdt3nsT80gLfvOM2ao0G7ST5wf4wevR4HjjW8UfaFKU8lPLJSQVCESO7LaaFx6Jx1ESIDYrEYR8mqmL9IlaFWC/EqBxOlohknlKxxL44Zsw4qoauMbFUeJ7EUx5CKQSO+lrCbC3D8yyqo0nqGVZYjLWYzKKUBV+ji47pWofp5RZJs0F9tcHqXJ12I8U6MMZhM0O70WQ9a9AwHVJrMU6gpMAToJzFZBpnBJ1VQXtG460lDCaawdNHWLSCw2stkAqBwAgFOkHoBIHFYQH3WEs6r/vlFDiFw0M4ixASowK0yuF5AYIX5pyyx3PD82Im7Jzjl3/5l3nZy17G7t27ga4xJfCUFtAjIyMcOnRoY58gCOjr63vKPo8//1tJkoTkSf9A6/X69zXmIAj40R/9Ua655pqNMoQjd9TZ9rIqfVO57/hcmzk665rOukYqgZ+X5CoeYcnDC7vamBB06w/heRdEnHNksaU+m9BZ18zc1SDrPJFK95rXvIbh4eHndUw9ejwXPJ+xB77/+HPCCSfwpje9iU9+8pPMzc0xPT3NwMDAM3ruc4FzDmO65RLPJD6lacpnP/tZfv3Xf51bbrmF6elpxsbGuPHGG/nwhz9MsVh8Hkbdo8cLixfCvc/YyDDVSonDcwusrSwTBJKB/hKFXIHxiQlE5PHgXfdTDj0qgUH5AYNDQxTyeTKdkaYZtbUWYVBhYmKC++67j90nnYRnQLcSRKqxviJXHkH5JZz10C7DCyP8IGDH1q0sLy+yIDVjpSqeDNk01sdtjx5m+47T8UMgyyhHJdL2OkEYoq3BUwKDBecwODznmMhn7Hn4Nl6260Q2DQyiTYZF4FzG9HyDiU2jPProfoJ8mb5CBLkIZxx9fUOUrCQIC0gH0lqc0RijEcIStzoEYQw2wDhLOVcgyxzSGjzr4yhQLI5SPbGfhx64l3vuv4+tW7c8G38iPXo8Z7wQ4k+/c6wbR9sYrIO88EikxFmHL0OsEASkYDWZ9Ej9PEoJrDVdoUQoAgShbpILFIdki8OtmP58xKqzCE8iECglsQKsNWhtODzfJJzM05xpIv0QCoJC5KHXNeR9Ht6zRG09JWk50o5moD/HiWcNk2QCX4UoIQFHo94ksS1cINFGoLVFeq7rVYUjTTSRCkljh14BtWoYaFoKlQKHH1nnnj2LGDyEM4S+w7g2zmqE7G5zpoNzKUqAMx6ekPhSopztZjcKD+dFCC8gEJpIN1DS8OJayuvxg/C8CDW/+Iu/yL333suNN974lN996yTgmXQ8+U77fPSjH+W3f/u3v//BPmlcr371q+nr69tY3dax5ZGrVznnneNI75mJK9Z0S4uShkHIBOl1jehUKPECiZAC5Qv8SCKVQCiB8rrfn20xxzmHyRyt5ZTmUobVjqxjOHxbbWOffD7PT//0T39bH4oePV5MPJ+xB77/+COE4Od+7uf4+7//e2q1GjfddBOnnXbaMctqm5+fZ3Z2lrPOOusZ7b93716stczPz9NoNFhYWOCBBx5gcHCQN7zhDb3svB7HJS+Ee58wlyPIBYz0V1heajM1tR3jDNo5LJbAOoq+YnVhlv7RAk3jg8wThAYpJXOzC1SLg3SSjCBfojw8wFyjzliln0TE+E6xsNykb2AcPB9rBdIJQj/CZJpS3yC20aKU66e+3mRhfp7hzWOkaYLnexhrwQisD/NLK/Rv2kSCh0HgCYGVkuXlNvW1NeqNOhjDwPAo2mmMBSUlBb/M4blHmNoyxs4Td7G8vsja+hqlwhjCOXJRHic93GM3VK04gbhFVUnAUM7nOTy9l0ppjDAs4ZzAuRhnwBmHsAGesHgOdu04iX//yhcZGOh7yrnu0eOFxAsh/pwQamK3ROwUQilKSpFTEockNQYhJGVPdOcntGm7BF/6WE/S1IYWBlRGWWvCMEcjX+RwfZ3JVNHutCFUSN9D+RIpBAiBkBaTZjxysE7aSsjRIRnIUc8rvAUI+oqsLmma6ykutjhtWWwZhibKlIdyOGERSmEyTZx0sKHDWEuaOYSUeL5DCIvRDiEUJjOYpoDpDoUVg1OKZZMxv9ZEW0MQhMRxB9MwBGGAEB6JViB9lI5Bp5SEZtj3GfM9BpRHKCE2tttdznnMJY6G0WgJxumnuQI9Xqo857PxD37wg/zbv/0b1157LZs2bdrYPjo6CvAUdXZxcXFD6R0dHSVNU9bW1r7tPt/KRz7yEWq12sbXkSNHvu+xb9u2jYsuuuiobbP3NVg91Pm+jucsmNShE0dSN7SWM5qLKbWZhOV9HRYfabP4cIuFh1ssPNT9vrK/w/p0Qm02ob2WkbQMWcdgjcPZroHxd7IZcq67X9Yx1GYTFve0qM+l2MfMj2fva1KbfUIFf8UrXsE555zzfb2/Hj1eSDzfsQe+//gjhGD37t287nWvA+BLX/oSWh+7f8ajo6OcddZZz1hgCYKAU045hT179jA8PMy//uu/sry8zLvf/W4GBwef49H26PHC44Vy7yNQKBEw1N9PLnDse/QRbJIQGouvDc31NeK4QXNlkcNH5phdbBB3UvbvP8TDD+7BZpZmJ6atNc3U0jc8xUqrxdzaOkR5rBfQaMaMDA8DBm1iBCmhL5AWGss1rAvJ+QMMlcYxLUnaAJ1kSOfwHYSAj6PdSREyT6YjLD4GyfR8i5kVqAyfxI4zfpjK2CaaWUaCByJCuJBUS/btn+bQkTkyK2nFmixzgMQ52S0jcBKcxFmJny+wlmYsrTWxxiNUOcb7+7nt9jtptWLq9XUWFmZI0wRjDM440GAz8DyPkZGRp3TJ6dHjhcQLJf6ckgu5rJjjP5UCXlsOuKTocU7B44dycEFOcEEIp0jHbg9O9ywXhIZzg4QL/YRX5i3/qQSX90Wc0dfHjmKFkyv9hFGOFSyhkJhmSrLaRLRiigbKRjBgBSN4+LFBZA6daHRDE8eGdqZprCfd5jDKQSgQvsQ5R6eZIZwm9DKkS9GNGriMIIJCQRDmBIUiDA75eD4IKVFKYDJFsOQRrWRkJqMmMpZ0jG0aRnyfotEUpSC0CapVJ2rXGRUxfS6jKi3bQ8GuKGBHoBhWEoymk2QspTELSUqj06TsOgzKhEA3SdLG016DHi9NnjOhxjnHL/7iL/L5z3+ea665ZqOryeNs3bqV0dFRrrrqqo1taZpy3XXXceGFFwJw9tln4/v+UfvMzc1x//33b+zzrYRhSLlcPurr+8XzPN7+9rejlNrYZhLX9arRz02NoHNgModOLFnH0lnXNBdT6nMJK/s7TxFylvd1qM+nJE1N1jGYzGJSS9YxJE1NYyFlaW+bhT0tGvMpJnWPvY4jrmn2/MdKt6sc3WyaK664giAInpP31qPH88Gxij3wg8Uf3/d5//vfT6FQ4Jvf/Oaz3gr8e+HJLS+fCUoplpeXueqqq3jggQe4++672bJlC29729t62TQ9jiteaPc+6/UmAg/lKaoDZdZqK3SaNaRJkDbhwQfvR1nFts07qHdSjFX09fUzMjLK5qmtlKLS/5+9M4+vo6r7//vMerfkZk+apjstUFq2AgVklwJlE1B5QB8FxB/IJiAu+OgjggvK4/qIgAoi8simICCyS0GQgi1LgVIKLd3SJs2eu987y/n9cTtD0qa0QNuk7Xm/XveV3pkzM2cmnU/O+Z7vQueatXT39iKFQSxRRdyMEjMt7KiFJ3xMXWAbOrYpSEQtOtpX09/fgy9d0h09VMUT6L5LNl+kry8P0kSXAktKLN/Hlj5Il6glcBwHF0EJSbHksrKtl8ZRLWiGhStMItE4mbyDK3UcNFK5PB1daZqbxxGJ1bNq9VpWreymqraekguuB74PeD6+9HCQlHyNusbRtGbTpFwHgUXcrkbXEvTnJIZRg2aYLH7rTVLpDJ5c503gS3zXRROCWDS+hf/nKBQfnZGmP3V2lArLImZZxHSDiNCwfYnt+0SQmEIi8PGkxJU+ru9R8l0KnoP0XTQBlqkTty1imsZ4O8bMxmYKjkfJcak0DBosm13MOLUFj8qCJF4EO+9S4+vU6RaVukku75DpLeCVfHTLJBK1EbaGHtcxK0zQJL29WYoliSZc9FKWmCep1A3ipoZhSSqTgmSNjhQeaKBpAqROPF9BdmWafMkhohtkLVi1OkWp6JIplHBdl4gQVBkGlYZBpW1SbUh2i3rsbrq06IJaTSeiaQjpownoxsU3DAxN0Ou5rHaKFEU55CpumFv6v41iBLPVQp8uuugi7rjjDh544AEqKipC620ymSQajSKE4LLLLuOHP/whkydPZvLkyfzwhz8kFovxmc98Jmx77rnncsUVV1BbW0tNTQ1f/epXmT59OkcfffTW6nqIEIJZs2YxefJk3nrrrXB7+8IMXUtz1E+JDcskRPrgFsvWFSfvU+h3SZU9/sohWZKyxwwwVM4pKcuGoNf+2kGq7T1vmk9+8pMceuihamKl2K7ZnrVn//3359hjj+XBBx8MjR0j/X2UUvLKK68wY8YMFi1axPLly+nt7eWyyy5j1KhRw909hWKbMtL0J1vM4TkOBQfeeXsl1bV1RGIWGD49HX3UJKqY2NCML2BcIsLy1rVkS3l8x6WzrQ0vn0cTLpmURk19Pb706OjsJtpoYnsemmbguXnWrHyXWHU1UTtCdWWcns5O2tIZIkLDjxn0O0W6cilyuiDrlfDcPHh5bN3C1gSe75KoirBizSrGR6uxZZZS71pyhQye8LBtC0zQhceK1cuJ7TYV4UoM08a14oyaMIWKuiYiSZvFK9fimzEcT8PAAE3iSYHUdHRZjih30IhWNmBGE2DZuMKksq6aggeWLjArGxm3W5ylb71LTVU1dckEAo9SqYDvOUwcP34L/89RKD46I01/Ckg0NCQ+wpdIybqPhoePC7hCK+eaQgKS4rrVY83zQTp4hgkYaEKiaQZNZpxxyTpWuu0YgCkE+VIJTWhYGuga+L5E8yW+51OSUBAubkEjU/KwvV60qEA3NJACt+CBLvCKLlEhiUqQ3S5WXhK3IvRlHTIVEil8nKJXrkala/i+RGR0Ot7oQMs52Bis1mFNV5ao1AGBEYkgYwZa0UEvuNTGowgJ+OUqV1WGTqXQKXg+UoClazi+R6VlkJYuQgrG6TZ53yPj+EizHDKm2HnYaoaaG2+8EYAjjjhi0PZbb72Vs88+G4Cvf/3r5PN5LrzwQnp7e5k5cyaPP/44FRUVYfuf//znGIbB6aefTj6f5+Mf/zh/+MMfBnm5bE1qamr4/Oc/z7e+9a0wxMgrSRY92kXN+DEY9giZRK0Tv8BjZqPNpKSU9Vjwl7Wseum9RKctLS1861vfUt40iu2e7Vl7LMviy1/+Mo8++ijPPfccp5xyyla71pbiscceY/78+Sxbtoxjjz2W3/zmN4wdO5azzjpL5bpS7HSMNP0ZXZskV0zR1d1Jf76XVClLsZQiZtu0ru5i6pSpGLE4RenT251Ci0R47dUF1NfWUp2so5Rw0Snx9juryKT66OjuxNAEbWtW05/qpSJZQXV1kp6+FP25NIamk8tmqUomqaipJp/uY96iV4hGq2lv66GiopL2VC/No+t4Z9kbTGqZhI1Pam0HZsKkxuuia+GTNLRUIYtZJjbGWPvuP0knG7ATSaJRH8M0ePOt+dQ3tJCsrsfRfXxdkvfAIkJFPM7ilctprK8jYZqYnolhgZ/NkM4XiVgRDFGkN9uBGfOxvRiRiMXougpefmcp1d5YGpoaMO1qJk+bwhuvvoquN1CfiGLpBpom6UupdJ6KkcdI0x/Hh4IuEEIHUfaakdIHX5aT/1L+eNKj5JcrIDm+D0KiCa2cV8oT4PlouoEnXBwJY6MVtBvduK6DoQlywkPzwUAvnxCIGDqaBobn43uQxsfxBYVsCR2BEdWwDJtMKgNS44DdIzRZgkKfTo0fpyph0JHPURA+fkHiiXKfhRC4JUmhyyP/Tje2C1HLIGdotKVyaDkfX0o8IZAxC2HpCE1SYxhEdR0pJZqv0ec5xEwd14MOSyMiJU1CkNU1YkBcmPS6Dinh0aSbTNQ0lkmXvDtC5p2KbYKQ75fgZAcglUqRTCY/Ur351atXc8QRR7BkyZJwm9Bgr082Munw6hG/4h0gfUnP8jwL7l1Lz/JCuN2yLG644Qa+8IUvfKB72RLPVqHYkfkw70ixWOSMM85gyZIlPPfccySTya3cy4/GRRddhGma+L7PpEmT+OpXv8r3vvc9vv71r29VQ43SH4Vi4wTvxx1//j/WdqfANKmqrkG3Y8QMSFg66Z40K9e0U12RJJXupuhrjB83mva21VRW1pCTJhpQGbVY8tZiIppBS2MTVfFKenq6aBzVgBAaeizK0tVrGNU8ilhEx/GLLFvSQW1dDZbpk0ulMTUT3Y5jxCpoXbuaumSCZMRk9erVjKqpY0xdA9KO0p/qpboyiWFF0CMWKd1m5ZoUE5qSZHIpXM/Btg00oD/Vw9q1HUhsevrT+MJgVFUlQkiiUkdSJJ8vIHyfbG8vKadAyffp6Uszafw4KiuT2KaOm0oRj8WJWhYVUZOunnZWru0n5QuiVUmEHiGqa4xuqMPSPHK5NHOe/gc/vu5nSn8UiiEI9Ofs6TNASqTnwbpi1L7jIH2PnOPgI9GExJEuEg3XF+iahiZAE+WKTgCmdME06Xd9sq5PzvVpK6bpL2SwhYZpaGhS4js+AjA1gQFYuoFlGbi+T0lKsq5D1vNwDIGW0ECCk3bQpOCcT1SwS20lby2OYjk6MddnVT5Fb7Ukb5WNTB7gSY1SyqCwLEWzZZOwdRxNY2kuT6kvT9TX0H2BtHVKlRGE5xMxNJICilEdNEEyL+mVkgoECamTBhIeaBJKuqDRl0jXo9t18AVEhUaNbqILQcmDO9pblfbsJGyTqk/bO83NzVxxxRVccsklYYJP6cOiR7uoHhuhdmJsmHu4cQI7XKajxLvP9rH8hb5BpbiFEJx77rn853/+53ZjcFIodmRs2+aSSy7htNNO48UXX2TWrFkj+t3M5/M89dRT3HPPPZx33nlMmDBBedMoFCOEVW8vR4vGSNQlMU0dTXi40qQr59Gbz5OjROs7CxhVXYceiRKPxZkyZReWLWulq99hyuRpYGo0jEoh01lqK5LoukkskcC0bIQU6JpOTVUSfB/DilLKF8AvkUjYRKRDXrhEKyvAjKPpOtGoTXV9I5pTZPykKei6gV9dhaVZ4IKbqCYe1dF0iAuddK4bq3oizXX1aDoYhmT5ipXsMmE3pk3aHcdzaG3rJZWHiU2jELpPRICvFckVSzz76psUamz2nzgBzTJZ9M5S9ttrOpbQiOjQvmYNDTUNeJpBTvoka6ew28RevFQnbcuWs3bFcvo9lyVv5Bg1qplJkyYyc+YBw/2rVShGPA8sfgOhCYQEU9cwdQNvnUeN6/s4voe5bqzgCSh4lMttC4GhawgBnvTx/XJwVN7zcT2JLwFNsi5NDAXXRxcCX/homoaU5RCliCuxpYupa+VqdELHtHQKUuAWNBzTRY/qRCMm0ZhGTXWelrGCRYslHZ1FemOCji6Htm6HYrGcMycu9TAJel2NSU76LMsWKPYVqEDHNnQ8Kckj0fIlIj5oMZO8pWMVwbUFeUsD10d3Ia1JilIDU+A6Lgl0SkJQg0ZWGKxx82S1clWriBA4/vs+csUOhjLUbAZCCD73uc/x+OOP89e//jXcXkx7zLu9jYPPa6FylD2MPdyQoBR3f2uBFf/uZ/WraYrpwXGNQgiOO+44rrnmGmx7ZPVfodiZ+djHPsaRRx7J9ddfz2GHHUYkEhnuLg2J7/sUCgXOOeccFi1axJtvvsl1110XVpZQKBTDS21NA0Sgta2ViqrpaAg629vJp3tJxhJMqG6ixq6ktjpBe08H7W1r8d0Mq5avYtyUaWimjqYbJCsqWdW2FgS40sOMWGQKOSJ2FFlysHUN6bmsXN2G9EpIiqxtX8Wu40YzZnQjy1a341qS6liMsY01LHn7dZrqG4ibOlL6rOhYSTwWp6W2hmJfN+1dLvHaRrL5Erm1i3nzDY94RZKqqiQVFTE8t0imkEPaUZx8iTVr19DnGdRVV1EdMzCFjg/o0ieb6mfypOkYRoTudJbq+haKnoZulEMrulJ5quM6mCbC9BERl6RVTylSCT2CSc27ocsi+Uw/be0ree5f/0TXR67xXKEYKaS9ErgCKUEIGRYqkFKiIZBiXfEly6LGjjFRM3E8Dw+JYZrlMCPpgyaQmqBQKtGdz9JXyCOReOvy0KCVc92gAbJc9lsYggyQ18AWElsTaL6Gi480NEoFB9/x0AyBW3JxXZC6SySRwY0bvLIqR6pfUvA8PBekB8Lz8aWPJj1iUYtFnWkyQlKSglGWjVhXUdd1fXQfjJIkphtEpSRXLkCHV/LQShCxdUwNKlzK3jUCMkIgfI9KX8fWdKrQ6ZM+vpB0uC5Vuk5UbJvUH4qRgTLUbCaxWIzrrruO119/fVAIVKajxL9uWsWUj9fQsm8lVlwfttVvKSVOwSfdXqTjrRxtCzP0txbwnA2j2yzL4gtf+ALXXHONKp+rUIwwbNvma1/7GieffDJ/+9vf+NSnPjXivGpyuRx9fX288cYbHHfccVx44YXsv//+qtKTQjGCWNPfRZOZpCYuWPT6yzSMHk/UMGga3YzruWSLPp4hEMJkdF0dL730KlWVSeqr66hJViAMD1PXyDslhC14t3M5oxrHoJkahVKRgutQV1VNxLAolHyK6SzjmhtZnu4nHhG827oCYZjYkQqaKuNk0znW9vUxpmkMcdvCNgX1dVWYmqDoupQyDvUNo0l6aV5663Ws+Gim77U/dqKSjq4OFr7xJsmaSiqkjp7N0+96uC7s3jCW3v4+cr2diLyNn4gQMyVLFi2iqbqWhuoEhpQUhUNjVT1FzyFhRRC+T6lUQmoSdHB9ENLH9QWWKZgwOslri97BLZWoqa5m9JhdaBo1hneXvTPcv1qFYsSj+eCLcvJdHVEueqIL4naUiBT0F3Jlj7xInBrDoiOXoTufpSR9dKFh6CaWoVNhR2iJVrCslKLkloiYBq7r4SORopykuBxiVa6MJPHwShKha/i6wNUFRU2iC8q5ZnDwLR/hC3xf4pcEdz9V4G86OJ4k70DRKc+rfE8ipIZfckCWNQIkhWyRtCao0HXGxhPguCDLlV0sQ6PeMChJQcnxqfcNsnkoOS7ClwhLw/Ml43wDX0hwXXwEdZqOJTTiuk7a88gBlWaETieHlJKM7w9VI0axA6MMNZuJEIJJkybx29/+ltNPP52urq5wX7bL4ZV71vLOnF6apsZp3C1OZbONFdfRTa1cwm0rzFukX67elOko0be6SOc7OXqW58n3OkMaZwLGjBnDd7/7Xf7zP/9TJQ9WKEYoBxxwAKeddho33ngjRx99NNXV1cPdpRApJY899hi//e1v6erq4s4778SyLK699tpBCQkVCsXwEo1XUCBCrMaizujjtX//m7GjR7NCOhRkgbhdyfiWsRjRKNWRBPWJGNm+AnaFoJRPE6moAE3w1rsL0QQk66to715NV2cf8VgC0zTJZDKYERNbWOA5dHd0UFnTSMJ20XWdtjWtTNptIp7UkR74UtLV3UX91KkYusTXDTB1bMPClz5GRRW6jDJ5vMOipa3UNzSw+J3VxKLV1FVFScZjjK1JEjM0dOnj+CDRyLsl6mrqKDk5bFuw/N0VFIw4o5pbaF3bTrIyQTSRJIeLk+ojblQjMSgKgx4cLF1iGGD7IHwX6RhE7Eb22SNK2+rVtLavoLe3h4pEBclk/XD/ahWKEc/sCbtiR2PEYzFsXSebzZAqFvFLDrbj0mXFiFlx8jqkClkqDIN4ZTWulHg6FL1y8nBbt0iaNg3RBDVWhKgwsIWO7/tknAJZ36EofUrSp+R5ZEoOrpQI10c6ZWNRSYDQNcoJcEAYOkKXCFmeT6XSLv0AvgS/7EFTTnwMAg1DExgaSL9cQrtGM2m2LJqNCJavg2WQ8yQp3yOPT4Vuki341Gg6ETS0okdaE2TxwJPksx4LhYOEdQYkQURoaJ6DxMeVUJASQ9PQfZ+CdKnSI2hShZXvTChDzQdACMHhhx/O97//fS677DIKhfcS8iLL3jVLOkoseaYXK6ZjxjSSzRHshI4R0aidEMWK6QhdkKg3MWwtXHkWgrJwrLPoSBlYiAm/l7I+ue4SnivpWpIj0+XQuzxPIe1ustoTQDwe51Of+hTf/va3mTRpklr1VihGMLqu87WvfY1Zs2Zx00038fWvf32bVbvbHF5//XUeffRRhBDk83luvvlm9ttvP6UrCsUIorZpHPFEgkwuRWtXP5G6ekZNnIRtmpRknlUrV4Nl4guBI2JM2m0aTz94HzJfS6K2gnh1DUIKhFNgt2l7UFdTj6b7FEolxo2dRLKyAk0KfDwsT2CnDXq7Oujs6mHvqePpyRRoaGphyduLaR47gb7eXqTvU5Wo5J//fJ5JkyeTSfVRGYtSEbfp6E7jSofKuEkybpDpXs2/27uoG7s3VVV1REyP7vZVvNHbTk0yScw0KJVKdLR10dPXR111NYbpYcZNWlctJ6PbSB1qYjbZzuWk0lkisQhaMc/idz1s3UZLp3jurfn0SUF9XT1No0bT3NREwrSRuob0DZL1dQgrQtOoNK+99hqZdHa4f7UKxYhn9+oGLFMDfNxcjkrPp8kwcXWNkqHTGLHxfR/fByNZi64bmJaJKyWOJ/E9B98pkCsWoZSl0jDRdatcEUqW506uYVDyS+iGgetLitIj67v0uy55x8XzJZ70kULiABnXJef4CNejqSqGlD5ZfHISHM9DaAJZKleRigkd29CoMU1imk6lMNABHYjrJhJJ2vHxPY+IBjoSXZaNPFl84kIQNzRsXUNogtXCJSd1dKBQcnCki74ugXLEtEh7DkiPvOOC0NCBesOm2rBYWXDJuT4RFfq0U6EMNR8QTdM499xzSaVS/Pd//zfFYnHDRhJKWY9S1iPb6YSbA0dZoYFdYaAbIvxuRnXMSDmmEgmeI3HyHm7RL5feBrySTzHj8UH93qLRKEceeSRf+9rXOOSQQ9D14QvPUigUQyOlpFQqsXz5ct544w3+9a9/sXbtWvr6+vjVr37FySefzNSpU0fEu9vW1sbtt98OlA3A1157LaeccsqI6JtCoXgP6XtoSNrWtFPd2IhuR+l3fBpiBjG9imQyj+NILE1H+D7Jylpqq6vo7myjMttEdalIIhKlqSpJTTJOxJLlfBJVMQxNI2JGyonDJXhOiZaWMTTU1yDefpN0uhehG2QKLsn6GpavfJeJ4yahGzYIk2SmgGZHaBk7CU1CIhahN7uaMU2NVETLpXVXtmVorh1HVc1oBIJiyaR+1Dgy3StZ8MoCGqsT1DXWY8UjTKzbhbEto9Dx0UyBq0chliBhJ9ClhxGPk3DyuK6D0HS0dAG/5JOoHcf0SQLTFvSsXcbqd15n+euv4OoRaurqaG5opDIeIxnX6M9aTNtzOv9+8fnh/tUqFCMeKR3wDfBccEtIx0MKKLkemr4u4kAD35cgfUxNYCIxfBfT9RGawNMMbBtc3ysXdBESKR18v5xV10SWkwUDlm1jmjq2BlIY+FLgex6u9MmVSni+hy8ErpRIKYibOiXPw5MeBd8la/hI30OYAulDtW5grRvXlPzyArorfYoS2otF8r7E1wT1mokldYT0qRQaMUNiCIEP9HgeEXwiloYjNBow6BSSOl1Q8F3yPpQQZD0H05eYWrkylCN9ir7PmpKkUjfwJfR5Hgk1zNqpUIaaD4FhGFx22WXous4111xDf3//Bzpe+lDod9fb6gzZ9sMihKC2tpZZs2bxxS9+kYMPPhjbttVESqEYYfi+z+rVq3nggQe49957WbBgAX19fWHFNoD+/n4uueQS/vznP1NbW7vRc6XTad544w2SySTjx4/HsiwMY8vKvJSSp59+mpUrV2KaJldddRVf/OIXR5S3j0KhKGNoEt8pgeNR11BFSTfIZVNl936vRFUsQjbdj1GTRHoOuqVT11RLR9u7gIePhvAcbM9BFjJEqmLouDQ31bJs2UqitkWyKolbcohELHTdpuTkQYswesx4+vrWsrarHzSD6upq8vk8sbhFNK7hukU03cIXOpqm4ek2ZjxG1nPQXUFU16ioqqa7v4+GmtEYvosrLDxMwKYuWcMeu0zArozSXyyypr2fkhSYuo7QjPJ5kZRwaEomMRNRXOmUPZZ96LFSOJ5PTWUVIEDXSdbEKOkamHFqcenv6aZn1Zu8m8oQq6qjsaGRZEWc6dN2H95frEKxHeB5Li4a+BLdjhCJ6RQ9l3y6QNHzidgmlmGBKC9USV3HQeBLgdQFvufiSx9dE8TNCCJSjjsQnocnXRDgSdCEXvbGMU00DTzHQ+gaQpTDhKSUxCMRPN9DkxLN85Ceh+t6SKHhSfCFhotEN8AQ5QgpR0LRl5Q8iSZ98r6Psy4kyZXlKky6EBR8D1sra5bwJLqm4YtyOXJDgCkErivwLJ+8gIQPCI2YblHQfDRf4iOQ0kXXNKKaQcSHgu6TLhXJOy6Ov66ilaXGWjsTylDzITFNk0svvZS9996bq666innz5pVFRg5vmqdoNMq0adP45Cc/yWmnncaECROUB41CMULJ5/P8/Oc/56abbqK1tXVI/SiXmiwbR374wx9y3XXXbdQoksvluOSSS3jnnXdoaWnhgAMO4IYbbiAajQ5qF1ynVCrR2tpKd3c3L774Il1dXVRXV3PGGWfQ2Ni4gW5IKVm+fDk33ngjpVKJE044gUsuuWSLG4MUCsWWYfXSBbhSR49W4hYzRGMJIvEY6d5uEpYBxSLp7i5EyyhYl79BGDqG7ZHLZXHzRXK9GcY2jKKnt4ua2iTLVi4nZlay26QJtLWtoqNtBUIzmDBxF4qOi+MX0XRBJg/tHX3sNmVXYtE4Rc9n2ZJlCF3HjGrUVCfo7e3BrG8sl+wteQjDIpfPE9U1KIHp+7jpTrrXrqaqqQXb1JG5Am8vXsz0CeOIGWa5XK0v6OpJMX68jy808CSFkkN1RQVxy0bi4eIifQ/f93F9DWGaaLrAFRq6FJiehilsGuIm8xe9RqFxN8aNmUwk00uD7iOdPCveXUx/KktU5eJSKDZJJl8kZgoMU8fzQWoaHnrZCCM0ip7EFx6aqeOaBrlSESFBk2CbFgLwSkV0XceVPoZmIHyJppdDoIRWTgbsuR5Iief7uJ6PEBqe46Jp5bAiIQS2aSClicBHSA8nV6BI2ZtGsi4PMOvClwApwZACpCh7D2oaSQHeOsNNQfg4AjQh1lWCEuCvyykjQNcFhhBhVETO84hKQYsviHqwVEg0v1wRqyQlGhLH9dFdhypTp0LXKSIoopFxipiWjS99Su6WXdhXjGzU6PojoOs6Rx55JDNnzmThwoXMmzePtWvXUigUWLBgAa+88gpdXV1b1XijaRrV1dXsvvvuzJo1i+OOO45p06YRjUaVcUahGMFIKbn++uv5zne+g+d5WJZFc3Mz1dXVTJs2jdGjR1NVVUVzczM9PT28++673Hfffey2226cc845QxpHGhoauPfeeznvvPN4/PHHWblyJVOnTuXggw8mmUwCZePM0qVLmT9/Pk8//TRLly6lVCqRy+XwPI9EIsGTTz7JpZdeSktLCwA1NTXE43H+9Kc/ceONN7Jw4UIAZsyYoRKSKxQjGFP4NCdj9He3Iku99EgdIhXEbZNS1qGQzZFP99LXsYqKZCW5rMOa7g7s6hhSQMyOkNA1NFmi0rDo7uwjZkWpj1VRKhRw8znyrothx3jhxbnE4xUkolFs4fHcPx7CjFhI3yVRWU2yuhHDEixb/jZ7Ve1Pc1Mjr7y5lOrqGixdBzxMTSA8iFoWBhq1dY00jWrknUVLWN3TSkvLaN5+620qa5sRsTgZoWFKDy9fIJ/qwxQ6GhqeBxE7RlWkEkvX0F0XzymgCYHry3JVJzuCJfWy8UaCIz2EW6ShZgyH7pWkI5XGNjVidQ34UiJ9F+nH6VizhqipVrUVik1RdB2E9NE8A+ED+Lh+OfxJp5xjRkgHzZdEDAPdFwi/HJaki3IFJ1+ArmmAQPo+iHKpbo9yEmAhJVLT8KUsv6cS8F3wJQKt7JGj67ilspHWk+XwJsfx8CnPo4SUCCSGlNjryod7vkQiMDXIexJd13B8ieP5OL5ECnA8Hw2Boa+bbwmB40ssQ8NGw/HKSYEFPhFdY1dXYmsSF0FNSdDj+jheHkvTsHWDSsOmStNJ6ga6Jmh3S3hSYpsWOhIEON76ERmKHRllqPmICCGIx+MccMABHHDAAcC6MtmOw6pVq3jqqad48sknmT9/Pq2trTiO85EMN7qu09zcTEtLCzNnzuTQQw9l+vTpjB07FsuylHFGodhOkFLywgsv4HkeAPvvvz+f/vSnOfzww6moqGDUqFFEIpHwnc5kMixatIhLL72Ud999l0suuYRRo0YBZR0Kcty89tprFItFrr76at58803uu+8+3njjDebNm8eyZcvWJSqX1NTUkEqluPDCCznttNN46KGH+MUvfoHneSxfvpwTTzwRXdeRUtLU1ERVVRWvv/562F/DMJg2bdrwPDyFQrFZ1NU0kO7upKainqpELVpVnHfb2nCdEg0VVfQJjUSxSE9XJ1XVlaxp76Jll90RXjNdfdCXy5L3PWrjBoZI0JtNUZespzNdoq11JWbMpr55LMKOU9Xos3DhYgpahFy+RE3zeEY1NlNVXUNvXz8vzXuN2uoK6mqbWPz2YibusiuNjQ1ksimqKyqRnoNTzKNrEk2TaEISjUbRDUnT6EbWrmmnt6eD+voq7IikVOxjVWcr8eokfR2d+G6OfLFAIh7Hk+tySugmAg8NcIoFVrWtJtYwhqgZQRfl1WzHdfHdEqaQ6LJcYldIm/qkhSk18DzKERQG3R0pGmtHEbPUWEuh2BRSemhCxzZNfN9D+j6+7+F5fjk8yHXLHnCui6/rmIaBLx2cYglHlNAFmKZFZN3ic6FYwKfsoSLRkeXSTOWLaVo5VFMDIT1838X1fRAgpI/0KZfu9nzwPTRZ/mkL0DWJJyWWEBhS4K+rtiRE2SCUQ5KTEtf3yXs+LhLfL4+l0AV5x0dHoCGJ6Fo5qbHnhRWdIqaGFBI8QdaROD6UkJSkR9ywqDQNTAQRX2CL8viwKCHvC6o1E0f6VGoGBd+jTyiPmp0JZajZCgghsCyLSZMmMXHiRM4555xwkvXuu+8yd+5cenp6WLBgAZlMBs/zyOVylEolfN/HsixisRimaZJIJNhzzz2pra1l5syZjBs3jt13352KigqVc0ah2I4RQnDKKafw4IMP4rou//rXv5g7dy6RSATLsthll12oqKhgwoQJ7LPPPnR0dPDPf/6Tww47jPnz53PooYdy6qmnMmXKFGzbJpVK8dBDD/HKK6/wP//zPxx66KF4nsezzz7LV7/6VXp7ewddf8yYMZimyQsvvMALL7zA4sWLyefzSClDj5mA5cuXD/re2NjIBRdcwEknnaQ0SKEYweTSaSzTosqwMbN5jMoolbEoazp6oKaR6iqbqBFlTdsK0rk86DHsaALHjSK1bkxLo7djDaneHDW1LXjSRhpxSmhUJesxNNBdn55iloam0ey5994sWLiEiWMmU19Vg6sLPKHR3DKKaKIaXBBSkqiWLFz8NnWNY6iuqgPPwfFK5AtpbNvE8TxMs5xsVCLBilHdPIG6hloQAq/oYhoGTjRLT08nLWPGMWrcWFpXLUSYAt9xyKVTzFvxBjVVVdRXJ6iOW1RXOrz48ouMn7QHVRVVGJqF4/qsXLGS+vpqqmwb6brkCjkidgzWJQv1vPLqve8UqYjWYVjDG+auUGwP+FIikZTcEr7r4jhFPNfF8zwMXUcXAkM30ISG5ntIz0XXdDB1pBDrUjdoZS8cr5w8GCHwKCcfRgh03QDpr/Ou8ZESPKHh6zr4XrmWru9j6Aa6EAjhYWgSDIlAoAeeN6Js/tGkQBd6OWRJiHLZb0NH6Aam9HFLDhTL1aTMdZ4+QoCtl0OeNL+sFboQCL38DHIOCK3s8eMJQQkfpCQmBEUJsXWVoEytbExCQsbxwPeJaxq+LzAkRNAwpRpz7UwoQ81WRgiBYRhUVVVx0EEHcdBBB/HZz34Wz/PI5/P4vo/jOHR1dYVGm1gsRn19PdFoFE3Twp9qQqRQ7DgIITjttNMAuO+++5g3bx6dnZ3kcjlyuRzz588HYM6cOYOOe/HFF5FSkk6n+elPfxqea6Cn3oUXXhjmsfF9n3w+v8H1582bt9n9rKqqorq6mhkzZnDEEUdwzDHHhPmvFArFyGVtVweTxowhn8riuBrRmgS+9Mjlc/i+jy7BtixaRrfQ1dlDrKq+PGlBx7ANelMpGkaNxfIL6FacttZOrEQSjCi+KEK2F6vCJtOfRWhdVCQSOK7EMm1KrkBIA83Q8F2fVG8aU7eJxZIIHarr6lnwxmvssfveJCuiSM+n5LtIVwDlpKGaAA+I2Bb96X5cqVEs+WRyJRoro8QiCZJjEnRmesiXShTyBUZXVODZHuNbxrFwaStNtVVIHHJOjmgygmF49HeuItXVRsn10Xyd1StWsHIZ1DW2EI/EMDVBna6ha0Y5pwYanudRKhbRfImptE+h2CS+7+N5Lk6xgOu6CFE2akQsC10INKFh6Fp5LKFpiHUf6brIdW0FPr5XNnIQjHUEgEQKHccve8zgl8OQfN8P880ENg0B4K27vvTwhY4wLWBdKJQsG380TeB7PrrvIzRwPY+ir6FJwPXwpE9MSqSuU/LLIU9xTZA3JK5bPt40BIZYl5hGEzieoCglLhJXgOf76EIQ0zRiUsfVJNL30YRAIugrlvAAITRMymFXIkh0g0AqQ81OxQ5vqAkmL6lUaph7snFM0wxDGNbH932y2ew27tHmETzT4U6grFCMVDZHf04++WSOP/54+vv7eeutt2htbWXu3Ln09/eH29ra2t73XOu/g7lcbshraZpGIpGgqqqK2tpaamtricViaJo2yBgcj8fZddddGTVqFPF4nMmTJ1NbW0sikQhz4wy3Lin9USg2TvBe2LEoqWyWUiZPRBrk+/vI4pHOZenr7ydqWnglB9M0yOaLmHGPXKGAh8Qv5ujs76EqOhXHB136YJo4nkOqJ0V+7WrixTQlW0MTURa89Arjd5lCe1snU8aORzoCYQhcwyOfdnh30TskqmqobZREXJO1a/sxLIuly9+hrrqSqkSUVC6Padnk83mEoyF9iStdXF9jxcpV6Facnv48mq7hl1wsARHDJ5awWNvaRiIaw9RjaCKC50fwPBvdsjGFjk4Bx3Nx/Cg19aMQaJiOoKenG79UpKGuEVnop6unDdf1aDNskrEK7GiUeDyBEIJMOk26vw9fRgY9Z4VC8R7Be5Et5JG+WU7Suy6xL4CvCaQoe8sVfQ+BRPoaCB1NB3wf6fsIZNm4gkAKrdzGlyB8EB6+6yL9speMCM5T9sEr2zXQ8aTEd0sgfSwpy14vuobQDQSi7IXjlStLAWWvHlmueef4Esf3Qei4PniejykEhgChgyZ9DKkh8CkgkZ5EeAKEoOT7OFLi+BKkxNRF2RCExPEkRV9SkD6uKFeGMtblynEkIMDUfAyhoQnw8cthXQjKT1Npz86CkDv4b/rdd99l0qRJw92NHZpVq1aFSUcVCsV7KP3Z+ij9USg2pLW1lTFjxgx3N3Z4lP4oFBuixj5bH6U9Owc7vEdNTU0NACtXrgyrnuzMpFIpxowZw6pVq6isrPxI5wrCL5qbm7dQ7xSKHQulP4NR+qNQbBuam5t58803mTp16hZ533YElP4oFNsGNfYZjNIexYdlhzfUaOvc7JLJpBqoDKCysnKLPA8lwArFxlH6MzRKfxSKrYumaYwePRrYcu/bjoLSH4Vi66LGPkOjtEfxQdGGuwMKhUKhUCgUCoVCoVAoFIoyylCjUCgUCoVCoVAoFAqFQjFC2OENNbZtc9VVV2Hb9nB3ZUSgnodCse1Q79tg1PNQKLYd6n0bjHoeCsW2Qb1rg1HPQ/Fh2eGrPikUCoVCoVAoFAqFQqFQbC/s8B41CoVCoVAoFAqFQqFQKBTbC8pQo1AoFAqFQqFQKBQKhUIxQlCGGoVCoVAoFAqFQqFQKBSKEcIOb6i54YYbmDBhApFIhBkzZvDss88Od5e2ONdeey37778/FRUVNDQ0cMopp7B48eJBbaSUfPe736W5uZloNMoRRxzBwoULB7UpFotccskl1NXVEY/HOfnkk2ltbd2Wt6JQ7DDsDNoDSn8UipHIzqA/SnsUipGJ0p8ySn8UH5Ud2lBz9913c9lll/Gtb32LV155hUMPPZTZs2ezcuXK4e7aFuWZZ57hoosu4oUXXuCJJ57AdV2OOeYYstls2Oa6667jZz/7Gddffz3z5s2jqamJWbNmkU6nwzaXXXYZf/3rX7nrrrt47rnnyGQynHjiiXieNxy3pVBst+ws2gNKfxSKkcbOoj9KexSKkYfSH6U/ii2I3IE54IAD5Je+9KVB23bbbTd55ZVXDlOPtg0dHR0SkM8884yUUkrf92VTU5P80Y9+FLYpFAoymUzKm266SUopZV9fnzRNU951111hm9WrV0tN0+Sjjz66bW9AodjO2Vm1R0qlPwrFcLOz6o/SHoVi+FH6o/RHseXYYT1qSqUSL730Esccc8yg7ccccwzPP//8MPVq29Df3w9ATU0NAMuWLaO9vX3Qs7Btm8MPPzx8Fi+99BKO4wxq09zczLRp03b456VQbEl2Zu0BpT8KxXCyM+uP0h6FYnhR+qP0R7Fl2WENNV1dXXieR2Nj46DtjY2NtLe3D1Ovtj5SSr7yla9wyCGHMG3aNIDwft/vWbS3t2NZFtXV1Rtto1AoNs3Oqj2g9EehGG52Vv1R2qNQDD9Kf5T+KLYsxnB3YGsjhBj0XUq5wbYdiYsvvpjXXnuN5557boN9H+ZZ7OjPS6HYWuxs2gNKfxSKkcLOpj9KexSKkYPSn/dQ+qP4KOywHjV1dXXour6BRbKjo2MD6+aOwiWXXMKDDz7InDlzaGlpCbc3NTUBvO+zaGpqolQq0dvbu9E2CoVi0+yM2gNKfxSKkcDOqD9KexSKkYHSH6U/ii3LDmuosSyLGTNm8MQTTwza/sQTT3DwwQcPU6+2DlJKLr74Yu677z6eeuopJkyYMGj/hAkTaGpqGvQsSqUSzzzzTPgsZsyYgWmag9q0tbXxxhtv7HDPS6HYmuxM2gNKfxSKkcTOpD9KexSKkYXSn/dQ+qPYImzb3MXblrvuukuapilvueUW+eabb8rLLrtMxuNxuXz58uHu2hblggsukMlkUj799NOyra0t/ORyubDNj370I5lMJuV9990nX3/9dXnmmWfKUaNGyVQqFbb50pe+JFtaWuSTTz4pX375ZXnUUUfJvfbaS7quOxy3pVBst+ws2iOl0h+FYqSxs+iP0h6FYuSh9Efpj2LLsUMbaqSU8te//rUcN26ctCxL7rvvvmHZtB0JYMjPrbfeGrbxfV9eddVVsqmpSdq2LQ877DD5+uuvDzpPPp+XF198saypqZHRaFSeeOKJcuXKldv4bhSKHYOdQXukVPqjUIxEdgb9UdqjUIxMlP6UUfqj+KgIKaXcdv47CoVCoVAoFAqFQqFQKBSKjbHD5qhRKBQKhUKhUCgUCoVCodjeUIYahUKhUCgUCoVCoVAoFIoRgjLUKBQKhUKhUCgUCoVCoVCMEJShRqFQKBQKhUKhUCgUCoVihKAMNQqFQqFQKBQKhUKhUCgUIwRlqFEoFAqFQqFQKBQKhUKhGCEoQ41CoVAoFAqFQqFQKBQKxQhBGWoUCoVCoVAoFAqFQqFQKEYIylCjUCgUCoVCoVAoFAqFQjFCUIYahUKhUCgUCoVCoVAoFIoRgjLUKBQKhUKhUCgUCoVCoVCMEJShRqFQKBQKhUKhUCgUCoVihKAMNQqFQqFQKBQKhUKhUCgUIwRlqFEoFAqFQqFQKBQKhUKhGCEoQ41CoVAoFAqFQqFQKBQKxQhBGWoUCoVCoVAoFAqFQqFQKEYIylCjUCgUCoVCoVAoFAqFQjFC2CkMNf/7v/+LEIJp06Z94GPXrFnDd7/7XV599dUt37HN4OyzzyaRSGyRc33Ue/nuimmJLgABAABJREFUd7+LEIKurq4t0h+FQjGY7VmrFIqdlddee41zzz2XSZMmEY1GiUajTJ48mfPPP5/58+d/qHM+/fTTCCF4+umnN6u9EIKLL774Q13ro/Loo49ywgknUF9fj23bjBkzhrPOOos333xzixwTjD2CTywWo6WlhWOPPZZf/epXpNPprXl7H4oP+vtT7NwoDVEasqNyxBFHcMQRRwx3N7ZbdgpDze9//3sAFi5cyIsvvviBjl2zZg1XX331DjH52ZHuRaHYEVFapVBsX/zmN79hxowZvPjii1x66aU89NBD/P3vf+eyyy5j4cKF7L///ixduvQDn3ffffdl7ty57Lvvvluh11uOr3/968yePRvf97nhhht44oknuOqqq5g3bx777rsv99133xY5BsoTs7lz5/Loo4/yk5/8hLFjx/L1r3+dPfbYgwULFmztW1UotgpKQ5SGKBQbRe7gzJs3TwLyhBNOkID8f//v/23Wca7rykKhEB5/6623bt2OboSzzjpLxuPxLXKuj3ovV111lQRkZ2fnFumPQqF4j+1dqxSKnY3nnntOapomTzrpJFksFodsc88998jVq1dvtT5ks1kppZSAvOiii7badYbijjvukIC84IILNtiXyWTkjBkzZCwWk0uXLv1Ix7zf2OPVV1+VyWRSjh07VhYKhS10Zx+dOXPmSEDOmTNnuLuiGMEoDVEaMhS+78tcLjfc3dgiHH744fLwww8f7m5st+zwhpovfelLEpCvv/66PPjgg2VFRUUoSgHLli2TgPzxj38sv/e978nx48dLXdflI488IoENPlddddUW6Vs2m5VXXHGFHD9+vLRtW1ZXV8sZM2bIO+64I2wzlKHmueeek7W1tfKEE06QmUxGSinl22+/Lc8880xZX18vLcuSu+22m7z++uvDY4JBw/vdywsvvCBPPPFEWVNTI23blhMnTpSXXnppuD8QujfeeEOeccYZsrKyUjY0NMhzzjlH9vX1bZFnolDsrIxkrbr11lslIJ966in5pS99SdbW1sqamhp56qmnbjCAvOuuu+SsWbNkU1OTjEQicrfddpPf+MY3Qq0KCLTtnXfekbNnz5bxeFy2tLTIr3zlKyNmsKRQvB/HH3+8NE1Trlmz5gMdN2/ePHnSSSfJ6upqadu23HvvveXdd989qM1QE/3gnXnttdfkrFmzZCKRkAceeKCU8r1J1h//+Ee52267yWg0Kvfcc0/5t7/9bYPrP/vss/Koo46SiURCRqNRedBBB8mHHnpoUJvNGZ/ssccesrq6egOdCnj++eclIC+++OKPdMymFomuu+46CcjbbrttyP0flk2NqwIWLVokjz32WBmNRmVtba08//zz5YMPPrjB78/3ffmDH/xAjh07Vtq2LWfMmCEff/zxIScy/f394fM3TVM2NzfLSy+9dAMdveeee+QBBxwgKysrZTQalRMmTJDnnHPOFn0Oiq2H0pAdW0Puv/9+OX36dGlZlpwwYYL8xS9+EfZlIMGzv/HGG+Vuu+0mTdOUN954o5RSyu9+97vygAMOkNXV1bKiokLus88+8uabb5a+74fHf+ELX9joMznyyCPl1KlTw++boxm9vb3yK1/5ipwwYYK0LEvW19fL2bNny0WLFoVtNqdfUg5tqCkWi/J73/ue3HXXXaVlWbKurk6effbZsqOj44M94J2AHdpQk8vlZDKZlPvvv7+UUsqbb75ZAvIPf/jDoHbB5Gf06NHyyCOPlH/5y1/k448/LhcsWBBOUL797W/LuXPnyrlz58pVq1a973XHjRsnx40bt8n+nX/++TIWi8mf/exncs6cOfKhhx6SP/rRj+SvfvWrsM36hpq7775b2rYtL7jgAum6rpRSyoULF8pkMimnT58u//jHP8rHH39cXnHFFVLTNPnd735XSln+o/9+9/Loo49K0zTlnnvuKf/whz/Ip556Sv7+97+XZ5xxRnjtQFx23XVX+Z3vfEc+8cQT8mc/+5m0bVsNDBSKj8BI16rg3BMnTpSXXHKJfOyxx+TNN98sq6ur5ZFHHjmo7fe+9z3585//XP7973+XTz/9tLzpppvkhAkTNmh31llnScuy5O677y5/8pOfyCeffFJ+5zvfkUIIefXVV2/GU1Mohg/XdcMJygfhqaeekpZlyUMPPVTefffd8tFHH5Vnn332Bt5wG5tkmaYpx48fL6+99lr5j3/8Qz722GNSyvJAf/z48fKAAw6Q99xzj3z44YflEUccIQ3DGLSy/PTTT0vTNOWMGTPk3XffLe+//355zDHHSCGEvOuuu8J2mxqfrFmzRgLyP/7jP973fhsaGuSuu+76oY+RctOTrLfeeksC8txzz33f80pZfk6bs7q7OeMqKaVsb2+XDQ0NcvTo0fLWW2+VDz/8sPzsZz8rx44du8Hv75vf/KYE5HnnnScfffRR+bvf/U6OHTtWjho1alCfstms3HvvvWVdXZ382c9+Jp988kn5y1/+UiaTSXnUUUeFE6Hnn39eCiHkGWecIR9++GH51FNPyVtvvVV+7nOf2+T9KYYfpSE7toY88sgjUtM0ecQRR8i//vWv8s9//rOcOXOmHD9+/JCGmtGjR8s999xT3nHHHfKpp56Sb7zxhpRSyrPPPlvecsst8oknnpBPPPGE/N73viej0eigcdKCBQskIH/3u98NOu/ChQslIH/9619LKTdPM1KplNxjjz1kPB6X11xzjXzsscfkvffeKy+99FL51FNPhe02p19Sbmio8TxPHnfccTIej8urr75aPvHEE/Lmm2+Wo0ePllOnTt1hPIm2FDu0oeaPf/yjBORNN90kpZQynU7LRCIhDz300EHtgsnPpEmTZKlUGrTvw4QTTJo0SU6aNGmT7aZNmyZPOeWU920z0FDzox/9SOq6Ln/84x8PanPsscfKlpYW2d/fP2j7xRdfLCORiOzp6dnkvQR9zufzG+1LIHTXXXfdoO0XXnihjEQiG1hRFQrF5jHStSow1Fx44YWDtgerUG1tbUMe5/u+dBxHPvPMMxKQCxYsCPedddZZEpD33HPPoGOOP/74QQMshWIk0t7eLoFBixkBrutKx3HCz8C/jbvttpvcZ599pOM4g4458cQT5ahRo6TneVLKjU+yAPn73/9+g2sCsrGxUaZSqUF91DRNXnvtteG2Aw88UDY0NMh0Oj2ov9OmTZMtLS1hXzc1PnnhhRckIK+88sqNtpFSypkzZ8poNPqhj5Fy05OsfD4vATl79uz3Pa+UUuq6Lo866qhNttvccdU3vvENKYSQr7766qB2s2bNGvT76+npkbZtbzDBnDt37gYTv2uvvVZqmibnzZs3qO1f/vIXCciHH35YSinlT37yEwkoj+btFKUhO7aG7L///nLMmDGDQtrS6bSsra0d0lCTTCZDXdkYnudJx3HkNddcI2trawf9vzj88MPl3nvvPaj9BRdcICsrK8Pf1eZoxjXXXCMB+cQTT2zyHje3XwP17c4775SAvPfeewedIxjD3nDDDZt93Z2BHTqZ8C233EI0GuWMM84AIJFI8OlPf5pnn32Wd955Z4P2J598MqZpfuTrLlmyhCVLlmyy3QEHHMAjjzzClVdeydNPP00+nx+ynZSS888/n6uuuoo77riDr3/96+G+QqHAP/7xD0499VRisRiu64af448/nkKhwAsvvPC+/Xj77bdZunQp5557LpFIZJP9Pvnkkwd933PPPSkUCnR0dGzyWIVCsSEjXasGXncge+65JwArVqwIt7377rt85jOfoampCV3XMU2Tww8/HIBFixYNOl4IwUknnbTBOQeeT6HY3pgxYwamaYafn/70p0D5fXvrrbf47Gc/C7DB3+u2tjYWL168yfN/8pOfHHL7kUceSUVFRfi9sbGRhoaG8H3KZrO8+OKLfOpTnxpUTVLXdT73uc/R2toaXn9zxyebQkqJEGKrHiOl3Oy2ruvyj3/8433bfJBx1Zw5c9hjjz3Ya6+9Bp3jM5/5zKDvL7zwAsVikdNPP33Q9gMPPJDx48cP2vbQQw8xbdo09t5770HXPvbYYwdV8dl///0BOP3007nnnntYvXr1Zj8HxchGach7bI8aks1mmT9/PqeccgqWZYXbE4nEBmOegKOOOorq6uoNtj/11FMcffTRJJPJcEz1ne98h+7u7kHzrksvvZRXX32Vf/3rXwCkUiluv/12zjrrrPB3tTma8cgjjzBlyhSOPvro973Hze3X+jz00ENUVVVx0kknDfr/u/fee9PU1KQq5a3HDmuoWbJkCf/85z854YQTkFLS19dHX18fn/rUp4D3qqsMZNSoUdu0j//7v//LN77xDe6//36OPPJIampqOOWUUzaYmJVKJe6++2722GMPZs+ePWhfd3c3ruvyq1/9apCom6bJ8ccfD7DJctqdnZ0AtLS0bFa/a2trB323bRvgQ4uwQrEzsz1oVcCm3v1MJsOhhx7Kiy++yPe//32efvpp5s2bF1ZgWF8jYrHYBsZh27YpFApb6xYUii1CXV0d0Wh0SKPiHXfcwbx583jwwQcHbV+7di0AX/3qVzf4e33hhRcCm/57HYvFqKysHHLf+u8nlN+n4L3r7e1FSjmkfjQ3NwPlMQVsenwyduxYAJYtW/a+/V2xYgVjxoz50MdsDsHvILiHj8oHGVd1d3fT1NS0wTnW3xY818bGxg3arr9t7dq1vPbaaxtcu6KiAilleO3DDjuM+++/H9d1+fznP09LSwvTpk3jzjvv/OgPQbHVURqy42pI8Jw2530PGOqZ/vvf/+aYY44B4He/+x3/+te/mDdvHt/61reAwWOqT3ziE4wfP55f//rXAPzhD38gm81y0UUXhW02RzM6Ozs3OR/8IP1an7Vr19LX14dlWRv8H25vb9/k/9+dDWO4O7C1+P3vf4+Ukr/85S/85S9/2WD/bbfdxve//310XQ+3fVCL7UclHo9z9dVXc/XVV7N27drQ8nzSSSfx1ltvhe1s22bOnDkce+yxHH300Tz66KOh1bW6ujq0ZA98GQcyYcKE9+1HfX09AK2trVvozhQKxeayPWjV5vLUU0+xZs0ann766dCLBqCvr2/4OqVQbAV0Xeeoo47i8ccfp62tbdAge+rUqQAsX7580DF1dXUAfPOb3+S0004b8ry77rrr+173o7z71dXVaJpGW1vbBvvWrFkzqI+bGp+MGjWKPfbYg8cff5xcLkcsFtvgnHPnzmXt2rV8+tOfBvhQx2wOwWT2iCOO2Oxj3o8PMq6qra2lvb19g/3rbwsmwMFEe/22A71qggn8UEb6YH/AJz7xCT7xiU9QLBZ54YUXuPbaa/nMZz7D+PHjOeigg97/RhXDitKQHVtDhBAbfd+HYqjfy1133YVpmjz00EODFrXuv//+DdpqmsZFF13Ef/3Xf/HTn/6UG264gY9//OMb/H/YlGbU19dvcj74Qfq1PnV1ddTW1vLoo48OuX+gR5diB/Wo8TyP2267jUmTJjFnzpwNPldccQVtbW088sgjmzzXtvIWaWxs5Oyzz+bMM89k8eLF5HK5Qfv32WcfnnnmGVpbWzniiCNCt7JYLMaRRx7JK6+8wp577sl+++23wScYIGzsXqZMmcKkSZP4/e9/T7FY3Kr3qVAo3mN71Kr3IxhoBH0J+M1vfjMc3VEotirf/OY38TyPL33pSziOs8n2u+66K5MnT2bBggVD/q3eb7/9tuogNR6PM3PmTO67775BOuH7Pv/3f/9HS0sLU6ZM2eC4jY1PvvWtb9Hb28tXv/rVDY7JZrN8+ctfJhaLcfnll4fbP8wx78eCBQv44Q9/yPjx4zcIK/qwfJBx1ZFHHsnChQtZsGDBoHPccccdg77PnDkT27a5++67B21/4YUXNvCoOPHEE1m6dCm1tbVDXnv9UCkoa+7hhx/Oj3/8YwBeeeWVj/oYFNsApSE7pobE43H2228/7r//fkqlUrg9k8nw0EMPbfZ5hBAYhjFooS6fz3P77bcP2f6LX/wilmXx2c9+lsWLF3PxxRdv9Nwb04zZs2fz9ttv89RTT22xfg3kxBNPpLu7G8/zhvz/uylD487GDulR88gjj7BmzRp+/OMfD2kdnTZtGtdffz233HILJ5544vuea9KkSUSjUf70pz+x++67k0gkaG5ufl/3uF122QVgk7kfZs6cyYknnsiee+5JdXU1ixYt4vbbb+eggw4a0kq8++678+yzz3L00Udz2GGH8eSTT9LS0sIvf/lLDjnkEA499FAuuOACxo8fTzqdZsmSJfztb38LX7b3u5df//rXnHTSSRx44IFcfvnljB07lpUrV/LYY4/xpz/96X3vQ6FQfDi2F63aXA4++GCqq6v50pe+xFVXXYVpmvzpT3/aYBKjUOwIfOxjH+PXv/41l1xyCfvuuy/nnXcee+yxR7jifO+99wIMCjP4zW9+w+zZszn22GM5++yzGT16ND09PSxatIiXX36ZP//5z1u1z9deey2zZs3iyCOP5Ktf/SqWZXHDDTfwxhtvcOedd4bG1s0Zn5x55pm8/PLL/OQnP2H58uV84QtfoLGxkcWLF/Pzn/+cpUuXcscddzBx4sTw+h/mmICXXnqJZDKJ4zisWbOGf/zjH9x+++00NDTwt7/9bVAuiI1hGAaHH374JnNMbO646rLLLuP3v/89J5xwAt///vdpbGzkT3/60yCvaICamhq+8pWvcO2111JdXc2pp55Ka2srV199NaNGjULT3ls3veyyy7j33ns57LDDuPzyy9lzzz3xfZ+VK1fy+OOPc8UVVzBz5ky+853v0Nraysc//nFaWlro6+vjl7/85aC8YIqRjdKQHVdDrrnmGk444QSOPfZYLr30UjzP43/+539IJBL09PRs1rM+4YQT+NnPfsZnPvMZzjvvPLq7u/nJT36ywWJYQFVVFZ///Oe58cYbGTdu3Ab5cDZHMy677DLuvvtuPvGJT3DllVdywAEHkM/neeaZZzjxxBM58sgjP3C/BnLGGWfwpz/9ieOPP55LL72UAw44ANM0aW1tZc6cOXziE5/g1FNP3azns1MwDAmMtzqnnHKKtCzrfeuxn3HGGdIwDNne3h5WUvmf//mfIdveeeedYV17QF511VXve/3NLXl75ZVXyv32209WV1dL27blxIkT5eWXXy67urrCNuuX55ZSytbWVrnbbrvJ8ePHhyXzli1bJr/whS/I0aNHS9M0ZX19vTz44IPl97///c2+l7lz58rZs2fLZDIpbduWkyZNkpdffnm4f2NZ04OKMMuWLdvkPSsUivfYXrQqeMfXr0IyVFWJ559/Xh500EEyFovJ+vp6+cUvflG+/PLLG1SkGkrbpHxPZxSK7YVXX31VnnPOOXLChAnStm0ZiUTkLrvsIj//+c/Lf/zjHxu0X7BggTz99NNlQ0ODNE1TNjU1yaOOOiqs+iblxiu2DPXOSFmuGnLRRRdtsH3cuHHyrLPOGrTt2WeflUcddZSMx+MyGo3KAw88UP7tb38b1GZzxicBDz/8sDz++ONlbW2tNE1Tjh49Wn7uc5+TCxcu3Ogz+yDHBJoQfGzblqNGjZLHHHOM/OUvfzmoSs2mYDNL60q5+eOqN998U86aNUtGIhFZU1Mjzz33XPnAAw9s8PvzfV9+//vfly0tLdKyLLnnnnvKhx56SO61117y1FNPHXTOTCYjv/3tb8tdd91VWpYVlgq//PLLZXt7u5RSyoceekjOnj1bjh49WlqWJRsaGuTxxx8vn3322c1+HoqRgdKQHVND/vrXv8rp06dLy7Lk2LFj5Y9+9CP55S9/WVZXV29wzqGevZRS/v73v5e77rpr+AyvvfZaecstt2x03vX0009LQP7oRz/aYN/makZvb6+89NJL5dixY6VpmrKhoUGecMIJ8q233vrA/Vq/6pOUUjqOI3/yk5/IvfbaS0YiEZlIJORuu+0mzz//fPnOO+9s4qnuXAgpP0Cqa4VCoVAoFAqFQvGRWbZsGbvtthtXXXUV//Vf/zXc3VEoFFsRx3HYe++9GT16NI8//vhWucYVV1zBjTfeyKpVq4ZMDq3YvtghQ58UCoVCoVAoFIqRwoIFC7jzzjs5+OCDqaysZPHixVx33XVUVlZy7rnnDnf3FArFFubcc89l1qxZjBo1ivb2dm666SYWLVrEL3/5yy1+rRdeeIG3336bG264gfPPP18ZaXYQlKFGoVAoFAqFQqHYisTjcebPn88tt9xCX18fyWSSI444gh/84AcbLdmrUCi2X9LpNF/96lfp7OzENE323XdfHn74YY4++ugtfq0g98+JJ57I97///S1+fsXwoEKfFAqFQqFQKBQKhUKhUChGCNtFee4bbriBCRMmEIlEmDFjBs8+++xwd0mhUOwkKP1RKBTDhdIfhUIxHCjtUSiGnxFvqLn77ru57LLL+Na3vsUrr7zCoYceyuzZs1m5cuVwd02hUOzgKP1RKBTDhdIfhUIxHCjtUShGBiM+9GnmzJnsu+++3HjjjeG23XffnVNOOYVrr712GHumUCh2dJT+KBSK4ULpj0KhGA6U9igUI4MR7VFTKpV46aWXOOaYYwZtP+aYY3j++eeHqVcKhWJnQOmPQqEYLpT+KBSK4UBpj0IxchjRVZ+6urrwPG+DbPiNjY20t7cPeUyxWKRYLIbffd+np6eH2tpahBBbtb87G1JK0uk0zc3NaNqItvkpFB8YpT8jG6U/ih2ZD6o/Snu2LUp/FDsqauwzslHas3Mxog01Aeu/5FLKjb741157LVdfffW26JZiHatWraKlpWW4u6FQbBWU/oxslP4odmQ2V3+U9gwPSn8UOypq7DOyUdqzczCiDTV1dXXour6BBbejo2MDS2/AN7/5Tb7yla+E3/v7+xk7diyrVq2isrLyfa+Xz2d5+LFbEbqD53uYmk5l33Liq+4CQ0fb5yqspn2J2VdjGivIFy9nxdLRNNRkiZbeIltjoWvT6W3X6FzwCKtfTVOaPA4jHsU0DAzDQNd1dENH00ATGpqmoekCITQ0TeA6HsVinorKSkAgEOWfQoQCWbagDt4mhAABmiZAbrhPCIGUkt7ebmpr65GsE9x1GYoCq6wQAtO2+NhBB2NZ1vs+r1QqxZgxY6ioqHjfdgrF9ojSH6U/CsVw8UH156Noz46O7/u4rht+X7JkCV1dXSxfvpwgTWM6nWb//fdnwoQJLFu2DCkllmUxbdo0ent7efHFFznhhBN47rnnaGpqYtSoUUp/FDsk23rssyOyfvpXz/NwHCc0dpVKJTKZDIVCAV3XsW2bWCyGrus4joOmaRiGgaZp9Pf38/LLL7NgwQJaWlqYOXMm+++/v9KenYQRbaixLIsZM2bwxBNPcOqpp4bbn3jiCT7xiU8MeYxt29i2vcH2ysrKTYqFafqgv44viwh0hIhjNe0NRgl0C0evopQu4BQ/ie+n8OUozKhJqhgn60+BVDWaMDFsQf1ex1M7TWJY5rqJkYau64MnNuvQdR0oDyaCCU3wM/i3EAJN08LtQzFwQiSlDNsH15BS0tLSEv5b0zR83x/iOZgkk0lM03zf5zXwugrFjobSH6U/CsVw8UH156Noz46M53ncf//9tLa2UlVVBZQnUYcccgizZ88OjcTt7e289NJLvPTSS0ybNq1sNDZNurq6MAyDZDJJdXU1hxxyCP/4xz/YddddAaU/ih2PbT322REJxkme51EoFCiVSkgpw++ZTAbXdTEMA8dxEEKg6zqRSASAQqEQtk+n05imGRpuhhrHKXZcRrShBuArX/kKn/vc59hvv/046KCD+O1vf8vKlSv50pe+tMWvJbQItZVnUCwWEaI8icj6Alk9Ciklfl4iCml0bRS+bAJA1108TyBEEq0oEcIDfIRhYBoCob03cfF9f9DKcUCwP/j3+gzcv7EXc/3twfdgohVcO5isrf8ZeF318isUZZT+KP1RKIaLbak/OyKe5/H0008zffp0TjnllNAoPRSjRo3ixBNPHHJfJpPh/vvv54QTTthaXVUoRhRKez44A8cxgRdfNpsln8+H46BUKhWOqRzHCfcZhkGhUMB1XRzHwfO88JyFQgHf9zEMA9M0VV6anYwRb6j5j//4D7q7u7nmmmtoa2tj2rRpPPzww4wbN27LX0wCsuy6H34X4PtBXOa6Cc+ASU3wMpUHABq+X/6u4eMLgfAHrzIPXLUGNljBDruy3v6B2weucgdtBk6Mgp8Dtw91zqHiTdc/RqHYmVH6o/RHoRgutqn+7EAUi0XeeecdNE2jtbWVo4466iPpSjweZ7/99qOrq2uzPf0Uiu0ZpT2bz/pjpCDMKZ/Pk8vlKBaL4SJVYIQJDDnFYhHTNEOPG8MwwrBv13XDRa5kMsno0aOxbTv0ulHsHIx4Qw3AhRdeyIUXXrhNrrW+e38woRi4MjxwgjFw0uG6Lrquh9bOoSYmA78P/BmEAKx/7WDbwO9DMXC1fGPHD/z3xgYtA/upUCiU/ij9USiGj22pP9sz2WyWF198EYC99tqLUaNGYRjlIe77GWk8z2PVqlW8/fbb1NbWsu+++w5qv2LFCsaMGcOhhx6KEIL+/v6teyMKxQhBac9gNjY28X0f3/dxHIdsNovneZimSaFQIJ/PUygUsCwLy7LWeUyLQeMv13Xp7u7GMAwikUg4DvI8LzTqaJpGS0sL+Xx+yBAzxY7LdmGo2ZYMdClbf+V5qJ/rT3iGChPwPC/MyxAcM5D1V6HXX2keKufDULkiBp5n4H0M1e79Vq7VirZCMTwo/VH6o1AoNk6gJ21tbfT19fHuu+/S3d2NruvU19ez++67k0wmMQxjAy1aH8/z+Nvf/kYul+Pggw/mzjvvZO3atcyePTvUodWrV2OaJs3Nzdvk/hQKxcgmMMo4jkOpVKJYLFIqlcjlcmSzWerq6tA0LfSYyefz6LpOOp2mWCwSj8eB8nivUCjQ19dHNpulpqYm9JipqKjAdV16enrCfDUAVVVVgxKjK3Z8lKFmPTzPGzTBEUIMWikOLJtByIGmaYMmNuu79A/8d3Ds+hOXIBwhaD/wJ7wXDhB8Auvt+pOh9SdXQ30fOOEauJIeXGeo5J4KhWLboPRH6Y9CoRiaUqnEG2+8weuvv05dXR1VVVXsu+++1NbWhlXtoKydfX196LpOIpHY6Pnmz5/PhAkTmD59Opqmcfnll/Pzn/+cWbNmhSFOBx544AZegcrzT6HYsRnq/XYch1QqRX9/P77v43kerusiZTnfTLFYJBKJYBgG3d3dSCnJ5XLk83l83ycWixGLxdA0jWKxSDqdpqenh1KphOu6ZDIZdF2nqqqKVCoV5qaBcnJhKOtPNpvdps9CMbwoQ80AhsqXAAyqTjJUMk4YvEq8/go1DD1JWj83RDBRGTiJGWq1fP1J1fo5IobKGbH+pGpjK/FqNVuhGB6U/ij9USgUG+L7PosWLeJf//oXM2bM4MwzzwzzOKyP53nceuutFAoF+vv7OeWUU5g6deqQ2tLf309TU1OoT5FIhEMPPZRMJkN1dTWwYd6sysrKMLxBoVDseAy1mJVKpVizZg2pVArP80KvGNd1Qw8X13XRNI0nn3ySzs5OIpFIaEQeM2YMsVgsNNx4nkckEgnD1Q3DQAhBNBqlv78/NOSUSiUSiURYOcq27fDaip0DZahZj6HyOwz1c/2V52CVO5hsDAw1GOp8mqZtNDxg4KQlWFVfP+Rg/VX1oSZPwURrqFX0gIETuPXvXaFQbFuU/ij9USgUZUqlEvPnz+cf//gH++67L6effjrJZJK33347LI+9PsuXL6eyspJzzjkHKSXXXXcdzc3NoeElQErJnDlzmDhxYvi9UChw0EEHMWfOHCZNmsTLL7+M67rE43GOO+64sDyu0iiFYsenUCjQ29sber6kUikcx6GiomJQOJKUklKphGVZrFy5krlz59LV1UUsFmPixIlMmDAB0zTD5MD19fV0dHSEIVFBYmHTNEmn06EhuK+vj1wuh2VZVFdXh947PT09w/xkFNsSZagZAiEExWIRKE8kCoUCQpTDDorFchyi5/mYZvmPtuM4WJa1LulT4BJbnuhYlo1hGOGkJnDPHZj3ITg22BdYZXVdD19ix3HCf5fPa4UTsyDhVJA4T0pJPB5H0zRM09xgkhf0I5h0BW3VirZCMfwo/VEoFDszUkrefvtt/vSnPzF58mQuuugiampqgLImPvfccxs11ADU1taGht+pU6fiui65XI7HH3+cY489lmg0CsDXvvY1HnvsMcaPH8/q1atZvnw5hx12GIcccgjXXnsts2bNYq+99uLOO++kVCqFGqdQKHZMgrFRf38/a9asobe3l0wmQ6FQwHGccAwUjUYRQmDbdpivBsrhUUG4ZSaTAcpV49LpNKlUiqamJrLZLGvXriWTyVAsFkPDjK7rZDIZSqUS3d3drFixgiVLlpBMJjn66KMRQhCJRMIwKMXOgfqrsx5BmEF7exvLlr9LJp0FBLZdzuCdyWTQdB1DN7Fti0jExrKsdZMOAEGpVELTBIahE4slBq1CBy+353nhqnawYh1MkqSU4UQmEokghAiTUrmuS6lUIh6P4/t+WKYt2B7s6+vrCwcWQWzkwBCDoAScrus0NDRQWVk5nI9doVCg9EehUCgWL17M7373O77xjW9QX1//gQy4LS0t3HzzzdTU1DBu3Dg6OzupqqrCMAw+/vGPhzkeHn74YVzX5cEHH+TUU0/lkUce4dhjjw117z//8z9566236O/vD49XKBQ7LkEewN7eXpYtW0ZfXx/FYpFMJoPneWHOmIHVNYPvwYJYMpmkubmZ/v5+kskkdXV1oTGnWCzieR5tbW2kUimy2WyYbLiiooLKykqEEGQyGXK5XLhQt/vuu5PL5cKFL1Wee+dC/eVZj8CVzfN8MunMulJqGo5TAqCiopK6hgYa6uqRSHwpcYolyivY5VVhxy23FZSzfkcikbCcmmVZmKYZurMF1wwmSb7vY5omlmXhOE4YuwjlVWjTNMMSbsHPgGCSZ1kWvu+H4iKlxDRNKioqQlHp7u6mVCrh+344KVMoFMOL0h+FQrGzIqVk8eLF3HzzzXzjG9+goaFhyHZBroihDLy2bXP55Zfz4osv0tfXx5gxY8LEwBUVFQD84he/YM8992SfffZhr732oq2tjYkTJzJ+/HjS6TRSSiZOnMjy5ct5/fXXmTVr1kZz4igUiu2fYBEpk8mwbNkyurq6yOfz5PP5MLSpVCqFnsaWZYW5YorFYhgW6fs+e+yxB++88w6pVIqampqw5HapVKKvr4/W1lb+/e9/h17HkUiEuro6TNPE930SiQSO4xCPx2lqagq/B97Oymi8c6F+20MQuPZPmDCR5ctXkE6nMEyTeDxOPB6nuXkUyYpKSiWH7p5yWcj+/v5wklUo5ElUVBCPRYhEIkSj0UGTEV3XwwFGkKMhmMBYlhVOnIQQGIYRxi76vh9afAcmCYX3QhqCUIhg9bscDlEOXYhGo+FkKRh0uK6L4zgq5lqhGCEo/VEoFDsjb7/99iBPmqEQQjB9+vQwPHQoGhoaOOmkk4bUlcD7b9ddd6WyspK2tjYeeOABLrroIoQQOI7D3/72N8466yxmzZrFihUryGazG+S4USgUOwaBkaavr4+lS5fS2dkZLiZpmoZt2+GYyPM8crkcNTU1YXnuwNPFcZwwhGns2LHkcjmqq6uJRCJh+HiQlHjhwoXYts3kyZNpaGggkUiE3juu66LrOvX19RSLxTC5cCQSwfO8cOFNsXOgDDXrEbia6bpOsViirq6OmppqPOkjpKC2rhbDMHFch2wui6D84g5cbQlWmR3Hobq6OnTxD6ygnueFVtp4PB6WdgvCDwzDCCc2QQ6IYKUbyqKSz+eBcrIry7LCawR5HoLScQOvG0ygisXioFwTwf6ByUUVCsW2R+mPQqHYGent7eUPf/jD+3rSAGF+iPnz53Pccce9rzfenDlzOPzwwxFChBOqm2++mXg8zoIFC7juuusYPXo0n/3sZ9E0jVKpxI033si4ceOYM2cO++23H5qm8cc//pFvfOMb6LpONpslGo0qvVIotnMGGnJzuRyrV68Oc9LAe2FNQVUn27YH5ZIxDINisYht2+G4SdM0crkcmUyGuro6YrFYOO5xHIeenp4wOXk+n2fq1Knkcjls26azs5N0Oo3neTiOQ2VlJRUVFWSz2bAvuq6TTCaH5XkphgdlqFkPIQSmaYYxgp7nAALX9ZACLNtGFxqaplNRkUAgwlXkYHU4yP4d5GFYv2RuMOkZWIHFtm183w9XqAPrrWma4UsZXCdwl5NSksvlwhCCwC3ONM3wE5x7oFuf4zjk83lisdiQSTzVAEShGB6U/ij9USh2NgqFAjfffDMXX3zx+xppAoJkv0cccQTRaDRM5hmLxQa1W7FiBVJK7rnnHrLZLGeccQae53HBBRcghGCPPfagp6eH+vp6WltbWb16NWPHjuXEE09kzpw5PPbYY5x22mkkEgn6+vqora0llUqRSCSUTikU2ynre9rlcjlWrVpFZ2dnWNmpVCqFSch1XQ/z+wVeNYVCgaqqqtDbOFhgK5VKYbXMwBu5p6cnNNZks1kymQyWZVFRURHmpgk8mQuFAtlsFk3T6O3tpaGhgUgkEnrZmKapcvrtZKi/NEOgaVo4iSiVXPL5Ap7nYeoGxXwB27axTAvP88Mytd3d3WSz2XDSUiqVBmXmDiqmDMzJEFhNB8YpWpaFbdtUVFQQi8WIRCLoul6+pmURi8XCle4g8WewPZFIYFlWODmqrKwkkUhg2zamaYbiYZom0Wg0PD6Y5AWTNBWGoFAMH0p/lP4oFDs6Ukqy2SzvvPMOP/jBD9hnn31obm7e5DFB7oajjz6aefPmAXDPPffwzDPPbNA+8B5cvnw5Z599NpZlhRVWhBDU1NSwePFiLMtizJgxLFmyhE996lNUVVUxe/ZsCoUCmqZxyCGHsGbNGqSUzJ8/n7333ntrPBKFQrEVCRaMgn87jkN/fz+tra20t7eTSqUolcqVNYOxkWVZ4Tgm8Bx2HId0Ok0+n8cwjDD/DBAaUwIDTrCIVSgUQu/hgQmK8/k8NTU1YUhmR0cH6XQ6vE4mkyEWi4UezfF4XIVh7mQoj5r1CFZ3gzAATRPouokQ7yXKDK2ljks2m6VQKITucMGKdSQSCRNAGYZBqVRCSh/P87FtO3ypo9FouPIcxEMGYQHB9mBbkCMi6GdQPSWo6DJwlTwQlKBPQRKsgS56gdV24HmC/isUim2P0h+lPwrFjozv+yxYsIDnn3+e/v5+GhoaOProoznssMM2mVR80aJFzJ07ly984Qsccsgh3H777Rx22GFIKZkxY8YG7evq6pg3bx7HHntsmEOruro6DINanyDkE8phDqeccgoA++67L1DWvddee40jjzxS6ZRCsR0RjF183yedTofevdlslnw+TzabJZ1Oh4tdQft4PD5oLBMYXoJ2wSKYlDIs4R14RQch5UEIeTAeSyQSZLPZ0JgTjLOKxSK6rpPP58nlcqGhKBaLhdcZO3ZsmBRdsXOgDDXrEUySYrEYrusSj8fXraqUQwGCnAxSSlKpFJlMZkASz/IKdvAiBgmfXNclGo2Sz2dZ+OZCdpk0hUQiQTAmcV03nBgJIcKSuUFuCHhPZHRdB6BUKoV9DVa3B06qgn3Bv4PjXdcN81M4jhNO6oL9qvqKQjF8KP1R+qNQ7IhIKeno6OCvf/0rhUKBM888k7q6OjzPo729fZPv/pIlSxg7dix//vOf6ezspLa2NjRCNzU1kc1mNzjm5JNP5tlnn6WioiJM9hlMfNZHCMHs2bPD757nhUabgHfffZcDDzyQRCJBKpX6kE9CoVBsKwYuLpVKJfr7++nq6lpXUbM8pspkMqE3TTabJZFIUCgUqKiowPO8cHFsYKXMWCwWVrUMjDDBNYJxWuB1U1VVFXrIFIvF0FAcLJAVCoVwzBWU8g68kAfqTCKRYOLEieE4TLFzoAw1QxBMOJLJJJ2dnUSj0XDCks1maW1txbbtMHYxCCcI4guD5E/FYjFM9FlZWUmhoLN0ybt0rO1k/PjxTJw4AV0vryQH1wgss4GLXLDKHKywB9+DyVShUAi3Dcw+7nle6H7neV44QQomT4FrnWEY4aBFTZIUiuFH6Y9CodhRkFLS2dnJgw8+SFtbG8cffzx77bVX6EX36KOPUiwWGTt27EbPUSwWeeKJJ/jkJz/JySefzIMPPsi5555LXV0dHR0dHHDAATzyyCOMHz9+kI4IIZg4cSLz5s2jubmZ1tbW0Mg8FK+99hp///vfQz0tFotMnjyZww8/HN/3mTdvHieddNIWf0YKhWLLMFTodLFYpKenZ5AxJvB2cV2XdDo9KM+MlDJc6Aq8foOxTSQSCcc4mUwmHDvZth2GShYKhfD4UqnE8uXLaWlpGbQoFhwTiUTCRMP5fJ5FixaRz+dJpVJEo1F23313DMPANE3GjRtHfX39oLB2xY6PMtRsBNM0icVixONxstlsmGwznU4jpSQSiWDbdvjiVVVVEY/HwyRT2Ww2dKnzfZ9sNktDQwOzZx9PT08PS5a8w9Kl77DHHtPYY49poXV14Ar0wCzfwcQI3guPCGIog1VwANu2ABG64QWTuaBdYPU1DCN0qwuECNRkSaEYCSj9USgU2zNBudu33nqLl156iY997GPsueee4WqwlJJHHnmE119/ncsvv/x9z1UqlaiurqahoYG6ujoefvhh+vr62Hvvvbnvvvu48MIL2WWXXXj55ZfDEKggxGrBggUccsgh/OhHP+K0007j+OOPD88rhGDlypV4nkdPTw8vvPACV155ZZjHq1gs8vOf/zzU4oaGhiG9cRQKxfCyvoHG87zQKNPT00NfXx/wnudxYFTJ5/Nh+etgvAOE46HAmyYosKBp2qA8f4GnTT6fD3PRBOOy4DrpdJrOzk6SyWToYdPf309fXx/JZJJUKkVHRwdz585l8eLFYSLjSCQSlvhuaWlh0qRJWJZFsVjcdg9WMewoQ816BJOUIP4wSHwZJNAcPXo0hmGEL2qwCl1ZWUksFsP3/bCsWm9vb3ieYqlEd3c3DQ0NNDU1MWXKFDo6Onj55Zfo6enmoIM+hu+/t3KdSCTCCU6pVFqXY6IsRNFoFF3XwzwQ2Ww27LMQIuxfkKU8iMMEwmotwbmC8INglXz9CiwKhWLbofRH6Y9CsT3jeR6vv/46Tz/9NLlcjpNPPpnzzz8/zAnT39/P22+/zdy5c3Fdl8suuyxcfd4cNE1jt912Y+3atUyePJl0Os3q1auZOnUq9957LzNmzCCbzfK73/2OaDTKOeecg2maHHfccdx3331ceeWV4bmCxJzBxGrXXXclEomE+2OxGF/72tdwHIfrr7+eiy66SOmTQjHCGGik8TyPdDpNKpUKPWgKhUIYcu26bpgn773qml6YAxAIx1aBLgQLZZFIJKx+aRhG6FVTUVERluoWQoQJiYPxWDQaZdWqVYPyWiUSCTo6Omhra2Ps2LGUSiXa29vp7+8PF7QKhQJNTU2kUiksy6K2tnabP1vF8KMMNesxVN6FeDxOLBajpqYGYFDyp4DgBQ5c/uPxOJWVlViWRaFYwHFdSsUSS5cuDXNGRCIR9t//AFauXMmcOU+z1157hZOkVatWUVVVNSimOrDwuq5Lb29vGEoQxEkmEomwhJvjOGEy0UCogomfruuDYiuz2SxVVVWq3KRCMcwo/VEoFNsr6XSaX/7ylzQ1NfGZz3yGurq6Dd7rwPX/xBNPZMKECR/K8DFz5kx+9rOf8eUvf5lTTz2Vv//97zQ0NOB5HgAPP/wwJ554IpMmTQrPf/DBB6NpGtdeey3f+MY3wrw1++yzD/Pnz+eggw4KtW1gVRXLsvjXv/7FvvvuSyKR+AhPR6FQbEkCA01gaCkWi6TTadauXRt69Ab7gtCmUqlEJBIJPV8CT5rAQBssSgW6ESwgOY5DRUUFxWJxUPhTsAhlWVZYNEFKSTqdDvvpOA4AK1euDKtjBuFUXV1d4TivpaWF1tbWUDMrKipIJpMANDQ0fCCDtmLHQRlq1iN4qYOEnGGiKNcJy64F5WQHikQ+nw/DBwKLatkCa7Ny5XL6+vvRNZ2KikqmTJlCNBoNy9bG43Eee+wx1q5tX1emrbwinslkaGpqGiQIvb292LZNdXU11dXVdHd3h7GM2Ww2dN2rr68PV7wtyyKXy2FZVmjRjUQiodseMOinKo+rUAwPSn+U/igU2xu+7/PGG2/w3HPPcdJJJ7Hnnntu1ABTWVn5gctbRyIR0uk03d3d1NbW0tLSwuWXX84DDzzARRddRCqVYvHixZx++ukA9PT0kEwmwz4EunPggQcSi8V44IEHGD16NJZlUVVVxQMPPMB+++3H9OnTufPOO/nSl74UTpba29t59NFH+e///u8P+XQUCsWWZOAYwXVdcrkcuVyOnp6eMOQpMMoEFS6D0CTHcUJvFyFEaHyVUpLL5UJvmoHluaWUWJa1wbYgB997461ImBcQykafINFw0NdMJoPruuG4qFAosGrVKsaPH8/48eNZu3YtHR0dGIZBVVUVhmGwxx57MHXq1NBLWbFzoQw1GyGYIHmeh+u52NFImHgqWNEOkmcGCT2D8rbrzkBHRwcvvTSfQqGc5TsWi+K6HmvWrGHs2LHYth1OViorK3nhhRdwXQfLspk5cybTp+9JsVgkn8+zatUqWltbw1CBxsZGmpubGT26Gdu2Wbt2bZj8LrD41tTUhEnxamtr6ezspFgsYllWKDpBQitValKhGDko/VEoFCOdQqHAsmXLeOihh9hll1343Oc+t1VKx5qmyWGHHcYTTzzBpz71KQzDoKWlhdraWjo6Othvv/3Yb7/9wknMEUccwb333stpp51GbW0tDzzwAAcffDBNTU3stddeTJ8+nXfffZdSqURDQwN77LEH//znPzn44IOZO3cuN910U+jB+Oqrr3LeeecRj8e3+H0pFIrNZ6CBxnGc0BiTyWTo7OwMF7oymUxomAnGUkHCXiAsZBB41FiWFY63TNMMxy0DPZyDEO9YLFb2VF6X62agISYI/fZ9n3g8HoZIBZ7F2WyWWCw2yNOnVCqFYVnjx48nnU6HY73m5mb2339/DjzwQMaOHauMNDspylCzHsFEZ6AltFQqIX1Jn2UTi8XCRJiJRIJisRhmAx9YBm71mtXMn/dvRo1qpr+/HCupaQbpdJoVK1aQy+VoaGigqqoK13XDl1DXNXbZZTKjRo0KXfN6e3vp6ekJk4eapkl/fz/ZbJbu7i722mtPqqurKBbLlmMhBPl8np6eHmpraxFCEI1GicViFIvFsJ8Dy8AF7noDk4YqFIpti9IfpT8KxUhHSsnChQt56qmnmDJlCp/85CcZP358GB65atUqxo0bt0WvOWXKFF599VUWLVrEtGnTEEIwc+ZM5s6dy1FHHUVlZeWgtuUcXC9z1FFHUSgU+Pvf/87s2bNpbm5G0zR22WWXsP1pp53GTTfdxIwZMzjvvPPI5XLhvhkzZrxvpSiFQrH1WN/DNvCgKRaLdHZ2hmOkdDodVpMMQp0Gls0O8ulB2bgShHMH45ogNDs4LsgDaJomhUKBSCRCPp8nGo2Sy+XCcUswZguqWwbnMAyDeDxOLpdD07TQ47lYLIZ5bgZ6/SQSCZqbm2lqamLSpEn09/eH3oNBzkClQTsnylCzHsFkISiZFvyB1jSNTCYzKOllMpkkGo2GCaeCbOGpVIq3Fr3FlCm7sXr1avL5PJFIJMzNoGkavb29pNNpKioqqK6uxrIsJk2aFA42enp6yOfz4QSmpqYmzP4dxDQ6jkN/f4rXX3+DqVP3oFTqpr6+Piw7F8RMBivwtm2HrnRBjoggt8XAyi0q9EChGB6U/ij9UShGMlJK3nzzTW677TauvPLKQQkufd/nrrvuolQqcfbZZ2/R6wohOPnkk/nBD37AxIkTicfjTJw4kfr6em688UYuvfTSMIeDEIK+vj523XVXLMvizDPPpL29nUceeYTPfvazG+R6CJJ2VldXh+EQwaTIMAzuvfdedt999y16PwqFYuMMHAcEOWLy+Xy4gLR27VpSqVSYNy+bzYaGlXQ6TX9/f1hmO/BcCTx3g/xUQShSYFgJEgIHRpXA6yUYZ5mmGe4PQqUqKyvJZrOhl0xgLAo8dIIwqcB41NfXF4ZdBf2KRqNUVFSEnj51dXUYhkEkEgmrVgWGcMXOhzLUvA+u64bWzmBiksvlQte2/v5+bNsmmUxSVVUVTmreeustJk2axOrVqymVSlRUVIQxicHLH4vFQne89vZ2hBDEYjFKpVL4YsN7VVJM06SyshLf96mqqqJYLIYve3FdktCqqipSqRTV1dXhCz+w1NzABKS6roer9irsQKEYeSj9USgUI4lCocA///lPnnzyyQ2MNADz58+nr6+P8847b6tcPxqNcuCBB7J48WL23Xdf4L38NQN1pLu7m2eeeYYpU6YAZcPNqFGjSCQSvPHGG0yZMgXLskKDTaBlAF1dXTz33HOccsop4fna2trwPC/UM4VCsW3wPI9cLkcqlQq9YzKZDH19fWHuuyBPXrFYpLu7G8dxiMViFAoFuru7w8qStm0Tj8fDBasgx0zgrRIYcwItKBaLYYh44GmTzWZJJBJEIhEaGhro7u4OExAHXjmB4Wb9alTBGC1IVhyEUFmWhWEYlEolDMMYtCAXjNPUAtbOizLUrEcwkchkMmSzWRzHGfSCBVUFoOy6H4lEQmuvruu0trZimiapVApd18PKK0GpNSllmBAqCGEIXsJoNDqoRG2QhyJwoQsSZFVUVJBIJOju7g771dfXh5QyHDiVSqWwaozjOKGbXUBgeQ4mUwPFQ6FQDA9Kf5T+KBQjCSklxWKRZ555hueee44ZM2bw3//930Pmopk+fTr77rtv+E4DW/yd7u/v56ijjhrUv1122SWs2tLT08OPfvQjzjrrLHbdddewXZC4c+HChbz99ttMmzaN6dOnA+UEx8Ek7N1336Wurm7QNSsrK5U2KRTbiGA8EOSfCQwfQVWnfD4f5pwJxklCiDBXTDDeMU2TioqKMDlw4I0TjHWCMVFQrTLIVxN4EwdeMcVikXg8jhAiHHO5rhuGSOVyuTAEK/Cc8X2fdDodeucE47eB1aWA8HtgZArC0QPjTVD0IQhvVzq087HV/Kj++c9/ctJJJ9Hc3IwQgvvvv3/Qfikl3/3ud2lubiYajXLEEUewcOHCQW2KxSKXXHIJdXV1xONxTj75ZFpbW7dWl8N+AcTj8bCEbVC9JB6Phy9M4GrX09MTrji7rsvKlSvRdT2cKAVxkIZhEI1GwzCDwO0NyqvLVVVV4cRlYAWUIPFm4H5XVVUVhgwEJW2DT2B1DhJgBQIXJNUaODEKVuWDawQioFa3FTsCSn+U/igUig+P4zi89NJL/PCHP+S3v/0t2WyWK6+8kk984hPvmzD4z3/+Mz/5yU+45ZZbeOCBB3j++ee36Gpw4PUXYBgGTU1NPPbYY3iex6JFi7jooouYNm3aoOOi0Shnnnkmn/vc5zjzzDNDIw2UDeQHHHAA1113HRUVFYwZMybcFyRfV2EHCsXWJzBoZLNZ+vr66O3tJZPJ0N/fT1tbG93d3aTT6TBXTW9vbzjeCBaFAsNONpsNQ6OCRMGWZdHT0zPI4BF4LjuOQzqdDhMNB0YW0zRD7+Jg3BIYiFzXpaKiAsMwME2TfD4fJgfWdZ18Pk8qlQqNRMF4KRqNhoYY3/fp6uqit7c3rGAVVJoyTXNQBTvFzsdW+8uTzWbZa6+9uP7664fcf9111/Gzn/2M66+/nnnz5tHU1MSsWbMG1Z6/7LLL+Otf/8pdd93Fc889RyaT4cQTTxy0qrylCV7EYDKRSCSIxWLEYjFM0wytm8FAIXihg0RVPT09dHd3A+WJXpDMKsg7EbjPQdmSGoQUBAmogDBJVZB3IsgKPtBdLygFB++VtA2syPl8PswD4ThOKBKFQiGcOAXbgNAtcGAyUoVie0bpj9IfhULxwZFS0t7ezk9/+tOw4tGXv/xlTjvttHBVeahj2trauPXWW6mqquLLX/4y5557LoccckgYfrSlCJJ5BmiaxrHHHktHRwe33347Bx54IOPHj9+gn4EX38YmPOPHj2fq1KlMmTKFcePGIaVkyZIl3HjjjRx00EFb9B4UCsWGBEaaTCZDb28v3d3dobGmv79/kMdMd3d3aBBxXRfDMCgUCqHHTfDvVCqF53mkUqmwGlQymQyT/GazWTRNC40olmWFYyogHI8Fxp6B+fUCr5/AeBP0I/A+DpKrBx49wfgrSDys63o4nguSIa9duza8T8MwmDBhAmPGjFGFFnZitlro0+zZs5k9e/aQ+6SU/OIXv+Bb3/oWp512GgC33XYbjY2N3HHHHZx//vn09/dzyy23cPvtt3P00UcD8H//93+MGTOGJ598kmOPPXar9DtYDQ5iFwOLaWAZHWhl1TQNXdfp7++nsrKStWvXhscFbYKXdGBp3SBXRDAZGph5XNf18IUOVsODxKLBNW3bDsMdEokEfX19aJpGX18fEydOxHVd8vl8mCQrCGEIVtEH9j0QxiCZVvD7USi2Z5T+KP1RKBQfDM/zmDNnDo8//jif+9znwupKm6K1tZV7772Xz3zmM9TX14fHrB9CtCU4+OCD6enpGVTlCeCzn/0sN998M/PmzePAAw/8wOcVQnD66aeTzWZ56623eOmll+js7OSKK66gqqpqC/VeoVCsT/A3P0jG29/fT19fX2h0cV13UJWkbDYbhjAFhttyvrwiUH6XA2NITU0N6XQ6HLcEVaGC0KJoNBqOtQaGkge5aYLQ8SDsCd4z3kgpw0WpWCyG67qhsSYIzQruLViQCn4GhpfAIBQsikE51LKxsZHdd9+dXXbZJQxXV+ycDEuOmmXLltHe3s4xxxwTbrNtm8MPP5znn3+e888/n5deegnHcQa1aW5uZtq0aTz//PNbbaIEhNm8B670Bi9QYC0NLKxBss58Ps/atWvDl9Z1XRKJBKZphvkagglYIpEIJyaZTCZcFQ8mOEHeiOBcxWKRRCIRxk0OrJASTKSklBSK+bDaQbB6HYRQBIJi23Y4YQoSWQkh1EBEsdOg9Efpj0KhGIyUknvuuYeenh6+853vkEgkAHj11VdxXZf99ttvo8c9//zznHPOOSSTya3ez7Fjxw65Xdd1DjjgAFzXDbc99dRTxGIxZs6c+b4THSkl6XSa2267jYaGBizL4uSTT6ahoSE0ICsUii1PYMhwXZfe3l66urro6emhWCyG441CoUBPTw+2bZPL5XBdl1gsBhB6+wYev0HokmEYVFRU0NbWRnV1dWhcCUphF4vFsFITlD2Mg8WqwNs4WOwKFqiCYgzBWCrIPRMkELYsi87OTkzTBMCyrDAHYDAuG+iBHNxfJBKhsrKS3XffnalTp9LY2EhVVVW4WKaMNDs3w/IXqL29HYDGxsZB2xsbG1mxYkXYxrIsqqurN2gTHD8UxWIxtKpCuVTtB2GoknBBPoXAPS7ItRBMbpLJJLZt09vbSywWG7T6HbyIQfxiMHGKx+NIKUMr7MDrBcJTLBbDPBBBVvGg2ophGFiWFVp8y5O691ar4/E4tm2H4hJYgoOwhaDvQZ+2ZvI/hWIkofRH6Y9CoRjM0qVLWbp0KVdeeWVonGhra2POnDlceOGFGz2uvb2d1atXb+DhMhy8+eabnHrqqeH3mTNnct1117Fs2TJmz569UYPwwoULefTRR/n0pz/N2LFjlQYpFNuQUqlEX18fPT09YVijbdthMuGgilM2mw3HLYF3TSwWI5PJhGOIuro6UqkUhmHQ0dFBXV1daFApFotEo9GwkmZgiBlY7TLwnvE8j1KpFBptBoZYua5LoVAIF9OCUKdgPNTf3088Hg/DwIEwZCoo/BAseAU5AmfNmsX++++/gfeM0iLFsGZHW/8/4OZktN5Um2uvvZZkMhl+BiaF2xQDJ0mWZYUVV4JcCoGlNYhj1HWdpqYmotEo+Xw+jCsMLLTBsUFm8aAKS11dXXie4CUOhGKgQOi6HpZuC1awAxe/wDrrum5ordU1Hdd1wtCHwK1u4MQonU5TKBTCLOVBsi0VbqDY2VD6o/RHodgabG/JzPv6+vjtb3/LueeeG2rCk08+ye9+9ztOOukkbNsmnU7z4osvDjrOdV1WrFjB1KlTR8SEYn0dicfj/Nd//RdjxozhBz/4AcuXL9+gTTab5dlnn+X//b//x7hx40bEfSgUH5btRXsCo0gwLshkMuRyOXp6eujr66Ovr49isUgmkyGdTodh4EHoU+BxEywq+b4f5qEJkv0Gxp7AQ3mgJ3IQjm3bdhgGFSw+BcaXioqKsJ9BYt9gvFMqlUin02E1qmDMFoRQBUadSCRCNBolHo8PGmNB2SO5oqKCAw88kAMOOGCQB03wUSiGxVDT1NQEsMHKdEdHR7jK3dTURKlUore3d6NthuKb3/wm/f394WfVqlUfqG/BH/HOzk4ymQw9PT2hUPT09JDNZslms6TTaSorK0kmk0QikTBhp67r4eQk+BSLRWzbprq6elCCqqBSS5CkKrDI2rYdhicEVmMgTJYV5JwIfr5XKk7iOG4Yb+k4Tih+QQLPTCZDR0cHvb29tLW1sWbNGnp7e1UyT8VOg9IfpT8KxdZke0pmXiwWuemmmzjllFNCbQT4+Mc/zn//938zadIkAObMmcPLL78cVla66667uPPOO1mwYAH777//Fu3ThyUej7NixQr6+/vDbbZt87GPfYxLL72U//3f/w29JgNWrFjBmDFjtknYlkKxtdmetCcwdqRSKfr6+shkMuFYoFgs0t/fj67rg0psB2OPYEzR0dERehEHyYF1XR8UlhSMd4KS3MF4KfCmGbigFHjaxGKxcLFsYIGFYFuQmDjIQ+O6LsVikcrKyrD/QaJg27aJRCJhUYjA6BOLxRgzZgx77LGHykOj2CjDYqiZMGECTU1NPPHEE+G2UqnEM888w8EHHwzAjBkzME1zUJu2tjbeeOONsM1Q2LZNZWXloM8HJbCySimxbTvM1yCECN3y8vk8fX19dHZ2rrPmekhZrpoSTJiCSU0sFguttoHFNsj/MDDMYGAllWBCFQhKPB4Pwx8CoQFCgeju7g7FSwhBZWVlGE8ZTN6CHBGBIAQhD+l0OrQuq0mSYkdH6Y/SH4ViazJ79my+//3vh8nKB7J+MvNp06Zx2223kcvluOOOOwDCZOY//elPOfroo9lnn334v//7P15//XWefPLJLdrXRYsWMWnSJA488MANXO6DTzqd5p///Cd77rknP/7xj3n55Zc5/vjjOeOMMzj//POpra3don36sJxwwgnMnTt3kKEGyvfS0tLCV77yFX71q1/xpz/9aVCb9UNcFYrtle1Be4KkusGiU+CZEiQJdhyHUqkU5tELqjhlMhmgHFIeVJkMFsUCr5ZgPBMYYIQQRKPRMCw98HIJDD9AmONmYEhSUK57YMJfeG98FXjdZLNZurq6wlDzIA9NsIAWJA6ORCLE43EqKyuJx+NEIhESiQQVFRVhFU+FYii2Wo6aTCbDkiVLwu/Lli3j1VdfpaamhrFjx3LZZZfxwx/+kMmTJzN58mR++MMfEovF+MxnPgNAMpnk3HPP5YorrqC2tpaamhq++tWvMn369LAKy9YksKgGpdt6enqIRiJo66qiBBOdbDYLQKFQwHVd+vv7Q0tu8OIGFtpsNks0Gg0TTQUvezABChKFDrRaB5ZZKJelHJjcKhCKwGUvOFc0GiWRSITVVEzTDEMdghK8gZj19PSEoQ2bE/qhUGwPKP1R+qNQjERGSjLzYrHIX/7yF9ra2rjgggvCdzAgl8vR1dXF6NGjuffeeznuuOPYb7/9mDx58qDKTiOJtrY2enp6GDVq1JD7R48ezbe//W1M0yQej2/j3ikUw8tI0R4grAwZ5HcJSm0HxQ+CsUdNTQ3t7e309/djWRbvvvsutm2H45h4PI6maSQSCbLZLLFYjHw+TywWIxKJhKFMQeGEICFxsHg00CAdFDgICPYHXsdBfr4gXLuiooLu7m40TSOXy4Vh3cH5Aw+cIGQqGo0OGmdFo9EwfEuh2BhbzVAzf/58jjzyyPD7V77yFQDOOuss/vCHP/D1r3+dfD7PhRdeSG9vLzNnzuTxxx+noqIiPObnP/85hmFw+umnk8/n+fjHP84f/vCHQdbNLU0w+Ahc1Gzbfq+krK6TSCSQUtLQ0BCGEgghWLu2jUIhD5QtqcHKsuM4xOPx8LxBlZPAlS6YBAWTmECsBpbmBcKSuUFi0MDi29XVRSwWC8MUenp6wgSgQfug+ksgfEESzyCmMkhOGqBWtRXbO0p/lP4oFCORrZXM/IMmMr/rrruoq6vjk5/8ZKgzt912G8lkkkQiwTPPPMPhhx/Oa6+9hu/7HHHEERiGQUNDwwe+522F4zihN+RQCCE2eKYDDcgKxY7MSCikMDAvTaFQCEtwB2OOfD4fJvtta2ujtrY23JbJZKitraWnp4eGhgZyuRyVlZWkUikcx6GiooJMJkM8HscwjDBMyTAMEonE/2fvvOOsqM7//5m5ZW6/23sBlCJVQUBBI6KiKBrURKPGlvyiRiWWqIkxxpJEovGrqUSjRo0KYkGsICiIIqioAaQIIh22795epp3fH+s5zr27C7sI7LI875cre+eemTkz986z53zOU5BIJBCNRsXiFR8HpVIpUY6bi0Q88S8XcHhSYU3TkEgk4HA4YBiG8JxxOp0i8TH35uELY3x8I0mSyEMTi8WEneKVoXqi+E10PwdMqJkwYcIeB9ySJOHuu+/G3Xff3WEbl8uFv//97/j73/9+AHrYPrzPTqdTJIniyZ146AB3beNl4FoVWwhllOdn4NnBk8kkwuGwSDDFJykej0cYBl45hbvb8YkQNyLcNY+HRPASdbzcHJ8A8URWAISRsK6E82ovjDEkk0mRYItPqshQEL0Bsj9kfwiiJ7O/k5lPnz4d99xzT5f6cOqpp0JRFAAQObEuu+wy1NXVYfz48b3O66S9ynL9+vXDxx9/jBNPPLG7ukUQB5UDVUhhT/bHOh7TNA2pVArpdFqMV4BWL5t0Og1JklBfXw+v14tYLCa8Yvx+P1RVRV5enqisxCs+8Vw0PIEwF42cTidUVRVeMNxz0OVyIRQKIT8/P6NggsfjEV4z6XQaLpdLeMFwW8kXu+rq6jI8Z7gnMRdrUqmUGG8BEItu3NOZh3snk8k93nvi8KZbqz71ZPgEg09GXC6XyNbN3eH4ynPrqrEfjEG4zXFDwVXjlpYWkUSzqakJkUgE4XBYlL2NRqMIhUIwDENUROHJQDVNE8dKJpNIJBKIRCKIRqMZJXN5MqyysjJRhlLXdXEuu90uwhR4Miufz4dgMCgmSZTQkyC6H7I/ZH+I3smBSmb+XROZr127FiNGjIDNZkNZWVmvE2lM08Srr77aZjtfJSeI3k5PKKTAQ4gAiIpM3MuGV2RqaWmBw+EQhQis3ry8QpPX6xWeN6Zpilw28XhcCD5cwOELXrIsQ1EUsaikKIoIH+eJhK0LT4FAAG63Wywu8WpRfEzEvXC49006nUY8HheiDhdw+BiJh2zxsRAf8yQSCQp/IjqEhJos+ASBu8wpiiISRKXTaTGJ4W5z3HWuNadE68CGl7C1uvOl02lEIhFRLjcejws3OZ5fgifU4gorX/1mjKGpqQktLS2IRqNoaWkRMZ08mRbPeG6tAsPbcKNonVBxcnJyRK4K6/UTBHHwIftD9ofo3RyoZOZdSWRurbLGX2/cuLFHeZWoqootW7bs1SZs3rwZu3fvxubNm6HrOhobG9tt19DQgO3btx+IrhLEIUF3F1LgCz98bMHHNg6HA5FIRIxbXC6XyCmTTCbFwlU8Hheh3Vx8icfjiEQiwjuYV7PkhQ+i0ShsNpvITcO9evlCUyqVEmIJrzqVSqWE9zIf5+i6LjyAAQgvGO6pzIUcLnDb7XaRg4Z78fAKUlxskmVZ3A8a+xAdccBCnw5VuMLJs3RzdZQbFMMwkJOTIxJkcrc3xhhyc3NRX18vVqMBCKPD3e6sVRT8fr/IAcFVZu4Ox0MIuOEKhUIwTVM86Nbyu1zlBYDBgweLCREA4cJnGAZkWUYgEBAr89ayu/waeEJQgiAOPmR/yP4Qhz49OZk5Ywxr167F119/LSYdoVAIHo+nR1UfYYzhP//5D2655ZYOS2cnk0l88MEH2L17NwKBAKZOnYpoNCoquFgxDANHHHEEhVcSvZqebHu41wj3aOFVKbmYEQqFhAcMF1T4az4eaWhogN/vF+W7uegBtHrHRaPRjH2B1jFGOp1GYWEhwuEwFEVBNBoVHjyRSESESPGxSiwWg8/ng67rYsGMe9NYQ7atYygutnABhtsgHu7EvWl4+DqFfROdgYSaduAPkMfjafNgcmWXTzK4kZEkCX379sW6devECjF3vYvFYnC73QAgHkzTNBGJRIQLHH/Y+Xt8IsNVWq76SpIkJl28HTdWiqIgPz8f4XBYZB3nBgEAmpubYbPZEAgEkEgk0NzcLCZNhYWFGddPEET3QPaH7A9xaNOTk5mvX78eTz/9NH71q1+JCU59fX2PmywoioLx48ejvr6+XaEmHA7j/vvvxwUXXIBLLrkEdrsdjDGUlZVh9+7dqKyszGjPJ2KUtJPozfRU28M9VVRVRSgUEuFFkiQhFAoJrxUeUpRMJkXYkd1uRzQahc/ny/C64eFMfAzDxzncW4UvAPGy3KZpwuVyoaWlRYxteJlwt9stFon4v5qmieS/3IOH981ms4mwKe65bK2I6Xa7EYvFhPezVTjioV7cC4iP4QiiPUioaQf+APNM49YVapvNhoaGBlRUVAgXO+DbagLcDQ6AKOXGf+f/8uPxh9eawJOvZvN2PFQBgFB63W63MBo8tEDTNOTl5cHlcqGhoUGEPfCJGI+XTKfTqK+vRzQaFX3iv3NDQS54BNF9kP0h+0Mc2vTUZObxeBwzZ87ErbfeioKCAgCtz9snn3yC448/fr+dZ3/BE5Nnk0wm8fjjj+Oaa65BZWVlxiRn8+bNGDp0aJt98vPz0dTUdMD6ShA9gZ5oe3gOFx6yxMc3fEGIJwCWZRl+vx/JZBJ5eXlobm4G0BrO7XK5EA6H4ff7hdDBvYplWYbT6UQ8HhdCitfrFQmB+RiEL3gFg0G0tLSIMCo+luELUVwEUlVV5NDjBRW4RzEXmnhBB54rhy9iJRIJcSxr9Sle6ZKX/VYURZyPINqDhJosuPs9n6Akk0nY7XaRcI4blVAoBMaYWOkxTRNutxvV1dVYtWoVHA47TFNHIqELg2F9kFVVhdPpFEk3s93quAHgCjQ3BpLEYJoGTPNbY+BwOKCqKiqrKtDQ1IiUJb+Ex+OB1+tFMBgUhgaAqArDDY81RwSFHhBE90D2h+wPQRwoPv30U4wfP154sCUSCTz++ONIpVKoqKjo5t51nlgshsrKyjYizRdffIHi4mKUlZW12aejFetdu3a1254giP0H9yDhBQ54zhfu2evz+RCJRER1SJ6zxip+eDweMMbgdDqFtw33ZmlsbBSCkMPhQCqVQiKREEJIMplETk6OWIDKz88H0FqAgVd14tUv+Q9fvLKGhvNr4V472RWlGhsbRRgUzyPIPX+AbytGcS8g7nFDEB1BQk0W/I85DzPQdV0k3+TbUqlURoIol8sl8kAcddRRWLVqFTRNhyzbYBitMZAOh0NMVCRJQiqVEpMVfk5r1nFr6IF1H6fTAUlqnSjxcATDMFpXnhiwc/sOsYqel5cnjsXbctdFwzAQCoVgt8uw23MzBjHkgkcQ3QPZH7I/BHGgYIzhyCOPFM+Yw+HAoEGDcMopp3znkCqgVTD+8ssv8emnnyI3NxfFxcXYsmULhg0bhurq6v1aScrpdGbYilgshtmzZ+Pmm2/u0up0JBLpMAcOQRDfHWtVpHQ6LUQUvnDDK1D6/X7E43GEw2ERus09aHhxBS748BAoXrGNj3H8fj98Pp+o6uR2u0WIUSQSEbbBZrNh9+7dkCQJHo9HVJ1yuVxirOTxeKBpWoa95KFKvPACD80yDAPpdFqILjyEPZ1Ow+PxZAg//D2gNX8ND+kiiPYgoaYDeEUUXr6NMSbc6rjCGg6HEQwG4fV64fF4RNhBv379sGHDl5Blm8jjwB9Oa+IpnnCKr2BzY8QnYOl0GgBE9vLWnA+tkySeBIurshUVFUinVRHXKUkSwuEwXC6XSIjFY7TdbrdwtWNMh+JSRB8Jguh+yP4QBLE/MU0TO3bsEJ4zpmni448/Rm1t7Xd69rin3xdffIG1a9eisbERP/rRj6AoCurq6jB58mR88cUXWLlyJdLpNKqrq3HMMccgJydnr+cNBoMIhUJttjudTmiaJiaAhmFg8eLFOPPMM5GXl9fusZqbm5Gbm9tm+6ZNmzBmzJh9unaCIPYMH1dw4SMcDotKRwBEXhpJkhCJRIQIYrPZRM4ZHjYEQIQPGYaBeDwOh8OBZDIJj8cDSZKE6CrLsvCgsVaWBFrDrUOhELxerxB++FiGh3LbbDZomoZ4PA6fzwen0yk8a3iYlTXkiYdDGYYBp9Mp8s7w4/p8PrjdbiiKIsZYpmnC7/cLz2aCaA8SarLgD7Ou66IMLQ8JsCaiS6VSouJJS0uLMB66riMYDMDlciGVSmdMjviDyRXdVCqV4fbGjQSfXPG8EdaycFajxw3AqFGjxIoYT6jHqzfYbDY4nU7hlpcdR8mVXa7uUn4Igug+yP6Q/SGI/Q1jDK+//jrq6upQVVUF0zTx5ptvYseOHbjqqqv2KT9CKBTC5s2bMW/ePFRUVGDkyJFwOBz40Y9+hOrqagBASUkJAGD8+PEYN24cdF3Hxx9/jIcffhhHHHEE+vbti2OPPRYej6fdcwwaNAgvv/wyRo8enbE9EAjA7XajtrYWmzdvxsqVK5FKpXDzzTd3KP6kUilROYZjmiZCoVCH4g5BEN8NPmYwTRPNzc0iFw2v8tTS0iKKHPAxRmFhoVg84otMfNyRXU3J7XbD7/eLEOz8/HwxduFh1KlUSlS51HVdVLjjRRnq6uqQk5MjCjVYxRpesMHpdIp8NqZpQlEU4S3Mx2a8v9yDh4ducfvGBSZug+x2O4qKijq0fwQBkFDTLowx5OTkYPv27QBaK6twNzeupnJ3N75NUZwwTQO6DqRSaQwZMgSrV6+CpmtgppSR54FPcqwJqfiEiBsiABmr21ZDxd8zTRP9+/fHaaedBp/PJ9zqgFa3O/7aarD4hIkbFW4w+QSJZ0knCKJ7IPtD9ocg9idvv/02AGDatGlwOBxYtmwZNE3D1Vdf3emQJ03TsGzZMjEpWbduHcaOHYubb75ZCCA1NTWIx+OIxWKiWgqH52Y44YQTMHbsWGiahtWrV2P69Om47bbbMqrO7A1JarVpDQ0NGD9+PEaOHIlYLNZlz6CtW7cCAOWIIIgDCC+lDXxb2CAcDov8MHwM4HA4hDcND+tWVVWMP7inCs8nU15eLvLLcK9ja1ECWZbh8XiEJx0XjeLxeEZIE89Xw8Ui7jHMvWpM0xTJj/l4iJf8tvaPF2ngAg63K4lEQixK8f5ye8gLQxBER5BQkwWfKNhsNlRXVyMcDkOWZbhcLpEYyuqCxx9Yw9C/eaDZN5VObMjJCWLhwoXguTF5STdeWYUbBP5w8xAD3dAA9u2ExZpck6uxdrsdw4YNw1lnnSXivq2VU6z/coPFt/FjWLdZ29JEiSC6B7I/ZH8IYn+Tl5eHfv36Cc+7lStXdkmkAVq944444gixUjxhwgThOcfp27cvPv74Y6xfvx5nnnmmCF3IhtuysWPHwjAM/PWvf8Xtt9/epj/bt29vU2abU1tbizPPPBMA4Ha7OzwX58svv8w4PmMMr776KqZMmUJhlwRxgNA0TYQ0hUIhSJKEeDwuPGZcLpcY88RiMQAQJboBZCQD5omCc3Jy0NjYCL/fj4aGBjEWqqysRDQaFaHWsiwjEokI8cTlconcVoqiiDAkoNWjmIs3kiQhFoshJydHLGLxcRcPR+fh4LwYAhdmVFVFKpUSVS5tNhu8Xq/wGkomkwBa7U9lZaUIRSUbRHQECTXtwB8Yv98vHmw+wbGuCAOtrnetSiqDoriE278kSRgz5jhIkg2LFy8WRoBPiqwTMgAiHIAxBpMxmIYOCbIIQ7CuPDscDpx44ok45ZRThPGw9p0fO3t1m5+Hl+3l7fhEjMrDEUT3Q/aHIIj9yZgxY/DCCy9g8uTJqK+vR15eXptnd2/IsrzXylD9+/dH//79O31MSZIwbtw4bNiwAQsXLsSkSZMy7MDGjRvbhD0BECGc2ULRnmhqasLEiRPF6927d8M0TRx55JGdPgZBEF2DMYa8vDyEw2ExDolEIiIMiQs23NOECyh+v194zqTTaRFCxMtt82MHg0ER6lRXVwe32y3aBQIBBINBMV5SFAWRSETkxFEURVSS4iFPPByKV6R0Op1iQQuAaMO9aHg/uGDDF6z49XChx+12w+FwQFEUNDY2wu12Y9SoUfs1wTrROyGhJgvrBMjpdGYMBDpaLQa+Xd22ToIkScLo0aORk5ODJUuWoK6uLmPVmYcSZOd+0DUdYABgZIQIMMbg8/kwaNAgmKaJd955B263G3a7HX6/XyTpdDqdCAQCQg3m5+J9tq5c8xhKfnyaLBFE90H2h+wPQexvrILrli1bcNxxxx2U81qf845WjCVJwqWXXoovvvgCzz33HC655BJhB2pra1FcXNxmn5aWFhFO0Nl+cJGav163bh3OO+88WskmiAOItWgBt0G8aqXf70ckEhHPZ25urijPzcUQnkvP7XaL6pE1NTUoLCwE0BpCVVBQgJqaGni9XuF97PF4kEwmoSiKqJzJz8UXs7hXLy/EwMcjsVgMgUAAfr8/owIn8O1iUzweRzQaFQKNLMuiCAT3rOE5Arl3jaIowh4eeeSRKC8vB0DeNMSeIaGmHawTHZ7XgRsSvhpsXQXmf/ytSTiBVpe/VCoFt9uNo48+Gv/73/+QSCREQin+L0+mKVz+GTJUWR7uwBNg1dXVobm5GYWFhfD5fDjiiCMQDAYhyzLsdrswLJzskITspJ7WCR/fRhBE90D2h+wPQexPeHJLm80Gn8+HqqqqA3o+0zTx4YcfYteuXUin0ygsLMQxxxyDwsLCdj15HA4HjjnmGMRiMSxYsABnnHHGHo+/detW9O3bt9MTnPr6epF0FABUVcWyZctw0kkndf3iCILoNLquw+FwQNM0uN1uNDU1ib/5XMAxTVOEQHHPE8YYFEVBc3OzyF2TSqUQDAZFnj5d1xGLxeB2uxEIBIRtsSb05d42brdbeNJomiYqVHJvZS6u8PETz1PDBRcuOPFCDtZFJ359/Nw89w6vqNkajm4X18yrc/IqngSxJ0ioyYJPFPjDa02GySc01tUh7gbHJxeapqG+vl4ows3NzYjFYti9ezc8Ho9IiJVOp0XWcZ6Uij/wPJu4y+WCx+OBoihC0eWKNI/fbG5uRk1NDVwuF4LBYLt9BNom8eTXZZ0gUSJPguheyP6Q/SGI/Q1/7pxO5wHxpuEeeRyeqJznqamvr8dnn32GSCSCo48+GoMGDWrjPdcarjkGM2fOzMgJkY1pmvj666+7JLIsW7YMJ554orBJGzZsQN++fbsUOkUQRNexhk0nEgmoqiry1KmqCofDAbfbnTEu4GMSAGI7D2mKxWJwuVyIxWKIx+NwuVyIx+PIz88XC06pVAotLS2ifDdfkOKCDh+jJJNJMMbg9XrFwpTX6xVjJCAzdx4Xi3i+HavYxPPScFvIxR+eLJmP4yKRCHw+n/AIIoi9QUJNFtz1jf9B5yopkBmWwN31eVvDMFBbWytiL7dv345UKoVkMiniHCVJQjAYFMfjiaV8Pp9Qbbl7HA8pSCaTYlXbNE0Rb8knQoFAALquI5FIiIkSv449uRxzd7zsfBKUzJMgug+yP2R/COJA4HK59mtooWEYaGhowMaNG7Fr1y5s2rQJFRUVQsg99dRTEQgEAADl5eUoKyuDqqr4+OOPcd999+H888/HUUcdlXFMRVEQCAQQjUZFpRYOYwz19fV46623IMsyioqKOtXPZDKJRCKRUYK7vr4eJ5xwwne8AwRB7A3upZJMJiFJUkbIIq/qxBeJ0uk03G43wuEwbDYbkskkXC4X7HY7du/eDZ/PB4/Hg3g8jnQ6jfz8fOFlXFdXB1VV4XK5hPdcfn4+mpqaYLfbEQ6HwRhDS0sL8vLyRJuGhgbs2rULXq9XJCTnVTat4ordbkc0GoWmaUKg4fA8O9YS4jy3Dfcy5tfc3NyMESNGZIzFCGJPkFCThXXyAEAkguKv+USExzZydzbusqdpmoif5movr3DgcrlEaTkAsNntrRMW8OR4EhgDUqkUFEXJKFvH4x7T6TQ0TYOiKMI1LxgMwufzAfg2yV52/gfg21Xt7AmSNSkWQRDdB9kfgiD2N7Iso7i4WDzH3wXGGJYuXYpVq1ahuroaNpsNp556KqZOnQq32w3DMLBhwwa8/fbbKC8vx+jRo+F2u4WAc+KJJ6J///5YsmQJVq5ciQsuuCBD4O3fvz+++uorjBkzBm63G/F4HIqi4JlnnkF+fj7OPPNM5ObmdjpkYNeuXSgrK8sQqbZt24aTTz75O90HgiD2Dvdw4RXnZFkWYxCrPeIiDc8pYxiG8L7huWZM00Q0GhVls7/++mvU19fDNE34fD4kEgkAgNPpRE5Ojkg07PV64ff7hedwTU0N/H4/vF6vWGBKJpPCw5iPk6zeP8lkEnV1dcJLx+fzwTRNOJ1OEQ7Fw89533lVKX5M7nVTWVkJl8vVbZ8JcWhBQk0W2au7PNu3NYeDNezA6rLf0tIiFNRAICBWcPiKM5/kiDwNNhsABsMwwZgJw2BIp1sNWGNjI3w+n1jJdjqdYiKmKApsNhsqKyvh9XpRWFgIj8cj3Ouyr4O/toYf8G3cCHEoXpIgug+yP2R/CGJ/s3jxYvTv37/LlZ6yYYxhyZIleO+993DbbbfB7Xa3eWZtNhsGDx6Mo446Cps2bcLcuXOhKApGjhyJiooKOJ1OlJaW4oc//CHWrl2L5557DmeccYbwkCkpKcHHH38MxhjGjBmDF198EU1NTaiursbZZ58NVVXx8ssv46KLLupUf1evXp0RJhUOh+Hz+ShxOUEcJBRFQVNTkxjP8Nx7drtdJPLlYgYAIWrwUOpQKCQ8g5PJJLZs2YJ0Oo10Oo28vDx4PB6xL68QxT1guHjCix1wT2Gery+VSsHn84kqTTabTfSTe9IAQENDA3bv3g1ZllFSUiLGZdbKTxyeBydbFI/FYiKMi8Y6RGchoWYPcCWU52WwTqCs8Ae2T58+qK+vRywWE9nJ+QOvqqpwp+Puedyg8G3Atwqz3W5HY2OjKB/HYyb5xCmRSGQYPT7psSa54n3mhsqayJPDJ1DZybEIguheyP4QBLE/2LZtG0499VTxnO2LSMEYw/vvv4/33nsPt956Kzwezx7bS1JrZZN+/fohGo3is88+w/Lly9G/f38ce+yxsNlsGDZsGJxOJ2bMmIE77rgDDocDhYWFaGxshGmaGDBgAKqrq6GqKrxeL2RZxqefftrp/A5bt25FMBjMCKNqamrqkkcOQRD7DmNMjDW4dy8v0V1UVCTCgriXjKqqwvPEMAxRZluSJLS0tABoXXzKy8sTCXv5IpR1nBSLxZBMJjPyXbndbvh8Pni9XuH5wr1huPcxL/+dSCRE6HdTU5PY3+Vywe/3i3x/3OOZC0V8Qcqam8Y6dvN4PMjPzz/YHwNxCENCTTtYV4N5jCKvsmJ10bVmD+cPq6ZpIqs3Hww5HA7k5eWJigPWBFb8AbfZbGLSlE6nEY/HEQwGRXwnT3alaZp4yAOBAMrLy+FwOETJO+s18LAD3hc+oeLXYl3Z5hMk/h5BEN0D2R+CIPYXuq4jHo8DaPWU4wk1uwIXaRYvXozbbrsNHo+njYdfe7S0tODzzz/HqaeeiokTJ0LXdcyYMQPbtm3D+eefD1mWMXDgQFxxxRX44IMPcNJJJ8Fms6Fv377YsmULjjzySGzYsAFHHXUUZFlGMpnEtm3bOuVNA7R6zwQCAaRSKXzxxRcYO3Ysli9fjmHDhnXp+gmC2Df433VeAUlVVUQikYxS1TwPHl8wAiC2cbGjqakJ4XAYdrtd5LHhYxQ+flFVFfF4HH6/H36/H4qiCMGGhzHxfvj9fmiahlAoJMYqXBzixRJ4AQWeMNjj8QixhnvSWMc9XAjn+3GxhufYAYC+ffuioKDgIH4CxKEOCTXtwI2HNUwgO9cC/5e736XTabFizSc11soqVrd/v9+PxsZGSJIERVHg8/nE9lQqhXg8LkIJrCvqPOygrKxMZDjnSnG2mmud4FkrsWRXXrFmNOf704o2QXQfZH/I/hDE/qKxsVF4vxQXF3d5f13XsXTp0gxPmtraWsyaNQvXXnutmNS0h2EYiMViACCqoFx77bWYMWMG5syZg/POOw+yLKO6uhoAMG/ePJx11llYvXo1jjzySAAQv9vtdnz++ec45phjOu0RFA6HUVpainXr1qGpqUkI03379u3yfSAIouvwsUgymUQymUQqlQIAFBQUiFwwvPoaF0ni8bhIyCvLshBbPB4P6urqoOs6AoEAZFmGw+FALBZDS0uLEH2am5vhdruFYOJ0OkXRBL6YFY1GhXdLKBQS4VG6rosy3nzcw8dR3PMnFouJAg3W3HuGYYh8gaqqioUnWZaFWF5YWCjy05BXH9EZSKjJInuiwF36rck9rRMMn88Hv98vHu7m5mbY7XbE43FRcs7r9YpM4VzRDQaDYhLE1d5YLCZCC2w2W0ZJXJ53Qtd10S8eVsDzV/B4yWzjYZ3gWXNC8JJ1XPG2KsMEQRx8yP4QBLE/YYyhrKxsnyYF6XQaf/3rX5GTkyNEmvXr1+Pxxx/Hz3/+czidTjQ2NqK+vl7sU1RUhPz8/A7P15FY06dPH/Tp0wdAa5WoiooKaJqGzZs3Q5ZlpNNpbN26FWPHju10/zdv3ozx48fjmWeewXHHHSdCK7xeb5fvBUEQXYd7sDDGhFjBxwi8DDdjDNFoVJS/5iWs4/G4WDyqqakBYww5OTmw2WxwOp0ihIoxhry8PBHGreu6aBONRpFMJhEKhUTVymQyKUQUl8sFn8+XISJxLxreb+s4yLqIxpMFc5GGCzk8fIovZvExlsfjEdX3SKQhOgsJNVlkJ8HkD1S2m352rLfNZoPb7UZ5eTlqa2vFdk3TRKk564TF/k3FFWu4giRJYvWbu89xA9anTx8UFhbC7/dnJKjihsNaOYXvx8MR+OTPOhHi+/BwB94v/i+tahPEwYfsD9kfgugJRCIRzJgxA8OHD8fkyZMhSRK++uorvPTSS7jpppvgdrvxxhtvQNd1kQhY0zQ88cQTmDZtGqqrq7Fly5Z2wxmtYs3bb7+NyZMnZ7x/7rnnAgDmzp2LgQMHQlEUrFmzBv369dunhMiGYWDAgAFC9KZEwgRx8OBiDB/b8ApO3Os3kUgIO8FFEcMwkEgksG3bNiGwBINBEQ6VSqXgdDpRVlYmSn+rqgqfzyeS9qbTadhsNlEAgYslPAyKMSZy5iSTSeFFzMdDfAEskUiIUK1kMgmn0wnGmAiB4vn6gFZhyuv1Ih6PC48ffn0k0BD7wgH7azV9+nSMHj0afr8fRUVFmDp1KjZs2JDRhjGGu+++G2VlZXC73ZgwYQLWrl2b0SadTmPatGkoKCiA1+vFOeecg507dx6obotJEXfTtSbF5A+Y9Xc+oeDKqSzLKCoqQv/+/TFo0CAMGjQIQ4YMEf0PBAJwu91wOp1wuVzweDzwer0i67jX60VeXh7KyspQUlKCkpISVFdXo6CgIMOVj6u9/Icn7OR9z84ZwfNDAMhoy3+sq/b8GgniUORQtT0A2R/rfSAI4uBjmiY+/fRT/OEPf8D48eNxxhlnCEF33rx5GDx4MBYuXIj3338fY8aMwdSpUzF+/HiMHz8eEyZMwE033YQPPvgATz75JP75z3/ihBNOQCKRwJNPPoldu3aJ55yLNccff3ybPthsNrS0tEDTNJx//vlIp9N44403MHz48H26JqvN5GEOBEEceGRZFlUj+TjF4XAI7xdeyjoej4tEwoZhoLm5GQ0NDQiFQojH48jPzxeVn0zTRE5ODrxeL2w2G7xeL1wuF7xeL3RdF6FUqqqiubkZ0WhU9IFXiuJ94N4u2Tn/eHnueDwOSZJEuJLT6YTT6YTH4xHiCw/p5uFTfDGM2xxN0wB8W6mTFqKIrnDAhJolS5bguuuuw0cffYSFCxdC13VMmjRJuL4BwAMPPICHHnoI//jHP7BixQqUlJTgtNNOQzQaFW1uvPFGvPLKK3j++eexdOlSxGIxTJky5YD9obWqvtkTC03ThNJrbZP94FkVXI/HA5/Ph8LCQpSWliIYDMLr9YqJC88vwRjLUJlTqRTS6TRcLheqqqpExQOe5dw6MbOWvOX9zV6p5q956AOQOXjh+/F/yZAQhyqHqu0ByP7wf8n+EMTBp6WlBY888gg+/PBD3HbbbTjhhBOwbt06/OEPf8CTTz6JiooKTJ06FZdeeimmTp2K4uLiNqJqRUUFLrnkElx22WWYMmUKZs2aBYfDgXHjxmHOnDlYvHhxhlgTiUQybDMnGo2ioKAAdrsd//vf/zBlypS9VpraGzwcIZFIfKfjEATRObinCx8X8DGEruuIRqNIp9NQVVX8G4vFEI/HsWPHDkSjUeTn54sqb4qiIDc3F4FAQAg2PCQpnU5DlmUoiiIqM/n9fpFMPBQKQVVV4THjdruhaZo4byqVEsUPONzbWFEUKIoiwsV5OBQXYHgePp6bho/V+CIb91Tm4V/c65ggOsMBC32aP39+xusnn3wSRUVF+Oyzz/C9730PjDH85S9/wR133IHzzjsPAPD000+juLgYM2fOxNVXX41wOIwnnngCzzzzDE499VQAwLPPPovKykq88847OP300/d7v7PDDACIsAH+oFkrsmS3zw5R4C7/fr9fhCsA31Zi4JMYPjnhrnIOh0PkichOJsonTNY+W1162ysJx4+fnR8C+HaCZL1mgjhUOVRtD0D2h+wPQXQPkUgEf/rTn3D++edj5MiRiEQi+O9//4vNmzcLz8K9wcVYwzCwdetWnHfeeVi6dCkeeeQRnHvuubj22mvxpz/9CYMHD0ZJSQl2796Nf//737jxxhvb5I2JRqPw+/1gjGHr1q04++yzv7OnnSzLVHGFIA4ifNzBy2erqioEFZ6XhpfCNgwD0WgUqVQKmqahpKREjB24aKvrOlwuFxKJBFRVhcPhQCqVEgKM0+kU5cCB1pLaxcXFiEQiaGxsRFFRkQh54iXBgcyQbe4xbM2lo2kaXC5Xm2pU3KOYizd8Pz5m0zRNFFOQJAmhUEgsghFEZzhogbrhcBgAkJeXBwDYsmULamtrMWnSJNFGURScdNJJWLZsGQDgs88+g6ZpGW3KysowdOhQ0WZ/k+1+b5388AfNut1aapYnkuIrzXyCxVdxrKEMdrsdPp8PgUAAubm5yM3NRX5+PvLy8hAMBkUZOKfTCYfDAUVR4HQ6YbfbxSSJT5Cs+SqsEzrePz5w4r9zw5K9ck25IYjeyKFiewCyP2R/COLgoGkaXn31VWzatAmGYeCll17CmWeeidGjR2PNmjV44YUXMHDgQPzud7/rtEizcuVK/OEPf8ATTzyBefPmQZIkfO9738PZZ5+Nhx9+GKFQCOeccw7mzp0LxhhCoRBOP/105OfntznemjVrMGTIEABAMpncbxMbXsGFIIgDD/dESaVSoow2HxtIkiREGVVVkUwmEYlEAACVlZVwu90oKCgQYgzPCxOPxxEIBABAjGtUVYWiKGJ/nheGCzI+nw+KoiCVSgmPHi60cBGJh3YDEPlp+BiLe83IsizCtXRdRzKZFGIPtyt84Yrv63Q6xf5Wr2KC6AwHJZkwYww333wzTjjhBAwdOhQAUFtbC6Btucji4mJs27ZNtHE6ncjNzW3Thu+fDXfl5/CHdl/6DGTmSuAPsLXUrPWB55MQ64qy1SDxfblqyyc8XIHl7Xk5uY4mLdYkojyxpzWhJz+XdRXbevzs363XzCdQBNEbOJi2ByD7Q/aHIHoWVmGX/55KpfDvf/8bpaWlqKiowIYNG9DU1ITLLrsMjY2N+Pjjj3HZZZcBAN544w18//vfF8fjq8ScmpoavPrqq6J07g033IBgMIitW7eK8/fp0wcXXngh3njjDVxyySWYO3eusKMdJdjs378/Nm3ahGOOOQbFxcX48MMPcdJJJ+3TPaisrMT27dvRp08fjBgxAqtWrcLEiRP36VgEQXQeLs5Yq0NyYSYUCgl7kkgkhDhSXl4Ot9uNUCgkFop4xSRVVeFyuWCaplhI4lWeuAjDPXZ5KLckSaJEdyQSgcfjyajgxI/FPWkAtBnH8Lw1XHDh57V6G1tDOnVdF2FeXq8Xzc3NAFoFpGg0itzc3DZjIIJoj4Mi1Fx//fVYvXo1li5d2ua97C9pZ764e2ozffp03HPPPfvc1/byJljzK1jd/zl8oMFXrq3hCFYXuOzV8OzwAD7xaq86Cm/L+2PNIG6dUFnzRVgnaLzvfDLEz2Fd/ebXRBMlordwMG0PQPaH7A9B9Czy8/PR2NgIoFWUffHFF7F9+3YMGzYMZ5xxBrZs2YLHH38ct956KwDgkUcewQUXXACXy4W33347Q9BuamrCwoULRc4FACgpKcH3v/99VFVVAfjWrvbr1y+jHyNHjsRbb72FjRs34uKLL0Y8HseGDRtQVlbWbr8LCgqwYcMGSJKEk046SSQI3Rdyc3MRCoUAtHpWLl++HJqmZVSwIwhi/8PDqXm+Fx7eZJqmEEkSiQTS6TSi0ahIEhyPx+F0OkXCYFVVkUgkIMsyQqEQPB4PwuEwUqkUkskkHA4HDMOAw+FAOp0WQo814a/dbofb7RYeMVbR2ToGAiAWvWw2mzgfD7vits/pdIp9rOW+eQ4s3k5RFHEvUqkUamtrUVFRQdXniE5xwIWaadOm4bXXXsP777+PiooKsb2kpARA68p1aWmp2F5fXy8GBiUlJVBVFS0tLRkr2/X19Rg3bly757v99ttx8803i9eRSASVlZWd7m92LgXrZCa7LKR18sPhk5H2HkCr8gpAJMHi26wTqextAIR6a518WftqnRhZjQ4/hvV3vp91Bd6aS4IgDnUOtu0ByP6Q/SGInoXD4YDL5UIsFoPP58M555wjwhG2bt2KGTNm4NZbb0VpaSneeust9OnTB/3798cbb7yBTZs24YYbbgBjDMuXL8eCBQtw1llnYdSoUV2eZNjtdtx0001IpVIoLi5GPB7H008/3aY0d3v4fD6YpilCoLq6Cu3z+fDhhx/i6KOPRm5uLkzTxIcffogTTzwxQ5gmCGL/wnPkMcaQSCQQi8WQSqWEoMIFHJ5vpqKiAvF4HHa7HcFgELIsIxqNwm63IxwOC08VXp6bV2XiYo5hGPB4PBmLQ5qmiYUst9sN0zSRSqVEEmOeJDi7zDYfszDGRGVMa6Jg7n3jcDhEomRd16EoivDy4TltuMeOqqrYtGkT+vTpI5Ikc7IX2QgCOIA5ahhjuP766zFnzhwsWrQIffv2zXi/b9++KCkpwcKFC8U2VVWxZMkSMREaNWoUHA5HRpuamhqsWbOmw8mSoigIBAIZP13BOqkAvn1YrTGH1lVg68OdnX+BxztmP/D8PNw1rz14UipuxLhx4Mewuuhl53bInjhxtz1rSVy+Hx+k8GNlV3AhiEON7rI9ANkffmzed7I/BNH9VFZWYseOHZAkKaPq28qVK3HdddehtLQUjDHEYjGcffbZeP3117Fx40Zcf/31sNls2LlzJ+LxOH77299i9OjR+7wSHAwGUVRUhG3btuGhhx7CySefLFab90Q6ncZzzz2Hl19+GXPnzkVdXV2X7MTAgQPhdDrR1NQEAJg6dSpWr16N+++/H6tWrUJtbS3lyCKIA4AkSULk4F4tfPzAxy08MXBZWRlM04SqqsjPz88oThAOh2EYBpLJJOLxOGw2G1wuF9xuNwKBALxeL3JychAIBIQQzX/4eAaA8O7h5be5Vw9PJpxtA0zThNvtxmWXXYZf/OIXmDx5MnJycpBIJISgxMdt/Jq46MRz0+i6LpIYq6qK7du3Y/Hixdi8eTNisZhIpqxpWsb4iCCAA+hRc91112HmzJl49dVX4ff7RTxyMBiE2+2GJEm48cYbcd9996F///7o378/7rvvPng8Hlx88cWi7U9/+lP88pe/FIkub7nlFgwbNkxUYtnfWPMp8LK12e9bV62toQHW/fn7Vrf+7MkMX1XOXnnmExhrTHn2PtZ9ee6K7NXs7ONZz83bWY9n7QNBHKocqrYHIPtD9ocg9j8DBgzAhx9+iMGDB2dsb2pqEkI2n0Rs2LABX331FaZNmyYqqHz44Yc499xz23j1dRXTNDF37lysXLkSP/3pT1FZWdmp511VVUiShEsuuQRNTU3485//jEsvvRRDhgzp1P6yLGP48OGYNWsWfv7znyMQCOD666/Hrl278NVXX2Hbtm2oq6tDJBLB1KlTUVFR0SkBiSCIveP1euH1ehEOh+F0OsXffD524DlluGdLnz59RBiTw+FAMpkUHnVutxs+nw/JZFIch3vn8DAraw49Xsabj6e4Fw2AjCTCPC8fr8hkTRzMWGvVqWOPPRbDhg1Dnz59MGfOHESjUSEA8UTBwLfJg7loYxgGXC6X8KoJh8NYv349amtrkZubK/IhBoNBFBQUoKSkJKMKHo2JDm8OmFDzr3/9CwAwYcKEjO1PPvkkrrjiCgDAbbfdhmQyiWuvvRYtLS0YO3YsFixYAL/fL9o//PDDsNvtuOCCC5BMJnHKKafgqaeeOuDuqpIkiT/UfDLBQwesE55sNzWrGmqddFgnQxw+GWpvn+zJjLVEbkfnz95uLYGbTfYkDIBwDyQllziUOdRtD0D2hyCI/UdeXh7i8TjS6bSwK/X19SgoKBDPeiKRwJdffomzzz4bxxxzjBBpFi1ahIkTJ35n4YIxhjlz5mDnzp248847u5QfJplMwu/3Q5IkFBQU4NZbb8X999+PK664QlSG2htDhw7Fp59+ijlz5uD000+H3+9HRUWFCE1ljKG2thZr167FU089hfHjx2PChAlURpcgvgOSJMHj8SA/Px87d+7MSMgLtHrL8eS8drsdfr8fiqKI8KR4PI5YLCaEDkVRRDUmLoBwr10eDuV2uwG0jim8Xi98Pp/INcO9V9xud4ZXMA8FB5BRqZJXjuLVpVwuF8aNGwefz4dZs2YhFAqJsuPcu4ZfNw/t5n3Nzc0VnjM8R099fT1UVYXH44HH40Fubi769OmD8vJy9O/f/zvl5iJ6Bwc09Km9Hz5RAlq/yHfffTdqamqQSqWwZMkSUZmF43K58Pe//x1NTU1IJBJ4/fXXu5TzYV/6zcMBsictfGLR3io335f/aw1TyG5nPRdvZw114PvsKV9D9jnb258bwuzQCWuCUh7GYF31pjwRxKHMoWp7eN/J/pD9IQ5dpk+fjtGjR8Pv96OoqAhTp07Fhg0bMtowxnD33XejrKwMbrcbEyZMwNq1azPapNNpTJs2DQUFBfB6vTjnnHOwc+fOfeoTnxhZy1I3NTVllN1+6qmnMGXKFASDQTE5mDt3LgoKClBUVLRP57WiaRq2bt2K6667bq8iDWMMa9euFSLM6tWrMWLECPF+QUEBfvWrX2H27NntltpmjKGlpQU1NTVim91ux09+8hOMGTMG8+bNw4svvoiPPvoIb731Ft5880188cUXKCwsxCmnnIJf//rXiMfjmDVrFtki4pCiJ9ofWZbh8/mE2AG0jiH4uMDr9aK4uBgFBQUoLi4WoowkSSIBMBeVudDjdruFBw2vVOl2u+HxeMSiks/nA/BtxcxUKiUSDPNwbn4/eHi20+nMCNUGgJycnAxb6XA4MGLECEycOBGMMZHkmCcmtlae4pWpuIjDw+NzcnIQDAaRm5uL/Px8qKqKXbt2Yf369Xj//fcxe/ZsrFixgsZDxIETag5V+Eov/z17tZlj/T27HZBZlYWvhlsnNdmTFav7v/Vf/mN1EbSufFsnSFajw9Vgq7HJzhFhnRBm70cQxMGH7A/ZH+LQZsmSJbjuuuvw0UcfYeHChdB1HZMmTUI8HhdtHnjgATz00EP4xz/+gRUrVqCkpASnnXYaotGoaHPjjTfilVdewfPPP4+lS5ciFothypQp4jnbF/Y04He73Rg9enRG2/LycqRSqTbHiMViWLVqFVauXImVK1fi66+/3utkQpIkxOPxTvV/8+bN8Hg8InfO6tWr23j05OfnY8CAAfj8888BAIsWLcKTTz6Jv/3tb/j3v/+Nv/3tbzj11FMzvPpkWUZ1dTUuvPBC/PCHP8SAAQNw9NFHY+jQoVi/fj0ee+wx7N69G16vF1OnToWiKG2unyB6Mj3V/vC8MRxr+FMwGBR5ZrinLw9B4l4v8XhcPIu6rgsPQS5CRyIRIdooioJYLAZFUTLGFbysN9DqpWcdp/DjAsgY89jtdlRXVyMnJ0f0m28fMWIECgsLRblvn88Hp9MJj8cDr9cLRVEy8teoqppRIEJRFCFSDRgwABUVFdA0Ddu2bcP777+PpUuXijAt4vDloJTnPpTITpJnXcW2Vk3Jnhxlhw1YJzDWXA28vTWnBN+WPfmynt/axnp86zn4RIgPTKy5I/g5rcfl+2aHRNBEiSC6B7I/ZH+IQ5v58+dnvH7yySdRVFSEzz77DN/73vfAGMNf/vIX3HHHHTjvvPMAAE8//TSKi4sxc+ZMXH311QiHw3jiiSfwzDPPiJxYzz77LCorK/HOO+/g9NNP73K/hg4dirVr1+L4448HAESj0YyqI0ceeSS+/vprDBgwAIZhYOnSpXjzzTdx2223iTbRaBQff/yxyG0jSRI2b96M3NxcbNiwQVSDsnrlaJqGlStXYufOnRmVUvZEUVERSktLRRJRTdNEtT6OJEk45ZRT8Omnn4IxhpNOOgmMMUQiEbhcLiiKsscwVUmSkJ+fL15XVVWhrq4ONpsNLS0tmDVrFvLz8yn0iTik6Kn2x5rvhYcW8eTCpmkiGo0Kj5hEIgFJkhCJREQCYT7+4a91XYfb7UZjYyM0TYPH4xH5aLj3IC/FbRiGCIviFZn4uImPhXRdhyRJbfLpeb1ejBkzBh6Pp413c0FBAQYOHIj//e9/4rjcg8bqNWhdLON5a3jOHB42lUwm4XQ64ff74fF4MHToUEyYMIFyZREk1GTD0P6qdkfhBdmTI2tb/jC3t0JunYxkl7rNTqrJDVt2Tgm+b/ZEx1qWzno8fk7rCrr1mqyr6gRBHHzI/pD9IXoX4XAYQGueGADYsmULamtrMWnSJNFGURScdNJJWLZsGa6++mp89tln0DQto01ZWRmGDh2KZcuW7dNEye/3Y/fu3eL1iBEjMiYBfIIEALt370Y4HMZdd90Fr9cLxhjmzZuHjz76CFdccQUmTpwoJjijR4+Gruuoq6vDxx9/DNM0EYlERBiA3W5HIBDA2LFj8b3vfQ8ej6dTfQVabcOCBQswduzYNqGbQKug09DQAODbUEt+n/eFwsJCrFixAqtXr8a4ceMwdOjQds9LEIcKPcX+8DLVdrtdlNXmFZi46MLLeMuyjEQiAV3XkUwmoSiKqNTU0tKCdDotvGc4oVAIqqoiFouJ8UtLSwsYY4jH48KDhnvj8P5YvYut4xXGWhMPl5eXY8iQIe1WunM4HCgtLcWqVaugaZrwGrIWU7B6J/N8Nzz0KplMgjEGt9sNVVURjUbhcDhw/vnnY/DgwXC5XBkeOMThCQk12XzzPFhXrwE+uQD4HMU6WbE+2O2tQFtDCIC2uSayJ1TWY/Df+STJem6uLvPV7OxJEVeWrddgnZRx+GTLalAIgugGyP6Q/SF6DYwx3HzzzTjhhBNEDixeha64uDijbXFxMbZt2yba8Eog2W34/tmk0+kMN/lIJJLxvs1mw6ZNm3DaaadBkqQ9eopIkoRgMAiv14toNIpZs2YhGo3ijjvuELkjOPX19bj33nvxm9/8Bueccw40TcPq1atxzDHHZByP75NKpRCJRFBYWLjHCYiu61i/fj2++OIL/Pa3v223jc1mQyqVgq7rnU5OzEWl//3vfxlhTYwxrFu3DsXFxbj00kszqq4QxKFIT7I/Ho8HPp8PiURCCDSyLMPr9cLpdGYk3eVjBR66lEwmEYvFUFNTA5/PB7fbLUQR0zSF8JJIJIQHTUtLCxKJBAKBAGRZFmGXHo9HlATnYVJ8MUqSJDgcDjEOKSwsxLnnnouKiooO73E6nYaqqiK3DRdsuHcOH8fxHDWm2Vru+8gjj8wI0fL7/QgGg8jLy8OAAQNEhVKCIKEmC9M0AAlgZlZogWTCZAyyJINZFnytExTg2wFJdv4F/nv2JIr//u35v92vvcmPdQWbx1e2F9qQfTxu+LLDEawr7K2vTZjm3l2TCYLY/5D9IftD9B6uv/56rF69GkuXLm3zXvYg3PpMdsSe2kyfPh333HNPh/uWlZV1euBfVlaG4uJiJBIJzJw5E6NHj8awYcMyxBDDMESp7KuvvhrFxcUwTRPLli3Dzp07MWrUKLGCvW7dOqRSKYwYMQJvvPEG0uk0dF1H3759MXToUAQCAQDA1q1b0dDQgN27dyMWi6F///64/fbb91j5pKKiAn/84x8xYcKEPYo1zc3NIrSpuLgYo0aNaiNWnXnmmSTQEL2GnmJ/uADi9/vR0NAghFVVVeFyuYQnn8vlyhBT0uk0kskkotEoUqkUSktLRaUnHh5lmqYQfwBklPOWJAnpdBqBQABlZWVgjGHs2LEoKSnB0qVLsX37djQ3NyMajcJutyMvLw8lJSUoLy9Hbm4uhg0bhuHDh2ckQc6+rrKyMvTv3x9Aq9cSF5Z4ZSdZluF2u0X1Kb/fj6qqKpSUlMButwtxS1GUjNLiJNIQHBJqspAgwTQNMFjzOwCMSZAAmCYDWPvJPdsLK8gOA+DvWycp7eWd+HaV/NtVdN7m23PxVfbMCdK3K+itC/QM366oW3NXaJqGVCoFVVWh6yoMw4TilOFxu1snjARBHFTI/pD9IXoH06ZNw2uvvYb3338/Y0WW51qpra1FaWmp2F5fXy9WuUtKSoSbv3VVu76+HuPGjWv3fLfffjtuvvlm8ToSiWRUqZNlGUcddRQ2bdokJhZWeIgAbyvLMjZu3IiKigqMHDlStIvFYli0aJHIKXHLLbegqKgIkiRh27Zt0HUdxx9/PN58802EQiEYhoHBgwcjJycHNpsN3/ve9wC0hhlt3rwZ77//vkhi2qdPHxQWFmLIkCEIBoMA9j5hOfvsszFu3DjU19fvsV2/fv0y8tzQRIjozfQ0+2Oz2VBYWIivvvoKmqYJbzhFUZBIJOB2u4UHTGNjo6jmxj1seKgT94ZJJpNoaWkRYxyg1WslHA4jnU7D7XajqKhICCBcbIlGozj55JMxbtw4RKNR1NfXY9OmTbDb7RgwYACKiorg9Xpht9szkh9nw+3HyJEjcdRRR0GSJOE1w8O0eN4bp9MJp9MJm82WUcIbgAg/tY7hCMIKCTVZmIYJwzABmJBg+2YFOXOSsaeQgm+345u2vNpKq/KrazoM0/imNJwuXP513QAzzdYcFSZgmCYkAIZhIpVOIpVMQtN0kYQqraa/SYhlikmNabZOqgxDheIETCMNTU0jnkyjuTmBRDKV0WeehVzXW/sCSKgqz8XggX1xxU9+Bo+HVpYI4mBC9ofsD3FowxjDtGnT8Morr+C9995D3759M97v27cvSkpKsHDhQhEepKoqlixZgvvvvx8AMGrUKDgcDixcuBAXXHABAKCmpgZr1qzBAw880O55FUXZa+LJMWPG4L777sPPfvYzVFZWZoRX9u3bFy+//DLGjx8PoDUJ8Jo1a3D22WeLNlu2bMFjjz2GCRMmYNKkSW08Uqqrq2Gz2XDnnXfihz/8Ic477zy43e6MNj6fD6+//jouuugi9O/fv13RqCtIkoSCgoKM8rkEcbjSU+2PJEkoKSlBWVkZQqGQyM/CE/tGIhHEYjG4XC4EAgFomiZKafN21hwzPG8eDy8yTROxWAxOpxOBQEDkwuECDU/2G4lEsHbtWpxyyinw+XwoLS3F8OHDRR/5v9Zx1Z6uyWazwefzZezjdDozPPOyvZc7OiaJx0R7kFBjQdPSWLFsAcLhFjSH46hrjMLQvzUQrZMbw5Ix3ATA4HI5YLMBsixB14FUSoeum99MsL6ZKDEJJjNhGPo3qnCri3/r77x8nAFJYmAsO2kVP9c3rzqhukoSMqqvMNa6Mt9+W/4Gw66aEI44QoYsUeV2gjiYkP0h+0Mc+lx33XWYOXMmXn31Vfj9fpHTIRgMirwDN954I+677z4hVNx3333weDy4+OKLRduf/vSn+OUvf4n8/Hzk5eXhlltuwbBhw0QVln3B7XbjZz/7GZ555hmMGjUKxxxzjFhFLygowMUXXyyE4MbGRpxwwgkZQovb7cZ11123xzCqoqIizJgxAy6Xq902qqpSyWuCOED0ZPvj8XgwevRo5Obm4pNPPkFzczOam5vFGCccDoMxhj59+iAUComQJlmWRSgR97ThXjI2m0146NrtdlHtjYvQPISqqakJVVVVUFUVXq83I0lvR2FNnSHbs7mzbQmis5BQY4GZDLFYE5LJKBw2hm1bNqO+oRkiwycyFdHS0jwMO6ov8vLdkGXbN5MLCZFoEhs27sCmr2ugWUpR7im+kzF8M0kCGPvW7b89d7jOPuyGwUMnZLSGKWSW4uX/Wo+nagZWr90KVaM8EQRxMCH7Q/aHOPT517/+BQCYMGFCxvYnn3wSV1xxBQDgtttuQzKZxLXXXouWlhaMHTsWCxYsENWOAODhhx+G3W7HBRdcgGQyiVNOOQVPPfXUHktO7w1JklBdXY3bb78dmzZtwjPPPIOcnJyMNi6XC0VFRRg0aBCqqqoyns/sEtnt0VE+GV3XsWHDBjz33HP4wQ9+sM/XQBBEx/RU+8P/5vv9fowYMQLl5eXYunWrqOIEtArBhYWFcDqdaGpq+sbbV4fNZoPH4xHhRABEHhseps1DvNPpNOx2O9xut6iwxEVjm82GI444AkcdddR3sqMEcTCRWC8PiotEIggGgwiHwyJhXUfE41E8+s/fI5VMApKE9Ru2Yu5ri5B5hxgkWcLRwwfhtIlj4FKcrXkapNbwAgk2mDCgmyZWrVqPhe98AjWtiWO0TeDZutLscjngD7jhVhxIqwZi0RRi8eQ3K9ntq76d+ej2liCsvWMWFhbis88+Q2Fh4R6P3ZV7SxCHI2R/yP4QRHewr89HKpXC5s2b8eyzz+K4447DlClT2i1N2xHZdiGZTOKrr77Ce++9B5vNhnPPPbdLiY17KmR/CKJj9vR8dJTXji/caJqGL774Ap9++qnIPcXz2ZmmKSos8fw0pmkilUqJ3DA2mw05OTnIycmB0+mEx+NBWVkZBg8ejOrqahGWdKjaILI9hxfkUWNBkiTk5ASQdLbGWQ45qj8WLVmBSDhmmXBIqKgowDnnTITf4/omWSbAhPe+BFMyAQaMGz8K0VgaH3zwKWBKbc4FAG63gjGjh+LoowchNycAmyTDME0kEimsXrsRy5b9D+FwvMP+Anw1/JvT8ySe0t5jKwmC6DmQ/SEIortxuVwYPHgw7rrrLsyaNQvTp0/H1KlTUVZWBo/H02EeCp6MeNOmTXjzzTdFSJXb7Ub//v3xs5/9DC6Xq0uiD0EQvQ+rRy1/bcXpdGLEiBEoLCzEypUrsX79euE9w3PWaJoGXvWJlwa32+2orq7G8OHDUV5eDpvNBsMwUFhYiPLycuFZQ+MP4lCChBoLEgC73Qanww5AQtDvhcetIBKOtT7Yrf/hxBNGIycYAJNM2JgNEkwwMEiQvpk0MZiMwWaX8b0Jo7B2zUY0NUXbnC8Q8ODCH56FI/pVtk50GGCTWw2Px+XChBNGY8CRffHynPnYtasRDG1XsL9VpCW4XA6UlOQhL7e1WkJLcxQ1dQ1IpbTM68wKZ8h8zQCYIAji4EL2ByD7QxA9A0VRcPnll6O5uRkbN27E+vXrxap1VVUV8vPzM9rX1tbik08+weTJk3HttddmVIshCIKwsjexxG63o6qqCsXFxRg1apTIZ7Nr1y40NDQgHA4jGo2KEt/l5eUYOXIkjj76aBQUFIjQJsZYhjhMIg1xqNHrhRo+AYhEInttm0zEkUqpUNMpgMnQNBOGbn47iWAmfD43+lSWIZVOg8GExGTIACCZkCHDZCYgm625HkzA41BQUV6MpqZoxuTEZpNxxqQTUFFRjGRag/RNYlCbJH87IWJAfm4Qk884Cc889xoSidYEfNmGRpKAQQOrMH7cCBTm5sJmd0CSTGiqgaamMN5fvhJfbtjaekBkuhkC35bi5RiGiWg0utcKEvye9vLoOYLYZ8j+kP0hiO6gK7ZnTzgcDgwZMgRDhgwRpXJ37NiB5ubmjHZVVVUYO3asmCB91/P2dMj+EETH7A/7w4/h9/vh9/tRWVmJwYMHI5lMIhKJoKmpCfF4HIFAAJWVlQgEArDZbEgkEm2O1ZsEGrI9hxe9PkfN5s2bccQRR3R3N3o1O3bsQEVFRXd3gyB6HGR/DjxkfwiiLTt37kRlZWV3d6PXQ/aHINpCY58DD9mew4Ne71GTl5cHANi+fTuCwWA396b7iUQiqKysxI4dO75zEirGGKLRKMrKyvZT7wiid0H2JxOyPwRxcCgrK8O6deswePDg/fK8HS501kaR/SGIjqGxz77RGftDtufwotcLNTw2MRgM0kDFQiAQ2C/3gwwwQXQM2Z/2IftDEAcWWZZRXl4OYP89b4cTnblnZH8Ion1o7PPd2Jv9Idtz+EDp9wmCIAiCIAiCIAiCIHoIJNQQBEEQBEEQBEEQBEH0EHq9UKMoCu666669VhA5XKD7QRAHD3reMqH7QRAHD3reug7dM4L47tBztG/QfSOy6fVVnwiCIAiCIAiCIAiCIA4Ver1HDUEQBEEQBEEQBEEQxKECCTUEQRAEQRAEQRAEQRA9BBJqCIIgCIIgCIIgCIIgegi9XqiZMWMG+vbtC5fLhVGjRuGDDz7o7i7td6ZPn47Ro0fD7/ejqKgIU6dOxYYNGzLaMMZw9913o6ysDG63GxMmTMDatWsz2qTTaUybNg0FBQXwer0455xzsHPnzoN5KQTRazgcbA9A9ocgeiKHi/3pDGSjCOLgQvbnW8j+EN+FXi3UzJ49GzfeeCPuuOMO/O9//8OJJ56IyZMnY/v27d3dtf3KkiVLcN111+Gjjz7CwoULoes6Jk2ahHg8Lto88MADeOihh/CPf/wDK1asQElJCU477TREo1HR5sYbb8Qrr7yC559/HkuXLkUsFsOUKVNgGEZ3XBZBHLIcLrYHIPtDED2Nw8n+dAayUQRx8CD7kwnZH+I7wXoxY8aMYddcc03GtkGDBrFf//rX3dSjg0N9fT0DwJYsWcIYY8w0TVZSUsL+9Kc/iTapVIoFg0H2yCOPMMYYC4VCzOFwsOeff1602bVrF5Nlmc2fP//gXgBBHOIcrraHMbI/BNHdHM72pzOQjSKIAwfZnz1D9ofoCr3Wo0ZVVXz22WeYNGlSxvZJkyZh2bJl3dSrg0M4HAYA5OXlAQC2bNmC2trajHuhKApOOukkcS8+++wzaJqW0aasrAxDhw7t9feLIPYnh7PtAcj+EER3crjbn85ANoogDgxkf/YO2R+iK/RaoaaxsRGGYaC4uDhje3FxMWpra7upVwcexhhuvvlmnHDCCRg6dCgAiOvd072ora2F0+lEbm5uh20Igtg7h6vtAcj+EER3czjbn85ANoogDhxkf/YM2R+iq9i7uwMHGkmSMl4zxtps601cf/31WL16NZYuXdrmvX25F739fhHEgeJwsz0A2R+C6CkcjvanM5CNIogDD9mf9iH7Q3SVXutRU1BQAJvN1kZprK+vb6Na9hamTZuG1157DYsXL0ZFRYXYXlJSAgB7vBclJSVQVRUtLS0dtiEIYu8cjrYHIPtDED2Bw9X+dAayUQRxYCH70zFkf4h9odcKNU6nE6NGjcLChQszti9cuBDjxo3rpl4dGBhjuP766zFnzhwsWrQIffv2zXi/b9++KCkpybgXqqpiyZIl4l6MGjUKDocjo01NTQ3WrFnT6+4XQRxIDifbA5D9IYiexOFmfzoD2SiCODiQ/WkL2R/iO3FwcxcfXJ5//nnmcDjYE088wdatW8duvPFG5vV62datW7u7a/uVn//85ywYDLL33nuP1dTUiJ9EIiHa/OlPf2LBYJDNmTOHffHFF+yiiy5ipaWlLBKJiDbXXHMNq6ioYO+88w77/PPP2cSJE9mIESOYruvdcVkEcchyuNgexsj+EERP43CyP52BbBRBHDzI/mRC9of4LvRqoYYxxv75z3+y6upq5nQ62ciRI0U5tN4EgHZ/nnzySdHGNE121113sZKSEqYoCvve977Hvvjii4zjJJNJdv3117O8vDzmdrvZlClT2Pbt2w/y1RBE7+BwsD2Mkf0hiJ7I4WJ/OgPZKII4uJD9+RayP8R3QWKMsYPnv0MQBEEQBEEQBEEQBEF0RK/NUUMQBEEQBEEQBEEQBHGoQUINQRAEQRAEQRAEQRBED4GEGoIgCIIgCIIgCIIgiB4CCTUEQRAEQRAEQRAEQRA9BBJqCIIgCIIgCIIgCIIgeggk1BAEQRAEQRAEQRAEQfQQSKghCIIgCIIgCIIgCILoIZBQQxAEQRAEQRAEQRAE0UMgoYYgCIIgCIIgCIIgCKKHQEINQRAEQRAEQRAEQRBED4GEGoIgCIIgCIIgCIIgiB4CCTUEQRAEQRAEQRAEQRA9BBJqCIIgCIIgCIIgCIIgeggk1BAEQRAEQRAEQRAEQfQQSKghCIIgCIIgCIIgCILoIZBQQxAEQRAEQRAEQRAE0UMgoYYgCIIgCIIgCIIgCKKHQEINQRAHndWrV+OnP/0pjjjiCLjdbrjdbvTv3x9XX301Pv3003065nvvvQdJkvDee+91qr0kSbj++uv36Vzflfnz5+Oss85CYWEhFEVBZWUlLr/8cqxbt26/7HP33XdDkiTx4/F4UFFRgdNPPx1///vfEY1GD+TldcgVV1yBPn36ZGzr06cPrrjiCvGaf44vvfTSwe1cF5kxYwaeeuqpNtt3796Nu+++GytXrjzofSL2P2Srep+tWrZsGe6++26EQqH9fuxs7rvvPsydO/eAn4cgCILofeyTUEMDl943cNkfPPXUU5AkCVu3bu3yvlu3boUkSe1OfPYn7U0UiYPLo48+ilGjRuHjjz/GDTfcgDfeeANvvvkmbrzxRqxduxajR4/G119/3eXjjhw5EsuXL8fIkSMPQK/3H7fddhsmT54M0zQxY8YMLFy4EHfddRdWrFiBkSNHYs6cOftlH6DV7ixfvhzz58/Hgw8+iKqqKtx2220YMmQIVq1adaAvtQ133nknXnnllYN+3gPBnoSae+65h4SaXgDZqt5pq5YtW4Z77rmHhBqiR/Dxxx/j3HPPRVVVFRRFQXFxMY4//nj88pe/zGg3YcIETJgwIWObJEm4++67xWs+Dt/XudjBoqPnYt26dbj77rv3aR5BHBgOxHeqvTk/n/sSWbAu8sgjjzC73c6GDBnC/vrXv7J33nmHvfvuu+wf//gHGz9+PAPANm3a1NXDsnA4zJYvX87C4XCn2gNg1113XZfP81259dZbGQB2xhlnsBdeeIEtWbKEPfbYY+yoo45iiqKwl19++Tvvc9dddzEAbP78+Wz58uVsyZIlbNasWez//b//x1wuF6usrGQrV648WJfcaerr69ny5ctZKpXq8r6pVIotX76c1dfXH4Cefcvll1/OqqurD+g5iI5ZunQpk2WZnX322SydTrfb5oUXXmC7du06YH2Ix+OMse6xITNnzmQA2M9//vM278ViMTZq1Cjm8XjY119//Z324TakoaGhzT4rV65kwWCQVVVV7dOzur+prq5ml19+uXi9ePFiBoC9+OKL3depTjBkyBB20kkntdm+YsUKBoA9+eSTB71PxP6DbFXvtVV//vOfGQC2ZcuW/XbMjvB6vRn2bX+RSCT2+zGJg88bb7zBZFlmEydOZLNmzWLvvfcemzVrFvvlL3/JysvLM9quXbuWrV27NmMbAHbXXXeJ108++SQDwFasWHEwur/PdPRcvPjiiwwAW7x48UHvE9E+B+I7xcd51s+Z/y0gMunSHaGBS+8duHwXEokEM02zu7vRKUio6V7OPPNM5nA42O7du7u034oVK9jZZ5/NcnNzmaIo7Oijj2azZ8/OaNOe4b/88suZ1+tlq1evZqeddhrz+XzsuOOOY4x9a0P++9//skGDBjG3282GDx/OXn/99Tbn/+CDD9jEiROZz+djbrebHX/88eyNN97IaBOPx9kvf/lL1qdPH6YoCsvNzWWjRo1iM2fOFG2GDBnCcnNzhR3LZtmyZQwAu/7667/TPnuyIYwx9sADDzAA7Omnn273/X2hvr6e/exnP2MVFRXM6XSygoICNm7cOLZw4ULRpr3nryOhZubMmew3v/kNKy0tZX6/n51yyinsyy+/bHPeJ554gg0fPlzc86lTp7J169ZltDnppJPaFVXa6086nWa///3v2cCBA8V1XHHFFRkicnV1NQOQ8VNdXS36nv1jHUh35rvcme8ScWAhW9U7bRU/X/aP9bN4/vnn2XHHHcc8Hg/zer1s0qRJ7PPPPxfvf/DBB8xut7Nf/vKXGcfmE5rHH3+cMcbaPQ+3Qx1NSvgxrCJSdXU1O+uss9jLL7/Mjj76aKYoCvvVr37FGGOspqaGXXXVVay8vJw5HA7Wp08fdvfddzNN0zKOO2PGDDZ8+HDm9XqZz+djAwcOZLfffvt3uZXEfuB73/seO+KII9p8XowxZhjGXvcnoYY40JBQ07106Y7QwKV3Dlw4nblP/IF9++232ZVXXskKCgoYAJZMJtsdYJimyf74xz+yqqoqpigKGzVqFFuwYEGbidOWLVvarELz+7BmzRr2ox/9iAUCAVZUVMSuvPJKFgqFMvr1j3/8g5144omssLCQeTweNnToUHb//fczVVUz2pFQ033oui6+V11h0aJFzOl0shNPPJHNnj2bzZ8/n11xxRVtvi8d2RA+eJ0+fTp799132dtvv80Ya7Uhffr0YWPGjGEvvPACe+utt9iECROY3W7PEE7fe+895nA42KhRo9js2bPZ3Llz2aRJk5gkSez5558X7a6++mrm8XjYQw89xBYvXszeeOMN9qc//Yn9/e9/Z4wxtnv3bgaAXXjhhXu83qKiIjZw4MB93oexvduQL7/8kgFgP/3pT/d4XMZYxuRiT5x++umssLCQ/fvf/2bvvfcemzt3Lvvd736XcY+6ItT06dOHXXLJJezNN99ks2bNYlVVVax///5M13XR9r777mMA2EUXXcTefPNN9t///pf169ePBYNBtnHjRtGus0KNYRjsjDPOYF6vl91zzz1s4cKF7PHHH2fl5eVs8ODBYhX7888/Z/369WPHHHMMW758OVu+fDn7/PPPWTgcFnbwt7/9rXhvx44djLHOf5f39l0iDixkq3qvrdqxYwebNm0aA8DmzJkjnlHuzf3HP/6RSZLEfvKTn7A33niDzZkzhx1//PHM6/VmeDP86U9/YgDYq6++yhhjbM2aNczj8bAf//jHos3y5cuZ2+1mZ555pjgPP0ZXhZrS0lLWr18/9p///IctXryYffLJJ6ympoZVVlay6upq9uijj7J33nmH/f73v2eKorArrrhC7D9r1iwGgE2bNo0tWLCAvfPOO+yRRx5hv/jFL/Z6T4kDy5AhQ9jYsWM71ba9v2MdCTWLFi1i11xzDcvPz2d5eXns3HPPbbOIbhgGu//++8WiRGFhIbv00kvF3ytO9t/oPfUnHA6LuZTD4WBlZWXshhtuYLFYLKPP7QmYvO/ZP1bbuXDhQjZx4kTm9/uZ2+1m48aNY++8806n7l9XaGlpYTfffDPr27evuDeTJ09m69evF22amprYz3/+c1ZWVsYcDgfr27cv+81vftNmEb0z89VXXnmFAWj3WmbMmMEAsFWrVolte5tXNzQ0sIqKCnb88cdnzIPWrl3bxk7tja58p7K/j5yOxnkk1OydTt8RGrj03oELY52/T/yBLS8vZ1dddRWbN28ee+mll5iu6+0OMG6//XYGgF111VVs/vz57LHHHmNVVVWstLS000LNwIED2e9+9zu2cOFC9tBDDzFFUdiVV16Z0f+bbrqJ/etf/2Lz589nixYtYg8//DArKCho046Emu6jtraWAWA/+tGP2ryn6zrTNE38WD20Bg0axI455pg2K05TpkxhpaWlYtWpIxsCgP3nP/9pc04ArLi4mEUikYw+yrLMpk+fLrYdd9xxrKioiEWj0Yz+Dh06lFVUVIi+Dh06lE2dOrXD6//oo48YAPbrX/+6wzaMMTZ27Fjmdrv3eR/G9m5DkskkA8AmT568x+MyxpjNZmMTJ07cazufz8duvPHGPbbpilBz5plnZrR74YUXGAC2fPlyxljrQIpPgqxs376dKYrCLr74YrGts0INn9Bkh6PycKYZM2aIbfsS+tTZ7/LevkvEgYVsVe+2VR2FPm3fvp3Z7XY2bdq0jO3RaJSVlJSwCy64QGwzTZOdeeaZLCcnh61Zs4YNHjyYDRo0KGNCyljHngNdFWpsNhvbsGFDRturr76a+Xw+tm3btoztDz74IAMgRKHrr7+e5eTkdHg/iO7j//2//ydEtI8++qjN4qKVrgg1/fr1Y9OmTWNvv/02e/zxx1lubi47+eSTM/a96qqrxELx/Pnz2SOPPMIKCwtZZWVlxvPYWaEmHo+zo48+mhUUFLCHHnqIvfPOO+yvf/0rCwaDbOLEicL+dCRg1tfXi8WXf/7zn+I97s36zDPPMEmS2NSpU9mcOXPY66+/zqZMmcJsNlunxJqTTjqpU0JAJBJhQ4YMYV6vl917773s7bffZi+//DK74YYb2KJFixhjrXaJe6g9+OCDbMGCBezOO+9kdru9zZikM/NVTdNYUVERu+SSS9r0Z8yYMWzkyJHidWfn1UuXLmV2u53ddNNN4vPpyE7tia58p0io2f90+o7QwKV3D1w6e5/4A3vZZZe1OUb2AKO5uZkpitJGqFq+fHkbAWlPQs0DDzyQsf+1117LXC5Xh+FWhmEwTdPYf//7X2az2Vhzc7N4j4Sa7mNPNmTEiBEZKyh//vOfGWOMffXVVwwAe/DBBzNsjKZpYpWBh7nsyYa0l/uqo76UlJSwa665hjHWGp4oSRK79tpr27S7//77GQCxwvKTn/xEuKQvXry4TQ6BztqDMWPGMI/Hs8/7MLZ3G5JIJDptQzrLxIkTWU5ODvv973/Pli9f3u6AsytCzSOPPJLRjgvUXDh+6623GAD2wgsvtDnP5MmTWXFxsXjdWaHmkksuYTk5OUxV1Tbft+yJWleFmq58l/f2XSIOLGSreret6kioeeyxxxjQ6uKf/RleeOGFrKioKKN9Y2Mjq6ysZC6Xi7ndbrZ69eo259pfQs0xxxzTpm15eTk7++yz2/R17dq1GcLyf//7X/Edmjt3bof3mjj4NDY2shNOOEHYE4fDwcaNG8emT5+eMR5nrGtCTbYd4J74NTU1jDHG1q9f3267jz/+mAFgv/nNb8S2zgo106dPZ7IstwmReemllxgA9tZbb4ltXQ19isfjLC8vj5199tkZ2w3DYCNGjGBjxoxpc6xsJk6cyGw2217b3XvvvQxARth2No888ki74w9uaxcsWCC2dXa+evPNNzO3250RMbBu3ToGIMObtrPzamt/XnnlFXb55Zd3aKf2RGe/U/xaSajZv+yX8tyjRo2Cw+EQP//3f/8HANi0aRO+/PJLXHLJJQAAXdfFz5lnnomamhps2LBhr8c///zz291+8sknw+/3i9fFxcUoKirCtm3bAADxeBwff/wxfvCDH8Dn84l2NpsNl156KXbu3CnOP2bMGMybNw+//vWv8d577yGZTO7TvWCMdTlrdVf3YYx1uq2u63j33Xf32KYr94nT0Wdi5aOPPkI6ncYFF1yQsf24447rUuWlc845J+P18OHDkUqlUF9fL7b973//wznnnIP8/HzYbDY4HA5cdtllMAwDGzdu7PS5iANHQUEB3G63eD6tzJw5EytWrMBrr72Wsb2urg4AcMstt2TYGIfDgWuvvRYA0NjYuMfzejweBAKBdt/Lz89vs01RFPH8t7S0gDGG0tLSNu3KysoAAE1NTQCAv/3tb/jVr36FuXPn4uSTT0ZeXh6mTp2Kr776CgBQVVUFANiyZcse+7tt2zZUVlbu8z6dgX8G/Br2B7Nnz8bll1+Oxx9/HMcffzzy8vJw2WWXoba2dp+Ol/3ZKIoCAOKz4fe9o8+Gv98V6urqEAqF4HQ623zfamtr9/pd29uxgc59l/f2XSIOLGSreret6gj+GY4ePbrNZzh79uw2n19+fj7OOeccpFIpnHHGGRg2bNgB61t7n2tdXR1ef/31Nn0dMmQIgG+/b5deein+85//YNu2bTj//PNRVFSEsWPHYuHChQesv0TnyM/PxwcffIAVK1bgT3/6E77//e9j48aNuP322zFs2LB9/pvT3rgZ+PZ5Wrx4MYDWSqhWxowZg6OOOmqv84b2eOONNzB06FAcffTRGfO9008/vUtVfdtj2bJlaG5uxuWXX55xbNM0ccYZZ2DFihWIx+N7PMa7774LXdf3eq558+ZhwIABOPXUUztss2jRIni9XvzgBz/I2M7vZ/b929t8FQB+8pOfIJlMYvbs2WLbk08+CUVRcPHFFwPo+rz61ltvxVlnnYWLLroITz/9NP7+97/vs53a23eKODDYO9twbwOXRCKBmpqajA/SOnC55ZZb2j1uTxq4VFRUYPbs2bj//vvhcrlw+umn489//jP69+/fqwcuXblPnPbaZsP3KS4ubvNee9s6Ym8Ttu3bt+PEE0/EwIED8de//hV9+vSBy+XCJ598guuuu26fRTdi/2Kz2TBx4kQsWLAANTU1Gd+hwYMHA0CbkowFBQUAgNtvvx3nnXdeu8cdOHDgHs/7Xcr95ebmQpZl1NTUtHlv9+7dGX30er245557cM8996Curk4Iv2effTa+/PJLlJaWYsiQIViwYAESiQQ8Hk+bYy5fvhx1dXX44Q9/CAD7tE9n4JPM7FKf34WCggL85S9/wV/+8hds374dr732Gn7961+jvr4e8+fP32/n4XC70NFnwz8XAHC5XAiHw23aZf/9KSgoQH5+fof9tQ60ukpXvst7+y4RBxayVb3bVnUEvz8vvfQSqqur99p+4cKF+Ne//oUxY8bglVdewcsvv9ypRSyg1SYBQDqdFmMaoOMxcXvfjYKCAgwfPhx//OMf293HOka88sorceWVVyIej+P999/HXXfdhSlTpmDjxo2dulbiwHLsscfi2GOPBQBomoZf/epXePjhh/HAAw/ggQce6PLxvutCx75Mvuvq6rBp0yY4HI52398fCx3ZwoiV5uZmeL3efT4Hp6GhQczfOqKpqQklJSVtnsuioiLY7fY2c6a9zVcBYMiQIRg9ejSefPJJXHXVVTAMA88++yy+//3vIy8vD0DX59WSJOGKK67Am2++iZKSElx66aV7vK49sbfvFHFg6LRQQwOX3jtw6cp94nTmc+EPNTcsVmpra7vkVbMn5s6di3g8jjlz5mQMOFauXLlfjk/sP26//XbMmzcP11xzDV566aUO/6BzBg4ciP79+2PVqlW47777DlIvv8Xr9WLs2LGYM2cOHnzwQbjdbgCAaZp49tlnUVFRgQEDBrTZr7i4GFdccQVWrVqFv/zlL+L5v+OOO3DxxRfjlltuwYwZMzL2icfj+MUvfgGPx4ObbrpJbN+XffYEv5d9+vRp4+22v6iqqsL111+Pd999Fx9++OEBOcfxxx8Pt9uNZ599NsN+7ty5E4sWLcoY0PXp0wcvvvhixqSoqakJy5Yty1gImDJlCp5//nkYhoGxY8fu8fzZgyzrdqDt4GVfv8sdfZeIAwvZqt5rqzp6Rk8//XTY7XZ8/fXXexVcampq8OMf/xgnnXQSFi5ciPPOOw8//elPMXLkSPTt2zfjXO3ZCT7+Wb16NUaPHi22v/76652+jilTpuCtt97CEUccgdzc3E7t4/V6MXnyZKiqiqlTp2Lt2rUk1PQwHA4H7rrrLjz88MNYs2bNATmHdaGjoqIi4732FjrS6XSbYzQ2Nma04wv6//nPf9o9Z/Y8oivwff/+97/juOOOa7dNVxaA90RhYSF27ty5xzb5+fn4+OOP20RE1NfXQ9f1fb7WK6+8Etdeey3Wr1+PzZs3o6amBldeeaV4v6vz6pqaGlx33XU4+uijsXbtWtxyyy3429/+tk996wyKorT7XdkXD2eilU4LNQANXHrrwGVf79PeGDt2LBRFwezZszMMykcffYRt27btN6GGG0nrqhRjDI899th+OT6x/xg/fjz++c9/Ytq0aRg5ciSuuuoqDBkyRAiFL7/8MgBkTJ4fffRRTJ48GaeffjquuOIKlJeXo7m5GevXr8fnn3+OF1988YD2efr06TjttNNw8skn45ZbboHT6cSMGTOwZs0azJo1S3z/xo4diylTpmD48OHIzc3F+vXr8cwzz+D4448XE+uLLroIn3/+OR588EFs3boVP/nJT1BcXIwNGzbg4Ycfxtdff42ZM2eiX79+4vz7sg/ns88+QzAYhKZp2L17N959910888wzKCoqwuuvvw6n07nX67fb7TjppJP26AodDodx8skn4+KLL8agQYPg9/uxYsUKzJ8/v8PBxHclJycHd955J37zm9/gsssuw0UXXYSmpibcc889cLlcuOuuu0TbSy+9FI8++ih+/OMf42c/+xmamprwwAMPtPHW/NGPfoTnnnsOZ555Jm644QaMGTMGDocDO3fuxOLFi/H9738f5557LgBg2LBheP755zF79mz069cPLpcLw4YNwxFHHAG3243nnnsORx11FHw+H8rKylBWVtbp73JnvkvEgYVsVe+0VQCE6/9f//pXXH755XA4HBg4cCD69OmDe++9F3fccQc2b96MM844A7m5uairq8Mnn3wiFvQMw8BFF10ESZIwc+ZM2Gw2PPXUUzj66KNx4YUXYunSpaK/w4YNw3vvvYfXX38dpaWl8Pv9GDhwIM4880zk5eXhpz/9Ke69917Y7XY89dRT2LFjR+c+bAD33nsvFi5ciHHjxuEXv/gFBg4ciFQqha1bt+Ktt97CI488goqKCvzsZz+D2+3G+PHjUVpaitraWkyfPh3BYDBDJCIOPtkL35z169cDOHAhfxMnTgQAPPvssxnfgRUrVmD9+vW44447xLY+ffpg9erVGftv3LgRGzZsyBAkpkyZgvvuuw/5+fkZYmV7dHWhY/z48cjJycG6detw/fXXd/Iq943Jkyfjd7/7HRYtWiTuUzannHIKXnjhBcydO1eMCQDgv//9r3h/X7joootw880346mnnsLmzZtRXl6OSZMmife7Mq+22ql58+bhueeewy233IIJEyYcsHFZe9+VRYsWIRaLHZDzHRZ0NanNv/71L2a329nQoUPZ3/72N/buu++yxYsXs5kzZ7Lzzz+fAWCPPvqoaL9o0SKmKAqbNGkSmzlzJluyZAl75ZVX2H333cd+8IMfiHZ7Ks/dHkBrubNsshMW8WpGY8eOZS+++CJ79dVX2emnn96mmtGYMWPYvffey+bOncuWLFnCHnnkEZafn9+mytUtt9wiEtu9+OKL7P3332ePPfYYGzx4MFMUpU21kH3ZhydUmj9/Plu+fDl7//332fPPP89+9rOfMZfLxaqqqtgXX3zR/geURWeTCXf2PvGkUtnJwqzvtVf16eqrr2bz589njz/+OKusrGSlpaUZ2cL3lEw4O/Fd9nnWr1/PnE4nmzBhAnvrrbfYnDlz2Gmnncb69+/f7neKkgl3PytXrmRXXnkl69u3L1MUhblcLnbkkUeyyy67jL377rtt2q9atYpdcMEFrKioiDkcDlZSUsImTpyYkXD2QNkQxr4tXe/1epnb7WbHHXdcRmlFxhj79a9/zY499lhRLrFfv37spptuYo2NjW3O8dZbb7EzzzyT5efnM4fDwcrLy9mll16aUf71u+zDnx3+oygKKy0tZZMmTWJ//etfM5La7Q1g75XjUqkUu+aaa9jw4cNZIBBgbrebDRw4kN11110sHo+Ldl1JJvziiy9mtGvPRjDG2OOPP86GDx/OnE4nCwaD7Pvf/3679+Tpp59mRx11FHO5XGzw4MFs9uzZ7fZH0zT24IMPshEjRjCXy8V8Ph8bNGgQu/rqq9lXX30l2m3dupVNmjSJ+f1+BqBN9ahBgwYxh8PRJrleZ77LXfkuEQcWslW9y1Zxbr/9dlZWVsZkWW7zWcydO5edfPLJLBAIMEVRWHV1NfvBD34gKsvccccdTJblNp//smXLmN1uZzfccIPYtnLlSjZ+/Hjm8Xja9O+TTz5h48aNY16vl5WXl7O77rqLPf744+0mEz7rrLPavY6Ghgb2i1/8gvXt25c5HA6Wl5fHRo0axe644w5R2eXpp59mJ598MisuLmZOp5OVlZWxCy64oMtJRYn9z7Bhw9jkyZPZjBkz2KJFi9g777zDHnzwQVZaWsp8Pl/GZ9SVZMLZY/T2bM5VV13FJEliN954I3v77bfZo48+yoqKilhlZWWGLXj22WcZAPbzn/+cvfPOO+yJJ55gAwcObFO9NRaLsWOOOYZVVFSw//u//2MLFy5kb7/9NnvsscfYD3/4Q/bRRx9lXEtRURF77bXX2IoVK9iXX37JGGNs8+bNDACbOnUq++CDD9iKFStEX5555hkmyzK78MIL2YsvvsiWLFnCXnrpJXbnnXeKpOp7orPJhHnVJ5/Px/7whz+wBQsWsFdffZXdfPPNbao++f1+9tBDD7GFCxeyu+66izkcjnarPnXWfjPG2EUXXcSKioqY0+nMSOrM6ey8mtspa0Wss88+m+Xk5LDNmzfv9T5wuvKd+sMf/sAkSWJ33nkne+edd9jf/vY3NmDAABYMBimZ8D6yT3eEBi69c+DSmfvUVaHGNE32hz/8gVVUVDCn08mGDx/O3njjDTZixAh27rnninbfRahhjLHXX39dTKzKy8vZrbfeyubNm0dCDUEQBEEQBNHjmD17Nrv44otZ//79mc/nYw6Hg1VVVbFLL71UVInj7G+hxjAMdv/997MBAwYwh8PBCgoK2I9//GO2Y8eOjH1N02QPPPAA69evH3O5XOzYY49lixYtarc/sViM/fa3v2UDBw4UiyfDhg1jN910E6utrRXt9iRg/uUvf2F9+/ZlNputzbxgyZIl7KyzzmJ5eXliLnXWWWe1Wdhpj86W52aMsZaWFnbDDTewqqoq5nA4WFFRETvrrLOEoMQYY01NTeyaa65hpaWlzG63s+rqanb77bezVCqVcayuCjULFiwQ87+NGze227+9zasXLFjAZFluU4GpqamJVVVVsdGjR7N0Ot2pe9GV71Q6nWa33XYbq6ysZG63m5100kls5cqVVPXpOyAx1oUSQgSxH9iyZQsGDRqEu+66C7/5zW+6uzsEQRAEQRAEQRAE0WMgoYY4oKxatQqzZs3CuHHjEAgEsGHDBjzwwAOIRCJYs2bNfkv+RRAEQRAEQRAEQRC9gS4lEyaIruL1evHpp5/iiSeeQCgUQjAYxIQJE/DHP/6RRBqCIAiCIAiCIIiDCGMMhmHssY3NZvtO1ZeJ7w551BAEQRAEQRAEQRDEYcBTTz2VUfq7PRYvXowJEyYcnA4R7SJ3dwc6w4wZM9C3b1+4XC6MGjUKH3zwQXd3iSCIwwSyPwRBdBdkfwiC6A7I9vRuzj77bKxYsWKPP6NGjerubh729HiPmtmzZ+PSSy/FjBkzMH78eDz66KN4/PHHsW7dOlRVVXV39wiC6MWQ/SEIorsg+0MQRHdAtocgegY9XqgZO3YsRo4ciX/9619i21FHHYWpU6di+vTp3dgzgiB6O2R/CILoLsj+EATRHZDtIYieQY9OJqyqKj777DP8+te/ztg+adIkLFu2rN190uk00um0eG2aJpqbm5Gfn08JkfYzjDFEo1GUlZVBlg+JKDqC6DRkf3o2ZH+I3kxX7Q/ZnoML2R+it0Jjn54N2Z7Dix4t1DQ2NsIwjDbVgYqLi1FbW9vuPtOnT8c999xzMLpHfMOOHTtQUVHR3d0giP0K2Z9DA7I/RG+kq/aHbE/3QPaH6G3Q2OfQgGzP4UGPFmo42WosY6xDhfb222/HzTffLF6Hw2FUVVVhx44dCAQCB7SfPZHsyDbTUAE1CYkZgAyYqRhS0TBSyTRsdgccig9Orx+STYGu64DEIDudkGQbYqFmfPb5SqxcvRJVFaUYNfYEjBp9HPx+fzddHUEceMj+fHd4Gcht27Zh+fLl+OKLL/D111+jvr4e4XAY4XAYqqrCNE1xf/1+P/r164fKykrE43F89tlnqKurE8c866yz8Oabb5L9IXo1nbU/HdmeGVedinQkgZqWNI4cWIqcoIJUOIxIKIFQwoTf70YynobLbYPdTMPtVhBqjMKWk4/CIOC0M/hzvdDSBgzYYSSTsDldsNtlKB4XTD0NyemBTZaRVlWAJRFtjCPcFAY0DaHmNBwuB1wOCZJkgyugwExrMD1eVPTNg2kAwbL+8OYVQrZJiDbUYOemLdi6aRfCcQMOpxOfbahHYyINn02CXWLQdR1NcRV5AQ8Ut4LygAcFOXb43E6kNAa7L4gTzv0hAl43Nq9ajs1ffoV4QkcilUB9QxR2xQ6m6djVnITdIcPrsKEpriKW1iDZ7Rg59Ah4FQc0w4DX5UZRWSGamloQDseQk5eLlkgMum7g0RcWkP0hei37Y+zz9NNPw+v1tjkO/1tvnaPw7fzcpmnCMAxIkiTa8v14O76dt7e24X3lr/nv1vf5cazHsv5YtxuGAVmWM/rY3jVwLxfrdt6W94m3s/aFt2nv3vP3ZVlGKpXC73//e7I9hwk9WqgpKCiAzWZro+DW19e3UXo5iqJAUZQ22wOBwGE5URKGxlDBEi0w1RZIehqGqSGdSiIdi8DUVLjtDuiqAUlKAXYVspIHmQHptAYkE4CuIRENQXHIcNhskCQG+Rs7Qm6NRG+E7M/+wTRN7NixA4899hieeeYZ7Nq1C4Zh7HW/ZDKJ+vp6fPTRR+2+Hw6HAZD9IXonXbU/Hdken8sOv5KHvgM8cPsURJsjMHUZakpCQdANp0NGrsuJdDgJSbbBiCXhdCkoyZHgtAE2mwxFluHyOaCrJkyHGzbJhN0hwzTSkNwuuIM5gJaEJEnQkmkwVUdRaT5CNc1gThvsih1ejwOKzwmXzwa724uC0nxAluAOlsGbWwA1EUMiqSJcW4uN62sRjWsoKvRg1erdKPI6UVoQgKypcJgpJFQn+hQGkZ/jgcMmw5Qk5HpsCMVNMNNE5YAiFBUXw2aocLvdKCovRkttPaLNKsrKcuByyEhHk8gNeuFRJOxuSKAxrkHVDARcCnwuB8BkFOZ6UVhaiB27G+C0OVFSXIiG5hByvAq2724GQPaH6H3sz7GP1+sVggIXJLKFFj4e4Nu5KAEAhmFkiCzZgku26JItsvBjcKz7WYUaq+hibW8VT3hbaz84HQk/XFzJvn6riGTtG2MMNptNvG89vyzLGfeGbM/hQY8WapxOJ0aNGoWFCxfi3HPPFdsXLlyI73//+93Ys55NprprgKkJsGgdzEQYkE2YpopYOAyTMRhMhaHFkU7qkCQZNgegpiRAZ0hrDLrhgAEbwFqFHcmIw26X4XQ4IMm2brxKgjiwkP35bjDGEAqF8Oqrr+Khhx7CunXrOiXQdBZVVffbsQiip7G/7I8zWIg8vw2paAzbvqqHw2lHIhJHYVkuFMUGf9CDVHMt1IQDRjqN2oiJI48MIpDng6pq0NNpNDam4FEYJIcTOUVBqKEwdFWFaUjw57rBmIZYSzPSaUBNJpFUgXRDDNGwiZy8APLybfAFXYDkhF1xIr8kHw67BGewErJNRsO2TdCZEy319Vj7+VbodgcKAjo8Dh3Q0vD7HNCZDocDiEQMNMV1DD/Ch1AoiZQJ2Ox2pFM2lJfkIJVKw+O2wS5LMFQdNocdsZYIQqEYCop9SMRT2FUfQ0I1kdAMaLoGt9uHsgIf+pXmwhf0wuW0QTdlKIqCVNrArt0tOP74Y5BIRJGj61A1HapG9ofonezPsY8kSbDZbBnCDN9ubZO93eopw9+XZTlDtODChmEYGYJOtncKb2sVOPiPzWbL8JwBILZ1dH6r2JJ9Ln4cq+Bk9bKx9sHaJ95P63E7ek0cXvRooQYAbr75Zlx66aU49thjcfzxx+Pf//43tm/fjmuuuaa7u9bjyDQUJqCrYFoUiLfAiIegpeOw2WUwCTA0FYahgTEDhp6EpqZgsyvQ005oqgnJDticHgAGDM2EwUxINgdycoKoKiuFXfFCcXm672IJ4iBA9qfzWFedamtrMW/ePPz3v//FJ598kpFkcH+xP0UfguiJ7A/7k9bS0AwX6uvDqA+pqCj2w5uXB7vTBsXtRLixBbqhwOW3oUUDBg8NAskEkpoEm6GhucVAWYUHejIFtycHekqFMxCAnoyBSU4kojE4A16kkgY0TYeRVuGQJKQNBpdfgcuhwzBkqGmGYHEA/oAbimKHw1cCm9ODZDKBWEJCJNyC8O5G5BXlweuRsGtDC3bWxWGXgLxcDxyKAyu/qkd9NI3qPD/CUQ0N0RTyvA6E4hoqCvOgaRr8PgeYoUKSGBgDktEEwuEE0gZgN2Q0NMWxrS4K02aH1+lEUUEhjj66L6JNLdi8swVurweptIn8onzIigNfb96N/v37wuZ0oqUmgdy8fDS3tICZtJpN9F7219gnW8Swbm8vpMlKe54oVg8Y/p4syxnCjfWY1rb8d97e6tnCw5r4MbPDnqzHyPZ4sXrzZHu8WH841uNbPW6y37P2mZ+Te9wQhw89Xqi58MIL0dTUhHvvvRc1NTUYOnQo3nrrLVRXV3d317qNtkbvm9emAWaqYGoCRrQJ0FXYFCfMVAv0ZDP0ZBxM8QKKCyk1BRkMkG0wYAODDWnDQLS5CbB74XDJUEwXDEgwTAmmkYJuMthgQ3VFCWIps103R4LoTZD92TOMteaLiMfjaGlpwfr16zFv3jwsWLAAW7ZsgaZpB+zcB0L8IYiexP6wP/7cHIQampBImqgs88Eu28GYDsMEVFVDWge8Lgm7tkbhDXrgtAFJuwMBxYbaXUkUV5XA4dSgp2VIkg7Z4UI8GkU8rCG/PAc2WYYaSwFQ4FBkJOIMaS0BmAyyzQHYZNgdLvhyAsgpyIFdNiDbFTBJRri5AS3hJNKmDWoqBVcgAMRTMPUUvtwWRm7QDafbxFe7IvA4bdjVkoTD6UBKU6GFVFQWBuB0KyjzuqDFk0hDgsunALKElrrtcDi8sDmcyMnLA5MlQE+juMALNa0Cigf9qvJRVJIHw1Sxq7YZ0Vga4S27UF5ejE/XfIXKkkLk5eciqWloqG9CXl4uNFWHZkpIkEcN0YvZX2Mfq1cLf50dbtReOE+254k1N4xV5ODbso9vFYKsYog1zKo9Lxwu4LQXbmUNi+rI2yX7fO2FJ2ULOVZvHcYY7HZ7hsdNttBEHF70eKEGAK699lpce+213d2NHgHjogwYmKGDaUlAjYKpMZipKFg6BjUeQjKegL+gAjZbAKauQU/FkU5G4bQ5kFLTSKd0uHz+1uPJCqLpGMLhJiRiMeTklSBHCcDpdsPjz4OqA6HmBqRTSZiSBBkM+UEPTJ0mSkTvh+xPJnwgVFNTg48++gjz5s3DF198gdraWjQ2NiKZTB6UfiQSiYNyHoLoTr6r/UlGYjB0FfFUGmWBQpimgUhTDDlFQbBYCj6vC+l4Ar5cLxTFCYfLjkg4iUhjCA6vD/6AA8mWKLx5BVDVFJp3ROENOiEpHsDmhK6moaZNGEyHmmJIJTS4XE7EIxoUtw2F1cVwuWTYJAmy3Qmb0w7YnEimNISjaYSaYmBgsDntiIaiaGhOIuDS4QsEUFzkweL3vkRdUofPpaAyP4h+uW4UBRyIqyaK8r1QPE4YpgzTFYDbo8DQdSQiMdjsbtidLjj8ecgtjEEz00gnGJxOJypMCU6fF8lIFJ/WNmP9zmbkejyoLstFWlWhpTSkkymkVA1aYxjegAd+rxexeAJ2icHndqElTPaH6N3sj7GPLMsZwoNVdLEKHO0l4LUeg5MtwPB9+PGs263ePNnijmmaIsQp2+vH6unD+8cFIWtYVHZolNWzhl+jdf/s68gWl6zeQbwNv34Saw5fDgmh5nCmPe8ZU41Dj+yG2rwLNjMOGGkYugaDmTDVFLR0CsxdAFXxoKk5AjAGPaVDS6VhZ3E4vflQvA5AdiKZTiIcS6K5uQWqpkIzNMRiETB7CL6cckQjEcRTJgzTDgN2JFM6bEyDJMlIxA/OhIwgiO6HMQZN07By5Uo8//zzeO2117B9+/YD6jWzJ3gyYYIgOkbVdJiqAbvihsvrQagxDG9uHnLzAtCVCOIJFaFQEi6PCy6PDYlYCq5gAHl5bjgVO0xTRUJ3wCEDDsWF/GIFsEtwO+wwkUY6lYCuarC7vVCNFCTocDrs0N0u9BnSD96AE6Zhwu0LwG5nsDkDiMdTiMUTYLBB13SYug4YGjZuaURV3zIkGmvg9Drw+aZa7I5rcCoK+hXnYnCZH7leBd6AByUuB9KxJJSAH8m4BjOdQmNdBHYbUFhYgZyCEuz8cg0SoTAkpwuKzYH6UBrV1QVwOm0wGEM85sCWHfXwKQpyfC4kkyk0tMTgD7Z67G3ashvHjBwGp11GY3MEeTkBGKkYmlrCyMmh0G+C2BvZIkP29uykuu0lFO4oXwyQGQJlrRCVvZ/1d5vNJrxpOsotY+2TNayJ72Oz2doNleKvreFVQGa4lLXf2UmTuYBjmiYcDoc4vzWEym6nqfvhBH3aPZkMkYaBmTq00E6kdv0PamgXDN2E2+cHA6DpamtcNjOh6nbo9gA+ePd91DY0wuVyoDzPBY+NobyyAF5PLoxEHIlkGrppg10JQrLXw2aosNkVSLIMt9uGaKQFCZUhFE0hperw+1xIJZNgWhQupwt2X6S77gxBEAcJHt7U0tKCf/zjH3j00UfR0NDQ7Unt4vF4t56fIA4FFIcDCcjoe0QFYpEYTFNHjt8PmAbSqgEtpSKlS/DJJqIxDbn5frh8CkzZAbvNRCrFUFhRAjVtQPH5kYq0AKYEm80BU5Xg9OXAkNNQo0k01zSgtDwXWjQMf3E+JLsMyabA45HBTBWQ/UgkNTTVR+Dw+tBcVw/Z7oDdiGPjxl1wOpxw2iTsbElj9dcNqIulMLSyAA2RJDxOJ5wuD2SHHcGiIph6EorPB4fdhh27IvAqNgRz/HAoEvIKcqCrCSgeD9yeOFItKYTCSThcDsTTGpoiKaSTBmLhOPJy/HC5XTBNDVt2h6AoChqaYoimddhdEnbsroXL5UJxMABTTcPlkKAzE5EYeRQTxN7oqFR1tnhifS9biLB6m1hfW71Ssj1W+Dmzc8dYKytZKz9ZBRW+LxeT2hNe2hOAeP+t+2cLP+3lrLEmXLaGirWXFDl7X6L3Q0JND4YBADOhp6NQG7+GFqlBsmkLUpF6pDUTXn8u5FQCJkyAGZCYibSahqnkY+uOXVj60TLUNzbC63FhYN9SHFVdAbtDgW7oUJkDOYX5aGioQzwdgWR3Q0sloOoMNgdDNBpCOKEhZTjQFIohkUyhyelFfq4HhmbAMJNgTU3dfYsIgjhAMMagqirmz5+PWbNmYePGjVizZk23edBkk0qlursLBNHj0WUZuUV5MLQkZJnB5nDB4bCBSTLsigt6Uwj5hW6YKQ1unwsOGwAmwa440NLUiJTqQIFbg6pJ8Lrs8CsFUFMxpOJpwGy1Ec1NEbhcTlQOqIRNAuxuN7x5QXjz8iCZaRimDsgeGLIfiUgL0kxCy/adSKZM5BYFUFubQnOCweO1I5wwUVCSh4EG4KoLo9jvRjTN4FQcqO5TiJzCHKTSBjQDcMgyUtEIZFWFK8cHxSkhmO+DS7HB5QtClmoBCXDYANluR0NNDA2NcTQ0h1BZFIRuMuT4nAjH06iPJJCbG4RuGNi0pQ6y3YER5UWwGxry/Lno268S+fkBbN+6GVu27oLHSx41BNFZsj1guDCh67p4zd/P9oqx7ivLMgzDaFMGm58jOwzJKsRYQ5n48ayCjFXUsXrn2O32Nl49vA9cZMn2qGmvUhO/jmzxKrsPsixnJAy2Xn928mGi90NCTQ+EgbWqNKYOLbwD8R2fIdm8HYl4CIlUGoaabI3JlmXohht2SYLN5YKumdA1HUxKQdfs8HvdAPyIx+Kwg8Hn8yIabUZzNI6CkiMRiWvYVRdCLB6Clk4jFU/BNDTAZsCIxZDU4tjdlMDX23djy6at8PmLcfppY2GX0vC4PJDTFPpEEL0RxhgSiQT+7//+Dw899BCFGRHEIYqhaTABOD0uaOk0ikuDSCUSSKbM1twxMpBO68gp8EDxKgi3pFCaE4CZTMCheBAsLkCobidyyvtAN0w47Hbo30xSktEk0kkV0FQk7U7kBXPhsmkwdA3evCKkIg3w5+VCMhIwYCAViyAZSyIeTsKEHUASLfURtDTG4fUqkB2AnkrCMBi21sVRFPBjR2Mz0iaQX5IHh+KAaehwyhLsAQ8cLA0zJUNy2uD3eaAm0wiF0sitkBAPN4IxDalICDu3bIMkM/SpLADAUFniQyKRQiA/ALdkoiGaRk6eF/XNMThkOyqL85Gf40V5WT7iMQ19qqtQWFqIzV9twucrN8DmcKIgL6d7P1iCOESwihBc/OBCSHZ4kFVEAb4VPaxCDv/XmiuGt7WeL7silDW8KjuBLz9mtveONaeN1ZPFmoMmnU5DVdU2fXe73bDb7W32tfYh+5qsiZY7yktDQs3hBQk1PY5WkYaZOvSmDWj++iPEQ7VIptOIx8IwTQ3pZBKGKYkYSY0BdlOGZHcCdgmmoaPE70dlaTFCEQfUgA+F+flQnG6Yqoa0moZhpFFX24xwtAnxeAhqOol0Ukcw4Ic/WAQm2dDc0IxEMg1mAvGUgUGDCpFMhqHYZciSHQ6FyuMSRG+DMYZ4PI777rsPDz30EFVXIohDGJfXDWgp7K6JoN+gSsjQoesG4kkVNpsDoQSgMwkFLjfScR02xQMGCczphTfgQ7yxBcyQwSQTHq8fiZZaRBubYZo2xGJpwNCgwwmP2w1N02CTZOgaICXicLpcABgMA2AyEKrdjbjhRiKUQCoahez1wO+WoLgccMo2pEygpTkC0zThdMiQZCAv4Ecg14aRg0sgpVU4PQHU76yFYTDk+IB4SkdRUQ4UtwMpncHr8yFcXw8lsBtGKolQfS38fje8ufmAkYQpAUzXsX3zVviDPjTWN2F3Yww7GiLoV1WIXJ8LzpCCtKohGo5BNWXYXE6s+WItbA47+lWVYVdNIwxV7+6PliB6PO15gPBtHSUDbs+bhpMdAsW3ZYs/fHu2B092/prs/DPZZb6BzDw7sVgMmzdvRmNjIzZs2ABJklBTU4Pm5uY2wkt1dTV8Ph9yc3PRv39/eDweVFZWioq57SU6zhZ0snP18P4Qhw8k1PQghCcNM2FEdqLl62UINe5GIplEPKlCZiZSqgZV1WG3OSDZHLA5ffD5/AADUukUJIcCpyxDNjUcM2QA1n31NWKRFuTn5sPlcsMwDaRVFaFQE7bt2omPVqyAJJtwOGzwuhTkFVQCjhwYJuD2OZCruaB481FSUo6AV4GhpZHWDdhlG+zfJLoiCKJ3wD1ppk+fjr/85S89WqRRFKVH948gegJaKoWWlhgMyQ41kUA4kYYWiSCaMuGADQYDcvL9cLpdSISaUTbkSDi0Fsh2L8JNLdB1Dc5gLuw2GfGWZiRDIegpCa6gFz7TQDRqwDBNeNxOeHNyINmAVHgH8kpsiEdV2B0MLG2A2RkSKmDYGBxuOyJRO3yKG7Jig6F44ZBMtNTHYJiAx+9F3woglDRR4Jfg9znRsKMZgTwvXGoa8bSJnBwPkmoCpsSgOIAtX+6EOz8XutaCbRsjCFb0h+J0wpdfgHBDLTau24DSqjLk5QXx9dovoZsyNmyuw/bd9TAkG3wuB5pDCdQ1hBHw++BWnNB1oKA0H1u2bIPLLqG8TxW+qKmDN+BHWuveHF0EcShgrfhkxZqrpb0cL9khUdyrpb221lCpPeWIsXrQWHPcWI/ZXt4aTdOwbds2fP755/jss8+wc+fOTuXoW716dZt7UVJSgpNPPhljxoyB1+ttc0+sZOfB4ddAQs3hBQk1PQTG/8dM6M1fo+WrJWhq2IXG5iakVB2QFbgVJyS7CaZq0A2GRCKNnHwFuqoinU7D5rTDJknQVRW6ocEjKziysgKJZAHycnLgcPmgaipku4ZIJIRdu3di9ZovobgUHNl/AAqLiuD2FSKWlhGLxaDrOmSbgsICH1Q1jki4EXo6Bq/ihG6YcCrevVwVQRCHCowxxGIx/PGPf+zxIg0AeDyeHt9HguhudObArl3NqD6iBImWRrgCOWiOqsgvy4Vd1tF3UGuSXDWlIVicj9yCPCRDGlKRKBSvB2YsDodihxptgWyToKcS8OTmw2R6a+VH2Q67z4ekIUOKpVGQ44I7149YUyNYWoUtNx9ywINIUxPCzRHYHDrgcMIV8CEVSyAdNeCUGZqaI/B53WgxdAR9LiSamlBVlAOXBPgCHmhpDYam4uv121BenQ8HNISSJgrzfXDIJoJ+BQ0NYWze1YR+1QVIRkPwl5eDMQNMklBRVQqP14vPPlqNdDKFhKqjMZSAasioKs9HwCNDN2V8vaMZqm7C67XD5nQgFU/CNKJIO+xYs2o9VINBsdvhcju7+6MliB6PNZ9MtrfKnpLiZof9tCfqZIcuAZn5YbLLbGd74HCyw6+4Z04ymcTy5cvxySefYN26dd85P5+u69i5cyeeeeYZvPnmmzjmmGNw8skno6ioSPQjW3SyVoXiIg0lEz68IKGmJyAMBoMRr0N8xwpEmmsQj8W+CYMy4JQ1aLoEBjvcigu6aQJ2O6LRGJx2IKlqUAwXbHYTqq5DlhxIJEJIxVPIL6iE2xNAIp2GmtahajpCLbvh99pw5hkTEE8yDBl8FBLJJByKB80NzYhFY9ANFZoG+AL58PvtSMebIZs22Gw22GxO+ILBbr1tBEHsHxhjaGlpwd13341///vfh4QAUlxcjJaWlu7uBkH0aNRkAg6HA3kBN0w1ATADTo8Cv98NXVUhO9yINYbhys1FsKgQajoBZnOguTGOQJAhlVDhz/MjHVaRjMSRSNlgZ2kofg/8peVoagzBZpcgQ0K8OQQX80LSVUh2O/z5eVD8uUiHm9Bc34T8snJEwnEkIgk0NMWRVxCArEuwKzKSmgE9FUNpcS58TgkOhwP5uT5oKR3RSAK6lkZTSxJHHFEIpkvQGYND1iExN5qbYqhpSiKZNlBdlge/zw1NM2Czu+B0uOHx5SAUS6B21ya47UDKBPJyfMjL8SMaTyOUUGGXFCR0DQP6lWJXYxSQZDSHo6jyuFDTFEMircPhkHBkv0rkFeVD18y933yCIDIEiOyf9qogGYYhyllnt2uvJLYsy8IDB0C7ok521anspMLZ4seaNWvw9NNPd9p7pqs0Nzfj3XffxUcffYSxY8di4sSJKCsra3PNVgGJp7sgj5rDCxJquoVvHnomtYY7fbPNjDcisXU5Wuq3IRSNIqWlkdR0qLqJeCIK2Bzwut1wSIAECabBkE6n4HIH4XV6YZoqUqkkZLuClKp+48JnQtc0SA4FiZYmpNMppNJpxGMhpOJRKE4v7HY3cvxBBP0FMJkEu82GZDqBeCwOSXaguSWMkqI8KIobpp6AbFPgcLgQDOR01w0kCGI/wAcBmzZtwp133omXX345Y8DTkxkyZAi+/PLL7u4GQfRoVM1EYXEuGNPR2JxGqTeAgqIADMOAbgB6PAbd7oLilOBwuQDTRKi+BflV5dBiEQQLcv4/e38aJFl21/fDn3PufnOtytq6epldo5lBC8gghIxAFpiHMGAMj/2CfzgchF9gmzBmUTgC8wYcBESAwzgCbLxAWDYYKeCPBQhjY/yA2QS2NNrQaDSapffaq3K5+z3b8yKnihlphCQ0M90zfT8R2d2VeTPr5L2dJ8/93t/v+8UqTVNrqqLFSIkUAhmE7D91lU89fQDSxwpJlMZEUczmOCSdrDBcGyDwmZ0sMCIiiFLQU5pWURmQTnOyKBkM+6iqRQY+k9UBxfSEK8cFuZhy11qPsmk5tzVg88IaTmki35Kd5MznLRZJUysGgwQZKirtMc00m1mOtZa1c+con1zwiY9fZlbUfNWXP8DGeY8wSXDO8OQT1xFCsKhbxitjruyccPPwhPGoz2DY54krN6gqxV33XkS6llZpDvYOiZPkVh/ajo7bnhcSZz79/k/f/rlCyqfHYT93O/hzkeW5RsTPrdr59Nf/dJPi574GQFEU/Pf//t/55V/+Zdq2fbF3x2dQFAW/+7u/y4c//GG+67u+iwcffPAFK4g+VwVSx6uXTpa7FbhlEY17NlbbqQI7vUx99f1M955kns2oVUNRFZi2Rkjwwph+f0AcLb1hfE+iVUWWzSkrhfQjrIO2NTh8hB8hQh8/WN7vrECplroukL4AHE2dU+fHYAuqqmQyWcNoR6Ma9g8PmefLbbWuWeQ1cTrE9yMclrTXZ7Syeqv3ZEdHx18C5xxaa65cucK/+3f/jr/1t/4Wv/zLv/yKEWl83+drvuZrbvUwOjpue6xz+AiODub0RylFllNWNWVeUZY108OMolBEaYq1hunBEXVjiHs9wijEGY30A8I0JYgkvVGP3njA/tUddo4t3uQ859/4Zh7+2m9k84HXE4zWmNke1y/vc3K8ID/e5fDKFRot0UpRmZDdg4zRIAYkVV5ycjSjtY677trAITlZFDy5N2P70iZVWVM0humiIUSzOJiytzfjeJqTDHoIDEXdcLJoETJkEC1P8C4/fYOjwwMsltVzW9x/1yqB1cymOWHk4XmSm9f2CeKY4cqQycqAPCtII8mFjTGq1VRVw8HxgrysSQKfc5sbtGVFLwmQ9pUxV3Z03EpOBRdjzFkb1AuJM59+e64nzaeb+z73ec/d7pTnVt+8UKvQc4WQ022klGRZxk/91E/xX/7Lf3lZRJrnMp1O+Zmf+Rn+23/7bwDPq5557nhfqPqn49VNV1HzMnM2mZgWvdjBZns4laGzfZqqIC9KFvmCurVoK7FCAD69XkrgCTwpEc6A05i2pVY1xm4862gOFkdVVTTa4AUhi7wkVAIjYiwexigapfACj35/QFXkJJ4FWyOERHiCutZ4MqAsSspCIWVFEFTIXoT0QrCW83fdS384uKX7sqOj4wvjdLFz+fJlfu7nfo5f+ZVf4erVq68YgeaUra0t3vrWt97qYXR03PZ4KPLK0h/2aSqFH1g879kLO8ry9NUZr3/D3fihh5A+ZeuYbF8gCENqL8CLPQySopH4vTF+GuMlI9Yeushr/trdpMMRURziexJrDEL6aKU4OTwiO7xBW09xDpI4QNc185MFcS+hN+iDa4mSmPxkwcb2BmHS49r1Q/7syoxhL2S2e4BnLaNezPragP76EGsFu9cPEEHIeBLz1BN7XLl5wrlzq4TScFIY0iRGWsPhzZuk915i5+kr7O8eEcQBTgrqyjCMfXqDFG0dxgmmswLf90BaPC+gVRatDZe21ticjNnYWMEazWDQx7aWqipv9aHt6LjtORVpXuh+rfULGugCn1WcOX3shZ7zQlHd8Oex158t7hrgk5/8JP/23/5bnnnmmS/k7b2o5HnOe9/7XgC+6Zu+6cxI+ZTnCksddw6dUPMycTZpOIttFpjZVer9J9FthhSOpsrJiwWzbE7TarKipdcfUDWaYX+AMxZlBBJHEIYIHM6WpEGENRaLQ1uHamsMmqY1mLoljHwW2YyiNgzGE5yXoFRF01SotiUMQnzPQzUVdVPjhMQYRxjGxLEhDDy0McwXGUI4fBGS9mPuuvf+z5hEOjo6bk9OFzAHBwe85z3v4Wd/9md56qmnPmPB80rh677u67h06dKtHkZHx22P1Zpnrp/wJa/x8OOQKAmRfsjsJKMXCM6tpgRhQjq5wM4Tn6K/cQ/DrQ2sVqQbfYzW+HGfaHMpXAxXNxlvXkB6EqsaquwIVc7AE1jVorRGAKvjHhubj+CMwyarNOWC+bRERBGesdStRRUVBo9WBojGoJSmrBTjfoptKg6nGfet9XHWMDvK8YKAo4M5WePwVc3VZw7Ji4ZhP8VZCKKQFEMvdPhpQNtqmionSiNWV4ccnezhOYExjk988ir7e0fcc/8lVkcpbaP5yCeukCtNGEYs8ookChiPQmQUcng0ZTDsE4Yezhj8oFs+d3R8LrTWZ0a4p7xQC9RzhZPTKpnn8lxvGuAzqkueW3lz+vOpgfDp/c+tTnluNc4nP/lJ/sW/+BccHR29dDvi88QYw6/92q/hnOObv/mbn3ee1VXT3Jl03zQvEZ+pAltsndEeX0bNdjDtgiY/waoaK0AZzSwvUVZQ1MsrXjifOApwSJAWnIcXRAjpCOMAhMRYS5HNCdIxykrCuEddL9ulmqYhjEKEkKi24NqVBVsX7kZphxAVQWAwzhJGMUkcUdc1StVUVcXjn3yKssrI5jlJ2ueh1z5IEJwj9h2vee19rK1vUNf1Ldm3HR0dnx+ni6CdnR1+9Vd/lXe961089thjX3R6wa0kSRL+9t/+2wRBcKuH0tFx21MqwcULE/JScX6U4qwlKw2rkz798Zg2Lpnc9zrSlQ22Hh4xWD9PlA6W6Se6xVmF0zVKq2XLdlswv/ERmrrE6grTlljAGYVWy9CDusjwhcdoc5NoMGG4tY0XvJbkcI+TxcdpWotwAktIEElaJ+lhcUKwqGsiX+L8kCSNyLRlpe9xbecEEXpkWUFRGFbHKU5IBqOY6zdOAM0iE0xWB0RhxGJWsb4lkJ6P7/t4UY+77zvPeHXA7DinFwcgDAd7hwjWCOMQi6VqFLtHczxP4kTMoihxQJqG4CznNyZcv3KT7Yvrt/jIdnTc/py2PJ0mKcGfiyqnwsOnx24/Nynq1FT4uds8V5Q5bRF6rkgjhDir4nkhEei5hr1ZlvFzP/dzt4VIc4rWml//9V9HCMG3fMu3PE/k6oSaO49OqHmxeZ5AY3FGYdscvTikOb5MNb0JwtDWBcI56qYC6VHUNSfznLJR4IWEnodDIISPNQLtlqkK+DFGOIRwyMCCVkgcUjjCICGvCrRuqesGawStEFhnqeqKPFtwfJgyGPUpKs1oZYPp7JjjWUZvVKMXU/YPT/jTP/ljnvzUx2mbGqM1YRJTFhkrq3+NyflN7rnvAcIwpG46oaaj43bktNz48uXLvPvd7+bd7343Tz755AuWIL/SeOSRR3jLW97SLVg6Oj4P3vT2t1HlDc5o4kBCEJIOlkLMZPtuLjhYHQ+RaKI0BtdCfUhrWnRbUi8OKE8OaeuSprHk0wwpDFYEiECim5p4OMI5QxBKytIgMOSFIssLkt4u6aDP6rmHGK9PeOs3fA3JcBMZpDgHN565zM3rNwiEYTGbEVybc/36NSJPkIYSZwzH0xbPC7jy9A4bkx6yWlYXo1uuXT/B+T7WeZxb7xH4HvO8pd+PwLb4YUSZlSg8zt11nsALUK3i8o1jnAwZjnsoZbixv492lkEaUVQN2hqKRnOxF9PrpSQhDNKAfDFnfWsV1b6y2kU7Om4FdV2fGf2eVrAIsUx1e27Vy+maZWnjYJ/3GCwFG9/3lyboWp9VmiilziK1T0UdrfVntFY9V+A55bR65amnnnr5d8znQGvNb/zGb/Dggw/y8MMPP+99dNxZdELNi8BZcpM7+wNnWtRiFz27Tj3fxzQlqllQlQUOi9EK3/doVENWFBRFg3YOZy1hGOAAKcBYTasNQnj4UYCxgjhO8KVDaYPngzI1Rb6gNxgjPQ+DhxQeusloywplDY0SJEnIjeufYsveg8BhEQz6Qw4ODtjd3eHCpSGNKtjfv04+PcKqpaqtqoatLctiMSO65y4ma2vAMnmqo6Pj9sE5h1KKxx9/nF/4hV/gV3/1V7l27dortsXphfjqr/5qhsMhRVHc6qF0dNz2jLyMe1//WryojzUQhAHgCOIULwhoswPak5vUi2Oa+YyiqJCBjxUGYxzz3T0WJwXFokVJnyJviX1IVwasbg45mhlWA0MUQVtWSCuwOFpjqQ9m3KyP2N5OyWcVm/c+RDnbZzDeJB1vIT3J1vaIu++/C88PMHi8+RsK/s8fvJ8nP/UkPTnj8MoNisaS5xW9fkQahXjrPvN5wTANmKwMmc0LwijAWNCVQVs4yVq8acPdnmS0MiAdD5keHHEwyzDWUC8WbK6vYhvNx67cZHNzlbrVHM8KEILJMEVIDykc/UGCVA1RIDDWJ5CSMApv9aHt6Ljt+f3f/31830dKiVIK3/cJw5A4jpFSkqYpYRg+zzg3z3PKsiQMQ0ajEf1+H+ccvV7vTIDp9XpEUYRzjqZpEEIwGo3wfZ8sy8jzHK01URThed6ZeAN/XuXz/ve/n/e97323eA99dtq25d3vfjff/u3fzmAwoNfrEcfxSxIX3nH70gk1LwZuKdZYY8G2UE8x85vMd5+hbhZUZY4zBmtbnNM0VUXbNsRxRF03KGMoW4XwfOIkxuHQjUI7gxMSh7/sB7eSVln6/QTVZERRgpQR2jiKYoFFEoUBqtUIL8A6R76YYoSHQ1IrQBiuX3+KtL+KXy4/8EEgOTnaRciAtD/kwoVN9q9fXvaVeh7pIGUw7oGDjY01wii61Xu8o6PjOTjnaNuWj370o/yH//AfeN/73sfBwcGr7gs9CALe9KY3dWZ6HR2fJ1cf/T+Uu5dJV9fw4wGuWRD1E8L+GNW2FMd7tNqR7dykmCt0MmSwvkqzf5Ns0aCFR1W05JXmeLog7sXoxKedNRgydG04PLHEfs0gaKka8AKBVC39xONk1jA/bimylsF4RJ7NaebHBPvX6Q1HRL0xajhZCkfxgF4Y8fXf8Dbe/v/5Oq48/RSP/cn7+dD/+QBZMSNIQoLYZ//6nPFKn0BaRr2QKAoYDCIWsxzP84ml4GjRcOD7WCsYrqywd/ka9WJBWRrKSjEcJdRNw9XdGUnsc3Jygu8sq8MUTwq0cfg4Qk8yTGNMY/GDiHPrE/J5RjLowhQ6Oj4XTz31FKPRiJWVFcIwZPCcz01VVbRtS1VVSCkZDodnQk0QBLRtS9u2XL9+nbZtCYKAsiw5ODggDEPSNKXX65EkCf1+H1hWokgpqev67AKVtRalFHVd4/s+i8WCk5MT3v/+99/2beDPPPMMf/RHf8RDDz1EWZYEQYDvd6fudxLd0f4i+POTIAe6xBbHuOKQ8vgm1uRolaHqEqtKqqYBJE2do3VDqzR5WaOdAwH9fgp4GAdlWYKQWGdQrUJIQSB9HIYojFFK47wIPwyRtiYIGow1qLbCWI8wjtHG4kcpRmQ0bYU1glpZLGCNo8xOUFoRRjFlUdDWGTevP8nFu1/LPXdf4mBvj8PDXTw/YDhew5MJr3/ktTz0yCMkSdqV33V03AacXk360Ic+xM///M/zvve9j6Ojo1edQHPKgw8+2MVyd3R8AexfO0bXhmh/Thho/EgSpANE2MMR0BpD27TsPJUjAo9mVnC8m2EWM1QScXW3xceyOgzwk5BwGOOswe/3yGY56xdWaDVg4ZnLJUEkiSKfQGjK2QkBAt9PsKrm4MZlqiZALU7wpWTj0jniaI887pOO1/DChMHmJbwwJYh7vPahB7nn3nt4zRu/lP/6nl/lAx/+KKtJwHgQIbGEkYcvBflRRZY54ijgMGsxxjAtFF/64D3ESY+yLPADwfFJxs5hTuZ8Il+wu39EpjSTYUqSRMyyijSNKFvLhc0x2sDa2oDJZER23HL+wnmiKCCJIpToxOKOjs/F2toaKysrjEYj4jhme3v7rCXpVHDI85z5fM7W1hZJkpyJN77vo5RisVhwcHBAnucopQjD8Oy5SimklMRxTNM0lGVJ27ZYa9Fak2UZxhjG4zFJkjAej/E8j9///d9nOp3eyl3zefPEE0/w5V/+5ayurhIEAVmW3eohdbyMdELNX4LnCjRWldhqimuWEdsnBzexpgRnKfIFVVWhlQIsra5pmhatFBZH4AV4YlnG1zYaP/Swxi5TlwIf4XlITwISIfzlaxYZ1kGapARhRFs3WCHRxqLaEis8EB5e4GOsJO0NafUJnhSgNEa1FEVBlI4oqxxjLMY62ramrBqck9x79wPki4f4xOMCaxSb587zFV/xV3jzW76SC5fu7kSajo5bjHOO+XzOH//xH/Of//N/5nd+53deMYuOvyxCCL7jO76D7e3tbg7q6Pg82T+sCISEWUUQCQaDhCTeIAwH2GpGs8iYzjQqiokCyf5hAbVhY2sFz3PI0LAzb6ispTdKGQ8TAmGwwhKtRsyPFtSVxk88onEfYQ1Hh3POX+yxcmGNvZszdq/lDFdiinxKkiYcH2X4QtI2Lb20h58mpOkBcX9IWWT4UcLq+XuxukX4EY+88XVsbG8T/Mf3cPT0x5G6Zm19SKsFuoXQF8RJxOFJxvGiBmvQDvqxj9EO4Xnk84ymaokiH9soQgRYzdogYW9WYGY50jmOpjmh73F0vODhh+7lNQ/ej1KO8do6SX+EqnOUMVy/fv1WH9qOjtueyWQCQJZlNE2DUoqTkxPSNGUymaCUQmuNtZadnZ0zjxmtNUEQEIbLFsMkSfB9/6xSxhhDVVU4585EGmstTdNQFAW+75MkCYPBgDiOmUwmjEYjnHP86Z/+KTs7O7dyt3xBnJyc8D/+x//gq7/6q+n3+7d9FVDHi0sn1HyeuE83CdYFNj/BNVMW+1dRyqDbnDw7Ic8XCOljncEZS2sNRjVYB57vUxQFDkdlWnppH0+GRFFMox3aOYLAx1qDNiB9Dyl9giCkqmviBKqyJIkTyrIhCCKEFyJkhBMV1jS0WuDbEGMNXhCRpAPKslwaehEiZEXTlHjSx6iKqmlomoamhX6vz/b2Bc5tbfGa+y8wm09ZmZzjwoUL9Hr9pYFXd5LU0fGyczoHlWXJ//2//5d//s//OR/4wAfuGK+Wru2po+ML53jeEAY+8cDH1RrR69PuHTPxDdNpzZMfuUZ/ZUgYSIpCsn73JSJp2X/iaYI0YRRZ1u8aURnB6kqPlXFKVZTEaYjOcw6OS9LRgKpR+IFGSMnq9ipl1ZA4cHisnZ8wGvuoBqaHOdOjgmneEgjD6nhA3OuxujbAE8eszEv8MKBVFhGmTFbX8OKEQW/Id/+D/4f3vvv/Zf7UxwiEwAlBfxiRpCFF1ZJXCmEtN2cFf+U1W8RpSm84pp4dUzeaOI3x6wZPCJ7cOeKw1PSoqdqWOPApa8WialgbJpxbG/GlX/oI6WiFttbMjo8JoxScocxLspP5rT60HR23PUVREEURWZYxHA7p95fnEcfHx8xmszMxRghBURQURUEYhmfBB9Za1tbWzkSYqqrIsgwpJb1eD601dV3TNA0nJydcv379zN8mCAI2NjZYW1vDGEOapuR5zm/91m+h9SvLDPzy5ctsbW0xHo9fcWPv+OLohJrPwfMEGmdx7QJTHaOrOVLVnOxdIVscY6zAmGp50iQkSRiwyEsWswXOWaLIxzm7bE9yCvAYDgYgfJS2LIoCbQRe4OMHEW1T4wcRQvoo4xDWEScpSmuCWNA0NUHogxNUZctgNEDmHlWVI6xmsVgsjYW1wRpBEKZYPKSx9PqwmB2jTIOTgDGYtiFOJvRHYwIZIryAtbUNpOcTxwFlnjM7Ocbecy9+d6LU0fGy4pwjz3Pe+9738ou/+It8+MMfvq3iJF8OoihiPB7f6mF0dLyiuD6rcH5AXwk8p4l6CaQhdr+mnp1Qi4DFXoGVsLWeMGjnHB9kCD/kz57YY/uuc0RK8OBrtth9+gZPzkq2t0ckoaAKQzYvRcgo4eoze/itJQwhr3yKkymedERRQjRMyHOH1ob+uM8gN3zs8mXAMkwTMhq0F7AxTlgcLwjTkF4+o6Uh9H1EdsJgzWKN5mve/hbe38yoj24S+B6B71EsCvYOMwplUUDqe9yYtrwuGdKWGc419NIIKwTzSlEVNdI6ViOPadnQthohfXzPY3ulz93nV9naWmU82cALYqr8kPN3XXrWX9Dg+yGDcf9WH9qOjtue2WzG6uoqxhjiOKYsS2azGUVRMJvNgOVFGGMM/X7/zHgYlklPaZqSZdlZlPd4PGZzc5PhcHj2O6y1lGV51vZ0alrsnGOxWKC15vj4mN3dXR577DEODw9vxa74olBKcXBwwMrKSldRc4fRCTWfFw5nWmxxgJ7dxLQlVliqxYL57JCqzPHjkMViQZrEVI3m+PgIpRqSNKGtK06OZ2hnENYQxxFpr4cygCfxQw9VW6QHQkiapsFYhxAWz1rqtiWIUow1WCfQVlGUBQPZI4gj1jfWOTk+QrcKax3GWoIgIC8ryiLHIrHCwzmBMXZZFWM1DoMgxA8jRF0ShhGe59O0NUEgEdYsW6YcGNPSNopXqfVFR8dtyakHzaOPPspP/uRP8tu//dvUdX2rh3VLkFKelUF3dHR8fqTDHrUMWBsP2N+bUlxb8NpHxtQuRCdjXGDppz4mTNmdTmlDSTgaYfOS19w7gUjiWc0Tj18jihJe+6YHaPMFVVEgwohUWKosYzyMMM4jaxxWFWSVYXWcsr09wloPLVuKsqG2htVxxJc9uMZ8ViIkrA58kArdWJS2xMOI6mgPEfdR/QBlHMa0aKXpDVZ4w1vfzAd/+3foJeAZjVKGSln80OfqjRMGwyGv/7Iv4e577mJxeJ3dT32C2eECrQzrm6s8+fRNGmMptCUOQyajPiBIowBhNecmKYPhCGMMdTVjNOzzxMf+jHQwYHVtBT8I8Hj1JOl1dLxUNE3DwcEBQgiuXLkCLCO7T9uXT1uUrLVncdxlWaK1PovcjuP4TKg5PDw8S4sKguDs/mUwSsDDDz98lgIFS7HnNPVJKfWKblnc29vjta997Vm1UcedQSfUfBbcMsoJnMa1M9xiB50f0JRz2jpnnpdUZUXbVCijyE4WKGUQAlqlkTicg6pu8MOI3qAHVtEqQ10rlMoJ0h7CKsragAVlFJ4nUU2DF0a0ZYXv+WgrscbSNC39XoKHRxwv26OUMhhT4/sBs7KgUTWNUhjjsNbhnCXL5shwGTVpYZlmkPQJMajWgjDESQpY2qbh5OSI8XhEqy1xGOP5MVHUwwvCswmx84jo6Hhpcc5xcHDAj/7oj/Lud7+b4+PjWz2kW8pprGdHR8fnz+owRngB80VFri1RnDI9yhn5IaE0HM1rpGm5+66A3/+zp/my18OF9R5JGpAVkkEMG+tDVi+ex6mWNDD4k4h5FlIsMnRdc3hSobTlOGsZxB6t09yc5mhjuWu7T1sL9g4ryrwh0ApPVfQ8GK7E9Hs+fgJ4Ds93yDhgMIiJ+0O0lTRlifJ8VC6YH50QhgeoRjHcXEWqBjU/pmo0h7OCg6JBRjF33X83b/+Gr8PWBYc7+8xmJbU2DHoBqqmptGN7bUTTtFyf5hgnSDyBNZqVQcTJwvDAa/vMdq+zurnN/rWnsbpluDLGOgHWLA2UOzo6/kL29vbO2puUUssLxSyrYIQQSCmZzWZYa3HOnYk1p9v4vn+2ned5Z8LMqYADy7jt08d930drfSbWOOfOXqcoCubzV27LYpZlKKVYX1+/1UPpeBnphJoXwD37hzM1FLuY/IA6O0Y3FVk+ZT49pq4rlAUhPcqiIsvm9AZDsrxGSIuzjqKscDi8NsCTEqUlxihkGCI9n5PjnLX1CWBxWNpW40m3NNeqDb3hgLa1yxYnKfADjyAIsFphrY/vC8oiI4pDjFL0BgNMZjFAns9QxmCcQHg+dZlhLEg/xFqHlBGgCRKJbWvC0NHqlpOjG2ijCEOPqirwg4goDPGDmOF41Ak0HR0vA845nnzySb7v+76P3/7t3+6uoADj8ZiVlZVbPYyOjlcU86KmH8N4YwVCj82NhP2DGhPV1HXFxijmsI7Jypq//vVvoipaqtmCstJYIZlnju0La9hqTq+f4lTBwc4JSgRIa+iF8KlCUWY12mgCK2m0oyobvMmAw5ni6u4hCI+VEHYO5kirWU1Dxv2Qdt4i84Z+P2BjewKxpC5LmtZhhIfwPfwwpKpqhBRMS8vicAHaQGNYZIrDWcbVwxk2Tvmq172W/++3fwtxGHH1U5+gKiqaxnBzd0aSJCS9lAsbY6wfIlTJaGXIlf0pD14Ycd8D2/RXxoTpKqsrA8pak4xGiB3B2mRAdnRMlA4RwhAG3q0+tB0dtz2n0dinIs1pQhNw1qr06UlNsGyH6vV69Pv9M7HFGHOW+nS6ned5NE1DFEU45yjLksViGeRijEFrje/7rK+vs7+//4peSxljyPO8E2ruMDqh5tM4q6QxDS67Rju7QbU4pqxymkZR5TPatsYJh3CG6fHxMvLaSYw2eEFIXS5ompa6bhDCYp3EEZHEkllWgAwJgoTBeEhetSRRRFbO8TyJNu3SPNiP0ErjeyECiXPgex5KW6yxBEbhrE+SLE2DW9ViHYCHUUv1uKoqGm2Q0sNahzUW7VqElFijOO1i8rwIF0pCaSiyIzzfZw/wggQv9PH8mEv33MvFi5eQUnZiTUfHS4i1lkcffZTv/u7v5oMf/OCrNmr7C2EwGPAP/+E/7BYoHR1fIIeFJu377B7MmKykxFFEf+wTj/oM+yHXrx7ymru3OLxyg8VsThgG7J0suDZXXLq0wZve8AD3PnCO+c4NDq7d5Jkn96iLhkLBUdZybpIQ9fvszzMu751QN5qVNGRtmNKWBdb2GfYicA7hHP00pKglo2GMLyGJexjrCPsxrXIM0hofuRR9wpjj3Rt4UiKQVMojGo6RYcB8odi5fsje3j5FURGkPUYbG/y1r30rk9Uhx3u7lEWOMY6y0eS1I0oE45UU5wkGkzVcnbFzXPDQfee569IqXjokHW8yXh1RzY7IZzVFXrF18QJllmPmFWEI2fSERrW3+tB2dHwGf/AHf8BP/uRP8uijj7K7u8t73/tevvVbv/XsceccP/IjP8K///f/nul0ypvf/Gb+9b/+1zzyyCNn2zRNwzvf+U7e/e53U1UV73jHO/g3/+bfcOHChS94PKPRiKqqsM9aMsRxfOYjY+3SiuH8+fNnvjTNabhJ0zAcDomiiDRNz0SYuq7PWsKn0ynGGJIk4fz583ieR1mW+L5PWZZMp1OqqkIIwWKxeEV603w6JycnfMVXfMWtHkbHy0gn1DyXZ0+InKmx82u0s6sUs0PybLrsmTSOVjU0VYNSLUVR0mhNnCQkiaSsSmRV0TQViKXHTGug1YL11Yh5VhBGKcZJhO+jrcALQ2QQEicJxhhapYnjGOtAK0UcBVijCAIfcAghicMYnMVag+9F4Ay+L9FWkPbSZS+m0UjfxzQ1SjXgDCCwdplEZa3FOoeQIISH54UIZxGej24bEJLBcIX1zQu89qFHuPf+B4mTBDqNpqPjJcMYw//+3/+b7/7u7+aJJ5641cO55URRxOtf/3re+c538jf/5t88K5vu6Oj4/Aj7CdL3EcC0glSHbKxLnKk5vnFAf9jHlguu7M0YDFLu2l7H1o610HD/a+/mvge28aXl5OYev/d7T/D0YYaxhlpbGuf4s+uwksSMRz1W04Qj11C2msNZzrAfE+DoDUbotqHfCzg6mvPQPSugDecvjilyRWsg7Af4cUyWVwg7I4x8ZFARxjFF4WgaRd0K4rbFaIuwLYN+wqdqQzpY5e6LK3z56x/kwQfupsxzisUJ2jRY23A8qwmjkPFkyHDUYzQZgBezd3POZLLC2vqQptVk8zme9ImTmGxRsLJ5HoTDISnyHKstUTTgoCw42H3ltlB0vHopioI3vOENfOd3fiff/u3f/hmP/8RP/AT/8l/+S971rnfxmte8hh/90R/l67/+63niiScYDAYAfO/3fi/ve9/7eM973sNkMuEHfuAH+KZv+iYeffTRL/g7OAgClFIkSUIYhuzv7zOdTvE8j/F4jLWWwWCwrHZ71qtGa03btrTtUgyNogjP8wjDkNlsxt7eHlVVobXGOYfneSwWCwaDAZPJhMlkQlEUDIfD5QXrZxOhXg0JmTdv3uzWQXcYnVDzbF3J6UVrp0r0yZOUh08zO96hbRVC+iADyiLj5GRKHAnyskZrQ5ImCKCuW6xuUdYiPcksq5F+gOeHTAYh13dPWF0ZY60mkD6NMvT7CW2jKMoaa5YjieI+WiukJ4jjhDCIEFLgnMGTPlEY4kmH0xYhBUHgIWUIzhAEkqJQBGFAcZQvDYGBKAowjQMcVju0bhFIrACswcNDSEkQp/RHq7z2oS/jgYe/lI3NC4zGq6RpipASBIhOqenoeNE5Le39zd/8Tb7ne76Ha9eu3eoh3TKklJw7d463vvWtfOu3fivveMc7WFtbO+tN7+jo+Py5uNZn1EtplcaPYubTBcN0lcPdI6pac2G7Rz2doqRke31ItrtH4ge85au+hAv3brN35TqLwwM+8CdP8eRRxrAfsJH2yIqGSluMNcxqxcE0Y5SGRBIKZQmFI3YKqy1B6pP0QmzdcN+9m/iBZLKSUtSKsrWcvzBAG0GZV1StIBAB2mk8o3FNThiFCE9hhKE8aTFWYK1gdRhz98VNGhHzxtc9yMMPXKKuaqqqosiWhqRenLJxfhOrDYN+QOALjnNDbxiwef4igS9IJ+tU+Qw/TEn6YzYv3ctodYvFfIH0fbS2pP0BWi843N3nxo1jBoP4Vh/ajo7P4Bu/8Rv5xm/8xhd8zDnHv/pX/4of+qEf4tu+7dsA+E//6T+xubnJL/3SL/Fd3/VdzOdzfv7nf55f+IVf4Ou+7usA+MVf/EUuXrzI//pf/4tv+IZv+ILGs7+/j3OOjY0NwjDk+PiYIAgAyPOcKIo4OjpidXWVixcvYoxhsViglKJt2+f5zBhjCIKA7e1t6nr5Oa/rGq01e3t7zGYzJpMJFy5cYDKZ4JzDOUcYhhwdHb0qqpOzLGM6nd7qYXS8jHRCzRkO12bok6tUR89QFzMEEmFvMGYAAQAASURBVD9KUE1Dns/RSpGmAUVR4BykvYi6bmgbRS+NKLIGfIlwgrW1CfNFTujD3sER62trSClwLqBqluqyalukB54IaKxBtZowlFgnkG4pimitsMaRRCmhH4AzWGMJPYFRLY0wKLdMZrJtQ1krjG2JQsFsUdDr9yjKFt8PcFikUQjnULpBeh5C+DgBUgSMVrb4mq//m3zZX/lq4jR93klRd4LU0fHSYYzhV37lV/j+7/9+9vb2bvVwbhkbGxt83/d9H9/2bd/G3Xfffbag6+afjo6/HON+SOsEJ5XBz47pJzFtGbI6TpAjj/Pnhnxi74j7L51jspqgBj3mRzNMU+L5ljT2eeZgQTAc87e/8W4CNK4uOJ42FKXiaFbjphWhgCuzEgNEvk8SRyRxxOrmGiZKOdo7oNePuHZNcf+FIUWtqXLFxUtrGNNyfFiRrk/oWUu+KLAuxGmP0Ffks4aqMYRxiHUWz/dIkoR0NObbv+JNrKyfIx2ucHD5cYSA+fSEuJ8SxB6JEcxzi1AFfpwQDEa4IkNLHz/pMZ6MEL5P02iidExvdRPppRhb4vkBzhokhmKxAFuxf3Of7XOrBFEn1HS8srh8+TJ7e3v89b/+18/ui6KIr/mar+H9738/3/Vd38Wjjz6KUup522xvb/MlX/IlvP/97/+sQs1pu9Ipi8UCgJWVFYIgYDabnT3+lre8hTiOOTk5oa5rrLVkWca1a9cYDAZUVcV8Pn+en8xpRc2pifCp4fBpotNpahRAVVWEYYgx5qxd+pOf/OSLsQtvOUopHn/88Vs9jI6XEflSvfAf/MEf8M3f/M1sb28jhODXfu3Xnve4c44f/uEfZnt7myRJ+Nqv/Voee+yx523TNA3/+B//Y9bW1uj1enzLt3wLN27ceBFHuUxmcs7hdIFeXKHJdijLnOPpjOl8wWw6p2xbsqJkkeVopdBG07YNRVHS1iW+B8YayrbBGlgsCvK8QAgoi4okimhaQ14ojDUEnsXomrataZtlUlQchcRBROj7RKGPNRpYGmcNBynOWnCWOPSJfYlzGmsVum0o5jPKsqRsFF6Y0CpHqwxRtDTc8gOPOE5Ikh5Jf0AQRggB1lgsIIVHfzDhTV/5dt70FW8j6fXOvGi6q9gdr0ReGfPPchxaa9797nfzT/7JP7mjRRrf9/mhH/oh3vnOd/LAAw8QhmE3/3S8Irmd5h8RhDxw3xZvfORe+lGI82PCwRDtJNNc8OgHnsAf9njkvlXGw5T1SZ/1tSHOefheyOrGGl/9dV/J//N338ab/sq93P+6B3ntV76er/xrX869D17ET0IuraX0+iH9wGNrEBNJGIWO/iBldWsdX0IrEo4ySet8stZjb2G5eP8WYRphZYiMU5J+j6PcEYzXKf0hR43PtE6oXURZW45PStrGoJsWrOPc9jkm6xukSUp2tM/hzetks2NO9g+oqwbrJIvasn5hi3C4ymB1wmxec3wy5/hgShD1iIaraOszWrtIEPdJ+ivUrUIID98XWN1QzI5AFZjWEAY+4/GYuNf/Yv6LdHS87JyuLzY3N593/+bm5tlje3t7hGH4Gcb9z93mhfjxH/9xRqPR2e3ixYtnz7vnnnvwPA+lFNvb20RRRBRFjEYjfN8njmM8z+P4+JjLly/zzDPPcPPmTQ4PDzk+PuaZZ57hE5/4BJ/85CeZzWY89NBDXLp0ifX1dSaTCZubm1y6dIlLly4xmUzwPO+sNcr3fTzPYzabvYh78tZyJ68T70ReMqHmtE/yZ37mZ17w8dM+yZ/5mZ/hAx/4AFtbW3z91389WZadbfO93/u9vPe97+U973kPf/RHf0Se53zTN33Ti+7a7docO99Bzw4oZsdkebksrXWGpi1YzBd4EgaDHtpCq1qkBGc1ZVUxy07YPTjA8yRlXSOloChKAk8ipMQ4SRgIrLPEgcSXkrauMarFe7b9qG1bPN/DWrNsfZIgBfSSAK1rnFWEvlx6yYjl4sHolixf0NYZui0RGJyuaZuWwXAMztHWNaEfEYQxURQRRxFxOsD3Y/wwJAhC0l6PCxfv5aGHv5Q4SbsTo45XPK+U+cc5x2/8xm/w/d///a8Ko7svhs3NTf7G3/gbZxGcHR2vVG6n+afKa7J5jRCSYRqztZrQo8Grc1qt6A+H9EOPpx67zHhrjWSYsHnXJvd+yX3EFLTzfQ4vP8UH/+f7+dgffJhP/PEHePz/fJxrjz/JKHF8yWvGtFZw5aigNY69aU6hFJlyDAbRMmQhitjYWGFrY8TFrTFr66sMRyOqFlqlEb5HOOixszPDiAAR9YiHI5LxCvFoRKEkT+3l/OGHnub3P/gpnrxyAAhGKxOEDKmKhoOdXbSVlHmODAL6Kys4EWLKjDKvkX6ECGKKomW8sc75u84TRjFNVZH2UqI0ZbSxjZ8MQHg4p/D9ZZy3EJAORkjpM1lfY7S+Tr9LoOt4hfLp36/Ouc/5nfu5tvnBH/xB5vP52e369evA0vz26OiItbU1Njc3OTo64plnnuHg4IAsyzDGEMcxo9GIuq4py/JMZKmqiv39fY6Pj8nznKqqyPOc/f19rLXEcXwm+jx3jJ7nnf27aRqUUq+KtqdTwjC81UPoeBl5yVqfbrc+yRcYxdKXxraYfI92cUiRzSjKjLKcYxw0ytK2Bj/wmZ1URKFPU1eUec5wEHG8KJFS0NQ1WaHwgwjpJ4yHEWVZUzeKttGEcYwE+olP21QopQh8CKIQawxaWaRzGKNwTuL5Emcsnido2wpfCsJegPS9Z0fugfDwPUPtDG1bIVRNPZf0h318z6K1QQqIYh+tamSY4KRHHKRI6XDCx2oNOPr9Af3BiDCMvsh92tFxe3D7zz/LcXzqU5/in/2zf8bR0dEX/XqvdDY2NlhdXe1Emo5XPLfT/BMFkp39Y+57zZAG0MdHbGzcy3B1yDjpYf2E9bGPvWeLtBdgGaK0RjpNVTTMFjX7xzn7uebqfk4/lFze3adSil4YsBpJVocxUeCRtRUzrRHaID0PZwxON4yGY9LEUGQl/c0BMgyZ7xwTBWOmreKZG/vcffcWtYIgDamaZjkX5AWqmFI2hkZGrJ47x8nRCcYLuXj/a/D8mLY1ZNMZVaXQxBzuHoJ8NiETixDQH41wzpGVNQQBkSdZ3zqPdY5iMaXMM6QXMQkHFAf7eK5GSEtbZmALAt9DCYh7MUGUEiYxuupSnzpeWWxtbQHLioxz586d3X9wcHBWZbO1tUXbtkyn0+dV1RwcHPBVX/VVn/W1nyuYPJdTj5hTceG0kiaOY6qqQkpJ0zQURYHv+0RR9LxY7dMobiklUkrCMERKyWKxoG1bjDEYY84SpIwxCCHwff/MmPjUdPjVwmnbV8edwUtWUfMX8bn6JIHP2Sf5xbL8yFpseYxe7GPbnLoqKKsK5wyqbVFa4ZyhbmrWVgcUxYLj6RF+4PHkM3vkRUNZa4yIiNMRYdxjZTygrhRpklDXNVGS0Et8nFVY05BnGVo3SGmpywqtlxONcwbxbKpTFITgJEv3Xknge8/61ViatkXr5ZUeGSQYJ+gNhlStQqApipymKsjnB5T5DKMVOINuFdKBc4IoSRkNJ6T9MXHSI06GSC980SuVOjpuR26H+Qegrmt+4id+gk996lMvyuu90jldiHV0vJp5ueefNApoKs3+lWtoK9i6526uXtsnL1tsmZPv7zPdOeDGtT2uPrnHzo1Dkjign0oO9/d4/BPX+dhT+3zs8iFB6PHY3oKdsuWTxwWPHSz4k+tzfveTByhtyJRBGUetLRr4+NUpjfLQdUOW1TTKcXCU0SrHaDzAepKw3+OR115isjrEaoUvHLOjOW2RobTlxvUTrtw8YDqdU1QN06zgwQfvpTcYU9eK6cEh2WJBmefURcHxNOP4ZEpVlDRlTb8/IE6TZSt4XXPhrotsbp+jLgsW00MWWYkfD/DCiP0rj1NNb6CbgnI+JZ/NMS7Ej/v0VzcYrm2QjlYQcpnU2dHxSuKee+5ha2uL3/md3zm7r21bfv/3f/9MhHnTm95EEATP22Z3d5ePf/zjf6FQ89k49ZOZzWbUdQ0sfVaOjo44ODjg6OiIPM8BOH/+POfPn+euu+7i/vvvZ3t7m83NTe6//37uv/9+Lly4gOd5fOITn+BjH/sYH/7wh/nIRz7Cn/3Zn3H58mWuXLnCdDo9Mx92zrG7u8uNGzdeVec3r6b30vG5uSVmwn9Rn+TVq1fPtvnL9El+NkOr5+Jw4MDpFrXYo6kzqsUJdZ1jjUIpRVXVtKpBCMHN3QM21gYUVUXbNuR5wWTS5/C44eL6KkXVMhj2mS8KWmUZDFKKvKTXS/B9gWlbtLUEvkevH1GVJUVWgQyRIiAY9JCeR1s1BLGP0S3aaJz1l+1LWuGEJQgboighiCKMaiiLiiCIsUYRxQltawijiDLPUKpBNS0EjiiO8AMfPwiwSBCCOO0jZECWT/GCCIegbZvPqwSyo+OVzK2ef2B5lemP//iP+a//9b++qq70fDFkWUZZloxGo1s9lI6Ol4yXav75bHPP9t1brG8ZcILF9ASsIfQEw16E0ZbNixOsEfQXU4aJoTE+wmpUlVMUmkJBU2uqSvH44pBaOxZ1g7aO0hmUsXhCIKple4Fxy7ZtZy29tMdobUxRtxhjmUwGhL7ECcFgmOD7kqOTgo2NETvX9ilax0bi4VpBWxUc751wOF3wsScu0w8C1tdW+IaveiN3332RIOohsMyPDyiyEun7GKNQ1pAtSsbrNcJY4mGfbDZd+g0WBaNRwrkLF/jwBz9EfzhkbWuDpz7+GFGc8MAjr0VrhdIO4fmIKGVt4xxNteDkYB8vGrCyfg7TlFx7qhPYO24/8jznqaeeOvv58uXLfOQjH2F1dZVLly7xvd/7vfzYj/0YDzzwAA888AA/9mM/RpqmfMd3fAcAo9GIv//3/z4/8AM/wGQyYXV1lXe+85287nWvO6vu+0KoqorFYkGv1yOOY4qiYH9/H2PM81qUfN8ny7LnVcGccpr8VJblWcT2c6tper0e4/GYXq+H1prDw0OapqEsSxaLBdbaV1UVyv33388TTzxxq4fR8TJxS1OfXoo+yR//8R/nR37kR/7C5y+xOLWgLXOapqJVLUo1OKCsKtqmwUnB4eERw35MnmU4Y7DOkg76NK1lPBkzW2QMejFFtiDwPILAwxlFFElMW6ObGocjDKOlEGKXixlfCrTVpP2IxWzK6mSNIAzw5FIp7aURfhDinKGqW8JI4PseWrV4MsK4ZbVNGITs7c/xfYETPqo1pP0xxhqUhkY1NHVNEiSEYYR1HsZJpBRIKfAkCCERztGUFae1Rh0dr3ZuxfxzilKK//gf/yPz+fzzG+wdwHQ6Jcuy55Vkd3S8Wnmx55/PNvfMTzJWJhNuXNtjFAg86bjr7m2abM54a4XFoqY/6rFx/z0oK+lFAWFgEH6EcxbdVlw/XLAzr2i0odIa5Zbjt8+2kDfWIsUyfdKTy/FJIREeNGVNECQE0XLNEqcRJ4sWDDiTs31hm729Axql2NrepNGCIPQ52DskiWN8QDjHSVlxT7zJG1//WjbOXSBOY2b7O+ze2GG0tsbJ4RFhr0eZ1fSThOO9Aza31pjNpixOprTakvRirlzZYXVzE98L8H2f6dERWpUkvZTrV65y4/oOW+c22dhaZzDZRkYp9ckuw7VN4tEWbTnHw3VXtTtuSz74wQ/y9re//ezn7//+7wfg7/29v8e73vUu/uk//adUVcU/+kf/iOl0ypvf/Gb+5//8nwwGg7Pn/NRP/RS+7/N3/s7foaoq3vGOd/Cud70Lz/O+4PHce++9OOfOKmbjOD5LaToVW6IowjlHVVUAZ7/ndK479a1L0/QsovvTt/N9H9/3UUrR6/XOfqcQgrZt2d3dfZ7480om6ar57ihuiVDzUvZJ/uAP/uDZxATLq0qn7uPPxZoKZyuclLStpagqrBPLViRtaVRLXpYEvqQoC6zRWOcQwifwQ8DiSw8ZStq2JvA8jNVU+QIpBVoZnHUgfZI0IfQ95ouCOAqQAvwwQOUZqpXEkaQuFsRJitGKKAxp6xJnFdpYhsMxvSTGOgMOmlZhjUEpgzaaMApp2wqLwCiLtYqsKGlaRRzFGAtWtbT10qsmCBOkvzT5k36IEBLnLGVZYIxFyi98Mu7oeKVwq+cf5xwHBwd88IMffFHez6uFqqrOSqM7Ol6tvFTzz2ebe3qDPjuXrzEcj5DOEgvLcHXCSZkz3lojSGuC0Cfq95FOUNcKW9UErgLpsXdUsyg1VauZNgrjHL6UeJ4Au2xZxFpAICUYHIGUeJ5HVraczCtWJjH94ZCqyKhLw2SY0CjF9MhweHDM0eGcUT+hzHKMc6Shj9aO2WHGnz11hYN5ju/7SN8H4SEENGXG7OSE/nDEcDzk5pXrNE6wujlBNy2hJzDWMj85QbWKG9f3kVFAfzjg8GiG8ILl2s33OTopUEailSbtxWjVoIyhrWucqRFeQD7LOD6a0+8nOK2YnbxwtWRHx63ka7/2a//CKl0hBD/8wz/MD//wD3/WbeI45qd/+qf56Z/+6S96PI888ghRFJ2JLlLK5cVq3z8TbE7HddqudDr+UzH0NHr7VGiRUj6vSuY0HfK525/eD8tqw9/+7d/+ot/L7UInEt9Z3BJDgJeyTzKKIobD4fNun46zGqsqrNLIIEJ4AUo7giBhsShAOPKqIY0CiiIj9AVVVRMEIXGaUhQV/TigLEvausKXlqrMyBczrLEYpQkDb5neJKCuGhZ5gecHhHFEWSn6aYJwiiqbI2xDWy8QrqIp5pTZHOEUTV0ThiFGO6qqpqlrtDZYaxC+xCIp6xYLhFGKUctJrm01aa8PCKQfEqUp0vORUsCzvZtBEBKGEYEfIaWHUs1yEuzaMDpe5dzK+cc5x87ODt/zPd/D5cuXX+R39srmNKq8o+PVzEs1/3y2uedw94BzF9Y4f9c65+69QG0cbdsg4pSbT1wFzycZphwfHFMWFU1VM88sB9duMkjgdQ+f4+6NHoMkwDkwxtEaS6M0jTZoc3pSBEIKnIM48FHWcbKo8IXA2pYwcPg+9NOAIAxABnhhSpz0uHTXFo12+EJQlw1Xru5zfW/KH33kcZ7aPaa1jofvucCXv+E1hOEyIOFodxfh+fTHfY729lmZjAgklIuMqszRWKpigXFwkjXEvYT5PKdtNbYuGQ5TLt51F054RHFMnlf0+z3O33WBulbMD/a49uTjfOIjHyWfL5jPprRlwSc/8nF2Ll+mN+ziuTs6Phf9fp80Tc9+fuKJJzg8PKSqqqX4+mzVy2mCU9suTbrjOCYMQ5IkOft3Xdfs7e0hpWQ4HDKZTEiSBM/zuHDhApPJhDiOz54TBMuquVebnUPXLn9n8ZJV1NxufZLPxekagcGqFtMqrHUk6RDhC/B8stmUIPBo2pa0l4IDP/Cpm5Y4DmmE5eDgmP4wpW0asnlJGAkCX4JzhGFAlpf0ejHGOsLAAwSB79PWis21MdliQRSF5IsMqzWqbcnngiAMadsSY0KEF1LkGf3eCK0hCkOkB21boZTGWvCkB86hlQEhMabGOAtIkAGttkS+RAiHkCA8Dz8IlrGTvkIIgfS8pQL9rCrd0fFK53adf6y1/OzP/iy//uu//qrqmX4xOC1f7uh4pXM7zT+9QQ+rNVcef4b1S+cx1jI9OMCXluHqCGuWFbpxr0ejNHEv4aTM2buZE5bXEEHIxkrKtaOCOPCwzuEAY5dtWAKHFB7aWZxxSAGeEASepCxLHv3AR3jjmx5CWY8iK/AlOD/EOgfS4XuC2UKRhB5eGBKEiqooeebaLruHU7Qx3LO9wVc+cg9r4yHWWopsThgnNLMZQRTi+QGz4xnhcETsW4wRZPMMFfocH59g8fACn9Gwz8bqgDAK8XxJGPpksxn9XkScruB7Hqpp0U1JHTiuPLPDZG3Ch3Z26ScRTit6wwF5XnBt7+qL+V+mo+NVSZ7nHB0dcfPmTTY2Nvi93/s9giDg3LlzfNmXfdmZkfBXfuVXAsu5cjqdnokwKysrBEHAfD7nwx/+MDdu3GBtbY1HHnmEN7zhDYzHYw4ODqiqiqqqGA6HeJ7Hhz70IZRSPPjgg1y8eJGHH36YP/mTP7mVu+JF4dSvp+PO4SVbFd9ufZJLHDiLrgtsO6ee7dM0NUZbjAzIZidUdY3SmqpRJFFAWbUkSYhxksAXLLKcUb9HLiqqqiGOY/yBwJOSwJe02tBLQiSawJcI6eGkRFho6hI/8HHGI44SptMS6xy6LTFWkBc5k3QdYR0IsGYZn610S5gECM+jrRuk5xFFIWXd4HmCYlFhBCi7jPq21uDJpWlylCQUWYaQEunHCFq8QAMW4UBpi7EKrRTe0rDmL3/QOzpuE27H+cc5x40bN3j3u9/diTQvQBRFZxGeHR2vZG6n+We0OmB6c5cmr3Ftzer6mHQ0wTYZUgDCUpQKXWvyWqEXDYtpjQ37PPbEDutpzWymEVIS+RLrPBr9bBUNS1c7h8M6QAh8AYHvkVUtpdJM85r17U3Wjc/xvCSJArxFTRBFRGEAwjEe9ZAmYG/vhOvX9rl2c4/D2dK/Kwp8Aimp8pLZPMPzfUYr29RlwWh1HeMU1bVrBEnI9OSEMO7RltkydEEIkl6P6zvHICSXNldYXV3BCxNUU1I1Le7ZMbetJkg9qiwjjkOKec5rHryPG9dukkYR9953iRvXblBWDU9e3umWSh0dnwe/+Iu/yGKxOIvenk6nKKUIgoBnnnmGo6Ojs0ra173udbzuda9Da83+/j7Xr19nsVgQRREf/ehH+ehHP0pZluzs7PDMM8/wsY99jO3tbT7+8Y8TxzHr6+s88sgj3HPPPSRJwtvf/naKokAIwZve9KZXhVCTpukLdop0vHp5yYSa261PEpZdPUbV6GqGqUt0XaLLHP1sKXAURTSNAekxGIRUlWF1dZXpyRQQlGVDHAdM5wXDQQ9nLUYb4jjE9ySehCSErMhJIo+yrBn0QqytaRpD5PsEcYC1Gun7DEZj5lNHGC/jK6Xv0ZQlVvgoZUjiGOEJ2qZhZTRCCImxFm01QRCCUVRtgzIKzw8wukVICUbirMMYqMoCrCKKh2htcLZB+gqlGvwgXPaFKoMLIYyTLh6341XB7Tj/APzRH/0R169ff9Fe79XEp5dId3S8Urmd5p+qKGiIiUcxiAAjYrQxWCuIYh/TWvzQpy5OqHODEx4bGxPyMoLRGh+4fI0bhwuUEBhjMcYuq2qcAwQIUGbpUeOwCDzqVhGHIcpoIKAqFGVesD4ZYKyPM5q19Qn7B1NW+gFGaz7+yWsspnP2juccFw0IQRL49D2P9TQCBOtba/je0jA07PURwPzwCClBVQ39QY9FVhJ6AeNRj4PDjMNpThQFrI76pP2EzXMbHB7P0E1DW5T0khgVgudLnBN4QcjR7iFNq4nSnP5oQBxCVpQ44XFyMuXCxhph3F3V7uj4XCilqOualZWVpWdWr8fNmzdp25bV1VXqumZnZ4emaSiKgqOjI/7wD/8QrTVSSra3t2nblrIs6fV6eJ5HmqZ4noeUkqeeeoq2bXnrW9/K0dERH/jAB2jblo9//ONcv36d1dVVgiAgCAL6/f5ZBc8rlclk0nU+3GHccXXmTlU4pcizKaqq0VZjrSJfHOP5Ab1Bn3yhsEaR9mLmixwjlqZ01gmcE/TTCJwhDiO8RCKcxtoWrVsOjmZo66GUxgsS8mcj4uLIJ4kdXn3MeDREt5qqdowmW3iipq41fhDQthVB1EdbD2sdwmrwJAKJ0QZrLcITOATKaHzPR4oW1bY4C85ppAcnR4cY04CN8MMUL0jAk2dGwUII/CDA80OUNqTSP3NS7+joePExxvAHf/AHKKVu9VBuS1ZWVuj3O9+Hjo4Xk7aqca2mCQO8OKYtpkTRGkGcQOCRDAYU2RwvGRHZhrgX0utFXL5yk82tDeqq5ajU7B/NaazF2mXrEw7cUqd5FodAEPmSyWCAw3G4aInTFC+OSOKQVgmKbM758xuURQ3GcLhzjMWS5zmLomBeVBR1RRz4hIHAWsf59VXue+BudFVhpaSta6IowQ89ZnsHKG3Y3T9mfXMNqxuC0ZCo3+Pahz5J3mre+uUP0yrBxUtbiMDn+OCQC5fOIbEU8zlhb4Rw0GqD54cIL2Dr3ApWK4bjMZiGujE4Y3ngwbto8owr1184Jr2jo+P59Ho92rbl2rVrbG5u8sgjj5BlGdeuXUNKyWQy4ejoiEcffRRYenYppZBSMpvNsNaysrJyZiK8srLCcDjEGMPx8TFSSq5du8bJyQlFUfDhD38Yz/M4ODhgZ2fnrIJnMBi8KoSarvXpzuLOEmqcReuWpmlp64KmaSmrpUeMwJHPT1Bty2DQp8wzFvM5TdMivIDhoI9wYIwmCf1lOpRp8IRHXWUo1QIa3/dwRjAcjBn0ByjVEkYRo0TS6qUr+XxRIzwPD0nkGa7vnCCFZCUNUKpFq4YoGaCNxRpNksY0SiOFxSEI/AitDVL6lGWFA6yzeD5YA23TEgQ+FgvCR3oebatI0gBtl/3kTvg4IZCej8MiPZ/eYNgptR0dLxE3b94kyzI8z+tc+1+ACxcudBU1HR0vMoPVMdLNKbOSsmwJ4z6HO3uMNzdJRERdVQRxgucqKiS91XUWh4f0I4lIRxRFyZtHfcKPP8WVwxlZo85EmlOkXPomSAGtthRNQy+OcA6cVgySmJPpgpX1kF4/5vK1He6+9y7COKKYzqnqCikFjVpW5vTTmFD6WOCB8xvcd2mDtsqY1hUrm2uEHqxuTpge7TO5sM6VJy8T+CFJErK7e4RBoNqGm0cZb3r9vUgpGIwG+IHH8eERvWGfpNejKnKcF9A0LUHURxU5VVEzGvRQylCXDVLmDAYJwmi8YY8ginnmycsM+t1c1dHxuej1eozH4+VFZiHQWiOEIEkSlFI0TXMWvz2fz/E8jzAMz25SSpRSGGMIw/DsHCXPcxaLBc450jQlz/OzahshBBsbG6ytrTGbzZhOp+R5zmQyYXd39xbvkb88p6bJXev8ncUdI9Q457BGIXRD1Eup5pKyVVilAItWmrZZRsPOFgW+J8nKFt+XjJIAgcZqRxR6SKfxfEurNM60VHmGF3jUVbtsdcJjPO7hOY0WsDkaoHSLkCEW/9mebp/FYsFieky/16M1oI3A9wO0cWAUrRb4UmCUoioy0n6fOAwxRuOsIooCijL/80htC8Ya6qbGGEMURkhPIoSH5wco5UgGfeJ0QBT1lv45zuKspN/vMxqPb+Uh6uh41eKc4zd/8zf51V/91U6k+Sy88Y1v7DxqOjpeZJK0TzarCcMaXWTE/Q2i4SqL4xNGK/dhhA8OZGQIvJybn3iCuB8x2ZxwY3fO2sY6Tz91lYvnNlgb9vjEjUOsMczqZWWgJwW+J5frECHwhKBqWjwg8ARZUbJzc5ft7XWiQDDLNFJIhNXM5lOOD0/opQnGOMIwpNULIt9Ha8Nqv8dqP8IPfAZpwsneISe+x2QyZjadgrVcv3yd6UlOGvmcHM3Y3pyQpiF51fC1X/U6BqlkPs944Nw6RZZzc+eA8XiIdQJtfYyxlE3FZLKKvzpk/2hOmiZ8/PGnuefSOv1+DxCM1vo0TctslrG6PiGO75jlc0fHXxpjlp0AdV3j3PIz3uv10FqTZdlZHPdpOtOpWe7ptlJKgiA4E2uEEEgpefjhhwEIw5Dd3V0ef/xxjDEYY1BKMRqNeOCBB5jNZnzoQx8iiiI2NjZI05SyLG/xXvnLkabp2b7ruHO4Y75pnHM4vUw3yE6OaVuF9EAKwXQ+ZzadI32w1iwXHVaysb4BqkS4pQIsfHCmAdPQKLMUXqQHXkqcxgyHAaEvadqW9ckKqm2RnlymKgiPqlIMB8vKGq0N/V5IFPnUrYLWsrd/yGScEicJqlU4J2hUi9aKNO0Re5Ig9CjrCl86tIUojNCmoq5r2qbFYpZmPGIpTGkDVmh8K4jTaNkypQy+MUjhIRD4XsDaxjmStGs76Oh4KTDG8Nhjj51FT3Y8n8FgwDve8Y6uoq+j40WmKRc0VQsiJjINtm3RyjJYGVOWNU5IAk/S1As8f9kKpcoM/Jh+EmHw2Fztg3BMhjErqyNms4yrB1NOiorIW7ZpD4YRWdmQBh7GQda0NNoQSMknLu/wyJe8hqrWVGWNahXWCWxbkyaSvCyJo5C6mRP6HmVZEvoeg9hHOkeWV8RhQBCHRJ4k8H18z2P36k1wcM89F8gWc7wwpK5qZlmBbhWDlVVU07CxNiRJE648fZOVlSE4j7rWHB8e0+sPaE2Bn8Q084yVQY+qtayvjBikPcYrI4rFMpAB6yiKil4SUDTdVe2Ojs/F3t7emfhyWjlzcnICLC0YTittrLVnRulhGOKc4+6772YwGPDUU09RliXWWtq2pd/vY61lNBpRFAW+79M0DXmec/HiRaIo4lOf+hRRFPGlX/qlGGOYTqeEYcj6+jpXr74yE9s2NzfxPK9rn7/DuGOEGnCopqKcTcHZpecMjlk2p65r/EAipMQ6iAKPvGwIPY3GEicxqmnxhEYZRxBECKlplSPwI85dGBN4AaopkU5xWDq2kGg8POuQMiRJA1bHo2WsJR7WWLKiRiqFED7QsDYZP9vGJBF+iKtLVNvgZItRLdZq6kov06CcAxEig5BqukA1DUKCVQZrDWEQoY2mrWv8UCCwVGWFEzF4mr4foNoGD0EQRmxfuIsguIP+O3R0vIwURcHHPvaxWz2M25a/+lf/Kl/+5V/eCTUdHS8yab/PxXtirn7qJunGOk2R44U92kYhvRbrBQTSEYYxyBKMprc2RnoReV6j6pqV1SGtkVSqZSXSWDzeMBpwZecIi6NuDJNBRF4rNsZ9lLYgBLJp8aXg3KSPtArhDJ7T9Ec99vaOKfOKujUo7XBW45zF83yK1oATlLVGaQPW4Yc+fhASxxHC8zBtyWBlBVkrev2UMPU4OZzSNsuAh6dvHtMb9eklMVWtWcwrrNZMJiscz3LKpqWXRgS+h7OWk4MjkjTFGEOZ5dx193l022CNJuj1mU5zViZD7I19kl6f2e7BrT60HR23PaemwM65M1HmVLg5/RmWF9PbtsUYw9bWFm3bsrOzw9/9u38Xz/P4vd/7vbPKm8VicRbFvbOzw2g0Ik1T9vb2WCwWrKysMB6P+eAHP8iVK1fo9/sEQYAQgu3tbXZ3d19xF82klFy4cAGtdVeVfYdxx5yZ67alne3je5JqloEQlEWFVhbnBEkUYZ3D9yR5vkACTdMShwHSQRz6pHFMVQfotiEOE0YrKbtHGX0/Yv9gShwYhIC7L64xzwuMtoRBgOdJ5vM5QRigNKRJRBAGICRhlBBGbnm1BktrHKpVy/I+YcizBSvjMUKC1orAXx6yIIppioambgl8gXURwmmauiIIfNq2pX62laupG4SMSPoRnudjrKOqaiQOh2P74t1sX7wLEN2JUkfHS8Cjjz7aCTWfhV6vxz/4B/+g86fp6HgJuPr0Dp6UJP0IP10KNH4gWRyfMFhZpWlanJ8QRQkHT+2DlCgjCGNBXVYYa3BewGR9wPHxgqNpRd0qHtiekOUFda35igfPcW1vyjCtCEMfIS1xGFApxbifMJ2XHB7NWV1fYTRcekjcuLZPUZRUyuBJubwQ1bYcLxZIIRgPEjZXB0xWRkwmQ5J+Hyk9dF2glWE4XmF374ThuE9TNdR1xWxWEIQhhwdHbG+vMejFGG0ZjIZki4xL991FkS0opjOGq4IgDPE8SRSFJP0+Vd0SBCG+L5FAWbf4QU2ZZ+impfQt65MhcZKSJPGtPrQdHbc9YRieCTKnVTWnWGvxff9MpDmtpJFSEkURx8fH/NZv/RZFUSClPPOpOa2gadsWIQR7e3vEccxwOKQoCrIsQ0qJlJLj42PqukZrTRRFSCnZ2Njgxo0bt3CvfOFsbm6ysbHRnaPdgdwxQo3AMFwbU0+P0LrG6JpsMcXoFq0NRmusEwSBR9M6ksgjCPuM+wG6LYnChLppcAbC3oi21righ6VCE7A6SlGqwfMkO/tTkjgm7fWoGsXqMGQ4WsEKSeSWkZjzeU7TLsvXoigmSgcY5xCtwlho2wZPBFgDMkjwwwilNdYaHBJtBbVqlwKOUYBEO4EfhDhnsXYZb+n5PqbVCM+j1Y4oCQmClCiKOTnaJ4pj3vCmt5D2uranjo6Xit/93d+lKIpbPYzbkq/+6q/m7W9/e7cA6eh4CRBOsPfMTcbrK/hxxqJs6aUhg7VVZkd7aO2Yn0wJ4wClHVY1pEZjhUecxizmC2azjMFgxCCNeOyJE4T0GU1G3G8Mj3/qGtY6JitDnIOybTBOMU5j+lFI0bQkoY+zmkYbrFlWx6yO+syLGommKCuMtdRK07aaURywPkhI4wCcw4uiZau279MaR2w1i+kUo1qkEAgpMFYwGg0xqmE0GqKNRWtLv59ijGZze4PjozlPfOoaF7c2MEph2pb+eESY9vCCCD1bcDTNCHzBYj7D9yTzo2Mu3rPN9eu7XL58g/tfcw/WGITwPvfO7+i4w4nj+KwK5LS6Rkp5JtycXqDRWhMEAc65s9ae0yoZKZc+mkIIoijC8zyOjo4oioI8zzHGnCVCnYo3p6LOc6t5qqpCa02/32c4HLJYLG7lrvm8EULQ7/e5fv368wyVO+4M7hyhRgja1ixbnswy+Wg5YfiMBj7zLHtW4PCWLUpWM0hjbFsjhE/RGKTwCROforE4HDd2jjm3NkIKw3HdsDUZcWP3mH7aJ04CQh/6aUpRKeIwomoasqLELUA7iCIfISTOCzAyIkh6KL1ACrDWMc9z+qMhveEE6UdIP0LrFiEAa7BGURYlRV4ggxSHw5MeZV6glMYPQ9pWIcQy2tsJQ9PUeOHoLKHh3ge+hHMX7qarpunoeOl4y1vewi/90i9xfHx8q4dyWxGGId/5nd/ZxXJ3dLxEjM+tEoWO0JeMNlcorx9SZAUgiOMIa1qwLapsSPpjsuMjgt6Am7szBpFk88IWN/70o4zHI7wgAQRJHDBfVBwtatbWxuwezSmUZTUOSNOI/emcqm6J44iiUVjrmC5q/LhhMIi4fOOIJA4JfIlrHarVWGGoqpZBErI27DFIYjwLTd0SRRFlntFoSxhFxP0+wjT0Bz2k9AjCkPFqSNtqZtMFri1ZXU0Yr4yf9cNxKKXZ3zliczJmMO6T5Q2RD4d7xwgM45UxxhpwkCQpvmdxxjAeREghuLF3woVzGwgRMJ2eEMfRrT60HR23PafGt0EQnJkK+75/Jticmgyf3mDZ5qO1fl4ljnMOrTVN0+D7PsYYsiwDlm1TTdOciTJSSgDquj7zxTmN+zbG4JxjMpksOw/q+tbsmC+A8XhMGIZkWUYYhjRNc6uH1PEycscINVZbfN+j0po4Tpme7IEUOAdKKazVGCtIgmW/cprEhEGMdpYgismmOUlgmReapm4YDSOSUCHd0uw3W1Skccx4mBL4AucsyABjLFa3FKpGCI9+ElA2Gk96KKUpK0WcOqRokRL8MMBXNY1WODwaDU3bUjchkQjwZYjWJVVVgmtAGAQO4RR+kKBVhRMeTgjqWiF8gTACrS2B75B+iMOhdIvSirvue5Awiug0mo6Ol46Pf/zjTKfTWz2M24777ruPt73tbZ1I3NHxElEUio3t8wS+YF5bhsM+O1cWOK3RKys4YGtzE9W0tI3BNDUqj2mzGbUJmbaGpD9kOisoasXd2+scHS+4vntCVeT0BwPuumuNP370k6yMtsBYkiAgyyqCGOI4xAiPqlGcnGSEvYSyURRlRZYXFGXNyaJEOEcS+FirsVozXxS4PoRxiHCK6WyBc5IoScBairKlKVuMhd5ggOcJ2krRlCWTtTHC82hqzeHBlLvuu4A1jvWtNQQNbZWTzUqGF9fZ29tnPBqTFwXWQhIvT/aMWyZ8bl+6yONP3aBuDBrJbL5g+/w5dnZeuTG/HR0vF57nnYknpwLKaRuSEIKyLM/EmKqqzlKdTtukTtuegDOh5dM9Wk7jqqWUeJ6HtfYsIaptW+bzOdZarLU4587WG2ma0rbtbR13HQQBvV6PLMsYj8e84Q1voKoqHnvssVs9tI6XiTtGqBHesx9+q6mqgkZVz6q1hrptCf2QKEmQziB9Dyl8PD+ibSsky0nDCUmS+CRpRJHnpHFIltfkZU4Se+RFyfpkhCc9nFuqudOTY8qywg88lHF4vqQXhwyGA3wZgPAoqxLnIO31kSICX9NPLWEQL/vH8RDSxzqLFoKiqGnqCs+H+XyOdgKnHL51NHUNUuIAbTRSBM/65HggJUIGGGtYLI7p9ftM1reA7iSpo+Ol5A//8A9v68XAreJtb3sba2trt3oYHR2vWqLeECMkni+p9o45f9ca0m2RDEfcuLZDkTdsra/S1Jqj/RNG/QQvidg4v4VpG7JFRRB4BIHP4mTG+tqQZ24ekDrHg/dsszet8KXkyx48z/994gZf+sBdnGQlnu8zWRmxqI84nBdESUI66PPM0zepypJFUVO1LVle4knx7NVyg3COEsGiaLjgeTz84F1MD6ccnxRcvPs8aRKzWGRgNa1xVLOCKEkZjcfMTqaMVlbwopDdm4cMBwmOZTrmYHUN5BH53BBEPufOj0jSiI3NDUAgpKRpKopFzvpWgHaS4foE5QXsHs5YnYx5/JNXeODebaqqh1KdoWdHx+fitJ3ptJLl1LPmVIw5vZ3+HAQBcRzjeR6e59E0DVVVnRkJe5539vepIHMqypz+PiklbdvSNM3zTIufW5lzKggNBgOyLLst12ee57GyskLTNGfePp7nEcedP9adxB0j1JhGUYuGui6X4kxRI599LI4TVNsinCUMfJpGk/ZDZos5gWcpa0jiZSvTzZ09+v2UNA0pi5qmVWxMhhi7FGFuHExpmpo0CeknEYNhn8namJPjKYnvMZ8VZNZwPFuwujomSfoMB2vsHU65efMmvV5Kmix7NquyxDqLlB7KOspFQeBLFtkcrVpwCt22WOFjncMZcDiMbpfR3KohCQOU1kh/aSQshIcAZsdHXHjjVzAcrTy7FzqxpqPjpSLP81s9hNuOIAh429ve9jxzwY6OjhcXp3K0k/QGGzjr8IKIwaBlnldI6ZEOQurWovC4ceOI0UPnuXH1YOkPIyTOgsQinGVldYTxJVnZcG59TCM8DqcLzm+MuO++SyyUpRIeGyt9JA6kpGg1tVJUqmF39xCLxPmCqqyxaHxPUCuN0RYpBEkU4gGjQcql9TFYTdMafE/i+z7XrlzngYdfQzaf09QtaRrjhSnGCeI45sb1XayD8XhAUTaMRj20NdRlhTMOPwwRMqDX69NULaOVFWbTKWEQsL9zlc3NVZoWtLQcHs6YzUuS3rLly4sjhPQ4meUo3C0+sh0dtz+nJsG9Xo84jmnblqIoUEoRBAGDweCszekUpRRKqbO2Kd/3zypihFh+zk8FoNO/T/1vTv1p0jQ9Mxy21hKGIZ7nnQk4p9U1vu/j+z6z2ey2S1Pa2NggSRKqqjrz+HHO8dBDD93qoXW8jNwxQg3O0ZY5vheiVYv0lulKCEGrLWEQgTDLpKckJYoiwrrFGEvTtjhTU1WOMFqqwVlW4nmWVtU8/sw+Nw8ytBMMeilVlYNzxKHHynjI6miAah2rvZje0NG0CuMUOzt79Ad9ev0xo9EIz5OUVUXTaqQfIj2JbjVtW9EajRQ+VZ2zc3hAWRREvmPQH6KNIwgDmqpcTmbOYozGmBbVNoTRACE8Aj/G8wPqukYIy/bFS4SdMtvR8ZJzWrrb8ecMBgNe97rXdW1PHR0vIX5vhSBwWONIkwjhh8i0R3mwg1UVjXbUVcm1K7uEnkUZS53NcbrHaH2d+c5N+itDDAJlWq48c8CwF7M2GfHhxy8zHvY5mOYs8po3PHwPv/X/+xBf8YYHqZ2kl/hEYQBYfCcpW4U2lqJRSBx101A2LaEfIRykvo90oK0l8jzKRvGpp3ewQrC1scLBwRHrowFNUVFkFeNRitKW2WyOJ3tYITmcFdx96TxGtWSLOfOFpDccEAYhnu8ziCcUVQXCIxkMyBZzhPRRxtLrxSgRMFlb4WOPP40voCgyhJMESUpeFqi2AumRV+WtPrQdHbc9SqnnGQEbY86qXk5FGt/3EUKQpilKqbPobKXUWeXMqcHwqZluXddn7VOnnjWfXqkjpSSO47Pfaa0liiLiOKau6zMDYs/zzoyLT3/PrabX6/HII48wHo+5fPkyN27cIM9zTk5Obpsxdrw83DFCjXOWIPaYHpfPOpArfF9gNPieTxpHWF2D9PG9YGnM6zmausX3HNILOZnlhKFPGAhM3fLMlZuUjaFoLSuTVXpJROCBR0rTtGAafF9TLI5xVjM1JUkaksYBvt+nrHyqqkHpGUFtSfs9/CCgaTSeJ9BaYaxmvpjj+SkCx9HRTXZ2dpASzm+uYaxBegHG6Gff57PvF4tELEWpQBMIDyMkFkdeZEgcSdJHCkFXTdPR8dLSCTWfydbWFtvb27d6GB0dr2qm+4ccNTX3PHCewfoK+aJhdjLFEx6bFy/wx3/8YTwP8By+J1js7TNZGeKNJkznDcN+xM29Iy5c2mZ3/4j1UY8sSZjmDcPQYU2LsRbdtoSeQAaCnYMjprMZ0vZY7cecZJasapYtCt4yijuvW5qmJQqXV8Rj3yP2JCdlTRT4TPOSQS8gDkKqVrNzMOfNf+UcThuy2YxAetRFiXIQCFjMYe/mAffddZ6V1SGffOIyWbE84cuzCktAmsbM9vcIk5h5o1nZWEfXFUEYoRqFkz6HR1NOZjPmszk4S1m3rIyHHJ9MmU5nNJfWqYqMw+PZLT2uHR2vBHq93pl3jBCCXq9HFEVnQsppRcxpxUwcx0RR9Kx3qGU0GtE0zVk1yXMv7EgpUUrRNM3zDIOf21Lled7zzIWVUgyHwzPfl9Ptoiji0qVL7OzsUFXVrdpdAERRRJIkXLt2jTzPKYoC3/dJ05Qsy/jQhz50S8fX8fJyxwg1OIOpa5ytCQKfIIjQqmC2yNnaXEd6PkKk+NLRKkPbtugqR+BhTUv1rIGwEHAynWGFT6l9xqtjNnyJswZdz3EYkI4IjcVRZoqqqlFa4/kCKQxJHNMbjOn1RmjjUMag6wLlHFGU4IeStm7xgoSyqiirGb5fMD0+QoiWfixJoojhYIwyjjAI0QYEAo9lfLd1DuEpPD/Ak8v+a8fSO8daRdrrsTLZZCnSODqxpqPjpaOrGvlMLl68yGAwuNXD6Oh4VaPainS0Qr4oGA5jZkc5RjeEXoC2MO6lFJVm7zDj7o0h57fXSFZW+cRj10hij0pbpicLPN+nbS1at+RlSxJ4bG+tcTQtODqecf89F8i1j/QCWtXSiyM2NlaZV4ppcUzgK0Lfx6qWummpWsUgCYiigFB6bPZTFlnNSi8llLCx0ifyPK7unxDFEQ+/5hKBJ5dt4FWDFwjSJGG2d4CvHTf3TugHkvFkhcODI4Rz1FXF6tqYw70D4qzgwsVNRqt9jo4WSOmzc/UqaS+mzGqiNOWkUES+4LEnrrG6OqJRDYuyomhq8qImzwuu3dxh0B+iuuSVjo7PSRiGJEly5lNzmugkhMBai9aaXq93FuF96jsDnJkBw1K8gGUrVa/Xo67rs+ecVtWcCjmnLVK+71NV1ZmvS7/fPxN9Tl/r9PlRFNHv93nd617H3t4e169fP0uhejlJ05Q0Tc+qfa5du4bWmpWVFYIgoG1brl69+rKPq+PWcccINRKLcwacXiYetS1ZVhDHMcIahB/geQFh4GjbBoHFCYv0I3phgifnSM+xfzxjtiiRQUiSxmTzI1ZGQ0xTEXkWYxWNgrzIGfYThoOUJA5Y5AVlVVO1ltYqtCtplaA/HFAqmM9yIicRMgQBxhr8MMI5ltHaxmFUhbANvSQgSSOiOEIaALEsDxQG5/lYoxEYrDJYUyL8kPhZ5Xpv5wYSw9o9DzBZ27zVh6Wj446gE2o+k0uXLuH7d8xXUEfHLaEua5ReML7/EskoJaoVtvWxzqOYzzh3fp2nr+4TCIfRhnlW8cSVJ3B1xaC3xlOXdwikJAl9BsOUZ24ckEY+XuBx5WDGM9f3GfV73I/hTx/9BHf9/9n78zBJrvLOF//EHhm5Vtba1buEJJaWBEhIIEASCKTBCBkDw9i+bDOMh1WMkBkbzPVFYq4l6DuAfQ2yH9/BgOHHYpvFAjMYsUigQQgkg0E7ILV6ra49t9gjzu+P7BPK7L0ldXd19/k8Tz3dGRkZcTKy8q0T3/N933dylDiKiBPYvrtDHEcYuk6YpBi6hkDQCSMcXScTGlkqqFRddN2kWqvgGBqQo+sav9q5QLNWZt1Uk6WFDiLN8f0I2yth2imN+ji269DrdDEA9H7x0bmZWXYtddBth+075xhpVFk/UkU3DdJU8JtfPcpZTz2dHdu3M71mFZqu44cxzeYIrdYS3ShFW26z1GnTbvdAy3Edl5FqlYVlH92wmF1QXfwUisNBii9JkuB5HlnWXwyXbpc0TQvxRNO0It3J87yi6K8UdaDvjBmsMWPbNlmWFUWIZb0b+XyapgRBgGVZRbpUnueUy+UijcgwDLrdLvV6nbGxMfI8Z/fu3ccszUimgtm2DUCWZUVtGoBKpYLjOOzcuXNFFj5WHD1OmVlyjkYYxvSCkDjoEUQRQuSMj09i6xphHFOy9b5IkqW4jomfaaRxgOVoaLpBt9Mh8PvF62ZmFxBxSLNu42opmZXT7frML7f6gcU08ZcCyiVBkqZkmY5hlxitGERxQpxEmJZFu9vF9aqMjI2xtNwhSbt4XokkTYhDH00z0I2+vc927MKeaxg6vU4bwymjaTq5yNA0HU03SNN+YHG8EnEc71GFDQwNAr+FJjLGxqdx3X7RYnUTqVAcXVTB3H2ZmppSsUehOMrUyxZhL6BUquIHCX4noTE2im6A6Vh02x3qtQrViRqd5WWWllv43YBKpcyP79vOSKVMveaxe7lHpzdL1StRLbksL7Xp9XqM1TyCJKXjx3SCiEq5xM7ZJUxdJ0oTxupVvHaXJIiI84w8zckzgWGb9IKEZsmjG0Qs9wI2To+TxgljZYeHts0RZTlTzTq+H9JoWJimiWslmDrkQkPoBkvdhDTJsV0L23bpdjqkWUan61OrVrB02DEzz8RoGb9Txe9FlEo2pZJLtVbDtE12z3fQNJ3FpSW63Q5l16QbJYhcxzBMRkcqaGg0GxWWWl1EmmLkqpiwQnEoTNMkDMMi1anX6wH9ZgKmaeI4Dmma4vs+nucVYoxMYfI8D9M0i6LESZIQhmFxfNn1SdankYs/aZoSxzGlUgnf90mSpBByNE0rOikNdptK05TFxcUh0WR5eZl2u12M62hgWRbNZhPbtotOVdJBJIWa3bt302g0iu5ZilOHU0aoESIjS/uihd/r9N01mkDkKYZdgihG5Dm9Xocw6JJEsNzyKVfLdHsdwjCi12sxM7ODXGiMNio4ZRvH0omTlFbbRwjB2EgTIVKiWJCkCYZhYdguy92YIEyIWgFjdQvyhDDooeeQY2K5FuVyjV4Y0wtjQCPLM+I02pOrKQiTnCzX8EwPoZnEaYqhp9iOg673xaQ4TfudnQyDOMrRTQPDsDFMmyDskUQ93HIJu+Si7amQrlAoji7KObIvIyMjh95JoVA8IZrT0+hoeGWbLb/ajuuVKLkmKTaanmK7FRa7czQbdSyvzPJSj06Uohkp23bNk454dLOMMEgZr3nY1SqOpbOu4bFrqUO1WmHEMnlkxyzddo9lE4Ig4PTVEzy4fTfzQtCoeHTjfk2aLMsxDJ2WH2JqBp0gQkOjZFv0ugEjFYdHdi/ipznrxuo4lkkvyQlSjVKc4pU97JLHwsIysd8jiyKiNMM2M9LMQUs1/CgmTjMc1yETGaubI3SCnHWOw9zsIo1KiZ3bdqJbDj+6637iMGB8bJxOp0O73UXTdOI4oVZ2cRyTeqVMFGe4rscqx8M1wZsuwb89dLw/XoViRSPdMlmW7ZMGJZ8PgqBIc9J1HV3XizSpVqtVCCqDBYFlepM8jud5/ZIVe6U12bZdCECaphVumjzPsSyrEHnyPC+KEss24rJb1eTkJAsLCywuLj6pgo1hGFQqFUZHRzEMo0jDkl2rLMsqRC7Z+Uq2HlecOpwydw85EEUBQqRoCHRNUHJsyDPiyMe1DEK/Q5b3my5GaUaa56RZhh90eWTLdkYaLrpIGK2VcKwcXQM/jHGcEtPT0wRBiE5OlKRUq4Jux0eQEUYJhmFiOh6a6dCJM+peiShuo2W9ftlfq0IU5wRBv2WmafZdNJoGaZYTRAl+EFGyHXI0/DDCsRwMYWC7ZUTWb2Wnib4lLs/Bq1Txu12EZmDaDn7PR+RpX9TR+rVpVHUaheLoI+2sisdwVcc5heKoY7geBgZoOrrlMDo1iW1A3IspNxrM/+pRdA0STDphwo6FNlVXx/RsGp7DxEiV+cUe1VqZUsVjcXGJ2VzHcQzafkCt7GEaOpmANBcsdUNG6hW2zCyQpBl21WSh1SPLcjQgzlKSVJCkOU7JwjUtciEouQ4j1RJLrS5JpuHaFlNjTTpBALrJ3MISI3WXnbsXWf+UKrGmk0QhZccgA/JUkKcJ3W6/w1USJbS7AbatYRtg6joijcniiPluQLM5Qq/TZvvO3aybHqfj91hutZlfauPaFiLLmBhvousWcRizflUVxythaIJ2N8DU1cxJoTgUnU6nWKiSaU1RFBUpRVIokWKKFCMG69VIMUa6cpIkwbbtQrwBivbbSZKQZRmGYRSuFNllStanaTabOI5TZBwMdo2Sx5KpVfLx6tWrGRsbY3Z2luXl5Sck2BiGQbVaZXR0FNu2h4oey7bkMoVL1t6R10umgilOHU4ZoUbXDRzbRJRceqaFkefYBmgi71vqTJMkCQj2fJGTLCHPQhYWA9qteVqtBRyrzkSzCpqObfYteM16AzQNNJtS2ULkGYYj6LQ7GI5HnESEccJCu43QbGqNJrqm0YtiJkcnCbs9hNDwA580N/rCTBKR7ZnIpFFCFAf0egGaZuC4HmBgWhaGXcIpe2S5QNdNNL0/UclzQcn1COMIyzTQtX5eeJokoOWIXPR/lHtOoTgmlMvl4z0EhUJxCrK4c4ZSpYbXGKXRqOF3fWItx3Q9wiBGQ+CYgiRK0ciJk5SJ1eOEQY/RstNfkXYTNDLaXZ9ulJHGEWkMPT8izzJmFztkIkeQ0w1C4jQlz/J+OlE7YPdiC7FH1+iFCYi+y9Ay+65exzBwDI04z9ENg0a1XwNwfKTC/HKbnIS6V2L73DIVS2fXznmyLEc3bRrNEcL5Fs1GiaVOwO6FBRqeiW1rdLo9dHJGqyVM06DT6aAbAvKcWr1CsLBAyTYhhzwJaFRKJGHCaLNGnMFotUGjUaXV8ZmebNLudPEcm1KpQr8Jg0KhOBiO4xRuECEEvV6POI5xHKdI9QnDkF6vV4g0UqiQAo1s0z3YPUoi3TkbN25kfHycBx54gG63WzhogOJYrusWIpBhGBiGUXSdktvlawbbfkthxHEcpqenqdfrxHFMt9slz3N8v59RcSDxRrYfN02TsbExyuVycU45tsE24fBYHR7psJFil3yd4tThlBFqNE0jifu22zzXMQ2TLIuJRUKv16FcLhFGIWEUkWcpXd8nikLm5ubRyZhs1pkYrxN0eliOx2ijSi9M+vmXUYjIM0y7RKvbxbFtTNfFEGC6ZVIjIMZk93wbsbREteKhWzZhamJ7ZbrdED2PSUW/fo3jOCRRD6HlCCBJQtIkoVxtYrkVDC0ny3IEGkmaYAoN3S6hmS5almPbGmGvR5JEZFmOpesYmiBOZAEu8LtdsjTtf/lV+pNCcVRR3Y325Xi3wFQoTgUa4+N0llr47WVM22B5YYF1G9fTDRJcrwwajDVq2I6NPTHB8pJPN87xHJvc1Hh0ZgHLsCiXSuyYmUMXgnWrxjBMWOpEZBpEWU6700UTOdVKmU6nRyoE9VqZnXNLuLZJmuf0woQ837MqjIZlWKQCPNtEM3RabZ9VozU6vYBGuUQQJ1i2zeJymyiDdhBx+mSd2aWdrJ6ewtJAdwy0PAVDY+vOGcIwZ3piNa5jYxomjmWCgNAPsCaqLC9HTDardP0Avx0yUilTsjQizUHXBM84cwOWa6PpBhXPxXNdSraBZWiM1D3mdi+QAY6rXJKKlceNN97IV77yFR544AFKpRIXXXQRH/7whznrrLOKfYQQXH/99fzN3/wNS0tLXHjhhXziE5/gGc94RrFPFEW85z3v4Qtf+AJBEHDZZZdx0003sWbNmiMaT5IkhetFFgSWLbHTNC1q1Ug3ifwXHktfiuO4EEQkuq4XTuU872cjnH/++YyMjHDrrbcWwpCsDxhFUb/GlesWKVG2bRf1amTrcJl+laZpkYYlzyHHn2UZpVKJarVauH4MwyCOY+I4LoQpmWpVqVTwPI8kSYrjS0HIsiwMwygEJ+kKMk2zuA6yfbl8jSomfGpxyshyqdDJdEiSFF3LSbMUTdOxHbdf/8UP6AY+3V6Pnt+j3V6m1W6RJQHjzQoVz0ITOc2xEUYaVeJUw3bLhHFCHPdV1CgM+pbiJMS2LUD03S5Cwy2VmZwYQ9MF8/OzkEXkuUC3ShimSRLHJGlKkmZEUYzQDNI4Ic4y0A1yIdBNmyjJEJqJYZfQLBddt0CzSPYUzsqFIE/SfucnrV+3Roi+m8YwdNB1NM1gubVAFKkbJYXiWNBsNo/3EFYcCwsLx3sICsXJj25gmTq+H5Hh0O2EZMJgcb4Npg1CY3RiCtN2CIOEVavGAHCqLn6UEEYxGrB1x24McoSuMbvUI4r7q9/LvYClVhsdgWno+EGIbZugQacboIkcyzb7c5M8R9PA0PuNG9Ksn4reDUKiOMHSdRojDdphSslz2TXfxhQ5oxWPdqfX97AIDT9KEbpBJlJ6oU+S58zPLlHzyow1PCxSKrZNs1Zm9fQE9WqZ6elRNM0AMryKRxLGZFnKmsk61UqV1VOjjDZqVDwL19BZM15jdKTC2HgDU9fotlu4uqDbamGSYWnKUaNYedx222284x3v4Mc//jG33HILaZpy+eWXF0V8ATZv3sxHP/pRPv7xj/PTn/6UqakpXvrSl9LpdIp9rrnmGr761a/yxS9+kdtvv51ut8uVV15ZuFyOBClAlEolXNctXDZSoNA0rRBsoJ8Wbdt20VK7Xq8zMjJCs9mk2WxSqVQQQtDpdOj1eqRpyq5du7jjjjvo9XpUKpWiE5QUNWT7bdd1SZKEVqtVCDay9k2SJMXPYNFeKdJId025XC5SkqSYo+s6nudRr9epVquMj49Tr9eHChhL4ahcLlOr1YZS4qVwtXf9GZn+pGlaMTZVo+bU4pRx1Fi2i2G5BGGIZlqI0AdTK4oKh6G/50sQEscR7U4b23JYt2YVtgElr0SWpiRhhF12sF2bpVaHRq3MbBRjmQZ5khLFKZWSzcLSMo7jEvQCBALXMsmynEqljMhSosinVPJIUh3NMImzkAwwdJMkiTFMnRyDNM2JoowkN8g1Hc2w0UwbdI0sy4niCMvSSOMYDAtd14jjiJx+zrZAIxc5QujYVglDt9F1izzLlSqrUBwjxsbGij/Uij6PPPLIkKVXoVA8+bTnF5hcM8n99+9gjWXR7fjkQqM1N4tuGNRqJeaXu1iWSbVSwiqNYGga835Cy09JooSxpo3Z7eA5FjuXfNJUkOQJOoI0TgiiCM2xsR2HTjeg7DiUHYeWH2AYOlma0wtj0iwHNGzDwNR1TE1H18DAoFmtomsav9k+y1itQhjGxALGqx6thRZBHFMtuXSSHEM3iAKfnu8RdLtYuqDrx1RKJSxbx3UdJsfrWE6JWqNCtVYh6vmILMMrlej0QkZqZUxdUG/UScIEp+yya9c8lUoZTQiq1Qo7duwkjwPCXpe166aY3bWbetUFcnJddfJTrDy+9a1vDT3+1Kc+xcTEBHfffTcXX3wxQgj+/M//nPe///286lWvAuAzn/kMk5OTfP7zn+ctb3kLrVaLT37yk3z2s5/lJS95CQCf+9znWLt2Ld/5zne44oorDns8MpVHttgeFHpkMV94zD0j50nSEWNZVpGeJB0q0g0jhCjSiAB++ctfUiqVSNOUKIrIsqwQgAbFFqAQieT/ZdtuIQRhGJJlWeH4ka3EpaAkRRPprpHHlI6XdE+2gmEYhYMnSZLCSRSGYeH0kfVnZDcr2YVqMO1Lvm8pHql7t1OLU2aGbBgmeaZhGDqasIgNnTiOSKIO7dYC5H3XSdDzidOAOIxYMz1NraSxvLSE6Ti4TomSp+M4JeIkw3UdMiGwHBfTdogz0I0UPwzJc8jSHNvQyESGH3YxMcAukVcyeu0FIq+KZjqgaSRpRpLl2I5JnGZoWYImMnKtnwndF1s04ixFjwWZaWBmAtvSSFMfLc8gS/vlgUWOhoZpW6RZWgSpcrnCwqIFWk7od+l2WjRGRosAqFAojg5TU1MYhnFUWzyeaNx77720223lNlIojiKTa1ej5Rl1z8JzLeojZcJeG5FnbNmyg3OfeQbt3jbm55dwtBgzrBDmGrO7Fig5NpZhommCZs1jqdWhYvVvuHR0UnLSNKdsWcRpRs8P+x2TsryflqRphGlOksWkaYYQ/W05AnTQDI1MCOpVD9OyiX2fOM9pjDfoBQGVsstIs8Zcq4tmGJDnzC8ukWkaDd+nvbBMs1kjEzGWZdMOYqZHG+iawcTUBPMLbSr1OqYmsKtllls9plZP01puMzY+AmiUXJdy2aPTDYjiDCE0qhUPkSWMNxskYUKj2aDSqDKza47RVasIg5Bdc63j/dEqFIek1er/nsq/s4888ggzMzNcfvnlxT6O43DJJZfwox/9iLe85S3cfffdJEkytM/09DSbNm3iRz/60X6FmiiKiKKoeNxut4F+fRa5XdO0QriQwo0UPIChorqu6xYdj6So0e+A2+/WVCqVin2lWNLtdofabg+mI0mBQ6ZZSSFnsHivFIBkupMUSIAiZWuwCLIUZKTgI4UcmaYliyf3er2hVCf53oHiXIMCkBR1BuvmyBo3uq4PtSdXnPycMqlPmqFjWA5xGu2p1ZLS687S7SwQJylREtHzu4RRQKvVodmoUis7BEGE7XhUPRfXcSHL6PkxWa6xuNyj40cstVosLC2ztLRMHsfEUdxvqxaF2CWLcE9+pa6BYWgYpotbqpOkEMU5caIRxTlpppHlAk3XyYVGhk6WgaYb6IbJ8vIyQTfA9yPiOCFJM+IkQ0MD3UDkGXmakGY5lu2QxCkih34jqBzbKSHoVwyPwjazu7YpZVahOAasXr1adX7ai1//+tf87//9v5XLSKE4iszv3o3QLLxamdAPiWJIM42x6Slai0vs3r3EYitgqd1jdGKcONfQDI2psRqnr5nCsnXaQUSMhuE4/e5Rhkan69OLEqI0Z2ykgm1bBHFCnKVEaUKUJoRxgqZDHCd7FoT6NybZnlp5Ao0oSkjRWPYDuklKlubMLnYIopR62cXv9phf7lItl0nRiLOMNOkXNo6iCMu2KJlgkFF1DUbqVZpjDYQAyzIRmaBUrVOq1aiUXbI047TTpiDL8TwbP4hJ0oz2UpvTN0xTKZkkUYhbKuG6Ns3JMcbGm2giw7VNshzSJMMrqXiuWNkIIbj22mt5wQtewKZNmwCYmZkBYHJycmjfycnJ4rmZmRls22ZkZOSA++zNjTfeSL1eL37Wrl0L9GvRZVk25FIJw5A4jos6dbKTkVw0li2oBzs/SUeM67rFfUsURYXzRtZ+GSzOK90rUvSQQghQLGBDP71IdqKS53Ndt3ADybbfaZoWQspgKpXsYBnHMb1eD9/3i31lwWF5fLlPEAQEQYDv+8XxBwsHy+sh056kw0amjSlOHU4ZoUY3TEq1UYQw6AUBrU6XXpiRCp0giuj5QT/tKYkwTY91a1bR63UwTJeJ0QauadDr+uQiZ6nVYvfsLIahEwYRrm0S+l2ESDENHZHlxFGEV3bIc21PRyaLJIkRadZv1V2qITSLKIppd3sEcUqWC/JckKaCNM1JUkGa66S5iaaZ5CKjVK1hl2rEqSCKcrIckkwQp6CZHrrp4roeaZphuw66oWMYFqZpY1smjuOQJjFxHLLl1/exOL8bIfLCkidEv2W3/L9CoXjiTE9P02g0jvcwVhS+73PDDTfwwAMPFG05VdxRKJ5clucWiYIOQmgszy5imQat5Q5RBtPTE7QXl0jSlBwNoTtEvS55JjAdB90yIResGm/2F4UsC2FZRGlGlqckaUySJCx0gv5KbxQThBFRnBBECWgQpzlxmgEa8FhaQ5ZmtHsB3ThmdrlFu9uj7QckecZyzydLM6Jcp5VopELDDwLiJGGkXMLSIYozSpaBqQlKrk2l4jG9qolTKvWdPGHMwtwSaRjRa7VZnF3Acixa7Ra1RoMojPH9CNMAXSSUXAOh5QS9gEq5jGHa1EbHyERfXFqcb4Fu4nd9BALdUKlPipXNO9/5Tn7xi1/whS98YZ/n9nbRH46z/mD7vO9976PVahU/27ZtAxhy00gHjSzKK2vBwGNumTiOiaKoaL2taVohYsh0JemIkWORxX2lgCFdLdLBI+u/6LpeFOkdLOpbKpWoVCpDRX593y/q38jivtVqtRBnpIASRVFR7HgwhUnOaeS4pfNGdrYa/BykGygMw6FrIq+ZnBtlWTZUa0hxanDKyHKapuNWG2iWi6brGKZJnGSgmYg8J80zgj2dktasPZM0N0hiweqJCiLP0XUN3RC02l1EJgiDEF23qVYraJaJltsYjo1jOdiOQ5KmGIZOEGeYprWnDk6IRgq6i2VZ9HpdhMiIo5g0SdF0kyRNyESGyMUeGU1HCIMsj/HKFX739f+V5vgUD913F//64++wvLgb07Sp1xqg6aAZpElKLlLSTOA4HqZdQjcMsjRifGKM2d27SeKAHdse4H9/72aeef4LGZtajaEboOn91t+GWeRrqrQoheKJMT4+zlOe8hR27tx5vIfyhNA0jfHxcbrd7lAHhsfLnXfeyStf+Upe/OIXs2bNGiYnJzn99NN5xjOeUdT1UfFHoXj8VEbqIKC9uMzUxnUQ+fhBzMK8T9WzCJKMsuty/0NbsAyd6ak6W7bNsrTUJs1hw8QIpZJDvVEnCHzmF3oEQUiKII4TNCCIYhqVMpZp7knVFgRBv95CnORkQqBr/XkYgK7pCCDLc8JUIHo+JgLH0MlzQZRkdOKUUrtDEER4rk0vStBNk2atjMhzlv2QOIflVo9KuYRpOVRrHkJkJHHMjm2zWK5LngmiMKW73KJamabq2fjdNnEYILIMEYe0Ohm6obFz2y7OOGMDgv68RwCLu2cZmZwgyaHd81lq97ANCz9R6QeKlcvVV1/NzTffzA9+8IOhTk1TU1NA3zWzatWqYvvs7GzhspmamiKOY5aWloZcNbOzs1x00UX7PZ/jODiOs892KTDYtj3kjgGKNB7pHpFOGtl1SaYWyX+BQrSRwod06Mjj27Y95K4ZTFkaTFGSqU6yzoxt20W60mB3qjjuZ0iUy2XgsZQnebxBQQYoRBV5/yR/5DlljR2Z7iW7XMl9Bt00g06awe5TajHr1OKUEWoAvHIVr9ygs7wLx7HRNNBEjsgStD0dmkzdxDQNsjTntA3TiDTFsBxMy8EIUtI8IwxiSiWXStXD9zMMDWJhULZKhHGIrmsYloVmGBiawIxjDM0gFRBEKbkQpHFEFIUIcpK039kpTTIsW0eIjChOsF0bDANtT9ASQtAcn+RZ57+Ap599Pms3nMU3vvw/8TtLJGkCe7ouSIeMZbtgGuQiI0t6BJlPueRSsm3iJKXVWuBX9/+Yud2PUGtMYtkVGiMTVOsNRsenmJhajbcnOMG+CrxCoTg8yuUyl112GT/84Q9P6D+ya9eu5R//8R/Ztm0bf/qnf8p99933hI4nhOChhx7ioYceKizPruuyYcMG/tN/+k+84Q1vYHR0VMUeheJxohsGlluiu9xibsd2Np55Or0duxkdrRAGMXGcY7sWoyMVfvXoDgwdoihh/USdnzy0E80wOW/jNLsWuyy0fKplFxD4UYyfpGiAa1t0oxh0HZFl5EKA0IiSjDzr35QJ+sKHBgjRF3N0BGkGIs8JYoPctvFMgzAMKTkmQZQQRhEdPyRHY7zqoGngGjoV2+CXv9rKM56ynmazhjBN0kzgmhrlSpVWq81kxSPOEpbnlxhpeLSXO4yO1NFEvx5gSsbiUhu3VGLXriVGR5t4nk17eQnDbLA4NwemwYMPPgJodDpdkiQmShJaPdU1U7HyEEJw9dVX89WvfpVbb72VjRs3Dj2/ceNGpqamuOWWW3jWs54F9FN2brvtNj784Q8DcN5552FZFrfccguvfe1rAdi1axf33HMPmzdvPqLxyKK6QCFqDNaAkS4WKeJI94oUQQoH3p46NNJlI+vNSPFjMMVJikFJkvTTIy2rcNSUy+UiFSnLsuJfOS+TKVpSpMmyjLVr11IulwuRZrCY8ODYBheW5BjlZyJFJPm+5PWQxY7l6wfdNvJ9SEeO7PakUp9OLU6ZT1vTNFyvSn10FTPb7yeKEgzDxDB1BIIwjNEME9O0sUydRqWEY5fITEEY9mj7Hbq9gJLrYjsOtu0QxDmJ0MhzQcl10URKkiaEYYRpl3FKDgKIYo1SxcOruAgjYnG5je93CIMAp+SRpBkCnRxIsxzTdBGkiExD5JALjVyAadlYlt13B7keF170UsqVGl/5/E20W3OYukaURNiGjqHnaFqKjoaWdMm1GN3QiTKf5ohDEPYDYp5lxLO7mJmdI4qh5FXwSi6NkSnWbngK06vXcfqZT8W2HSimWQqF4kjQdZ0rr7ySj33sYywvLx/v4TxunvWsZ3HOOedw/vnns27dOt70pjdx7733PinHHrT23nvvvbz3ve/le9/7Hh/96Ec544wzlFijUDwO/F6Is67ExJpJLFNn528exfLKlCsllmYXMAyLqBvyzGecye6Z/40hNDxdwzJ1Jusev/z1o0zUPUxdYIgcAx3HsbEMjTQTLLS7ZHmMrifFOXMBeb6nHfeebQKBJkA3dDToN3YArD3/CgFBELI7y3EdCz9KWejMU7JMumGMZxr4vs+YV6VswcxSTJZnQEa326NUyshNA73qMLdrhjiO8f2AkqXhGjmWYSKyFMsQoJu02x3ml9rMLnQ5bcMaqq7BxtPXYDk2uWGx3Pbx/S6tVpeZ+QWqZY9OHGO7Dlsf2YFlqtQnxcrjHe94B5///Of5p3/6J6rValFTpl6vUyqV0DSNa665hhtuuIEzzjiDM844gxtuuAHP8/j93//9Yt83v/nN/OEf/iGjo6M0m03e8573cPbZZxddoA4XKTRIJ4gUZqQIM/h/6cqRaVAyvUjXdXzfH0pnkmKJTJOSzhWZOiRdMYPzBunYkcJJr9crhJMkSYqUKSm8SLcN9B1D1Wq1aKEthMD3fRYWFor3OZi+Lcc62GlKFhGWYpV03cgCw1IskgWUZccneR1kByxVTPjU4qjVqLnxxht5znOeQ7VaZWJigle+8pU8+OCDQ/sIIbjuuuuYnp6mVCpx6aWX7jPpj6KIq6++mrGxMcrlMldddRXbt29/XGPSdQOvUsUxLTTNoq9T6aRZv6tSuVxhYnI1Y+NjjK9ahVmqYzgl0F0M08QuuTTHJhGYBDFgOJRKNoZu9a1smcB0POxSlZJXIs8Fmm7iVutkmkmS9XO0o9CntbxElmfEe7o9gUYudJJUkO8pBhxnGWmak4sMQUZtZJzRscesiqZls+nc5/LCy15Nnhv4vQBD08iSCI0cshgtCzEMgW2bmJaJYVkYuqBkC0ZqHo3GGNX6BPWRSUZGJ4jilO07d3LfA7/khz/8Lv/w9/8/7vrpneR5v2ODQrHSWYmxB2DDhg1DVuMTDU3T2LRpU7Gi9exnP5sbb7yRWq12VM6XJAnf/OY3+YM/+AN27dp1QjuRFKcOKy3+BL0ecdAljSOckovnGnQXlinVmngVF9c1CP0u4xOjnLPpLDwHao0ylXKJM6ebrJ1o8OCWncRRgufaeK6NKaBareC6zp4brYwoToufZM9KM+ypTKOBofW7bpq6jmXo6LKTiWHgWBaaJsjynE7PZ26pzXy7y66FJWbbHTpRRKpBomksBSFzvYhOkpJZFovdAMsyccolNARJ4BOHCRlQdm3yNKVSdtFJsCzo9QJCv00YhAS9HtMTI7imYGrdanItZWFhnnt++RA7tm5n58555heXCXoBD2/bxc5du+ksL2KYgvkl1fVJsfL4q7/6K1qtFpdeeimrVq0qfr70pS8V+/zRH/0R11xzDW9/+9s5//zz2bFjB9/+9repVqvFPh/72Md45StfyWtf+1qe//zn43keX//61wt3zOEixYjBuitSfJDHkkKErPkiRQ5ZhFimQQkh6Ha7dDodwjAkCAKiKKLX6xGGIZ1Op+j8lGVZkd4khY8sy4jjuHDDDNa4GUxRsiwLwzAKt87y8nLh2JFFhKvVKuPj49Tr9cIFM1j8V86T5LylVCoBj3WPGhR0ZOrToDAlRRrbtovjDF4vxanDURNqbrvtNt7xjnfw4x//mFtuuYU0Tbn88suHCiFt3ryZj370o3z84x/npz/9KVNTU7z0pS+l0+kU+1xzzTV89atf5Ytf/CK333473W6XK6+8svjSHym246GbffssgKaZZEIjywT1+ijV+iiu1wS9TC4giHJMt0KS5ghNo92L6EaQazpZEhH2WkRhiG5kmEZOu93Fsl2SzMByy7S7Pq7rQA5pnpGKHLfkkgkNgUEQhGRZTpZr5JlAA6I06xf0zTWSLEOgYZgOa9adQb3R3DPu/hswTYtnnPscRidWUfIqGKZNqVLHsCu4Xp1SZQTLrZFrNkLv2/+iOEEzbAQmQjOwbZdyuc7k5GrOOOMZTK8+nTjNefTRR7ntBz/gf99+G1EUP67rrVAca1Zq7PE874QWamzb5sILLyxij67rvOQlL+GlL33pUTunEIK7776b+++//6idQ6F4Mllp8SfPBHmSILKUNAqZ2riBStXl7p/8jPm5JWqVEo5tk6YJSRig5zlGGvLQw7vpxQnPeMpq0jghi2OiKME2dUqWjqVrTDYb1Gs10DQEshEBIPoOGl3rO2hMw8DQdXRdwzbN/mOjv4LsRwlhnJLsKTqcZhlhkvQLC2cZYZxQsm1aQUQnSnhg+wK/mm3TCvqdUhzXIUlyytU6tuuQxgnLyy1GPJs8S7BtgzCOiDNI0hw/Cmkvt8jJ6UUp5apNnGX4nTa7d86y7eFH0bKYbbt28sjOObbPLbFjdpEojlk3Pc5Cu8uO2UWWu6qop2LlMdQYZODnTW96U7GPpmlcd9117Nq1izAMue2224quUBLXdfnLv/xLFhYW8H2fr3/960UnpyMdj3SRAIXDRAozsq6NZVmFuCL3k66TvTsh7S24yG3yX+lkEUIU3TajKML3fYIgGHL3yHPL1wwWFAaK2jU7duxg+/bt7N69myiKCIKAJEloNBp4noeu60MpXbK7lHwsxyZTnQa3y+cGf+TYLcsqnpcOn8FjK05+jpos961vfWvo8ac+9SkmJia4++67ufjiixFC8Od//ue8//3v51WvehUAn/nMZ5icnOTzn/88b3nLW2i1Wnzyk5/ks5/9bGG3+9znPsfatWv5zne+wxVXXHHE49INizQTCJGTZTlJlmHsqUsT54J2p4dbKuN6Fbp+iKbrtNtd0iwj8GNEDqYuII0Iwh5ZmlIqweJ8lyjOcctlHEsjESaGrpHEIXnmkmYZWSoIggzD9rCcfmemXAhykaEbOaD306B0MHRjT6KRAZqgXGlw3gWXUvIqQzmQQghGxyZ5ylnP4p5/beM6BlkaYzsOltV30QgswEBoJlmWkpMhch0yjSyOSHMLz/AQUYYf+lhOiXKlRrnkcfamc3nhJS/eb5EwhWIlslJjj2marF+//om/wePEhg0bePaznz00iXFdl1e96lXcfPPNR2XyYJoml19+eZFLr1CsdFZa/PFcA8O0cRyXSnOEdqtLc3KM+x7ZgedYJFHAQqfHRGsRRMJSL2N8vMEat0oY+JDnbJgaIROQp6Jft8/UMHWTMEkYqXi0Oj1EGiOgyI7ul6nR0DUDXdfQEOiifzPk2P0mDrZt9fcTAnIwdR3XthFav6V3xXGwDJ1eEPUL+7a6kOfkIkfTNcI0Z+d8l7XTTfx2izhK0HSDJEnxalVs2yLPRD/FPY3QHAfyjMXlHrOzyyRRiO/3WF7soOk6tlsiiiO2zHd4dNc8jmtj6Rol18GPUx7ePc/27fMEUUzJVqvaCsWhGHSrSLFlsKCwbdtFqhM85riR9V9kIWHbtgtXi3Sh7F0PRqYuybQp6c4plUpDLb7lvZM8njznoAhumv0uubLTVJqmtFotut0u8/PzCCEKgaZSqVCv1wt3j0yPMk1zn9oyg6KVTIWS70l2pBp05Ax2jpJzrMe7WKg4MTlm7blbrb5NtNnsO0IeeeQRZmZmuPzyy4t9HMfhkksu4Uc/+hEAd999N0mSDO0zPT3Npk2bin2OFMOw+oWBDRPHtuj1QkzLRTdc0hR008ar1hFCQ9NNfL9HmkX4gY/jWhgWkPnML8yxuLiAH4S0ez5xmpFrsLzcYn5hjl1bH2LrlvtI4zatpVnC0Kfba9ENerS6PZI0pdvrECf91nV5lhGnCXGSksY5SZKT9xOYiOKM5ugkT3/Gs4YKTUlsy2Zy1TowXMJUx3Aq6KaLpvdTvHTdJMckFSYJJWJRJtMrJJpDmGj0wpzltk/HjwjDkN1zc1iWy6v+/Rt429X/jfOe89x9VGaF4kRhpcQeXddZv379Cfk90jSNq666qugYMcimTZvwPO9JP+eGDRv46Ec/yk033cTIyMgJed0UiuMdf0wgDnxM02BuxzztxXksx+SMjWtxTJuFVsSqiVEMXSPONLbsnKPV6bF91wIjzX4b61rJYXK0Bjr04oxGpUSWRjTLNtWS3W/OACDEUBW7bE9HTUE//hmahhCQpFnfYQOIvJ/yZJkGI1WP6WaDuucxNlLHNI1+m15DB5Fj6hqWpoGAThix1Av5ze5lglRndn4J3bXJBERxTJ6me9Id8n7qlW2QZylLc0ts37oDkYXUKi5bd8yyHITct2UXP/jZA/zg337NroVW/+Zyz83Tjvk2O3bPs2X7bH/VXdP6XUMVCsVBkU6TweK6g4JKq9Uact3s3TVJIoUMKfRIZ4lt29RqtcKlIgvv5nmO67qFQ0cuNkt3imz/LV0rjuNQq9Wo1Wq4rku1WsXzvKG24lJwGRsbY3JykpGRkaJtt+u6jI6OcuaZZ7Ju3To2bNjA2NgYjUaDcrmMZVm4rlvUmZHijyycLB8bhoHjOOR5XqR4yRbn0h2kOLU4JksCQgiuvfZaXvCCFxT2OlngSraDk0xOTvLoo48W+9i2PdQeTu4jX783URQVv9QA7XZ76Hm3XKVcqRH5i+iWS5wsYxgG5XIVyymh6RZ5ru1JU9LQdAvbiUCUCP0evW6HXbvmqFRdSqUSluNhmDaZyIl7XSxTEPkdsjwhSwTLSwt0ezFuYxw0l56fkGSCkldDZCk9v02WmjiOvicFKwfNwLQsIEfkMDYxzpW/8wZWr9mw/+sLRFFIFGeYtkacQpzEOI6No4Gh66BbaOjoZn+FS+Q5TqnOxqesw3Y8ut0ejmNTrVap1Rs0m2OcdeZZuHuKjykUJyLHMvbAweOPpmk8/elPL1ZNTiTOPPNM3vzmN+8jFGuaRrVapVqtFjekR4phGMVkzrIsms0mz3rWs3j3u9/NC1/4QtWiW3HCshLmPs3JJnmaMzpeZ+eWHcwupZS9GiP1Mr1Wh9x1CZeX0KgQRDFZLmhUSpALet2Q8fERut0AP0qZbJRJMiiXbBb8hJYfUHYdVo002J70U5EGHTWDqo2GTp5nZAgMwyIX4Dk2LgZp3m+n4BgGIsvRhSATOZ5lYpgmYRQT5AKRZYRxSpCmpFmOruXkuWDbzgXKlo5Xr9FeWqZSdjE0gSAFcoIwIU9yZmZ2s9RuowloRwGtXoSmWbR7Pn6YECYxZdcmjBIEGrppEscZjmngWh6OZbHc6dEo25Qdh4dnFh/vr4ZCcUogBQjprJGpSjIFSKZCyU5I0kEi/+a7rlvMDwaL7XqeVzhugiAoUpnkNtmee7DuS6VSKWrTaJpWtPH2PK9IvZI1YcIwJEmS4jxJkhAEAd1ulzAMGR8fp1wuMzIywuTkJGma0mw2WbVqFTMzM3S7XXq9Hjt27CiKHkuHjxyrbEM+eG2kADXo9JF1duRrpOClODU4JkLNO9/5Tn7xi19w++237/Pc3hNw+ct5MA62z4033sj111+/3+c0TcO0bLxak/m5HcRZP1iEcUy5VKLX88lwcV2PLAvxKmWCPKTng+8HdDsdojBg1fQ4SZZhlzy6vQhD1xBJht9r49g6OQa65dIN20S5IDcM4jCkXK+wut4kxeK8Cy5jctU0P779FrZt/RVLi4tEnTaG6TIyOs7k5Bqm16ylMTLK2Wc/m01nn49p2ft935qmMbVqLaed+VSEgNHm2J4OCm3SJNpT1NjGLXl45RqVap1ypcHadRtZNbUKw7SI99SgsR27qEC+v89HoTiROJaxBw4df8466ywajQZzc3OHMfqji/yO7++PvrTaNhoNLrzwQv7bf/tvB+y8NDo6yjnnnMPc3NxQm8vBY8mJkmy/PTo6yrnnnsvZZ5/N5OQk5XK5KM63evVqJicni84OCsWJykqY++img+uVifOMEBvHTomiELfsUrIEO+cW8UomAo2wF7BmokmrG1GvlvqtvU0Lr1LikW27GR0pE0cpphCctqrBwlKXqdE6a5o1nr6mTq8b0O718OMUzTTpBBlpKtB1MHQNU9MxDQtN17BMEx1BxbVp+xFoOfWyg66ZjDkmeZ4RRAlpltMse8RpTKcboms6YyMjRGlMyTJo1mr0Oj3mkoRSrULU7bJqtEHYayOiHn4QsxTE3PPwLH4Q0A0i0DWEBn6Y4Do2UZISJxmubZFlgpLtUPZscgGGadF0HCzLYmG5w1Sz2i/saamuTwrFoYiiqHC1yNglXS2DKU9y+/4K8UpxR9d1SqXSUCHiwf11XScIgqHUqsH0KSkOyULBg6lRpmni+z69Xo96vT5Ud0amVS0sLBSiy65du7Btm1KpxPLyMpVKBegvPFWrVSzLYt26dUxOTtJqtYiiiOXlZdrtNr7vF8KNFGXke5WpVoPFjeW1kOlUilOLo/6JX3311dx888384Ac/YM2aNcV2aaGfmZkZKrA5OztbrDRNTU0RxzFLS0tDK0uzs7NcdNFF+z3f+973Pq699tricbvdHiqAZRgmjfH1/OZX9xInOZrhEEU9XKeMH4TYpYyOn9CoVVia30ka52RCJ8kFGRm67RBnOXkmCP0uSdCltRyTZBm6bpJhYVomSy2fXqRheuM0J6vYjothljCtMrlu0Om2uPhpV3LhRS+l3VlifnYXD//6AUzT4fQzn87kxDReuYJhWgf/YmqgofHM857HWU8/B13TME0LTdOJk5gkjkiTft62bdtYto1hmIXKvOcQuI6zJ79c47H2TuomSXHicqxjDxw6/mzcuJFNmzbx/e9//4m/wSfIM57xDP7jf/yPPPLII+zevZs4jnEch0ajwdq1aznzzDM5++yzWb9+/UFFk2q1yv/3//1/3HvvvUV3BLmiJVeDSqUS5XK5sBY3Gg2azSaWZe1zPCXOKE4GVsrcZ2lxmZKt0wk0lueXWb9ulEq1TBAljK4a59fbH6LVEbimwTlnrqUdpOiGIBEanuWQZgmW7VEpl+j0ehgILF1n7XiZpmeRhQlp4qMHERvH67B6lJ4f4RgGidAIooQwySl7DiLLCaMEQzcwdIN2EJJmGXXPxTRNXFPHsS38KMGPMxA6JcvAD0NyDaoVjyoaVc9lx9wCFdtGCPjVrkXaQcivdi1x1rpJMk0w5mlYrk7UyZiZb9Fut4gzQa4JTDTiuN/J0jZ1Km4ZNI1uN8C0DGzTxA8TdM0gy2NWr5kgThPaHRgfKbPYDun1VIMFheJQSAFCLgzpul64VgYXhOUcQy4SDTpNpNgiHTLy9UDR2UmmOZXL5eL1aZoW3aHk6wadKYMCjxCiEFhKpRJBEGAYBqVSiTiOqdfrjI+P0263EUIQBEHhzmm1WrTbbRYWFvA8j3q9jmVZRdwfHx+n0WjQarWK9uG9Xo/FxUU6nU4h5Mj0KlmDZm+hSo59f/MmxcnLURNqhBBcffXVfPWrX+XWW29l48aNQ89v3LiRqakpbrnllqJQZBzH3HbbbXz4wx8G4LzzzsOyLG655RZe+9rXArBr1y7uueceNm/evN/zOo5z8MK3msbYqvVMrD6DpeVWP91IdIhSQSp02p0O7V4Xx3Up15pkqUtraY5UaGTCIM4itCwnTUN6vX6RYc2w0E0bNIMk1/G7EbpVZrRWQzNKOK6JaToIrYTtVMjShG57mfvvvZtLLruKVZX1rFq1nk3nXLhniLJA1mOayYFuXrS+UoNhGFQqtaHXWLYN5Yrca8CSLPZ7zOKRulFSnMAcr9gDh44/lUqFP/iDP+Cuu+4a6vByPNiyZQvPfe5zede73jVUnE5ahuHwRBNN05ienmZ6evqALbSV+KI4VVhpc59dO2eJkhRygSAhiHPGyiVKlk17uUW9UWLH9nm27hI869wzcBPBr361BdeAZqPKo9tmmV3cyVPWNBhfM86vHp2n2+uxbdcyGdDt+OSpoGRZNBoVKvUKaZxhOzZRGLF7rkUiNDRDh1zDNgyiOMV2Xew8J+oG/RSjJEI3bIJI0Or6GDpUHYckS+nFKa6pk+5ptNANfDZOT/KrbTPM+3P4UUyaZpim0U+dyMYpnzZBdyFh2+42QRQzVi9T82zaQUwvyti10GG04uLaFo1KmVLJpFWyWO6FOLaBo1s0qxXyNEMX0O0GjI2MEEZ7BCTVYEGhOCTSvQKPFf1NkqQQGwZrs3ieV9ShkXVs0jTFsqxCrJA1XGQqkiwyLDtDmaZJaU/JhkqlgmEYRZ0XKYTIgr1SaMnznCiKsG27SIOShYTleV13T7mLPbVm5Jhl6pYUhKRwE0UR27dvp9FoUKvVqFarlMtlGo1GkeK9du3aIeGm1+uxsLBAp9MhjmPiOKbX6xVjHnTeKE4djppQ8453vIPPf/7z/NM//RPVarXIq67X68WX6JprruGGG27gjDPO4IwzzuCGG27A8zx+//d/v9j3zW9+M3/4h3/I6OgozWaT97znPZx99tlFJ4THQ8krc85zLqU6Ms7PfvJ95hcXmFvqkGYxSQZLrRaZsHnKhmlayzHdIEY3XYQREQUJQiRkcUKOgWmZ6JaLZrhkeU6cCjA8TKeKMFxMw0bkJlFm40eCcKHDaWtHiRMfr1xB142hyuV7c7j3N4OvPdRr1E2T4mRmJcceTdN41atexeLiIps3b2bbtm3H7Q9vs9lkbGxsaCL1RFGxRXGqs9Lij6sLtvx6O2eeNskznraWnz2wi/LICJ1WgN9dpt3pcsF5Z/Lgg9vYvXUHE2umWFhq0emGdIKUTWeuJfB/xczMPGHX4YxVI8zNZYSJYOv2RaIoomLrPOXpGxgbq+E4JnksWGr5pCJjdLRGkvYL/Io8J8shjaHV6mKZOpqpE0Uplmkxu9ClUfcYr3o4bglb12m1O0zWa3RCH8swKDs2hmWwZfc8u9pd0KDueZRsmyhNSNKUuYUWrXaXIM7IRUYvCLFti+VeRJrlJELguRYjFZssEZQ8Ax1Breqh6RqmYTI5XkczTGrVMkEiSDSD6ckxds7splb1aPv+k/67o1CcbIyPjxdiiUTWhpFIh4phGMRxTLlcLlKJpMNGpv1Ih41t29i2PVRYOMsyoigqBBjpEpZ4nofjOMRxXAhEMq1J0ul06PV6xfGlOBKGYVF4GBhy9sg51GCdmV6vV4xT13WWl5cJgoD5+fmi7k6appTLZTzPo1Qq4XkeIyMjQ23He71eIQT5vo8Qgm63y8MPP3y0PzrFCuGoCTV/9Vd/BcCll146tP1Tn/oUb3rTmwD4oz/6I4Ig4O1vfztLS0tceOGFfPvb36ZarRb7f+xjH8M0TV772tcSBAGXXXYZn/70px/3jYXM9atU6zzjnAuZWr2BbVseYnlpnjgMQNNw3QrjE6spWTC3MEssNMLcIDc8XA/S2CBL+kJNyXNJcp1EGKBZCB0y4RDEDkZuUy6ZOLZDkrs4JYtMS8lNh/XrTuOpT3vWk3aDpFAo+qzU2COxbZu3vvWtXHbZZXzta1/jtttuY8uWLcUfdlnIbnl5uSiw92QzPj7Oddddx2mnnXZUjq9QnKqstPjTrHukUUYqDEynTN022frwNnrtDuvWrmJnbpAJjdM2TpOmGe2lJaZHyzzc6aJFIUuzC9TKHr0wxrFMHt0xz8Jim7GaR9016YiUesXCc00gY262S5KD5zlEYc7M7kVGRhoAZDmYpoVualQtg4VlnzwTRKmgE0VopsnMUpfTJhuIPMayHEquTRInrBqpYxo6aZ7TjVPGGyPUKg3G6yVGyxbLPZ+7f7OdOIkJwpiZpZAMcAyNquvguQ4V16Lk2Gi6RhDFtHoRtbKDZ+osdwIqlTLeaJWZ+Q47dy8zOlIhS3OiLKXd8ol8n6Vuj7FmlV2L3cf5G6JQnDpUq1UcxxkqBCxdKDK1aGlpiVarVaQhZVmG7/uFs0bWnJEdk6TrZtDNEkURQoii7owUTDqdTlF3UzpyZF0bz/OKFKlyuVy4bGSzh16vV4yn1+sBfeei67pAX/iRzRDk2KQTx7ZtgiCg0WhQKpXodrsEQUCr1SrSWdM0LZw08roMpnfJjlK2be/pYJcV1+IHP/jBcfg0FccDTZzkPqp2u029XqfValGr1YaeK966EAiGizfpmk6SRNz/y5/w87tuY3Z2GzopSdAlS3xElmLZfTtemmugm2SZRieCOLXwY9ANk9FGiZF6HdOuUCpXWbVqLU99+ibWrz+NcrkMnLgdTQ52bRUKxaG/I3KlRnYIyLIMTdPodrt897vf5aMf/Sjbt29/0sZj2zYXXHAB73//+3nJS15yQhemU/FHoTgw8vtxw+texPhYle/etYWXXnoO7XbE9tkFMF3WrRrj3+75DSVDUCo5jDabLLY6pEmMqWXkYUal7tCLMnrdiI1TFcI44577tzLeKGHoJqkOzZERamWXUrlEpV4jTTNEDrt3LxMlCYi+wBKFCWGS0e4l9OKUxXZAECUkeYxmmIgcUs2gYgpGPJOa51Atlej5IX4YsXZ6vN9u23YQGXT9ECFS2p0uraDLzsU2aZTgGrC7G4LWr0FTdWya1TJnrJ1AkOOYFst+CEJjbKTM3FKHOImplMt0goAszTEsC9sw0AyNTi8kTlJc12Gp3evfSJk6t/3i1yr+KBT7Qcaf5z//+UUhXykyyPTqPM+p1WpF16fB1tu6rhNFUbFtsMaNaZrFsRzHKTppDtaxkQWL4bGOeIPOFymE+L5PmqaF02awY5S8J5Ri0GAXKZm+JYQoukMlSYLrusWxpRBVLpfJ85xer4fjOIyPjxetwaMoIgzD4v11Oh00TcNxHHRdJ0kSDMMgSRJ6vV5RV+ezn/2sij2nCCfuLP1JQJMFXTQNjX4XgEEs2+Vp5z6PkfHV/PLnP+ahB36OyG1EbiC0iBSDMI36xV1ygyDOCSIN3TJYv241m845n9Wr12AakGWCsfFJplevo+SW+uccLByjUChOOTRNo1QqUSqVGB8fL7YLIXjGM57B8573PP7sz/6MW2+9lW73yFZwTdPEdV0qlQrNZpNzzjmH3/7t3+byyy/fp+2vQqE4OZld7OJ4Jq6pEUUJ5Ame47Dgx9x+5y+J8pynjJXZOdcizTW8kkOl5LJzps36qTpRHPPrR2fQgHVTHlqeomuw1A4o2TYT4zXIMrI0IenBbC8gEhrdIETLDDpdH9txmF/ukkRZXzyxLXpBSJxH2LZBt5PimCamaWFoGsu+T9UxqFXLVMsuJddmdrFNmKbUaw0MQ2dxqU2n22P38jKzrQ5+HGGbBmVTY8EP0HQQOURpjm0KOkHEg1t3M9moUqvotLoRI9Uy46MNlpZ9LLeEJsDVNU47czV+LwbDIhUZrmkggOVeyGlrpshzgRCqRa5CcSik2CBraA26XQBarVaRqmRZVpHCJF0rQghKpVKRKiSbFMRxTJ7ndLtdNE3D932yLMOyLMrlMkIITNPEcRzCMCxSqqSoIx0yUgSShYsH23oPdn2SaU6apvXTPSuVomtVnudFalcURQRBMPTeZQrVyMgIy8vLPProo9i2TaVSGWoN7nkerusWopIUuOT71HWd0dFRoig6Dp+k4nhxSgs1wFBBl70lEwFYpsXadaczMTnNM897IUuLcywv7mbnjkdYnNtBpzXfb9sdp5iuy8Y105z7rOfyzGdewOjYBIbRv8QyAAyfVok0CoViX2Te84UXXsjnP/95fvKTn3DzzTdz++23s2XLFjqdTmHP3ft1k5OTXHrppVxxxRVs2rSJkZERqtUq9Xp9qFuCQqE4+YnjlI6fMjleI4pTXMtiaXmR0WaV3dsTamWP2VbAxEiZn9/7azaduY65pWXWNauMj9ZYbHVYbnXwHIuf/OJRJqoetbKDqelUPZuFVsDUZAmRayS5IM5yxicmaQoIohTXa7N1xwK1msPD2xYIo5SxehlThyBMMfWUXNfp9UJGaxa9KMIydDzPotX1iZOM1RMNFjsBhmnhmDbL7S7tXsDM0iK/3jVLlKYgBI2KRztNiDPwbIskTUnzHD+M+iv1QpDn0I0y6rUyp68dI+j66BqM1MvMLnbIc2h3feI4x7AEHT+k7JRYaHUJo5SnrKuQ5TC/rFKfFIpDMT8/j23bxHFc1GuRgo0UQkzTJE1T4rjfSW2wFo0UO6RQI90s0tkiXS+y7kscxwRBUNxzyXbasjCwTIGSopAcw2C7cDn/GnT/yPHI52Vx4kHhCChSq+RYpLOmWq2SpinLy8v4vs/ExASdToelpaWiHo3sfiXFI1kTR7p2HMcproHi1OGkF2pkelO73X7Cx6hUG1SqDVavPZ0zn34+URDQbi+xuDBLr9elUhthzdr11GoNDMPE94N9jnUyfcHkNT3Js+cUisfNkxF/AM4//3zOO+88Wq0WO3fu5Fe/+hX3338/v/jFL/jNb37D7OwsU1NTXHXVVbzyla/kKU95SlH0TsYcaf89WVDxR6E4MPJ70Ryt0u3GlGsuC502q8fHaFRLiFQwVvXwg4A0z5kem2TnaI1cxGzf3SFPwXLnyKKQtdOjtNs9zj5rLb2uz+JCB6NksRQkxGnOIzsWmJpsYhg6umGwa7FN4HdZXPKZW1zCtG3aXYEfJiRCY/t8mzTPCKK+kJLkGpZhMb+0TKPawLJtds23OXPNOJ1OSMeLaAchSZbit7p0wpit84tsmZ0nTFJAYBo6hhBEaJRdhzTPyfbcxOUCwiRFaH0xaWJ8hHOevpFGxWXnzBxmyWa5F5BkKUkOYZiy1PIxTItqxcF2TLyyS6li0e72mJocxXGtoeusUCgeQ34vgiAoBA2APO870QbTe6SoIYWJwW5KUiyRrhag6PAkn5e1XQa7Q5XLZaIoKgrwmqZZ7Ov7fuGO2bvjpUxDkmnhUuiR55Lnl2OU7iD5PqSoI6+BTM8ql8v0ej3CMCxq0CwsLBQ1dQZTteT5ZScsz/PQdZ2lpSXm5+eLa6liz6nBSV+j5uGHH+b0008/3sM4qdm2bRtr1qw53sNQKFYcKv4cfVT8USj2Zfv27axdu/Z4D+OkR8UfhWJf1Nzn6KNiz6nBSe+oaTabAGzdupV6vX6cR3Pi0G63Wbt2Ldu2bTtgsSohBJ1Oh+np6WM8OoXixEDFn8eHij8KxRNjenqa++67j6c//ekH/R4phjmc2AMq/igUB0PNfYY53LhyOKjYc2px0gs10iJWr9fVROVxUKvVDnrdVABWKA6Mij9PDBV/FIrHh67rrF69Gjj090ixL4dzzVT8USj2j5r77J8nKxar2HPqoB96F4VCoVAoFAqFQqFQKBQKxbFACTUKhUKhUCgUCoVCoVAoFCuEk16ocRyHD3zgAziOc7yHckKhrptC8cRR36PHh7puCsUTR32Pjhx1zRSKJ476Hg2jrofi8XLSd31SKBQKhUKhUCgUCoVCoThROOkdNQqFQqFQKBQKhUKhUCgUJwpKqFEoFAqFQqFQKBQKhUKhWCEooUahUCgUCoVCoVAoFAqFYoWghBqFQqFQKBQKhUKhUCgUihXCSS/U3HTTTWzcuBHXdTnvvPP44Q9/eLyHdNy48cYbec5znkO1WmViYoJXvvKVPPjgg0P7CCG47rrrmJ6eplQqcemll3LvvfcO7RNFEVdffTVjY2OUy2Wuuuoqtm/ffizfikKx4lGxZxgVfxSKY4eKP4+hYo9CcWw5FeKPiiuKY8FJLdR86Utf4pprruH9738/P/vZz3jhC1/Iy172MrZu3Xq8h3ZcuO2223jHO97Bj3/8Y2655RbSNOXyyy+n1+sV+2zevJmPfvSjfPzjH+enP/0pU1NTvPSlL6XT6RT7XHPNNXz1q1/li1/8Irfffjvdbpcrr7ySLMuOx9tSKFYcKvbsi4o/CsWxQcWfYVTsUSiOHadK/FFxRXFMECcxF1xwgXjrW986tO2pT32qeO9733ucRrSymJ2dFYC47bbbhBBC5HkupqamxIc+9KFinzAMRb1eF3/9138thBBieXlZWJYlvvjFLxb77NixQ+i6Lr71rW8d2zegUKxQVOw5NCr+KBRHBxV/Do6KPQrF0eNUjT8qriiOBietoyaOY+6++24uv/zyoe2XX345P/rRj47TqFYWrVYLgGazCcAjjzzCzMzM0DVzHIdLLrmkuGZ33303SZIM7TM9Pc2mTZvUdVUoULHncFHxR6F48lHx59Co2KNQHB1O5fij4oriaHDSCjXz8/NkWcbk5OTQ9snJSWZmZo7TqFYOQgiuvfZaXvCCF7Bp0yaA4roc7JrNzMxg2zYjIyMH3EehOJVRsefQqPijUBwdVPw5OCr2KBRHj1M1/qi4ojhamMd7AEcbTdOGHgsh9tl2KvLOd76TX/ziF9x+++37PPd4rpm6rgrFMCr2HBgVfxSKo4uKP/tHxR6F4uhzqsUfFVcUR4uT1lEzNjaGYRj7KJKzs7P7qJunGldffTU333wz3//+91mzZk2xfWpqCuCg12xqaoo4jllaWjrgPgrFqYyKPQdHxR+F4uih4s+BUbFHoTi6nIrxR8UVxdHkpBVqbNvmvPPO45Zbbhnafsstt3DRRRcdp1EdX4QQvPOd7+QrX/kK3/ve99i4cePQ8xs3bmRqamromsVxzG233VZcs/POOw/Lsob22bVrF/fcc88pe10VikFU7Nk/Kv4oFEcfFX/2RcUeheLYcCrFHxVXFMeEY1u7+NjyxS9+UViWJT75yU+K++67T1xzzTWiXC6LLVu2HO+hHRfe9ra3iXq9Lm699Vaxa9eu4sf3/WKfD33oQ6Jer4uvfOUr4pe//KX4vd/7PbFq1SrRbreLfd761reKNWvWiO985zviX//1X8WLX/xice6554o0TY/H21IoVhwq9uyLij8KxbFBxZ9hVOxRKI4dp0r8UXFFcSw4qYUaIYT4xCc+IdavXy9s2xbPfvazi7ZppyLAfn8+9alPFfvkeS4+8IEPiKmpKeE4jrj44ovFL3/5y6HjBEEg3vnOd4pmsylKpZK48sorxdatW4/xu1EoVjYq9gyj4o9CcexQ8ecxVOxRKI4tp0L8UXFFcSzQhBDi2Pl3FAqFQqFQKBQKhUKhUCgUB+KkrVGjUCgUCoVCoVAoFAqFQnGioYQahUKhUCgUCoVCoVAoFIoVghJqFAqFQqFQKBQKhUKhUChWCEqoUSgUCoVCoVAoFAqFQqFYISihRqFQKBQKhUKhUCgUCoVihaCEGoVCoVAoFAqFQqFQKBSKFYISahQKhUKhUCgUCoVCoVAoVghKqFEoFAqFQqFQKBQKhUKhWCEooUahUCgUCoVCoVAoFAqFYoWghBqFQqFQKBQKhUKhUCgUihWCEmoUCoVCoVAoFAqFQqFQKFYISqhRKBQKhUKhUCgUCoVCoVghKKFGoVAoFAqFQqFQKBQKhWKFoIQahUKhUCgUCoVCoVAoFIoVghJqFAqFQqFQKBQKhUKhUChWCEqoUSgUCoVCoVAoFAqFQqFYISihRqFQKBQKhUKhUCgUCoVihXBUhZo777yT3/md32HdunU4jsPk5CTPe97z+MM//MOh/S699FIuvfTSoW2apnHdddcVjz/96U+jaRp33XXX0RzyE+aGG27ga1/72j7b77vvPq677jq2bNlyzMd0NPnmN7859DkNsmHDBt70pjcVj7ds2YKmaXz6058+JmNTnDyoWPIYJ0oskdd5cJxvetOb2LBhw9B+mqbxzne+89gO7gg5WJw70OekOPlRcekxTpS4dN1116FpGvPz80/K8fb+HA8X3/e57rrruPXWW5+UcSgUCoXi5OOoCTX//M//zEUXXUS73Wbz5s18+9vf5i/+4i94/vOfz5e+9KWhfW+66SZuuummozWUY8rBJjHXX3/9ip/EHCnf/OY3uf766w9r31WrVnHHHXfw8pe//CiPSnEyoWLJMCdKLHn5y1/OHXfcwapVq473UJ4wB4tzSqg5NVFxaZgTJS6tFHzf5/rrr1dCjUKhUCgOiHm0Drx582Y2btzIv/zLv2Caj53md3/3d9m8efPQvk9/+tOP1jAUKwjHcXjuc597vIehOMFQseTEZHx8nPHx8eM9DIXiqKDikkKhUCgUiqPJUXPULCwsMDY2NjSBKU6qD592f7bgA9HpdHjb297G2NgYo6OjvOpVr2Lnzp1D++R5zubNm3nqU5+K4zhMTEzwhje8ge3btw/tt3dqzsHG0263ec973sPGjRuxbZvVq1dzzTXX0Ov1in00TaPX6/GZz3wGTdPQNI1LL72UT3/60/z7f//vAXjRi15UPDeYAvSd73yHyy67jFqthud5PP/5z+e73/3uYV2TI2Hr1q287nWvY2JiAsdxeNrTnsZHPvIR8jwv9rn11lvRNG2flZ69U5fe9KY38YlPfKJ47/LnQCtq+0t9kjbke++9l9/7vd+jXq8zOTnJf/pP/4lWqzX0eiEEN910E8985jMplUqMjIzwmte8hocffvgJXxfFykXFkpUXS/I85//+v/9vzjrrLEqlEo1Gg3POOYe/+Iu/KPbZX+rTwfjsZz/L0572NDzP49xzz+Ub3/jGPvvcfvvtXHbZZVSrVTzP46KLLuKf//mfh/aRMWVvDjSeL33pSzzvec+jXC5TqVS44oor+NnPflY8f7A4d6DPSTIzM8Nb3vIW1qxZg23bbNy4keuvv540TQ/rmihWLiounZhxaX888MADnHbaaVx44YXMzs4CT+y7e6jXbtmypRCxr7/++uJ6DX5WhxPrZEz7/ve/f8jfGYVCoVCceBw1oeZ5z3sed955J+9617u48847SZLkSTnuf/7P/xnLsvj85z/P5s2bufXWW3nd6143tM/b3vY2/viP/5iXvvSl3Hzzzfz3//7f+da3vsVFF130uPKSfd/nkksu4TOf+Qzvete7+F//63/xx3/8x3z605/mqquuQggBwB133EGpVOK3fuu3uOOOO7jjjju46aabePnLX84NN9wAwCc+8YniOZkC9LnPfY7LL7+cWq3GZz7zGf7+7/+eZrPJFVdccVgTmUsvvXS/NyZ7Mzc3x0UXXcS3v/1t/vt//+/cfPPNvOQlL+E973nP46oR8ad/+qe85jWvKd67/Hk8qQ6vfvWrOfPMM/nyl7/Me9/7Xj7/+c/z7ne/e2ift7zlLVxzzTW85CUv4Wtf+xo33XQT9957LxdddBG7d+8+4nMqTgxULFl5sWTz5s1cd911/N7v/R7//M//zJe+9CXe/OY3s7y8fMTXBPppJB//+Mf54Ac/yJe//GWazSa/8zu/MyTC3nbbbbz4xS+m1WrxyU9+ki984QtUq1Ve8YpX7JNqcrjccMMN/N7v/R5Pf/rT+fu//3s++9nP0ul0eOELX8h9990HHDzOHehzgv7N2gUXXMC//Mu/8H/9X/8X/+t//S/e/OY3c+ONN/IHf/AHj2u8ipWDiksnR1y67bbbuOiiizjnnHP4/ve/z8TExBP67h7Oa1etWsW3vvUtAN785jcX1+tP//RPizEdSaw7nN8ZhUKhUJyAiKPE/Py8eMELXiAAAQjLssRFF10kbrzxRtHpdIb2veSSS8Qll1wytA0QH/jAB4rHn/rUpwQg3v72tw/tt3nzZgGIXbt2CSGEuP/++/e735133ikA8Sd/8ifFtvXr14s3vvGN+4x97/HceOONQtd18dOf/nRov3/8x38UgPjmN79ZbCuXy/s95j/8wz8IQHz/+98f2t7r9USz2RSveMUrhrZnWSbOPfdcccEFF+xzrL158YtfLAzDOOR+733vewUg7rzzzqHtb3vb24SmaeLBBx8UQgjx/e9/f79jfeSRRwQgPvWpTxXb3vGOd4gD/RrtfX339/oPfOADAhCbN28eeu3b3/524bquyPNcCCHEHXfcIQDxkY98ZGi/bdu2iVKpJP7oj/7okO9fcWKiYskwKyGWXHnlleKZz3zmQfeR1/mRRx4ptr3xjW8U69evH9oPEJOTk6LdbhfbZmZmhK7r4sYbbyy2Pfe5zxUTExNDn3mapmLTpk1izZo1RayQMeVQ49m6daswTVNcffXVQ/t1Oh0xNTUlXvva1xbbDhbnDvQ5veUtbxGVSkU8+uijQ9v/x//4HwIQ9957736PpzgxUHFpmBMlLsn4MDc3Jz772c8K27bFu971LpFlWbHPkXx39/4cD/e1c3Nz+7xWcrix7nB/ZxQKhUJxYnLUHDWjo6P88Ic/5Kc//Skf+tCH+O3f/m0eeugh3ve+93H22Wc/7or7V1111dDjc845B4BHH30UgO9///sA+9h9L7jgAp72tKc9LqvtN77xDTZt2sQzn/lM0jQtfq644or9pggdCT/60Y9YXFzkjW9849Cx8zzn3/27f8dPf/rTIevx/vjud797WHbc733vezz96U/nggsuGNr+pje9CSEE3/ve9x73+3ii7O9zDcOwsCF/4xvfQNM0Xve61w1dp6mpKc4991xVkO8kRsWSw+NYxpILLriAf/u3f+Ptb387//Iv/0K73X7c44Z+ukS1Wi0eT05OMjExUXwWvV6PO++8k9e85jVUKpViP8MweP3rX8/27dt58MEHj+ic//Iv/0KaprzhDW8Yul6u63LJJZc84ZjyjW98gxe96EVMT08PHf9lL3sZ0F81V5y4qLh0eKzUuPRnf/ZnvOlNb+JDH/oQf/EXfzGUrvZEvrtP9Hv/eGLdoX5nFAqFQnFictSKCUvOP/98zj//fACSJOGP//iP+djHPsbmzZv3Kbh3OIyOjg49dhwHgCAIgH7eOLDf9Jvp6enH9Ydr9+7d/PrXv8ayrP0+/0TaPMqUHWmt3x+Li4uUy+XHfQ7JwsLCPq1xoX9d5PPHi0N9rrt370YIweTk5H5ff9pppx3dASqOOyqWHPrYcGxiyfve9z7K5TKf+9zn+Ou//msMw+Diiy/mwx/+cPEZHQl7fxbQ/zzkZ7G0tIQQ4oCfBRx5/JLX6znPec5+n9+7zsiRsnv3br7+9a8flc9asXJQcenQx4aVF5c+97nPsXr1an73d393v2N+vN/dJ/q9fzyx7lC/MwqFQqE4MTnqQs0glmXxgQ98gI997GPcc889R+Uc8g/Wrl27WLNmzdBzO3fuZGxsrHjsui5RFO1zjPn5+aH9xsbGKJVK/O3f/u1+zzm475EiX/uXf/mXB+yIdCBx4kgZHR1l165d+2yXRefkWFzXBdjn2hzPG4uxsTE0TeOHP/xhMQkZZH/bFCcvKpYc+LXHIpaYpsm1117Ltddey/LyMt/5znf4kz/5E6644gq2bduG53lPynkkIyMj6Lp+xPFrMC7sHb/k/v/4j//I+vXrn9TxyuOfc845/Nmf/dl+n5c3XYqTBxWXDvzalRaXvvWtb/Ef/sN/4IUvfCHf/e53h2LAE/nuPtHv/ZHEOoVCoVCc3Bw1oWbXrl37XRG4//77gaM3SX3xi18M9FdLBldKf/rTn3L//ffz/ve/v9i2YcMGfvGLXwy9/qGHHuLBBx8c+kN45ZVXcsMNNzA6OsrGjRsPev7BVeC9t8O+KxzPf/7zaTQa3HfffY+roO+RcNlll3HjjTfyr//6rzz72c8utv/d3/0dmqbxohe9CKBw3fziF7/giiuuKPa7+eab9znm4PsqlUpHbexXXnklH/rQh9ixYwevfe1rj9p5FCsPFUv23Q7HN5YM0mg0eM1rXsOOHTu45ppr2LJly5PejrhcLnPhhRfyla98hf/xP/5HEWvyPOdzn/sca9as4cwzzwSG49fg5/b1r3996JhXXHEFpmnym9/8hle/+tUHPf/B4tyBPqcrr7ySb37zm5x++umMjIwc2RtWrHhUXNp3O5w4cWn9+vX88Ic/5CUveUkh1pxxxhnAE/vuHu5rD3S9jiTWKRQKheLk5qgJNVdccQVr1qzhFa94BU996lPJ85yf//znfOQjH6FSqfBf/+t/PSrnPeuss/gv/+W/8Jd/+Zfous7LXvYytmzZwp/+6Z+ydu3aoU5Cr3/963nd617H29/+dl796lfz6KOPsnnz5qJtouSaa67hy1/+MhdffDHvfve7Oeecc8jznK1bt/Ltb3+bP/zDP+TCCy8E4Oyzz+bWW2/l61//OqtWraJarXLWWWexadMmAP7mb/6GarWK67ps3LiR0dFR/vIv/5I3vvGNLC4u8prXvIaJiQnm5ub4t3/7N+bm5virv/qrg77nyy67jNtuu+2QOdzvfve7+bu/+zte/vKX88EPfpD169fzz//8z9x000287W1vK/74T01N8ZKXvIQbb7yRkZER1q9fz3e/+12+8pWv7HPMs88+G4APf/jDvOxlL8MwDM455xxs2z7EJ3VkPP/5z+e//Jf/wn/8j/+Ru+66i4svvphyucyuXbu4/fbbOfvss3nb2972pJ5TsTJQsWTlxZJXvOIVbNq0ifPPP5/x8XEeffRR/vzP/5z169cXNztPNjfeeCMvfelLedGLXsR73vMebNvmpptu4p577uELX/hC0RXmt37rt2g2m7z5zW/mgx/8IKZp8ulPf5pt27YNHW/Dhg188IMf5P3vfz8PP/ww/+7f/TtGRkbYvXs3P/nJTyiXy1x//fXAwePcgT6nD37wg9xyyy1cdNFFvOtd7+Kss84iDEO2bNnCN7/5Tf76r/96H0eE4sRBxaUTPy6tWrWK2267jSuuuIKLL76YW265hU2bNj2h7+7hvrZarbJ+/Xr+6Z/+icsuu4xms8nY2BgbNmw47FinUCgUipOco1Wl+Etf+pL4/d//fXHGGWeISqUiLMsS69atE69//evFfffdN7TvkXRE2Lsrwf46FGVZJj784Q+LM888U1iWJcbGxsTrXvc6sW3btqHX5nkuNm/eLE477TThuq44//zzxfe+9739jqfb7Yr/8//8P8VZZ50lbNsW9XpdnH322eLd7363mJmZKfb7+c9/Lp7//OcLz/MEMHScP//zPxcbN24UhmHs0/3otttuEy9/+ctFs9kUlmWJ1atXi5e//OXiH/7hHw55rS+55JIDdiTZm0cffVT8/u//vhgdHRWWZYmzzjpL/D//z/8z1PFACCF27dolXvOa14hmsynq9bp43eteJ+666659xh1FkfjP//k/i/HxcaFp2lBXlSPp+jQ3Nzd0/v11jBFCiL/9278VF154oSiXy6JUKonTTz9dvOENbxB33XXXYb1/xYmHiiUrL5Z85CMfERdddJEYGxsTtm2LdevWiTe/+c1iy5YtxT5H0vXpHe94xz7n2F/Hmh/+8IfixS9+cfH9f+5znyu+/vWv7/Pan/zkJ+Kiiy4S5XJZrF69WnzgAx8Q//N//s/9xpSvfe1r4kUvepGo1WrCcRyxfv168ZrXvEZ85zvfKfY5WJw72Oc0Nzcn3vWud4mNGzcKy7JEs9kU5513nnj/+98vut3uwS+yYkWj4tKJGZf2N+dYXl4Wz3/+80Wz2Syu/+F+d/f+HI/ktd/5znfEs571LOE4jgCG4t3hxLoj+Z1RKBQKxYmHJoQQR10NUigUCoVCoVAoFAqFQqFQHJKj1p5boVAoFAqFQqFQKBQKhUJxZCihRqFQKBQKhUKhUCgUCoVihaCEGoVCoVAoFAqFQqFQKBSKFcIJIdTcdNNNbNy4Edd1Oe+88/jhD394vIekUChOEVT8USgUxwsVfxQnCj/4wQ94xStewfT0NJqm8bWvfe2Qr7nttts477zzcF2X0047jb/+678++gNVKBSKE4QVL9R86Utf4pprruH9738/P/vZz3jhC1/Iy172MrZu3Xq8h6ZQKE5yVPxRKBTHCxV/FCcSvV6Pc889l49//OOHtf8jjzzCb/3Wb/HCF76Qn/3sZ/zJn/wJ73rXu/jyl798lEeqUCgUJwYrvuvThRdeyLOf/Wz+6q/+qtj2tKc9jVe+8pXceOONx3FkCoXiZEfFH4VCcbxQ8UdxoqJpGl/96ld55StfecB9/viP/5ibb76Z+++/v9j21re+lX/7t3/jjjvuOAajVCgUipWNebwHcDDiOObuu+/mve9979D2yy+/nB/96Ef7fU0URURRVDzO85zFxUVGR0fRNO2ojvdUQwhBp9NhenoaXV/x5iyF4ohQ8Wdlo+KP4mTmSOOPij3HFhV/njh33HEHl19++dC2K664gk9+8pMkSYJlWfu8Rv2eKxSKlcjR+puwooWa+fl5sixjcnJyaPvk5CQzMzP7fc2NN97I9ddffyyGp9jDtm3bWLNmzfEehkLxpKLiz4mBij+Kk5EjjT8q9hwfVPx5/MzMzOz39ztNU+bn51m1atU+r1G/5wqFYiXzZP9NWNFCjWRvlVwIcUDl/H3vex/XXntt8bjVarFu3Tp+93d/F03TaLfbOI5Do9Egz3OCIKDT6RBFEUIIdF3H8zx6vR66rhOGIWEYMjIygmVZ2LaNrutomkYURSRJQqvVIo5jfN8nz3NKpRKWZQ39jIyMEEURcRxTq9VwHKc4XxiGCCGoVqsEQUCapsX7K5fLmKZJEARkWYZt27RaLaIoIggCDMOgXq/jeR6WZZEkCUIIHMcpXpumKXEc47puMe4sywAwTRNd18myDF3Xi9UKx3EIw5A0TSmVSgDYto3neZRKJaIoYmlpib/927+lWq0ejY9doVgRPBnx584776RarRaxY3/HldvkdnmewZ/DGd+htj9RBse3Pw4nm1buM7jv3tsG/917PyEE3W6X5zznOSr+KE5qDjf+HCj2fOITn6DRaOC6Lo7joGkac3NzxHGMaZoYhkEYhsXcpV6vUyqVEEKQ5zlCCNI0Jc9zNE3DNE1c1yXLMnzfJwiCYlxpmiKEoFQqUavVEELg+z6Li4skSQL05xGGYdDr9TBNs5gL5XkOQJIkJElCnufF8SRyLiXdE2EYEsdxMceRc6w4jotrJ38G44h8vPd1Hnxevid5Xjlngv68SQjBtddeq+LPE2R/v9/72y450O/5tm3bqNVqR2+gCoVCcRDa7TZr16590v8mrGihZmxsDMMw9lk9mp2d3UeFlziOg+M4+2yXN0ie56HrOouLi5imiWmaxcSh0+mg6zppmhYTGjn56Ha7uK6Lbdu4rothGBiGQZIkaJpGEATFJGZ8fBzHccjznCzL0DSNSqWC67okSYJt22iaVkx8yuXyPpMA27aLcUsLqGVZpGlaTI48z6Nerxc3gHmeF/9KMaZerxdiTLlcRgiBYRhEUUQYhsBjExQpVrmuW7xXoBC0dF0vfizLwjTN4vUKxcnGkxl/KpUKlUqliEOD35nBmwL5/N43Y3vbKOVzcvv+JrdHOgF+stifULO/G6DBG6e9xZj97XOg7Sr+KE5GjjT+HCj2rFu3jmazSaPRoFqtIoRgZmaGhYUFNE2jWq0WIokUTqRIkmVZMZ+Q++i6juM4xaKWXNBJkgTf90mShDiO6XQ6hRAkhSJN0zAMg1KpRLfbLY4rzwOQpilRFJGmKa7rApBlGVmWYRgGuq4jhCgWpzqdzlAMME0Ty7KK+dXe4rdkULzZX9zce9vgvnKBbe/9FEfG1NTUfn+/TdNkdHR0v6850O95rVZTQo1CoTjuPNl/E1a0UGPbNueddx633HILv/M7v1Nsv+WWW/jt3/7tIzrW7Owsvu/j+34heHiex+TkJKZpUqvVCkfL4uJiIcjoul5sj6KIXq8H9FdYDMMohBgpmsiJiPxXOlSEENRqNcrlMtCfjCwvLxNFEatXr8bzPBYWFlhaWsK2ber1erHqlGUZjUYDgDAMcRwH0zSLiUqv1xu6yZNiihCCLMuKfF4pLg2OSd7oSdFFTkTkxCjPc1qtVuEsCoKg2GdxcfEJfb4KxUrmyYw/h8PhBvfD3e9ANyDHmv25Zg5n3yN5TqE42Xiy4o9t2ziOUyyuCCGYmJhA13WCIKBerxeLT9JVKx02UjwxDAOgmFekaVosdJVKJZIkwXGcwmkz6L6B/nfXsqyhOYrnecXilXTGyPnU3kK0dBnLhSjpohkUdaQTZ28BeFAcHxS80zTdrwA+KNTIGLq3q0cKVYonxvOe9zy+/vWvD2379re/zfnnn7/f+jQKhUJxqrGihRqAa6+9lte//vWcf/75PO95z+Nv/uZv2Lp1K29961uP6DiGYeA4DlEUFZMH3/eZnZ0tHC3dbreYAMjJiFxxcl23EClkepLruoXbRLpwpGtleXm5SEHSdR3f9wt7r5xgyBWtcrmM4zi022263S5ZlhWpV0EQkOc5c3NzwGMTjzzPWV5eJs/zInVqcGLkeR6O47C4uFhMfuSqlpxEZVlWiC9BEOD7PmmaFhO6LMuKtKswDKlUKnieV0zEOp3Ok/thKxQrjCcr/gyuxh6JYLL3jYK8UdrfDYTcf2/2Pt+hUpcOZ0xHuu+BXDZ731Ttve/hvE6hOFl5MuKPdOsmSUKv1yscs2NjYyRJUggmwNAizqCrBh5L95GxxzAMbNsmz3Ns2y6cwmmaAhSvH0xhkrFH7iPjoRSJ5NxE1/ViwWtvZ4w8nkxzkqlbcRzvEyfTNC3GFgRB4U6empqi0+nsI+jI97e381EKVnJfKQophul2u/z6178uHj/yyCP8/Oc/p9lssm7dOt73vvexY8cO/u7v/g7od3j6+Mc/zrXXXssf/MEfcMcdd/DJT36SL3zhC8frLSgUCsWKYsULNf/hP/wHFhYW+OAHP8iuXbvYtGkT3/zmN1m/fv0RHaderzMyMlLYdHu9HkEQDKXwyHzsLMuYn58HKOzC1WoV27bxfb9YOYqiiPn5eYIgKLbJdKg4jimVSlQqFeI4RtM04jgemojIScfMzEzhzmm326RpShiGhdXXcZxCbImiiHa7TZIkxeSm2+2i6zqlUglN04oVNLliFIYhURQVqV1y4uI4DvPz88zPz+N5XiEyxXGMruuFdblWqzE2NlbU6LFtm16vpyy/ipOeJyv+HIy9nS+y3lWtViPLMpIkKRxuQBF7pPXeMIxidVt+R03TPKDd/1hzMEFl79oRhxJglECjOJV4MuKPdODqul6kNsl0bynKyLmITKuWDtokSYbqxMh9LcsqasHIxag8z4fSptM0pdVqFbVvDMMonMlyDiQXw+TCkBRh5PODohAwlNotnTRZlhWC0N6OYHnMRx99lM985jO0Wi3OPPNM3ve+9xXp5IZhFHOzwceD45BxSp5DxaH9c9ddd/GiF72oeCxrybzxjW/k05/+NLt27WLr1q3F8xs3buSb3/wm7373u/nEJz7B9PQ0/+//+//y6le/+piPXaFQKFYiK16oAXj729/O29/+9id0jDzP6fV6hGFYpDPJ3Og0TalUKkxMTBQ1ZOSEQQoi0gVjmibVahXLsoqCewsLC+R5Xtwsua5Ls9nEsqyimJ58nWEYhT1YFjSWk4NyuYzv+0UOuFwBiqKocNrU63VWrVpVjF0W+pWTKdu2KZfLxdgG87q73W6RulWpVCiXy3ieV4xVrmLJScj4+DiWZRUilax7I4RgZGSEer3+hD9bhWKl82TEHymARlGE67qFOAyPFc+UcWBhYYHf/OY3rFmzhrm5OVqtFouLiwRBgOu6nH322ezYsYN77rmnEGNt26bRaDAyMsLU1BQTExOMjIxQqVQKC/mgSHMk6UhH8h73Zm/Xz2Bdmf05gg517IM5dBSKk5EnGn/kgotMlZaihxRvZPyR8x0pnJimWThJBl02QPF/ObeRx3Jdl0qlMrTvYDq2FGTkwhL0nc2dTqcQVeTClkwtGjynFJTkXETGv0GxW8575DzmkUce4Ytf/CLLy8sAxXlM06RSqWCaZuG0loWUl5eXC4exTBuTx+t2u8U8TTHMpZdeetDY/OlPf3qfbZdccgn/+q//ehRHpVAoFCcuJ4RQ82RgGAaLi4vFTY2u6ywsLBCGYVGzRhbJLZVKeJ5HEATFjY5cOZI50NJyW6/XiwlDvV6nXC4XK0oy51oWvBNCFKvgQCF+yLoz0O/yJC21tVoNTdOKNCj5GjlZiOMYz/NoNBrFJEsWQZZF+uI4LooCS9FJ5ljLjk6jo6OFlViuvsn3qGlasU1ub7fb9Hq9YqKlUCgOzuzsLPfffz+9Xo8LL7yQpzzlKcV3aXFxkYceeoi5ubnCLdPpdLjnnnuKtEqgcNWtWrWKmZmZwvkGfaF2dnaW+fl5tmzZUtwIbdiwgdNPPx3TNBkbGytuop5soeNAAsrBUpf2fn5QxNl7+/5WsZVYo1AcmpmZGXzfx3VdWq0Wvu9TKpUKYUUu8siUH+kyls4S2SxBOvuke0X++L5fiCRSxJAOGnisvk2SJEW8iqKocPUMpjlJt450zgwWMB4sOCzFmEGHy+B+UijaunUrX/jCF2i1WkB//vS85z2veM+9Xq8YQ7lcLhbhoijCsiw0TaNUKhXzMzn3WlhYUPFHoVAoFEedU0aoEUIMFbYzDIPJycmidoxsESnzndvtNsvLy6xatWpoJUVOLuQ2ubLieV4hugyuPsk87sXFRXzfL44hU6DkOev1erF6I229hmHQ7XbpdDpFcT+5GuV5HqtWrcLzPLZv387y8nLRklLWthksKpznedHxSgo3o6OjQyv7QCHwVCqVwqrc7XaL9Ar5nuRKlEKhODRxHDM3N1fcfGRZRqvVYtu2bfR6PR544AG2bdtGHMeFg02KpIOruXEcF6mPY2NjhSgs7f5SDO71erTbbR544AG2bNlCr9fj3HPP5fzzz6darT7hOjVHymB9nsF6D/sbw+GMSd0kKRSHRxiGxeKNaZrMz89TrVbpdrvUarWh+jJSiJGijRQoDMMoYpdMNxpshz2YtiSdy1IAkYKQdN3ILpq9Xq9I05TpRcA+zRAG/y+/94OdovZXZ0bTtH1EGsuyuOqqqzj33HMLZ/Fgi3LpspHzJ7mwlSQJlUqlmDe5rsvExIQqdqtQKBSKo84pc6e9ffv24o9ypVIZWiUZ7NSk6zpxHBOGIb7vs23btkLgkIX45IqT3LfdbhdCUBzHBEFQ1JaxbZt2u13kc8sbFWkxtm27sCTL+jNSmJHF8GT6URAELC8vF+JPp9Oh1+vRarWKosOe5w0JMHJipOs6U1NTlMtlbNsunENJktDpdIiiiOXlZSzLwnVdfN8ny7LCklypVIrVpnK5XLQJVygUh2ZmZoYkSYpi3lu2bGH37t0YhoHv+0XciKKouLGRNa7kd1i6ax566KHiJkqKHq7rUq1WybKMcrlMo9FACEGn0+Hhhx/G8zx+8YtfMDs7y8UXX8zU1NRRq1dzIBHlSAWZA7lnVPqTQnH4SFfvxMQET33qUymVSqRpSrvdZseOHdi2zfj4eDHPgb77Ze/CvlmWFfMMOW9xXbeY28h5jRRP5DbpXJFuHXl8GdPkXGVQ9JFpUvBY5yfbtosuljLuDTpdpJAkRZovfvGLQ06al7/85ZxzzjlDi1iyE6ZMyZLp7YOCkBCCpaUlPM8r3NhyvqhQKBQKxdHklBFqZH0HWaBz586dxU3Q4B9+6ZwRQlAul4uaM1KIGWxLKQWTWq1WrObIYsW2bVOtVguLcRAE7Nixg06nM7RyJVOPkiQp3Cuy3bbMJ5cr5IM55LKwqHTljIyM4DgOk5OTVCqVYvXJ9/2ieJ9MuzJNs0ivGmw1aZomS0tL7Ny5k+npaWzbptlsAo+tcklXjXQFKRSKQ3Pvvffi+z7NZpNt27YVNyOjo6PF6q5pmoVAK7+Xg647maYQBEFRY2vQ8i8FZ3mzIpE1uGq1Gjt37mT79u1Fe95BnkyXzd7FR/e3/UBpUXs/3vs1SqBRKA6fer3Oaaedxtq1axkZGSnq0qxbt45t27axtLREnudMTk5SLpeBvtNEiiky/UfTtKKezWARYXisy5JlWYWYIoUaWdR3b0edXIiSooesAzjY2ntQTJHuG9d16fV6ZFlWNHCQqdtZlvHggw/yuc99rqhJY9s2V111Fc961rMKMUfGkb3FFukYlulacn95bBmTAbVQpVAoFIqjzikj1IyPjxfFfGWutRQuZPcAKWDImyVZ6FcW5JVFgIFCaEmSBNM0i1Uqy7LwPK+YlAxaiWu1Gp7nFR0F5Kq5rDuT5znVapVWq1WsrMubOOmqkakQ1Wp1qN7EYFpSGIaUSqViwmPbdtFFSq4mOY4z9HrZWlyu5suiejLtQr5vef2AItVKoVAcnF27dg3VeJI1rbrdLvPz8yRJQqPRGCqkKdMRZBokMFT0e9C1N5iaIFe15Y/rusUx6/U6i4uLRT2rvYtwPh72J64MFhI9nCLDg8c5VB2aIylCrFCc6sh5z/LyMmEYDv3dr9VqJElSFM+VNfnknEjObwadJpZlFeIFPFYYXM5BBgWbPM8LEVkKL3IfOS+SMUu21x5s7y3jnKZpVKvVwvUjxy3TrUzTxLZt7r///n1Emle84hWcd955+617NZhOBY/VARt0zAzGyCzLCleNWqhSKBQKxdHmlBFq8jyn2+3Sbrfxfb9oLy1dK47jFC27paghXTLSGuu6bjHpyLKMWq1WiC8jIyP4vl9MQuQEIooigiCgXC5Tr9eLlSo5cZGr5bJgb6PRoFar0W63CYIAz/OKlAa5mlWr1ZicnCzaa8qJjXTPyIJ6chW92+0W6U+6rtNoNEiShJ07dxYtOGVK08jISNExarA1p7xZNE2zEHvkeRUKxcGRcUGuyLZaLVqtFg8//PCQKAMMCbyDAoyMExKZSjDYnntQpJE3Hc1ms3APOo5TOAQPVJz3SC39+3vd3m23D/XawceHSpFSqU8KxeFjWRZJktBqtQqXi0zblnOGUqlEt9tlbm6ucMpI0US6+OT8YfC7LevbeJ6H53lDThXf9wvXiVwYkq8dFGxkR05Zx0/Oc+SCmhREPM9jbGyMxcXFQmQCivna1q1b+Zu/+Zt9nDTnnXdecd7BGDXo7Bn8Fyjq60jk67MsKzp4ep539D40hUKhUCg4hYQa6XIZdKjIP9qyOPDgpMCyrKLlbbVapVwuY1kW3W63qEEjV6qluCMLE0unjJwYyE4uYRgW4sxgobzBGyxZjK/b7Q6JQ6ZpDnVqCoKgcLnIiVelUikmVnEcs7S0VLhe5LHkMeSNoJyoeZ5HuVym0+kU3aSkI0dameUNoTyHulFSKA4PWROr0WgQBEHhZpE3T+VyuSjQLZ8b/I5JR4x098l/ZQFM+T2Vq8EyZsgUKrmaLVe75bEGb7pkBzzpojtSDieV6VCvfzwpUQqF4sAMdnIECkesdAxPTU3RbDZZXl5m+/bt9Hq9InbI+Yecd8RxXKQdGYZRxK1KpYLnecW5ZCfNTqcz1G1Szh3kXMK27WJOsry8TLfbLVK95bxKdtocHR2l2WwWaVJyDlcul9m6dSsf+chHmJ+fB/oizatf/Wqe/exnD4lHg80VBsWbwTRS6RAajDGDhY5l3JRCkUKhUCgUR4tTRqjRNA3P8zBNk1qtNjSBkKKFzHmWdWwsy2JsbIxGo1GkPUlxRDphsiyj3W7TbrdZWlpC13Wmp6cpl8uFTVdOTtI0pVqtFukPvV6POI6L4sSy0KjsOCAnEbIblBR3Op0OQRAAFI4fmRIl07larRZLS0uFaBRFEdVqlUajURQIllbjwZQquTolW4cP5olLYcr3/UKsUigUh0bWWJA3C9VqFV3XWVpaKmKDvHGRNwqSwY5O+1sZliu/8tjlcpkwDItuL4N1Iwbb18qbFuivSt91112sW7eODRs2rKj0ooOlTykUioMThmHh5Bt0BMvvlOd5lEqlwiEyMzNTzHOku6ZarTI+Pg7A/Px80QlyYmKiSKUyTbNojCDTo4QQxVxFCjjSTSPTi+RcSrqT5dzE9/0ihklHsBSaS6USQFFD5yc/+Ukh0jiOw//xf/wfnHfeeUMFjaUgs7eTZvD5vR1DksFxShejSv1WKBQKxdHmlBFq5ubmio5HpmkyPj5epCb5vo9hGIyPjw/VepGTgSzLikmDTBMarHEzKOjIOjNJkrC4uFicL89zwjAsOjS12+1iRUiuiHe73SKlStd1Op1OIcLI8w8W3pOv8zyveC+yJs1gOpTjOIyNjRGGIUtLS8VNWqlUKgQlKVTJFCs5wQmCoFj1kitRsrW5zFFXKBQHRzpkZFFK+b2X3+3BGydZ3Fy67GTh8r3rKti2XQjIg2KN/FfedDiOw/LycpFKsGPHDkZGRpiamqJUKhGGIUEQ8PDDD+O6LmvWrClE2P3drOzNkYo6+0uVOli60/5StJSjRqE4PGTNOvl9GyyoK+cSnU6nWJDxPK9obtBqtYq06CiKio6R9Xq9qMcni/lKcaVcLg/V1JLp2b1erxBZBtOr4DEhWwpEcn4jH4+MjOwjNsvX/+M//iN/+7d/C/Rjyute9zouvfTSokPVYDeowbgx+O/eIvjesWVQPJcp4XJ+qFAoFArF0eKUEWqkMOG6LkAhtshV7MHCwfDYH2MpTAw+JwUXKbRIsWRsbKy4OZKrLa7rYppm0e0pTdOiWLFEFuaT6UVyggEwNjZGuVwmSZJiFX4wTzqO4yJnW6YlyUmM7PQkbcKDqUuyLoY8v0x9CMNwqJODHJcUcWT6lBBCrSgpFIfJYBqBTFmCx25QZP2HwXaz8nuaJElRC2KwSK8UeqQoI+ORrC/VbrcLF5x067XbbRYXF5mZmcG27aKzXb1ep9VqMTMzU8S8vW9g5Lj2drLsnSJwuALK3vsNph8ooUaheHKQiy+DNWbgse+RdAPLpga9Xm+oE6YUmOfm5grHn4xZcg4g50Fy7iI7JMliwDKmSFFIupsHBeXBRSjZNSoMQ7rdLp1Op2iQIMdtmia/+c1v+OxnP1ukc61atYoLL7xwaH4zmKq9d+wYdNIMXhO5mDXY7VK+zzzPieOYhYWFY/chKhQKheKU5JQRakZHR4saM9IVI2248mZmMJe62+0WqUHS5jpY10ZOVICiPk2e54yPjxc3ZXIyEkURQoiiRkWSJHQ6naJjCzzWeapUKhW1cgZXmXzfx3XdwsWjaRrtdru4IZP1caSDR6ZWCSHYtm0b27dvp1qtFivwnucxOjpa3JAlSUKv1yuKjcpJmpyQhGHIyMjIUMFAOTlSKBQHZ1BoGeyGIr+v8mZhbwFVOuOkwCNFXtnJTcalQXFWxgt58yVvmGQMkvFJOuziOGbr1q1EUcTs7CwPP/wwjUajuHGTK+eSQbHmYE6Yg23fW/A53Lo0EpX2pFAcHlL0lULJYCODOI6LNG8ptkhHrnShyGPImjHSMTMorA4W35XOY+maGWy3LbtqDtbDko5BeS5Zo0b+yPlVu90uYmQURWzdupXNmzfT6XQAaDabvO9972N6erpI25ZzNymwDKY2SfZ22sj3Ih2LMj5LsUuKVq1W65h9hgqFQqE4NTllhBopikhxQQotMp1HCjJ7rxYNtuYWQhS1XiYnJ2m328UKkO/7xaqQZVnFeaUzJ4qiQiSSXRLkDZSsTyNXkaQDZnDyJHO+ZQE/eaNm2zZBEGCaJnEcF+9TriKFYVi06K1UKoUjplKpFBMu2d53ZGSkuEmUEyvP86jX62RZVuwvj6lQKA4PWc9Kpj0BhWNmsNaTFDAGa2ENFgLd20EjRRcZJ+TNiOM45HnOzMxMURy02WzSbDYplUpFTQrp2NmxYwdzc3OUSiVuvfXWwoE4NjZGpVJh7dq1TE5ODrl29ud+GeRAYg48VgB97zoR++NAIo5y1CgUh0bOMWSskXFCzktkhyU5L5ELOrLzpBQpJFI8kXMlmZ4p3cmDhcsHnYPyOy8Xr8IwHGrxLVOUZDq6rNMn41+WZfR6Pe68806+/vWv8+ijjw6NS4pDgyL4gZx4g27BwbRReX0cxyl+pLAkXTlSGG+328fi41MoFArFKcwpI9TIVejBwndAMdGQQkq73SaKIsrlMrVajWazWeRl+75fuGTkZESueFcqlSKHWk4y5I2KXEmSkxE5+Rl0z2RZRrfbLZwxUigZ7OgiHTdy4iUFm0ajUaRMyRUggE6nw9LSEp7nUavVcF23WFmHx26WZC0MoOiiIG8UdV0vatj0ej2Wl5cLAUsWCVQoFAdHCr7yRkWmCAwWuRxMW5I3OnunHjWbzaIopyz6LeOBfN3eN0y2bRPHcfGcPJ7s0AIUNzhSmJXf9ZmZGUqlEjt27GDNmjWsWrWKWq1WdMGTMS6KInbu3EkcxzQaDer1+lAtCVmnS95wyboZg8LP/thfWpUSaRSKw0cuCEn3ilwMgsdSlgZr08k0abmwJb9rUtAYLGwuC/9KZ7L8t1KpDDlT5Llk/AGKhal2u80PfvCDIt0qTdNivnTmmWdSKpV45JFHePDBB7n77rt59NFH97tQFAQBu3fvLs4nY5usNyhTRRcXF4t0UOnQGUxBlcJ5FEVF44Y4jotrIV05arFKoVAoFEebU0aokVZbuYojV0vkqs+gcCIL7Mo/9HEcE0VR0RJbpg/JzlFpmhIEQWErll0UpJCSpmnRTUremMjJCFCkN7muW0wW5HOy5szgypJMpQKKCQc81qFBWoEB6vV6UUhQ1uHJ85xer0eappTL5WL8gzdSwFBBUTlJcV23cBep9pQKxeEhY8NgWsFguoAUa+WNk9w++Nz/v70zD7KrPNP7c7vvcu7e+ya1Wi0hCSQ2I5l98xiL2GaIk0nBxCmPZwqnIAzEGBMC5anYuFLGZsYMccbYMx6WjPGWGhuPJyE2ctkIjGBsCQFasBa0tnpT9+2777dP/lA9X7/n9G0JCXWrpX5/VSqp7z333O/c1nnv+z3vJssVGNnleXl/0y5Q2GXGzeTkJFpbW424zCwcri0SiaCrq8uRdZdOpzEwMIB4PA6v14uRkREAQFdXF5YtW4bly5cb25NOp/HWW2+ZEs3FixcbW8WMnPHxcQQCAUxMTGBoaAi9vb1YunQpIpFI3Ukr9XgvmTyKokxRLBZhWRba29sRDAYxNDRkMmJohwCYzGAOEmCGCYNDLKWWfW6AqWw4ZhWzrwxFj2g0ikgkAmAqY1AKNvl8Hl//+teRy+WmrT0YDKKhocHRt49Eo1FcffXV6O3txc6dO83EO2Aqm09mE9H2jo2Nwefzobm5eVpGI8vCWWJO/wuAEcIBmF49iqIoijKbLBihRooN3CjJfg8+n8/UT7NMgSVM5XLZCBt0VOg0cJPh8/kc/RyYDlypVJDP59Ha2grg2GhLRpplSVU2m4Vt2wiFQiYazshWY2OjqdEeHx83ThAzZZqbm806UqmUSdNl9gyFKYo/wWDQjAan88X3YR06BR1gKrIkR1vyGhRFOTHpdBqNjY1oamoyQojMrqFwS9vEzZEszSyXy9i1a5eZfHLeeechHo+be5xZOIVCAWNjYxgcHDRNzCORCJqamhAOh03ZFG1hIpFAJBLBypUrzaaFkfGWlhY0Nzejs7PTiCT5fB7bt2/Hjh070NTUBI/HY7JvIpEIstksEokEgGNR7UgkglKphH379plyBNu2MTQ0BAA477zzHI9L5OZMs2kU5eT553/+Z1xxxRWmZLu5uRl79+5FKpUyvkylUjFTllj+Uy6XjT/izrSlnZJlQ1IwZpaNzNahz8ByJwammpqa0NTUZPwtZhfTlklYjnnppZfi4x//OJYtW+bI7pG9umTWTD6fRzabNRk7zDKSawZgMo6Y6ZPL5RCJRIw9DAQCplGy2iFFURRltlkwQg1H4EoBBID5mdGRcDhsorvMXKGQ4ff7kc/nkc/njfNSLBYxNjaGdDqNcDgMy7JQqVTMRosOATNwhoeHTY8YOg8sO+A6JycnTfouN1psEOrxeMxmj2m7zPgJBoMolUoYGxszjg77zDCa1NjYiHg8bjZGsmEgJz6xLpvXzRKFbDZrHCfZTFlRlONz8OBBR5mSe8qJx+MxDcW5oeGmSE5PYaYKSx9ZqsBNk8yYaWlpMectFApmcgoFIG5QksmkiXzLnlherxdLly41mTy0SX6/30yPotBD0Yfjd3lNXFsikYBlWYjH445I9MDAAJqbm9HR0VF3mpT7Z5lNoxslRTkx7777LkZHR/H6669j9erVWLt2LZYsWYKOjg40NDQglUqZCUYTExPw+XwoFAoYHR2FbdsIh8MIBAJob29HLpdDLBbD+Pi4maLJ+1ZOcJKPyWwbmbHLwE80GsUPfvADI37kcjm89dZbKBaLGBkZcUy7XL58OZqbm03Ws8wWlv6dbFDMoFypVEIymcTIyIixaSxTZwY1++9xNHkul3NM5LMsC9VqFel0WnvUKIqiKLPOghFqWltbTWmTdBaYSVMoFBy9ZVjiw/4tMl2XGSv8k8lkTAYOy4qCwaDZmDU0NBjxpFwuw+/3o1QqGScinU6bCS6NjY2O6DdTk/k3I/EATNS6ubkZhUIBHR0d8Pl8Zpw2N2uMAlF44aZqplpzOirVahXRaNQczzRhOiqyabKiKDPDaXDpdBq2baO9vR21Wg2Dg4OmPKixsdFMK6GAI7NqGMX2+XxGKKYtk6VPfJ6iEB/ntLtcLoexsTGz8WCkWNoWbrooBo2MjKCjowPBYNCRgSf7XmUyGaRSKVNqxUzAQqGAgwcPor+/39EjBzgmQmUyGbS0tBh7Uk+gOd7PiqLMDPvJHThwAEeOHMGmTZvQ3d2NlStXYsmSJWaiW6lUMgEp2hGWMlIQiUajRtBIpVLo6upylIkDU7aDMNNP9uxjZjL71MhjgsEgrrvuOqRSKWzduhW9vb1YtmyZycyhSMvgVSQSMYEjNltn6Sf9GNpCTvoEjolS9O0oVnu9XlM6zvdJJpMIBAIolUoIhUKwLAvJZFJ79CmKoiizzoIRaii0sB8Mv2T5hQ7ApP7KRpls2snXx2Ixs1nh65jdEgqFTCkRHQKZWgwA3d3djuPZU4aNirnJkRNcGBniVAM6N3RK2Ksil8vB7/djyZIlZhPGCQuMqnOaC4UlTn2IxWKIRCKmPr2pqcnRiJSbPE5+Yp23oignJhqNmt4HvL+Z5eL3+xGNRk0WCkVRACazhrZJZtzIRsMUZGbqM1WpVIw47PF4kMvlTKNxToKSTUPlxJbJyUlkMhnT44ZT5JqamgDA2BVGuNmElOumbWHTc9oc2hK5qavXQJmPS1SsUZT3RqVSMfdZpVJBKpVCKpXCnj17EIvF0NnZib6+PkSjUTQ3N8OyLBw6dAipVMp81zMDuLOzE4FAAH19fRgbGzOCLEUe9qwi7p5bFHg5nTKfzwOA8VPS6TQymQzi8TgOHTqEI0eOoFqtorW11RFwksJ0oVAw52U2Ie0dhzP4fD4zBCEcDiOZTKJYLJo+e4VCwQTY+JnJwBSPGR0dRSgUMudUFEVRlNlkwQg1rI3m5qNcLgOAETRYQsSsFkZ/OAK3XC6b0iBZCsWx1ixvkv0nmJkyOTlpyhCYGszNFaPW4XDYbJZyuZwRUujAyEa+sj+Obdum5ImRJL/fb8oUZEmEHPMbCoUctdncINHRYh237AvB571eLzo7O03DPUVRjg+dfpYRlstlkxEXCoUQiUSmRWilvWC55vj4uIkqL1682NyjLFtiv6tcLucYjUvhhRsrCs3ccMgeEwBMZmChUDB9ZmSpFu0OswSZCcjGn/J8gUDAiDIejwf5fB7j4+Po7+93ZPBIVIhRlNMH7333fZ5IJJBMJnHgwAFEo1H09vbiggsuQCqVMvd2oVBAOp1GQ0MDisUiLrjgAliWZe5f9pvK5/Om/xV9DgAOkSYajSIajRrRhWVNfJ/Dhw/jjTfewMUXX2x6BiaTSQwODmLx4sXGDlKkkWWizISmv8XJdYFAAKlUCvv27UNraysymYzJoGGADIDJ9qMdZrYf7ShLPukvUtRRFEVRlNliwQg1nJTC0ib2iOBGiEIMa505upaZNEzhB2Ca4bEcgam3+Xze9JuhM5FOp80GSmbiUIChw8RSBkab6YBkMhlTWsWJBlwL+02w5IqbKGYNucddUkBiyjEb70WjUTOinKnNHFNeKBSQzWaRTCZNJH1yctIx2ldRlOMjJ6YEg0HTh6qrq8v0oKEYKse/0l6w/wtFHplxQpslBWY+zkw+YEr84FQW9tKaKZOmWCxicHDQZMRQ6OUx3CDRvvj9fmP/ZHkCo9IscfD7/YhEIqjVakZIdgvC9dCsGkU5edivhfcbMCWMMqBULBZRLBYxPj6OgYEBM6WpoaEByWTSZBYfPXoUY2NjuOCCC9De3m5KjlatWoVMJoMjR45gfHwcPT09xmZIIZiZdeylRf/krbfeQigUQjKZxMGDB7Fo0SJUKhVkMhlUq1Xs27cPzc3NaG1tNdmD0n5QzG5tbUU8HjcNhGOxGPbt24fXXnsNtVoN/f39SKfTJjOHtoe+GG2KnPLJwBeFHTaAZ7BPURRFUWaLBbPTZn1zIpEwE5kaGxtNNJs9W2TE2OPxYGJiwhG14Zc7NyQc+Z1KpRxNhBmZSaVSpra7VCqhWCyiUCjA7/ebEqtyuYx8Pm82PHKzJUuWCoWCef9YLOYoieKGjOm9fEwKQSyVogBFJ8fv95tr4Tk4sYobyng8bjaKXJc6Kory3kin06hWq0gmk7BtG83NzWhqasLk5KRpKs7Jcpz6xvueEepAIIBoNIp8Po9isYhwOOwoeeKmw+/3IxQKoa2tzUSLuUmanJxEKpXCwMCAKYno6upyjAenuEIbwOw6iryVSgXZbNbYEcuyjC2Qa8nlcmatFIEty0IoFDJTp2TvCikSuXFPf5IT6BRFmRmWILp77skR1hRsqtUqRkdHMT4+bkqZIpGIyR7x+XyYmJjAtm3b0N3djf7+foTDYSM6swT78OHDaG9vR19fH6rVKgYGBlAoFODz+bBq1SosWrTIrC+TyWDz5s2OgNfQ0JBpalwoFBCNRk35JX0YrqexsRHhcBjxeNwEs4aHhzE4OIjdu3fj7bffRj6fN/25OPWytbUVlmWZgQ7M/JG2if4RhzVQPEomk+r/KIqiKLPOghFq5AhKACarhNktjPqwpIlZNBxhSZEjk8mYCHixWITf7zeTAChkcINj27YZTcv3YS11KpUyI3W5MQKOpdtS/OHGjeO1WSrl9XrNuVhKwd4VMtLE6wBgro0bQJYwsZabThrfj1lBbGjM0iym/RYKBTMpQlGU48P7ktlwra2txmawz0K9SWzE6/Wa/i9+vx+pVGpa6j0j1CyrlA3Jm5qaTNYebQEAI7xS2OUxtJfFYtGUKbDvDcfnMrpsWZaj/IDCTmtrKzo7OwEAsVjMNPXkOrkWCuPHg9Hu4/WtURRlOvQ5WLINTJX5ADACLLNuZKYL+8bQ50gkEkgkEvD7/RgdHUU2m0VnZyfi8TgGBwexadMmeL1etLa2YmRkxAxpGBwcNE3OGXxasmQJLMvCwYMHcfDgQTQ0NKC3t9c0921tbTXTJmu1mslKpP2S9o9+U61WQ7FYxN69e7F161YcOXIEoVDIDEWYnJw0WUHBYNCUrYfDYVPaRTtMv69QKKBUKpkgn2xWrCiKoiizyYIRargpkk4JpzfJsY7MHqHQwn8zMs0NCV9Lx0c6OkePHjWpuBRuLMsyUxSq1arJUJEOVCAQQLVaRTabNRsuTlUBYAQZj8djUnFlNg6FGK7F7/ebqVapVMox7pdlCXKDVavVkE6nkcvlEAqFTMYOM25YPiXPrSjKiZECjGzsycaU3PAAU9l/smkmSxxldg1fy+O48ZKCDYUg2X+BGYWMTMvGxQBMlk6hUMDQ0JDJ2uPmRJ6P9oHZftKu+Hw+tLW1YXJyEm1tbTh69KijLIo9eChiMSNops+Pzx2vPEpRFCdSlOF9w/ue9zWbAcvx2jJrbXJy0vSRmZiYQGNjIw4fPoyRkRFTTrRr1y6MjY2hv78fwWDQNC32+/1GdEmn0zhy5IhZi23b2LRpExKJBKrVKpqbmwHAZOZkMhkjUluWZWwaH2PJNrP88vk8hoeHsX37dgwODqJWq5njeL0TExPG1rH/H4cmsHcfxWaWXrEEPBQKGdvMPoCKoiiKMls0nPiQU+Pll1/GH/7hH6Knpwcejwc//elPHc/bto0vfelL6OnpQTAYxI033ogdO3Y4jimVSrj33nvR1taGcDiMW2+9FQMDA6e0HjoozDLhFz4jKcwmYSZLJpMx5T3lctk8z7R9lhWxNICZJgDM8dyc0SHhRCU21ePmi7XcLH3ilCYJG3vKzVu5XDbZLzJaz9fn83nkcjnTj4aPy1Ip2ZyPG0lOZKAjQgGI07KY6eOe8KAo84X5Zn9k6ST/VCoVMz42l8uZVHqZ+SJFXkZ5vV6vsVvyvuU5KfTwGijkst8Nm//K6VAAjF2R2Svu8iIp7gJTZRPAMbvHzRLt7NGjRzE0NIQDBw6gWCw6RorzPShEy6lV8o/MEuTzijKfmU/2h/cb72UKFiyDkr2w6J/wvpZNgeW5GKzav38/Xn/9dfziF78wfeyGh4exb98+bN++Hdu3b8fBgwfNe/l8PkSjUVQqFYyPj2PLli144403kE6nkU6nsXv3biSTSVPCFI1GTUCIpeQUjNgzkNMrDx06hN/+9rd49dVXsW/fPti2jVgsZvrVpNNpUxrOZuvst8dsRQbgPB4PxsfHTRaP1+tFuVxGOp02PXvU/1EURVFmm1nLqMnlcrjkkkvwZ3/2Z/ijP/qjac8/9thjePzxx/Hss89i5cqV+O///b/jIx/5CHbt2oVoNAoAuO+++/DP//zP+OEPf4jW1lZ8/vOfxy233IItW7YY5/69ItP25fQjbhgAGMGGX8R0WNgwT04z8fv9phEnRRY+zzG1LGHi5qhYLJpoDFNsmcnCKA7rwuWIXpZXyawdlk1RZOH1yQgT12lZlik9YMPiXC5nzs1UX24UOV2KG0heF6czMCvgZH8HijJXzDf7w7JLlhRIoYOCDEVY2StKNrpkZFxOX6JQTLvCc5fLZSO0cnNFG8ZSTD4nN2Msw/T5fEawlRl8XGc+n3dMeWFEmpvBQCCASCSCeDyOWq2G5uZmDAwMTMuMkYINMFXidDzk6xVlPjLf7I/sPUW/gfc+MDUZjs+zRElm28r7TWbw0RaMjo6aUutQKGQEZfasaW5uNn1ifD4fEomEGb9N+0Z/6fe//71j0mZjYyMSiQQOHTqEtrY2M+mSvlY6nTaCdDgcRltbG9LptMlSpg2jn5NOpzE2Noaenh7TJJiTrTjBrlKpmGsbHx9HOp1GNBo1QhEbLiuKoijKbDFrQs1HP/pRfPSjH637nG3beOKJJ/CFL3wB//bf/lsAwP/6X/8LnZ2d+P73v48777wTqVQKTz31FL773e/ipptuAgA899xz6O3txS9/+UvcfPPNJ7UeOhzMgpGNMflvRlj4GDdETAdmyRBT9OXmik01GblmJJivZQSrXvNMno+bFDpP8j3kJo8iEjdlzA5inx1GxvgcI2BMb2Z/G7lBk70t+JzX64Xf7zdr5+ZNZggpynxkvtkfCjVSlPB6vQiFQibCyz5WfI5lTtxIsMk3RVJmv7S1tZn7nKIwBWcApseUbdtIJBIYHR1FoVBAR0eHGTkr7+V8Po+mpibznrRTFI+54ZOZd7JMgiWZnJjCaXEUmZj1Q/vq3gTydzRTP5qZsn0UZb4wn+wPg1Oy7Fv6QvRx6KtI+8T1UjyW5Zt8TmbkcHImS5bi8bjpZzc4OGiyhzlRidl/zBDmeyQSCTOZjmWY8XgcqVTK9MZjH75sNmuas8diMSPisLdWtVpFMBhEPp83a+/v70csFnP0zGFzddrhaDSKRCKBiYkJ0ycnn88bP0lmGimKoijKbHBGetTs378fw8PDWL9+vXksEAjghhtuwKZNm3DnnXdiy5YtqFQqjmN6enpw4YUXYtOmTTM6Ku6yoXQ6DQB1BRI6CtxE0HnweDwmksMNEEfLcgPFKA0wlZUjM2v4WpZO0TGiM8QsHTpLMpolJ7DwPSggUajheG+ZzsxrYw8LZuiwJIJpzYxecXIVo+10zHiMFG6YASTHj6tQo5yNnAn7Axy7Ry3LMqn2LB8IBAKIx+Mmc4bRWtqAUChkmmVyOgkzXNhjgQIKMNVjhun9FGlt28bIyAgGBwcxPj6Ow4cPm+iytDVsKsxNznnnnYd4PI4VK1aYTRltAAUclk1xU3j06FGH/SmXy+a8ckNIm+ae4jSTSCPRjBrlbGS27M9MtsfdC48iC+0LABMwAqZGdtMn4OtkaaRbZOUfZtbx8YmJCSSTSdOMmBPp6AtRWOb0O/oZ9Eno98jsPfo9fX19CIVCyGQyxr/jZCnaEgrFzH6emJhAU1MTotEompqaAMCM2mZJOz+zQCBgGqUzA9Hj8ZgBE8Vi8bT8f1AURVGUmTgjQs3w8DAAmOaZpLOzEwcPHjTH+P1+01xOHsPX1+PRRx/FI488Mu1xOisATNSEUW4KNtlsFrZtT6s95vGMRgFwZM7QSeAXOo/n41L4kJErAI5IknSgGOmiQ8NrCAQCAIBisejoV+Nej0xx5nlZxgDAbOy4LpnZw39L4Yiv4fM6Hlc5WzkT9ofCLyO4iUQCY2NjqFar6O/vR3NzMxKJhOndAMD0gbIsC52dnQiHwzj//PONTcjlcti/f79jw0B7w2hyY2MjxsfHsWPHDrz11luYmJh4TxsM9n8AgO3bt2Pv3r344Ac/iA996ENGkKbtAWCadHJzl0gkMD4+joGBATQ2NiIWi5nMH2YCyvc4kT2pl3GjKGcjs2V/ZrI9vFcoQtAHkRmycmw3/QLZMJw+Cx+T5eK8b+mPyKxA2Yic4g1fL5uf8/3Zx4o+jcwkzufzJis4HA6bpsbVahWpVAptbW1mmicA0zhdTsuTWcdsQMxAHPuFRaNRFItFIwjZto1QKIRcLodisWh8xkwmc5K/eUVRFEU5Oc7o1Cd+URP55T0TJzrm4Ycfxv33329+TqfT6O3tdTT3ldFnmUJPp8M92QSAiSzJHhMsB6o3QYVf8HSE+JiMMPM9pfjDjB0phtBJ4nGs42aDUVkmIGvXuTFkNIuRLl6LPIdsNijLuWRPHj7HpsYq1ChnM3Npf1hCxHIi9lOg+MkyJ26UGhoaEAwGTXlRIBAw9yGjxLyfaTcKhYJjkl2hUMC2bduwefNmJBKJ9yVuFItFvPLKK9i8eTO6urpw5ZVXYs2aNaZ8lOvxeDymjKtSqZhINfs+cJPGCS5ugdn9e5E2yf17ULFGOZs53fZnJtvDgJS7KTC/2+nrADC2h/+Wx1BAcZc7uZuAy0xk+jMy44ZNe2UfLWbWAcd6c3G6JF/HwBSvxbIstLa2wuv1IpPJoKmpCaFQyJRLATDjxWu1mhGuKdTweU7DZMkWbbTP5zP9vJi5yPJyZkxrRo2iKIoy25wRoaarqwvAsahRd3e3eXx0dNREmbq6ulAulzExMeGIKo2OjuLqq6+e8dyBQMBknUhYs0znguIFMLUJYFkPI0vcOFHYkY6JnIjAaJGs23Y7Ru6Ikkwb5utkM053WVU9UUT2pWDEXjpeTAUGYCLgbIBHJ4wOkoyUSUemWq2acgVm2FBI0o2ScjZyJuwPBYmGhgYkk0kUCgWEQiG0tbVNi/ay+bcUONin5siRI6bfTKVSMVNJcrkcRkdHkUgkzObo9ddfx+bNm0/rfVooFLB//34cOnQIH/7wh3HdddeZiDkAU8LAzRpFo0gkYhp+VioVdHR0mM0TXyez+ki9tbuFHUU5m5gt+zOT7ZEZusxQkVPfaJdkabR8TgaypHDDc0vxhvBn9vsDYMRo/p3NZk3QSPbCow1hKWUmkzGCDkvQfT4fWltbMTQ0hIaGBixZssRc0+joqHk/ZuG0tbUZ4YjnohBDu0vblMlk0NPTg1KpZLIbec0sIeXnqCiKoiizyRkRavr7+9HV1YUNGzbgAx/4AIBjX8AbN27E1772NQDA2rVr4fP5sGHDBtx2220AgKGhIWzfvh2PPfbYSb8nhRm3yCIzZFgmJKMuwNSEA4o2dGgobnATxmOZ/s8JTLIfjmzqRweH7yczeOTGTkbZ6VwkEgkAwNGjR810hPfyGYRCIQBAe3s7AoEA2traEI/HHQ2NuR7Z7E9+hnSIGAFTlLOJM2F/ZDkBI7TBYBDhcNj0tWLZJLNpaHMmJyexb98+7N27F+Pj44hEIli3bh1aWlpQrVYRCoWMqJpKpZBIJLB161ZjI2aDWq2GX/7yl8jlcjj//PON4Cuj7dzIeL1ejIyMYGJiwtFY/YILLjDlBDIiT1SMUc5F5tr+sGE5bYn0O2RgSAaNgKnsXPokMngls4Qp1jDARRGZ8Fj6D8Vi0TFBDoDpo5VMJmFZlpluKX2uXC6HQCDgaMLe2NiI7u5uNDU1OTKAaItkoIoZNoVCwSESM+svm80ilUohHA6b5snsjyPPQRErGAye1O9BURRFUU6WWRNqstks9u7da37ev38/3nzzTbS0tGDJkiW477778JWvfAUrVqzAihUr8JWvfAWhUAif/OQnAQDxeBx33HEHPv/5z6O1tRUtLS144IEHcNFFF5kpCCcD65Clk8ENgxRIZPRJQoFF9mQAppr4ygkKdEZk7Tdfy9IE6SDxD7NiZPYNBRTWU09MTJiojhs2EZ7p2iuVClKpFACYv5ll09XVhY6ODhO9r1dywHXKBsWKMh+Zb/aHmyMKwXT02RyYmXHVahW5XA7JZBItLS1oaGhAuVzGgQMHMDAwYMqbvF4vzj//fOzcudP0nvJ6vRgaGsKWLVsc/V9mi8nJSWzZssXYD9o1Od2KDUO5OeO1s3Eos2zcQs3xRBp5jKLMR+aT/QkGg45sXymsuJuDS/9I+kXuTBoiM5NlObl74AJLvVkCKqdsZrNZZLNZU1Idj8cdIgoHF9B/Wrx4MVpaWkyZErMNS6USjh49aqY3yQmVhUIBmUwGpVIJ5XLZYXs5RCKdTiOZTCKXy6GrqwulUsmI5mxSzIwcXrOiKIqizCaz9m2zefNmfOhDHzI/s3b605/+NJ599lk8+OCDKBQKuPvuuzExMYErrrgCL774IqLRqHnNX//1X8Pr9eK2225DoVDAhz/8YTz77LOOqM97hem2wFTDTVmPzZppijfuem5+qcvmwDLLhsfLiQUccQvA4RzR8WDttWzix/4VMtWW43bdTlJDQwPi8Tg6OzvR1tZmpslQ3OEfCj+Tk5MYGxtDLpfDyMiImQqTyWSQyWSwb98+xONx9Pf3o6+vz9E3g5+D7KmjQo0yX5lv9ofR3lKpBK/Xi0gkgng8jng8Dq/Xi2w2i3K5jEwmg9HRUWSzWVx44YXo7OxEOp3GwMCA6beQyWSwadMmrFy5EqVSCdVqFel0Gm+//Tb+5V/+ZU7vS/auufrqq022kHuaDCffsc8O7dDevXtNmVRTU5NpBsrSBtkTw10SpSjzmflkf9irjvcShVQKxPJ+kwEnwCmK0tehXzGTD8TH6OPY9tTUN9qHQqFgJjFxDZFIxPSmoTDDQNL4+Dj8fj8ikQhWrFiBWCyG8fFxhzBTKBQcvlM4HIbX6zUlovSB6Gcx25m9vgqFgik55SQplmTRB2TPsEqlMidi+NnIk08+ib/8y7/E0NAQ1qxZgyeeeALXXXdd3WNfeuklx31C3nnnHZx//vmzvVRFUZR5j8c+x73fdDqNeDyOP/mTPzFN7eio5PN502R3bGwMw8PDSCQSRlyRDgj/zegUnRtGnYLBIDo6OuD3+5HL5RCLxbB69WocPXoUtn1sLCQjzsFgEMlk0rwvnYlAIICRkRETHcpms45xmwBMVJrv29zcjEsvvRSdnZ2Ox2U9uXwtPxM6K9u2bcPu3buRzWbNcR6PBx0dHbjxxhtN7bfMCGBGTalUwte//nWkUinEYrE5+G0qytkF7c/ixYvNZogO/+LFi7Fq1SrYto2hoSHUajXs2bMHExMTsCwLa9asQX9/P4aGhrBjxw5H491IJII//uM/Nun/u3fvxtNPP20i13ONZVlYt26dKa2kHaKdqVarZpMDwEyCKpfLiMfjuPLKK7Fo0SLHRtEtjrsj/fl8HjfddJPaH0WpA23PtddeC7/f7+g/R79GllczK09m/MphBrwPZTYwxRlZCs17mGKLz+dDsVg0465zuRwymQwikQj8fj8KhQKy2ayxF/F4HMVi0fhn+XweuVwOlmVh6dKluOiii0y56OjoqGkmHAwGzYAEy7JMVg8FF66LgStmJ/K6WIrKsicGspjtTBvEkvZ8Po9f//rXan8EP/rRj/CpT30KTz75JK655hr87d/+Lf7+7/8eO3fuxJIlS6YdT6Fm165djs+wvb39PQuS/H+uvwdFUc4ks2WLFkz+ZjQaNWVBdDaYHcJUVkaBZNSFGyMe19XVhdbWVqTTaSPMHD582IyFZJSGqc8sgWLaLdOBmW7L+mg6EKVSyTgy0iGKx+Pw+/2mpwUdkGq1ioMHD6KxsRG9vb0zCjUUWigqAceyjNrb23HllVdicHAQb7/9Ng4ePIharYaRkRH85Cc/wXXXXYcPfvCDpp6dnxkFL0VRTgw3IYRCJyeODA4Owu/3I5lMmvLI4eFhBAIB7Nq1ywipvOfy+TwOHDiAVatWoVar4cUXXzxjIg1wLLNmYGAA/f39piySGyc5zQWAie5TJGeJQa1WQyKRwI4dO1AsFrFmzRp0dXU5xGaZKagRbUU5MRQXZB86mWULTPWo4TGyNIqBKcDZUFiWQ8mMm8nJSUd2S1tbG5qbmxEIBJDP55FMJh09+fh+lmUZH40N1pllGAgE0NHRgdbWVmSzWYRCISP8VCoVFItFkw1DUYX9ZeibsR+hbKRMX4+fAQViKQ7XajVYlmUEG9nvR3Hy+OOP44477sBnPvMZAMATTzyBX/ziF/jWt76FRx99dMbXdXR0oKmpaY5WqSiKcvawYHbabF7HDYFsCEzxoa2tDYVCAS0tLSgWizh06JBxaAKBAJqamrBq1SosX74cQ0ND6O7uNk2DGZmRvRUymQxCoRC8Xi/S6bSJEjHdllk0Mp02kUggl8uZdft8Pixfvhx9fX0ol8toaWkxzgcdFL5uyZIljgZ3srGnjAa5x28Gg0GsWrUK559/PgYGBrBhwwaMjIygUqngpZdewuHDh3HTTTehs7PTEZVz9/FRFGVmpIDK8klGnrmx4djuyclJJJNJhEIhTExMGPvCLJNKpYKBgQEsWbIE/+f//B/s37//TF8eBgcH0d3dbTY61WrVlBXI/hYcc8toeldXF4LBICqVCvbs2YPt27fDtm1Eo1EzgheYEmkmJyexa9cuDA0NncnLVZSzgvb2diOOsrQok8kY8ZeiCbNaeC/yeQqijY2NRkzhpEgApucUp81xWh2DUtFoFE1NTabZOTOa6VdFo1FYloW2tjZj91i6xOzfQCCA5cuXIxKJoFqtmkCW3+9HW1ubWU+hUMDw8LCZVplKpczUSumvhEIhNDQ0IJ1OI5fLGdHI5/OZrOlgMGhsL9dTrVZNNpIGqpyUy2Vs2bIFDz30kOPx9evXY9OmTcd97Qc+8AEUi0WsXr0af/EXf1G3HEpRFGUhsmC+aSi4yKgzS4WYGssv+2QyCa/Xi66uLtMMs1arwe/3I5vNYvfu3UYk6e/vx0c/+lFTYy2zZ+LxOJqamuD1evHb3/4W27ZtQ7FYRCqVwsTEhGNNyWQSR48edUSJ/X4/Fi1ahJ6eHnR0dKCtrQ1NTU2oVComC4fXk8vl0NDQ4EgxZoaQbEhM0UZGxGSmzPLly9HT04MXX3wR27ZtM+UYQ0ND+Ff/6l/hkksuMes7lV4dirIQqVdhyjIgAGaqCUWayclJpNNpMyGKKfiyAeiRI0fwyiuv4NVXX50X/VvK5TIGBwexbNkyR6RcZvPJKD0nXQUCAdOr69ChQ8hkMqjVajh8+DAuuOAChMNhAFNZgSMjI3j99dfN6FxFUWaGgSGKMPzeln1lKJx6PB6Ew2Fks1n4/X5YlmWmtdHHkb1o2Oy8XC4jGo3C4/EgFAohFoshHA6byZIs9W5sbER7e7tZmywrp6jb0dFhsu0syzJ995ipw95+zPRhT0GWJBUKBeRyOdMwmOK2bdumnGlychLRaBSVSgWRSATBYNAIL7RT0jbxnJOTk0Zskn0MFWBsbAy1Ws2MmCednZ0YHh6u+5ru7m783d/9HdauXYtSqYTvfve7+PCHP4yXXnoJ119/fd3XMHOdpNPp03cRiqIo84wFI9RMTEyYZnX8gi2Xy44vbo5tjMViiMfjiEajpq8NozyWZaGjowPLly+Hz+fDxRdfjBUrVph6aJ6rXC6b9NxarWYcoWQyiYGBAUQiEYRCIXg8HiSTSezZs8eINA0NDWhrazPv1dfXh66uLliWZRoD0sniuMrm5uZp6cwAjPNFgYabHWBKaJGbJ4/HA8uycMstt2DZsmX49a9/jYmJCWSzWbz44otYtGgR2tvbHfXpiqIcH4oWcnytbdtIpVIolUoIBAIYHh52lPZUKhVkMhlHc+BCoWDu/UQigb17986rpt6JRAL9/f0AYMo5pT2SNjKZTKJUKmHz5s2YmJjAihUrMD4+bj6bdDqNQqFg7B1wTHDft28fRkdHz2ipl6KcLbDcJxAIIJlMmnuJ/eZ4f4bDYeMbhMNh8x3Px5lxAjibC3u9XpP5Rj+Kk5WYKcz3Y0BIllxZlmWy75hpzF45hOVacjomg2jMhimVSrAsCytWrDB9vFpbW42dLRaLiEajpjfW5OQkent7US6Xkc1mTV8bToCiAMDpdLweDp7Qfij1cWdayyxsN6tWrcKqVavMz1dddRUOHz6Mv/qrv5pRqHn00UfxyCOPnL4FK4qizGMWjFDDVFaKHQBMFIeN4dhXIRQKmYZ0nKTk9/uRz+cRi8Wwbt06XHXVVSbiREcmn88jlUqZqBKj5IwAsWa6Wq2itbUVHR0dKJVK+N3vfmdEmlgshiuvvNLUXnOqE7NjmKYsmxxThGGDYzmpQY75do/flI0A3T/bto3LL78cy5cvx09/+lPs2bMH6XQaL774Iv74j//YMUVLUZTjw/tQlh7mcjlEo1HTAFP2naJjy80KXw9MbbDYcHw+kc/nkc1mEQ6HjUgjy0Fpxxi95pQ7lkxQmGJZwtjYGMbGxhAOh429PHLkiCnTUBTl+DAIIyc1AVPl4Lzf6Bu4gzCyvw2hLeOUTAom7DNFISaTyZgR2gwMMRtCNgenOFsoFEwDYlnqKXvnMKOYNlM+R7+N1yR9PVn+JCdcyZ4z9JX4GpapspzLtm3j+7CfjnKMtrY2NDY2TsueGR0dnZZlczyuvPJKPPfcczM+//DDD5spasCxjJre3t6TX7CiKMpZwIIRakqlkilJ8vv95kuemwmm1FLoYMSFDgQwVarABnddXV0mMnz06FGMjIxgeHgYhUIB0WjUZMw0NDRg165dGB4eNlHicrmMiYkJbNmyBbt37wYARCIRfOhDH0JLSwtGR0dhWRZCoZCjltzj8cDv9yMUCpnyJpk+LEfjAjDijMQ9Dcr9szxPe3s7br31VnznO99BOp3G7t278eabb+KKK65QoUZR3iMym4Y/J5NJdHV1mZJKNhfm/cy+Etz0cBNFMYdR6PlErVZDKpVCKBQymyeZVcPRu7LUolKp4OjRo2a6CzMDU6kUXn/9dYyNjRk7RKGmWCye4StVlLMDDktgjxmKEnJYAsuCGhoaYFmWKS9hAIq2JxQKmUa99Buq1aoJYhFZUsUMForOFGEAGNtA4ZaTl9i/iuI1s2wYcOP6WfrEbJ9yuYwjR44gEomYoQgscW9oaEA+n0exWDRBuMHBQdMrkMIVA3N+v998DsyOZtaONhOejt/vx9q1a7Fhwwb8m3/zb8zjGzZswL/+1//6PZ9n69at6O7unvF5lrMpiqIsBBaMUJPJZEyNtNfrNdEfOgJM6QWmhAtmpFQqFZOxUiqVcOjQIfh8PoyOjiIUCiGVSmHPnj0YHx9HLpczEWU6JB6PB5lMxgg0dCy2b9+OrVu3Aji2gbnooosQiURMSQDrtBlh55r4JcXIjox4MXpGB8gtwtApkyKL3EDyGPlcV1cXbrrpJjz//POo1Wr41a9+hSVLliAajc7a70tRziVoS3ifVqtV5HI5M4pbNhFmKr+MNPMelhNWaLvmG9xgMQuI1y6zhCjGMBrPPjyVSsWxARoYGDCfzdjYGAAgm806SjgVRZkZBnGq1arJNMlmsygUCkZwoK8BwJQdlUqlab6DFFWYpUI/I5/PAzjmyzCD2Ofzmb429J9kSRNw7H6mzWNpE4UZCkXAsXIsHkfbJwUfy7Ic2cOcqMdeN/L4yclJ01CZjdr9fj8ikYj5DCqVihGrpB9F0We+ZTPOB+6//3586lOfMlnnf/d3f4dDhw7hrrvuAnAsG+bIkSP4h3/4BwDHpkItXboUa9asQblcxnPPPYcf//jH+PGPf3wmL0NRFGXesGCEGpnaKksL+Jzs4C+zVBjF4eO1Wg1jY2Mol8vYv3+/GUGbSCSMU8CpTczAkaN4uQnJ5XLYsmWLcVqWL1+OZcuWOXpZSPGFP8teDYwoScdHTniSmTZ0XgA4UnylAyJLpuSG0OPx4LLLLsOuXbuwY8cOpFIp/PznP8fHP/7x0/+LUpRzFHlfAcd6uIyOjiIej5vSR26QOL2NNoOiL+9jRofnI7Ikgj/L62a5KZt/UsThxkzaZwo62WwW27dvh8fjQTabnSboKIpSn6NHjzpKj2RmngzusMyH5UD0PyhMyICWLMNkiRJ9CgaXKHRkMhm0traa8dyJRAKFQgFer9dkrZTLZSOSUJwOBoOmPwxtRl9fH8LhsPG7JiYmTBYeM2fY/8/n85lG5HK9zMJhs2A+xmwhfg4UaWh7aW+Y5TifeoPNF26//XaMj4/jy1/+MoaGhnDhhRfihRdeQF9fHwBgaGgIhw4dMseXy2U88MADOHLkCILBINasWYP/+3//Lz72sY+dqUtQFEWZVywYoUamStL5l+IFMNUETYo43EwwKuz1epHP51EqlcwXvGziyygOv9hZ38z3LxaLqFar2LZtm9mc9fb24rLLLjNRIGCq6SaFGXd2DDc6XK9lWY4x4XJ8JJsJhkIh+P1+45wBcGTWcNIBnSxZhuHxeHDdddeZqSy7du06bnqqoihT8B6SfRIYLbYsCwAcZZbcMNAGMJIsRY/5KlSkUiksXrzYrNEtULmnq8isGwDTPiMK3Zs3b0a5XDZlTzp1TlFODLNgeH/RFlEYlY/JXjbuJrC8X6XIwywc+Zzf70djY6OZpEl/qbm52ZQW5fN5I46w7GpiYgI+n888xslOsjzS4/Fg6dKlZsIUA2OxWMxkSDN7hv7X5OQkmpubTTazDFLRpwOO+WYMrlH0oU9EUYaPl8tlx9Q+ZYq7774bd999d93nnn32WcfPDz74IB588ME5WJWiKMrZyYIRamSzPGDKMZHihzv7hBsBZqzwS55f9CyhAqbG6wIwExbC4TBCoRDC4TDK5TISiQSy2SxGRkYwMDAA4JiAdPnllyMcDpvGeHQG5Pn5HK9BCilskMwJDZxcQAeDAhIwlXHjjqiRWq1mGivT8eJnE4vFcOONN+LnP/85KpUKfve7383q70xRzhWk6CqbfJdKJeRyOUcvKTaudGe+yYae3FTNVxidLhQKJmOGGz/2mYhGo46pVvLa3I0/AZipMDyfu/eWoijToWgiSxFlaaIUg/mYLBFyC6e0S/IYCjX0Jeh7UExhAIsBq3A4bGwes2EAmPJ0ZgxTOKKtZKPa/v5+NDU1we/3IxwOo62tDeFwGIlEwhFU83q9yOVyprl5Nps118rMHK6bjdArlYoRgzKZDHK5nMlelgEzFWoURVGU2WbBCDXFYtGk8HIjQLh5oNjBRpccfV0oFJDP500UJRKJGEFERr5Zmx0MBtHU1ISOjg5Eo1H4/X6kUikj1rz77rvGoVmzZg1isZhj8hInRkUiEZMpIyNeEo7r5pr5c7VaNaVYdHq4IQoGgyaaJkur3FFsKeLQobroooswMDCArVu3GmFKUZTjw3uMZT2yrJEbmEsuuQSlUglHjx51RKsBmKkqvB8pxM5XuF6WHsjSAfaqAGAanLobt1OsJpOTk7Asy5RHMNJ9+PDhubwsRTnroC8ATH2PS+GYP7vFZCniyIxA2i53JhwFHPZ3YW8/ZgfTR6KPxbUwCEU/haISs3tlM/VyuYzx8XHEYjF0dnaiubkZfr8fHR0dCIfDaGhoQC6XMxlDzGBmJg/tDn9298+iMB6NRo0wQ5vEnj1yPYqiKIoymywYoaZWq5lIjYzUyswSNhq2LMtMVmptbUW5XEY2mzVjZFtbWxGJRJBKpczoyUAggJ6eHtRqNaTTaUSjUfT29pqmc5FIBEuWLMHRo0eRTqcBAEuXLsVll13mcEaCwSA6OjqQy+UQDAaNs1Aul1EoFIyT4/P5TKaMz+dDMBh0lHdxfCRLnTipis0Ea7WaGX0pM414/XSsZONhNv9ct24ddu7caZweRVGOjyyTpK0Bjm1ugsEglixZgv7+fhQKBezYscNMiKPdkvej7EM1H6nVahgfH3dMfqHIJMsRaIsCgQAKhYIjs0b2nCBuMXm+ln4pynyCgSYGehikkUEf2eRcisgURKVgI8uxac+AKeFCvgaAyU7m+7nLudmLplAoGB+Ha6T/RPsJAPl8HhMTEyiVSqbvDbN3GOSSJeCcLseeNfR36A9yKAOnOVHYkdnI/Dxoj9krS1EURVFmkwUj1Mi0XMDp9NOBYEp+c3MzAJhR3bZtIxqNIhaLmc2EjGgzykIng6m2AEztdblchsfjwfj4uHGG/uAP/gC9vb0YHh5GqVQyzgYdAdZr08lJp9OoVqsmg4ajI1kTznXImmo+LiddySwZWT4gJybIDB5ulvg5xWIxtLe3m/ItRVGOj9zgyAw8j8eDcDiMRYsWmelGfX19SKfTSCQSZpPgfq07K3A+0djYaCLSshk7MLW5q1arJgvQsixTmiCj2LKsk6+VU2dUKFaUE8NsYgBGLHb3oGFWjGwiLIUWZtJIoVRmBkq7JDNn+L4UgXi/+/1+0wydPkcgEEA0GnWUmLOZL5+v1WqIRCImKEVxJZFImOlSFF4AmMxk9vhiX0AK3Sy5ojjDrGs2HKYNotAVCoUcDdAVRVEUZTZZUEINoyEymi3Hc4dCIXR2dqK1tRUATNM7li1VKhUEg0F4PB6kUimzyZIOCgWSfD5vSpzYTwYAtm/fDgBobm5Gd3c3/H4/li9fjmKxaJrn2baNTCaDaDSKeDxuIjsUkNicT0bbi8WiaTBcr37c4/EgGo2a0gEpyMhIvYxC8fWAczRnY2Mjent7VahRlPeIezKbjD4XCgUkEgnTN6JQKKBYLDoiucD0jBJuPuZbZs3ixYuxcuVKh+gMwBGlpyhtWZYRxGkjgam+NHLSnbt8olgsYuPGjXN/gYpyliGzYmV2Cu9RGciSAg2Pkdk0tEP0LaQYwymUsr8dS5hYBuXxeBCJRExGC8dzs2SbzdUZcOJkqFAohEAgYJoST0xMIB6Pw7IsU+bN3jEc+sDsY/pQckomJ0txUhXLsXidFIFkzz6OF9eJT4qiKMpcsGCEGtl/hqU97AHh9XpNNMeyLORyOfNlTmGHX978kqajI0fJyibEMsOGDkKpVMLQ0BAAoK2tDX6/3zgXlmWZNN58Pm8aBrub+pZKJRSLRRN1kk6TjG4BcGyQ3Mfy3O5NnjwXmxIDU4IPRa1FixbNy02iosxHZKkPALNJYVki79F0Oo1Dhw4hmUw6BGC+hpshCs/z8R6MxWKIRCIOm8SNoMdzbJSvZVmOhqaMZrttlxSeKebIMlZFUY4PhRkpULj9FnevFvoyvP+kiCMbnLNZsHw9g1/y/Tn5kkMWGAyiDyYzfavVqmnyy2xm+iMtLS1obW1FMBg0ZU703Sgseb1eRwBOlmGxfJv9/EKhkONz4TG2bZvpUfJ1snxLlmUqiqIoymywYL5pmNLLzYHs4cJNz8TEBLLZrBFPQqEQfD6f+VlOE5B113LyE7/8ebx0dEZHR1EoFODxeLB8+XKTAcOmvHQQcrkcisUiJiYmjCNCx4Xr45rlxAam7RKZNQM4I/kUgsrlsnHa5DVK6OjJaFNvb6/5bBRFOT6cYCLvM9lguFQqIZPJIJvNIhgMIpVKOe5Xd6mC3DDMp14tHo8H7e3tjt5XLOOUjTlpR7lJpB11CzX8txSk+LnM19IvRZlP0NbUy27j9z3vJdlMmFkjbrFGBn3Ye0o2H6aQyr55kUgEwWAQPp8PsVjMCCCNjY1IJpMoFArGPgJTPa0syzIZL5ZlwbIsLF26FMuWLUNTUxMmJyeRTCaNH5fJZFAqlUwGDQNNtm0bv4vry+VyaGhoQEtLiykdL5VK00RlOYTBnWnMzB9FURRFmS0WjFAjhQ25SZDOCCPefCydTjsEGU4pyOfzJlU3EokgGo06+r8wSs7j6SyMjIwYhyQWi5mouVwDU/oZpSqVSua9ZORLnpfpy25hhs6UFFhkvxo+Js8r/5afnYywAcecllgshrGxsbn8NSrKWQ2jt7Q1Pp8PxWLRjJ0Fjo229vv9yGaz5j6UzYPlfcvo8XzB7/ejvb0dlmU5xCQp2jCiD0xdiyy7lJtJ2jO3MMOMRUVRjs9M4+xlPyjZq8a2bRPA4rSoepm38g8AMyqbZUThcNicmyO02ROmubkZ4XAYExMTSCQSJljl9XpNuVJ3dzcqlQrGxsbQ2NiISCSCSCSC1tZWNDU1oVaroampCR6Px9Gvj9M6U6kUCoWCEV74OVQqFRw5cgRerxctLS1obm42trRUKjmyoovForE95XIZxWIRfr/fvI+iKIqizCYLRqiRggRLfliO5J5CwI0BU11lrXa1WkWhUDAOBUuIKNSwxwTT+aWgsmfPHgAwaf/ZbLZuk2Om6vJcsrGv7OcgS5qAqRpxuaGRx8gGf+60XfdUGfkzAIcAxPMEg8FZ+m0pyrmH3OxIYSIcDqOjo8OIp+yFIO9nCqWyhJM26NChQ2fwqpz09PSY3lu0t9KmyAahRGYYAU6bRVvIx2q1mhmTq82EFeXEyAwR2iB5bzLTWGb5yaCWO7NPBoR4Lzc1NaG5udkIsK2traaUMxAIoLW1FfF43JRtl8tlNDc3o62tDW1tbZiYmDD9aWTZI6fBUezh1KZyuWxK1lkqtWTJEjQ0NJipm5FIBO+++67x5YrFommmLKdYcc2WZRnfUJaGNzc3G9G4UqmYUitFURRFmW0WjFADwGSTuKO3sqynXrkBnRh3j5dqtYpisWiySni87Dsjo1gcyx0IBGDbtolWyWwd6UjI6S4yFde96ZFCk7w2Psa11YuC0WHjMUSKNPL1pKGhQZ0VRXmPdHZ2mjGxFEvZr6WlpQUtLS2OiSMtLS0ApsoX5X3N0suGhgbk83k899xzJiJ9plm5ciWAKfshs/Rk7y8ADvFJbg5pA2UGn7TFhUIBjY2NZmqMoigzI4M5FGXcPWiYbUL7wnuQr+H96Q74hEIh9PT0YOXKlWhtbcW2bduQyWTQ1NQEr9eL1tZWNDQcm4TJABYnOHV2dsLr9WLPnj0Ih8Ompx/Fk2q1ikwm41gnA1V8nv6LZVkIhUJmwlU0GkVLSwvC4TB27NgxrbcVy6oo4PA5KRB7PMeaHheLRcRiMRSLRaRSKccQBkVRFEWZTRacUCPFBrcDIzNT5PNSwJE13DN9WVNwYSSITg8Fnba2tmnRK/eXv7snhYw482cKSDK65c7OkddCp0ZOfJCvkSVT7uuSnwVwbCPW1NR0cr8ARVmgXH/99aaJJlB/qhEfl2VO7selWAwcE31XrFiBN998c24u5DjEYjH09fWZUbZSfCYyU09OcKJwxb5dckIMX+f+W5t5KsqJob2Qvoy75FBms7Evi7tfC3vFBAIB0zB80aJF6OrqwnnnnYeVK1di5cqVePPNN1EqlVCpVBCPxxGNRpFIJIywGo/H0d/fj1gshmq1isWLF2Pv3r0mu9CyLKTTaYTDYWSzWSOUtLW1IRwOA5hqPkw7WS6XkcvlzFSoaDSKXC4H27bR39+PZDKJI0eOADjWA4diL4N3mUwGlmXB6/WarB/ZgBiAKVG3LAvxeBwTExNz90tUFEVRFiQLxtOlMyLFD5ldQsFDCjbuxrwAHE6LW9iR6cXyDzBV+w0c60EhBRT5b/focEaAWA4h4evkhobXJRsCc61yCosUd0i97Bv5PvLftm2ju7v7vf8CFGUBww2OFGHcmXvu8p96IoXcnPA1F1xwAXbt2nXGe7Z0dXUhEAg4yjnZk0vaNdlbS5Y0yYamtFeTk5Pw+XzTsoo8Ho+jfEpRlPrw/pJjuCnGSLGUASXen3wsHA6bvll+vx/BYBDxeByxWAwrV640PalyuRwsy0JPTw8OHDgAv9+PWCyGWCyG5uZmZLNZ+Hw+NDc3Y/HixSiXy6jVaujr60Nvby/S6TRisRj8fr/JPo7FYqanYC6XQyaTQTQaNVOYuE72nuE52feG/QRZXppMJhEOh+H1es1YcH42zISmH8eeNRy4EIlEEAgE4PP5EAwGkclkzvBvVlEURTnXWTBCjZwq4M6skXXXsidEvXIfwCmuuHELH/zSp1PR2NiIlpaWaVksspxJpiPLzBZ3OVI9ZNlTvXIuGUFjFFseV+9a5XPyeJ16oCjvjVqt5hhHLUt9+LM7iiuzZyhKyPJI2oqGhgasXr0ab7zxxgntw2zh8/mwcuVK0z8GmCqrZJ8ZOeVJijnyMTYSlSWZMutIXjsj3IqizAwDPBQZZE8aIsVglmRyWAKzXOi/hEIhtLa2oq+vz4zKZin30NAQRkZGzHGVSgXj4+MOH4P9+fi3x+NBT08PDh48iGAwiHQ6bewcy75Z8k1BRfbY4bG0O7SjhUIBxWLRZCNynV6v1/QfZAZfIBAwIg+zimivs9msaR7M/mCRSATZbHbuf5mKoijKgmLBCDVyEyQzaohskCcFGymkSKGHkSg+5xZaZOSY70+YLeMWg7iZq9crhw5LPdxii3Rc6pVDybKEer1r3CnS7nIpfk7zadqMosxn0um02TDxHqpWqw67wHtf2hd5T0u7xXuc/bKWLl2K4eFhk94/11x00UVoaWlxCMGyjEtmx/h8PkfZpvzjzmiU2TVuEUp7RCjKe4P3Icuxef+xZx/vV5/Ph/b2dixdutRMPAKAaDSKxsZG+P1+dHR0YPny5UYMYbbLjh07TCZKMBh0TLQEnIMS2GR4cnLS9Ndic2H2tPH7/cjn88YucgiCvA5gyneTNoTDDuhT+Xw+k9VYLpeRTCYdwlEgEEClUjFCM4Uc2cuH9sbv9xtRR1EURVFmk4YTH3JqPProo/jgBz+IaDSKjo4OfOITn8CuXbscx9i2jS996Uvo6elBMBjEjTfeiB07djiOKZVKuPfee0198q233oqBgYGTXo+7XMmNLFXiBooNgxlZoZMBwIg09c4jBRJ3LTWPATBN2OFj7tdwo+Yuqar3R16nu8RipvXy/d2Tn+Rn5z6vWwBSlPnCfLM9AJDJZJBKpZBOp5HL5ZDNZs1EE9nQkv8ul8solUooFotmw1Mul839KTdYbM557bXXnpFyxKamJqxatcpRQspyJZYJxGIxhEIhBINBRCIRNDU1IR6PIxwOm0h/IBCAZVmwLAt+v9+xUaIN4mZMZg4qynxivtkf+jHucmg5yZHjsC+++GJceuml6O3tRTgcRnNzs+kz09HRgfb2drS3t5tMmcHBQRw8eBATExPm3pRZdCylkhmFuVwO4+PjJvsmlUrBtm309vaitbUVPp8Pfr8fbW1taGpqgt/vRzweR2dnp5k0yfvf7/ebCXi8VvpKlmWhubkZLS0tpqSK2UQyo5HTnqrVqumtI7P8vF6vaQQfDAYRDofN+yiKoijKbDJrnu7GjRvx53/+53j99dexYcMGVKtVrF+/3jGd5LHHHsPjjz+Ov/mbv8Hvfvc7dHV14SMf+Yij9ve+++7D888/jx/+8If4zW9+g2w2i1tuueWkvyTd/VbcZU18zi2wuJtfUgxhGn9jY6NjCgsdCPcmgj/XajWMj49Py8KRPSncwot8zH1N9TJn3Jk69TKI6uEWfWaCn898GgusKGS+2R4AZgMgN038N9P6eT9zggnLFLjRATBNTOXP7Gd1zTXXYM2aNXMmYgQCAXzsYx9Dd3e32RAFg0Hzh2UTfr/fYSe5+aEwI8ud3OWezIaUgjYA3Sgp85L5Zn+kP0NbwhKelpYWrFixAuvWrcPll1+Ovr4+NDU1wbIsdHd3myyUeDxuBFav14tqtYrh4WHTC6ZQKEwTZWjn+If3svxDuxUOh9HT04NFixZhxYoVWLlyJeLxuOlzE41GTW8a9tdh099KpYJ8Po9cLodcLodkMolkMol0Om0E8FKphFQqZcRyTqCifWWpE0VjCs18D2DKfyoWi8jn81p6qSiKosw6HnuOmhocPXoUHR0d2LhxI66//nrYto2enh7cd999+K//9b8COLaZ6ezsxNe+9jXceeedSKVSaG9vx3e/+13cfvvtAIDBwUH09vbihRdewM0333zC902n04jH47j22munpcoCU+KE7E0DTBdBiEyzpWDDumlZ6uTeWNRqNbz88ssoFotYvXo1li5d6hBQZhJI3OtyI8WceuIMnz9RTx4ey/fk37IEisfwNW+88QbeeOMNpFIpxGKxE/4uFOVMcKZsDzBlf66//nojSMjor23bRsRgzyiWOXGz4/V6YVmWuR8pEjMjB4Aj+8S2bezcuRNCIHTdAAAnx0lEQVRvv/32rJYnBgIB3HDDDbjssstMeYBsRCobCLt7cUnbyccBmM2d7EFR7yuKzdX/5m/+Ru2PMq85075PW1ubI0MtEomgt7cXK1aswLJly9DS0oKJiQmk02kjHPv9fhQKBWQyGVPKxMyWUqmEaDSK4eFhR6NvoH7/P9oD9tmSYrMsSaL9m5iYwMTEBGzbxpEjRzA4OIi+vj50d3c7zi1FWynwusvGAWeD8kqlgkwmY7JkKASzBw3PVSqVkM1mUS6XEQgEpvXZKRaL+Kd/+ie1P2cY/j/X34OiKGeS2bJFc9ajJpVKAQBaWloAAPv378fw8DDWr19vjqHjv2nTJtx5553YsmULKpWK45ienh5ceOGF2LRpU11npVQqOaYjcXqA3ODUK4GSAoc8xp3Zwr+lU8B6b9nfhZEaKXQ0NzdjaGhomvBTbx1E1l67kc2K+dp64s9M2URyrTwff5ZlU+7X0ZEZHh6etiZFmW/Mle0BZrY/oVAIlmWZaDMnjABTmSEsG5LiDAAjtlAE4caIDT9ltg0AeL1eXHTRRWhtbcXWrVtNBt/ppKWlBbfccgsWLVo0LZvQvUniZo6ZP7xWlkfQ/vBnd9ml3OjRrrJMQVHmO2fa92HWbzQaxZIlS3Dddddh9erV8Hg8SCQSCIVCyGQyJruF5UGNjY1obW01tsvj8ZjmvKlUyiEsS6QvJCe0cbQ2MNVnizZBlpkzC6ZWqyEajaKlpQWhUGhaVqFszM6feW5et/SJZPYMmwhTPHf7Tl6vF5OTk/D7/cYvkr1xtOxbURRFmQvmRKixbRv3338/rr32Wlx44YUAYDb5nZ2djmM7Oztx8OBBc4zf70dzc/O0Y2YSCR599FE88sgj0x7naEnAKYa4M2aAqS94GdWdaQrUTEKOFDUAmFpnABgfH8f5559fN/tF9riRawTgmNIkqdeLRjopM431lc2VpTglr6setm2baJOizGfm0vYAM9sfptQDMJsQZtJQgJDiab1MOZn5xpG1jY2Njkw+j8djIsWMmB86dAh79uzBoUOHUC6XT/ozlPh8PqxevRrXXHMNIpGIY320T9xwuSfJ8G8pIrs3XNwo+nw+c0y9fhfuMihFmY/MB98nEomgvb0dF198MS655BKcf/75KBQK2L59u6OprtuXoYBRLpcRDAbR0NCAUqlk7keZ/Qc4A0AUh1jmGAgEHMMYgKmhCrL/n5z25PEc6wmzePFiYyOlH0ObKBuXS1+G56DNkH3A0uk0PB4P4vG4I/uPYg6vPRAIAICjbyD9QfqTiqIoijJbzIlQc8899+Dtt9/Gb37zm2nP1RMd3I+5Od4xDz/8MO6//37zczqdRm9vr6PRnTyHFCRkdot0Oog7E4cbEynGyPPJLBg6EjyOr3U3Euba3Gn/cvMmI1VyrbJsi5s4vofsh0Onw71pminLSL4H/10oFBw194oyH5lL2wPMbH+40WDpE6eosHTJto+Nt6VdAGDEmFAoZDY9UkiVYqzbvsjMm1WrVuG8885DLpfD/v37sWfPHoyOjprSqxPBdXd3d2PdunVYsWIFAEyzLzxW9s5xT6uTJZcyE9EtJsvGydJ2SXtI4UtR5ivzwfe58cYbzRjtUqmEbdu2mT4t8lzSb5FlQcViEYVCAQCmBXeIFFgpYlCIdmcnywwaKXywQTp9lHp/5OfGRsK2bTv6fMmplFIIkiO3uR42a5d2iXaXWUTMrqFNBY6JWMVi8bi/K0VRFEV5v8y6UHPvvffiZz/7GV5++WUsXrzYPN7V1QXgWORITioZHR01kaauri6Uy2VMTEw4Ikujo6O4+uqr675fIBAwURBJvdIh6fi7y4hkGYHcjMiGmIDT2ZIbJfkcN1I9PT04cOAACoWCqYmW0xAIo0BusYbHMFoke8y4N3IySs9zyg0USxDc9eU8r4yaSVGHf0ZHR7WZpzKvmWvbA8xsf+j8U1yQAi+jz5xKIu9tbpoAp1BcL+PGnfLP4wjH365duxapVAqjo6MYGhrCwYMHHcdxQ9Lf3w+/34/ly5cjFAqhubnZIfK6bRbXSDtJ5IZOrtttbxlRl6N3ZZaNzAKk0KMo85X54vu0tLTA5/OZsdgAHGKFvKc5QY6iCcUNIv0iQlFD+kbue15mzVE04cQ69ueSGTcsbSyVSnUDSzJ7huuVYgzLlDidyd1Q2efzGVtDcUbaI1lmysl1sg8Xs4QURVEUZTaZNaHGtm3ce++9eP755/HSSy+hv7/f8Xx/fz+6urqwYcMGfOADHwBwLIq6ceNGfO1rXwMArF27Fj6fDxs2bMBtt90GABgaGsL27dvx2GOPnfR6JO7yonrHurNX6kWy6o2zrtfXRUa88/k8RkZG0NXVNe04/rvemuutUU6TAmCcHgo3bgeH18KI2UzlW4FAwDTe4zhLuUkaHByccW2KciaZb7YHACzLMmn2cnMkBWD2cuEmSqbWuzNm5P3ITYu8j919b7ixYiZKe3s7Ojo6cOGFF05rfM7+FFI4khsvKdDwdbQ5AByRcR4ve9NQHJYbRSlKyw0cN0o8j7S3OnVFmY/MN/tTKpUcZUCyKbnMYOE9R8FDZr0AU/3ypL1y+0duu0Q/goILM2ps2zYZMQws8f15vPRb2C+Ga5ZCU6lUcoi40p4xe4ePuzP/+Dq36A3AkY3Dx2mTLMuqG/xTFEVRlNPJrAk1f/7nf47vf//7+Kd/+iczIQAA4vE4gsEgPB4P7rvvPnzlK1/BihUrsGLFCnzlK19BKBTCJz/5SXPsHXfcgc9//vNobW1FS0sLHnjgAVx00UW46aabTmo9dChktou77EmWRTFLxZ1BI7/cAefoS3cfGL6PjDZzIzYyMoJ4PO5wRuqtWZ5DZvG4I83yWHfDZPeaZLRevrfMyAmFQmY6grtnTaVSQTKZPKnPX1HmivlmewCYqSEApt2zgLOnFEVWwGmnZKYJAJOyL0si+Rp3Np3swcDXusURAGYDRdsny474vCxlkBPwZPYdN2WMWnPtzNajjeL5uE75efD9pMjDc7qPV5T5wnyzP7wHKbLIEh6ZgSttTbFYNOVEwJR9opjivv/d05+8Xi8ikQgsy0K5XDYT6njv+v1+I3ZI32dyctK8r7Rh7PFFWyTFE56T4jJFITke3N3TSr4n7Y9bkJZrks/zj5ZeKoqiKLPNrAk13/rWtwAAN954o+PxZ555Bn/6p38KAHjwwQdRKBRw9913Y2JiAldccQVefPFFRKNRc/xf//Vfw+v14rbbbkOhUMCHP/xhPPvss6cUzXBHfgBnyZMUY+iU8MufDoWM6sqeL7Leup4TAADBYBCxWAwTExMYGxvDqlWrHM7BTJsnucHj30zDlU4EADPVQEaJZCmFe42MaNHxoUPk8/lMRL9UKqFSqZgo2rvvvmsmWSjKfGM+2p565T4UZaStcQvCtAPSRvBvtz2TAok7O0++L3+Wk1KkbaE4LTNfaPfk692Zg3y9247J80vbKDdbPIcUq9xlmny9nMKiKPON+WZ/6mX9As7MX/egAgoyMqOEY7p9Pp8j24bCMm2JZVkIhULmWlKplBFpeB6eWwrEzObhecvlsillYpaNbR+bdiftgDwHe4BxspNsbC7FZvfnUS+LuV4mNZ/XZuaKoijKXOCxz3Fvl3PN169fj0AgUHe6iky1d38pNzY2IhQKGYfA7VxQGKlUKnUjNtIB8Hg82LlzJ/bt2we/348bb7wR8XjcvEZGfmbaCPHf7gZ9MutG/mHvC05dkBsnRr18Ph/K5bKp3ZYbNF5zrVZDOBxGY2Mj/uEf/gG///3vjWN1umfGK8q5Au3PnXfeiWAwOK2UAJhe1iQ3A3LzMVOPGvlvaZ/q2QxuqGTpANcix2y7hWuek9F5aaPcghPtaWNjo5kyNZOA4/F4TFNjHsMSKq7RLazzPcvlMp588km1P4pSB2l7ZENy2biX97VlWSbbp1AoIJPJOEQa3s/hcBherxeFQgH5fB6Tk5OIRCIIh8PmODZKj0ajCAQCOHLkCPL5vCmvkllyXAsDRqVSCYVCwQgtFHgoDHESFkUYaaMqlYoJMGWzWaTT6WkiDX0atyBD++P2D90DJGQ28uTkJL7zne+o/TnD8P+5/h4URTmTzJYtmpOpT/MBOhqkXuREThGQTS0ty0KlUjGZKrLxnoxASaFGiijSOenq6sK+fftQLpcxNjaGpUuXGqGHf7gmKcLIzBt34zu3EyKzbGRUmiM22QzPtm0UCgXHeF8pzMhpCOxXceDAAezduxcA0NraipGRkVn5fSnKuYQUT6SQ4RZfuJmS2XvuyK47o8Rd0ilFaNoOaat4HAURKfTK95BijhRu5TkI1+tek8w8nKlEC5jqi0Nkg0+3AO4ui1AUZWYo9MqsN3c5s8ycy2QyyGazxnehnSiVSkZ4lU2G6duwwS7PyamQzKjhe0uxRNqDSqViBCA5sUkKKzIDmOuTPksgEECxWEQ+n3cEz46XTeP2sWQp50xZ1rIEU1EURVFmiwUj1MjNi0T2R+DGSW4w+DNFFHcqv/y3zESRz7P+u1KpoK2tDaFQCPl8HocPH8bVV18Nn8+HQqEwbXMmNzf1yiK4bvd1yn/zOqTAxDRiOjx0xFh3LWvApaNWrVaxceNG89zatWvxwgsvvP9fjqKc41SrVeRyOce9zGgyNxm8r90CCoVVj8djIsTSTslyJ3dGncfjMfaHdozvy/eQJVDAlC2kUCM3djLzkBs1rk9uiuRGxm13aeMYwZdlFjKKT3vljv7z3zr1SVFODCcW8R5kZgvv6Uqlgmw2i3K5jGKxiEwm4xBBOJpb+j4yK6dWq6FYLKKxsdGci/cqM2Foq6TQwftYBqmkD1RvyiVwTDDi+tmPhr4R369UKk2zR8cTm90ZyVKs4Tloi7SJsKIoijJXLBihplwuO1JZpaAhH5P9arhxGBsbc2w63CUBfI07YiWnDnBzE41GsXjxYuzevRuJRAIDAwNobW2dFj1yR6Hdjoa71wXXIyPj7og3o2Gy/EIKWNIZkhtK/v3222+bbJqOjg4sX7581n5finIuwQa9wFRDXnf5Ip/jxsMt+s4kqEh7I4VebqTcwoe754sUQfg62h8pOMtIuNwESUFYZrrM1EOL11AsFme0pW77ROT7q1CjKCemVCrVbVAu/YRKpYJcLmcCOBw9LcUSOdlNlipKH0JmHUsR2F3SLZGCMLMN+X5u8YT+iZxMJf0Wvp/bb3KLNm5hRv7svk6eh2VVfA39KUVRFEWZLRaMUEPcqfPSaWD6vXycAoosS5DnYkTI7YS403vl65qbm02k/LXXXsOll15qokzupndyzTyP+xpkto0UmrjB4caP6ce8nnr12DxGRsgbGhowPDyM1157zThVF1100TSHS1GUmfH7/Q6bADjLnSg8MALtLq/k/cqoLo/3eDxm08DzcdPkLpeUkWJuwuqVbLJXFc8phWNGv+WIXgAmoi5tirRrbptbKBQcGzQAjj4aUrBipFyeV5t5KsqJSafTCIVCCIVCZlgAp9C5/Y1gMGh60fE+p51gnzvpE8lsOynKSIHEnYXs9k+kLyKzC3msFFxkSRQwJczQbyGyPNxtb6UNdfs/Pp8PlmUZW017Rlsn+2eVSqXZ/LUpiqIoysIRamTKLeCM1HITIcff8jFSLzJDJ4G127J8AYAjsiPFFK/XC8uyUCgUMDIygrfffhvnnXeeY+wl38MdrZYlD/J8dDq4PrnJYsqxW+hx98iQThE3SV6vF4lEAi+//LJxjlauXImlS5eqo6Io7xHeYxRA3f1XWGokj3FHfQnvT7k5YWNNaQekjeJzsukv4fvyOCmqyHJP96aLGyu5USMyIs7NnrQp8hxSgHFH7Pl+sscG16EZNYpyYkqlkrm/2DQ4GAyiVqshl8uhUCigUCjA7/cjEokYkUKKpwDMOGq3cAxMCSbu5r08vl5JprQJtFuyWbksWZIZOdKvqpeR6P5DZGDLsixH1iKvUY4bZzY01+kusUqn07P5a1MURVGUhSPUUMxwlxZJkYJTjORxMhuG2STSEWEKvrssQQpCfK10HBYvXox9+/ahVqtheHgYlmWht7e3bjmEPA8fk5k/3Li530+KUXJDxePqlVDJf09OTqJYLGLLli3I5/MAgLa2Nlx++eWOUipFUY6PLPnhhgZwTmzy+/2ORpVSrOBrZSmTe3KTFIgnJyfh8/kcQhCjwrRXfr/fIQbTzvn9fgBwTGYpl8vmWLlh4rm5Xr6Wx3EqHtchs294rIxc1yufqldKxT4UiqIcH4qtnKjU1NSE5uZmNDQ0IJ1Oo1wuw7IskzEjhwlIEQNwNtWVginLqd1+E+9lKdzK+9nn8xk75far3Jk5bqFYBs2A6T6S9Hd4HjlinHaQdrFSqaBYLJrrqVarKBaLjmxEnpOlV4qiKIoymyw4oQZwjrAF4NiAcAQkj3PXV8sMF2BqkyE3EdIZ4bGyzwJwrMdLqVTCoUOHYNs2Dhw4gFAohLa2NnMOeS73Rsd9DKknvNSLLrnP504BphCzdetWHD16FAAQjUaNSEOHRlGUEyMjyFIsllltMkuEtoolUbQv3Bxwugqf4zQUGaGW2SvS9tGeSKFDZunJTZG0ZTLyzawf2hspynDNMuPGnRkoxSoew+OkCCRLHqTNddszRVFmhvdwuVxGIpFALpczzbxDoZAZIsB7VmbhusuOpD/k9o0AmNdallV3wAKFZ4/Hg0AgAK/Xa5oCy4CWLIGqd6/LskpST7SRvlkgEIBlWY73oS8jy7w49UqKSrRpx1uToiiKopxOFoxQw2ae0hEBnCVM3Kiw8TCdBbkZ4Ws4OUFuZtwpwVKkkRsRnqO3txelUgkjIyOwbRt79+5FIBBAPB6vew1uoaVeORbfX5Y4ySiVXOfxzl2pVLB161YzfruxsRFr1qxBOBw2JRcq1CjKe4MNKqXYK/tKAc5sOSlaAHBsmCg6yz/urD/5XtIWuLPsuDYAJquFx8vzykwfacPq2T/5GAUkmQlE0YgCNyfPSQFLikgzlV7p9BVFOTHBYND4PsxgCYVCCIfD5j6SQgTgFEjlNDYpospAEEVh2i023m1sbHSUhcsySd7nUqThcVIAItJn47qlHZUZPXJ98k+1WjUTNqX4xOt0ZzO7g2Ckng+lKIqiKKebhhMfcm7ADYjcfABTKbZ0RCqViuk5I+ut3Sm07vPKaQFyoyU3UjINmH+vWLHCCDOlUgnvvPOOYxym/OOu05bZPtKRks+7r+G9RKILhcI0kebiiy9Gd3f3tCiaoignhn0gAGevBL/fD7/fb5ryskQJcJZL8fFwOIxAIAC/328ag7o3Rx6Px0xEcdsAuWGi/ahUKiiXy8bmSTFIikk8X7FYRD6fR7FYRKlUMoILNzmlUsnYUikkszeXzPKhzeR65VpkpiLFYSkkqf1RlBMTiUQQjUYRi8UQjUYRj8cRi8VMrxpZckg7xOw4Cim8z90iDe0OM2O8Xq/5N+2N9EWkX8V+NGwULsdyS9FWCinyD9dMgYjvL/0rd1+ccrmMbDaLfD6PQqFg1lOvv6Dbv3JnV2ugqj5PPvkk+vv7YVkW1q5di1deeeW4x2/cuBFr166FZVlYtmwZvv3tb8/RShVFUeY/Cyajhr1nAOf4bBk9ZoRGRo5l9Nkd+Wbk2C1+yLR9/i2zWWT6rMfjwbJly/D73//ebObefPNNLFmyBK2trdPKkWQfHF6LjDLLdblrtiVy7TIt+ciRI2YtwLHN1EUXXYTe3l5HxEpeg6Iox6dcLpvyAgBGKOG/fT6fY7Mg7zPaDh7jzmDhhsHdw4Xn4Pu6e1QRuenha6UtkfaL7y8bccpz0ZaSSqXiEKvdJRTuSLq7Cbr8fGRmEADNqFGU94gMVPEepHjBjBbeY9IWSXvD46XfIJ+T2TayfFKKuMCUn0LcQbB6Gc8yY1C+jo1/KeZSaJJBKWmv+Dq3f1evnKmevyV9HxWKp/OjH/0I9913H5588klcc801+Nu//Vt89KMfxc6dO7FkyZJpx+/fvx8f+9jH8B//43/Ec889h1dffRV333032tvb8Ud/9Edn4AoURVHmFwtGqJHlTe4NhjvDBsA0B4OR5nriixRx5AaL1HtPuWGyLAvnnXcefv/735uGdnv27EEikcDSpUsdZQx8jaydJtJxkmN9ZxJU5DorlQp27NiBoaEhc06/34/Vq1ejr69v2vUc77yKojiREV0AJvOF9yDFCv6b2SgUOOTf3ECwZw1LFyqVChoaGhAIBBz9auTGjPe2LJtiyYNsjsmmorSb/JmvYRkBANMsmP1puHFyi8ByE8e/ZZNiAKZfBNddLBYdGYo8TsdzK8p7I5fLwbZtM5IbgKPJd7FYnBaUmslHcmfmukULljPRXyLSx+K9K4VhKTLPJPZIEYeikpxyJ7NoZAaMRPpRMnjmFmjc5VPSlsnpoYqTxx9/HHfccQc+85nPAACeeOIJ/OIXv8C3vvUtPProo9OO//a3v40lS5bgiSeeAABccMEF2Lx5M/7qr/5KhRpFURQsAKGGX6i5XM70YHBHbqQzUC+qLR2Gel/QsplevewWIr/03dEev9+P5cuXY2BgwDSyGx8fR3d39zShRwo2fC/ppMh1yE2Q+/XyHIVCwSHSNDc344ILLkA8HnfUrsvXuTOHFEVxwnuDogRLAFj2I7ND3BFqCrTAVNaLHGXNUgI57pb2SvaBkQ2HaatYJgBMZeTIHjJy3RROKNRQZJJrY1mEu0zJ4/E4smrk6F05+ltunqStLZVKDsFqJlFdURQnvC/S6bTxCVg+yRLDYrGITCYDj8eDYDDoGJPNe1/ejzLDRPbCk9k0FIEIbQqf49/smyNtmMyao32Q66FNkSWRsjyKa2FJFW2EFHq5Ftmg3G1DeJx74hXft6Ghwdg5tT/HKJfL2LJlCx566CHH4+vXr8emTZvqvua1117D+vXrHY/dfPPNeOqpp0yGlBuW4pFUKgUAOi5dUZQzCm3Q6f5OOOeFmvHxcQDAhg0bzvBKTh7btrFt27Yz8t4TExMzfrm6yWQyMzZAVpSFDO3P9773vTO8knMXtT+KMp1MJgMA+OlPf3pmF3KOo/bnGGNjY6jVaujs7HQ83tnZieHh4bqvGR4ernt8tVrF2NgYuru7p73m0UcfxSOPPDLt8d7e3vexekVRlNPD+Pj4af1OOOeFmpaWFgDAoUOH9MsUxxS/3t5eHD58GLFY7H2dy7ZtZDIZ9PT0nKbVKcq5hdofJ2p/FGVu6Onpwc6dO7F69erTcr+dC6j9mX3c2dfuVgDv5fh6j5OHH34Y999/v/k5mUyir6/vnP+OPZ3/d+czC+U6gYVzrQvlOlOpFJYsWWL8/tPFOS/UMFWekw6UY8RisdPyeZzLX4yK8n5R+1MftT+KMrs0NDRg0aJFAE7f/XauoPbn9NPW1obGxsZp2TOjo6PTsmZIV1dX3eO9Xi9aW1vrviYQCCAQCEx7fKF8xy6Ue3mhXCewcK51oVynu2H++z7faT2boiiKoiiKoigLBr/fj7Vr105rM7BhwwZcffXVdV9z1VVXTTv+xRdfxLp16+r2p1EURVloqFCjKIqiKIqiKMopc//99+Pv//7v8fTTT+Odd97B5z73ORw6dAh33XUXgGNlS3/yJ39ijr/rrrtw8OBB3H///XjnnXfw9NNP46mnnsIDDzxwpi5BURRlXnHOlz4FAgF88YtfrJsquRDRz0NR5g6935zo56Eoc4feb07085hdbr/9doyPj+PLX/4yhoaGcOGFF+KFF15AX18fAGBoaAiHDh0yx/f39+OFF17A5z73OXzzm99ET08PvvGNb5zUaO6F8jvV6zz3WCjXqtf5/vDYOltQURRFURRFURRFURRlXqClT4qiKIqiKIqiKIqiKPMEFWoURVEURVEURVEURVHmCSrUKIqiKIqiKIqiKIqizBNUqFEURVEURVEURVEURZknnPNCzZNPPon+/n5YloW1a9filVdeOdNLOu08+uij+OAHP4hoNIqOjg584hOfwK5duxzH2LaNL33pS+jp6UEwGMSNN96IHTt2OI4plUq499570dbWhnA4jFtvvRUDAwNzeSmKcs6wEGwPoPZHUeYjC8H+qO1ZGJzs/+WNGzdi7dq1sCwLy5Ytw7e//e05Wun742Su8yc/+Qk+8pGPoL29HbFYDFdddRV+8YtfzOFqT51TtU2vvvoqvF4vLr300tld4GnkZK+1VCrhC1/4Avr6+hAIBLB8+XI8/fTTc7TaU+dkr/N73/seLrnkEoRCIXR3d+PP/uzPMD4+PkerPTVefvll/OEf/iF6enrg8Xjw05/+9ISvOS22yD6H+eEPf2j7fD77O9/5jr1z5077s5/9rB0Oh+2DBw+e6aWdVm6++Wb7mWeesbdv326/+eab9sc//nF7yZIldjabNcd89atftaPRqP3jH//Y3rZtm3377bfb3d3ddjqdNsfcdddd9qJFi+wNGzbYb7zxhv2hD33IvuSSS+xqtXomLktRzloWiu2xbbU/ijLfWCj2R23Puc/J/l/et2+fHQqF7M9+9rP2zp077e985zu2z+ez//Ef/3GOV35ynOx1fvazn7W/9rWv2b/97W/t3bt32w8//LDt8/nsN954Y45XfnKcqm1KJpP2smXL7PXr19uXXHLJ3Cz2fXIq13rrrbfaV1xxhb1hwwZ7//799r/8y7/Yr7766hyu+uQ52et85ZVX7IaGBvt//I//Ye/bt89+5ZVX7DVr1tif+MQn5njlJ8cLL7xgf+ELX7B//OMf2wDs559//rjHny5bdE4LNZdffrl91113OR47//zz7YceeugMrWhuGB0dtQHYGzdutG3bticnJ+2uri77q1/9qjmmWCza8Xjc/va3v23b9jEj6PP57B/+8IfmmCNHjtgNDQ32z3/+87m9AEU5y1motse21f4oyplmodoftT3nHif7f/nBBx+0zz//fMdjd955p33llVfO2hpPB6fjnl29erX9yCOPnO6lnVZO9Tpvv/12+y/+4i/sL37xi2eNUHOy1/r//t//s+PxuD0+Pj4XyzttnOx1/uVf/qW9bNkyx2Pf+MY37MWLF8/aGk8370WoOV226JwtfSqXy9iyZQvWr1/veHz9+vXYtGnTGVrV3JBKpQAALS0tAID9+/djeHjY8VkEAgHccMMN5rPYsmULKpWK45ienh5ceOGF5/znpSink4VsewC1P4pyJlnI9kdtz7nFqfxffu2116Ydf/PNN2Pz5s2oVCqzttb3w+m4ZycnJ5HJZMz//fnIqV7nM888g3fffRdf/OIXZ3uJp41Tudaf/exnWLduHR577DEsWrQIK1euxAMPPIBCoTAXSz4lTuU6r776agwMDOCFF16AbdsYGRnBP/7jP+LjH//4XCx5zjhdtsh7uhc2XxgbG0OtVkNnZ6fj8c7OTgwPD5+hVc0+tm3j/vvvx7XXXosLL7wQAMz11vssDh48aI7x+/1obm6edsy5/HkpyulmodoeQO2PopxpFqr9Udtz7nEq/5eHh4frHl+tVjE2Nobu7u5ZW++pcjru2a9//evI5XK47bbbZmOJp4VTuc49e/bgoYcewiuvvAKv9+zZsp7Kte7btw+/+c1vYFkWnn/+eYyNjeHuu+9GIpGYt31qTuU6r776anzve9/D7bffjmKxiGq1iltvvRX/83/+z7lY8pxxumzROZtRQzwej+Nn27anPXYucc899+Dtt9/GD37wg2nPncpnca5/XooyWyw02wOo/VGU+cJCsz9qe85dTvb3V+/4eo/PN071nv3BD36AL33pS/jRj36Ejo6O2VreaeO9XmetVsMnP/lJPPLII1i5cuVcLe+0cjK/08nJSXg8Hnzve9/D5Zdfjo997GN4/PHH8eyzz87rrBrg5K5z586d+M//+T/jv/23/4YtW7bg5z//Ofbv34+77rprLpY6p5wOW3TOCjVtbW1obGycpuiNjo5OU7jOFe6991787Gc/w69//WssXrzYPN7V1QUAx/0surq6UC6XMTExMeMxiqKcmIVoewC1P4oyH1iI9kdtz7nJqfxf7urqqnu81+tFa2vrrK31/fB+7tkf/ehHuOOOO/C///f/xk033TSby3zfnOx1ZjIZbN68Gffccw+8Xi+8Xi++/OUv46233oLX68WvfvWruVr6SXMqv9Pu7m4sWrQI8XjcPHbBBRfAtu15O4XuVK7z0UcfxTXXXIP/8l/+Cy6++GLcfPPNePLJJ/H0009jaGhoLpY9J5wuW3TOCjV+vx9r167Fhg0bHI9v2LABV1999Rla1exg2zbuuece/OQnP8GvfvUr9Pf3O57v7+9HV1eX47Mol8vYuHGj+SzWrl0Ln8/nOGZoaAjbt28/5z4vRZlNFpLtAdT+KMp8YiHZH7U95zan8n/5qquumnb8iy++iHXr1sHn883aWt8Pp3rP/uAHP8Cf/umf4vvf//5Z0d/jZK8zFoth27ZtePPNN82fu+66C6tWrcKbb76JK664Yq6WftKcyu/0mmuuweDgILLZrHls9+7daGhocAjQ84lTuc58Po+GBqf80NjYCGAq4+Rc4LTZopNqPXyWwZFhTz31lL1z5077vvvus8PhsH3gwIEzvbTTyn/6T//Jjsfj9ksvvWQPDQ2ZP/l83hzz1a9+1Y7H4/ZPfvITe9u2bfa///f/vu6IysWLF9u//OUv7TfeeMP+gz/4Ax1RqSinwEKxPbat9kdR5hsLxf6o7Tn3OdH/5Yceesj+1Kc+ZY7nSNzPfe5z9s6dO+2nnnrqrBrP/V6v8/vf/77t9Xrtb37zm47/+8lk8kxdwnviZK/Tzdk09elkrzWTydiLFy+2/92/+3f2jh077I0bN9orVqywP/OZz5ypS3hPnOx1PvPMM7bX67WffPJJ+91337V/85vf2OvWrbMvv/zyM3UJ74lMJmNv3brV3rp1qw3Afvzxx+2tW7eaMeSzZYvOaaHGtm37m9/8pt3X12f7/X77sssuM2MbzyUA1P3zzDPPmGMmJyftL37xi3ZXV5cdCATs66+/3t62bZvjPIVCwb7nnnvslpYWOxgM2rfccot96NChOb4aRTk3WAi2x7bV/ijKfGQh2B+1PQuD4/1f/vSnP23fcMMNjuNfeukl+wMf+IDt9/vtpUuX2t/61rfmeMWnxslc5w033FD3//6nP/3puV/4SXKyv0/J2STU2PbJX+s777xj33TTTXYwGLQXL15s33///Q7heb5ystf5jW98w169erUdDAbt7u5u+z/8h/9gDwwMzPGqT45f//rXx73nZssWeWz7HMozUhRFURRFURRFURRFOYs5Z3vUKIqiKIqiKIqiKIqinG2oUKMoiqIoiqIoiqIoijJPUKFGURRFURRFURRFURRlnqBCjaIoiqIoiqIoiqIoyjxBhRpFURRFURRFURRFUZR5ggo1iqIoiqIoiqIoiqIo8wQVahRFURRFURRFURRFUeYJKtQoiqIoiqIoiqIoiqLME1SoURRFURRFURRFURRFmSeoUKMoiqIoiqIoiqIoijJPUKFGURRFURRFURRFURRlnqBCjaIoiqIoiqIoiqIoyjzh/wNhgB/0Oww+aQAAAABJRU5ErkJggg==",
353
+ "text/plain": [
354
+ "<Figure size 1200x600 with 16 Axes>"
355
+ ]
356
+ },
357
+ "metadata": {},
358
+ "output_type": "display_data"
359
+ }
360
+ ],
361
+ "source": [
362
+ "# Assuming you have a list of stimulus sources\n",
363
+ "object_styles = shared_stim_set.object_style.unique()\n",
364
+ "\n",
365
+ "# Creating a 2x4 grid of subplots\n",
366
+ "fig, axes = plt.subplots(4, 4, figsize=(12, 6)) # Adjust figsize as needed\n",
367
+ "\n",
368
+ "for idx, style in enumerate(object_styles):\n",
369
+ " try: \n",
370
+ " img = Image.open(os.path.join(imgs_dir_path, shared_stim_set[shared_stim_set.object_style == style].filename.values[0]))\n",
371
+ " stim = shared_stim_set[shared_stim_set.object_style == style].stimulus_source.values[0]\n",
372
+ " except:\n",
373
+ " next\n",
374
+ " \n",
375
+ " # Determine the subplot position based on the index\n",
376
+ " row = idx // 4 # Integer division to get the row index\n",
377
+ " col = idx % 4 # Modulo operation to get the column index\n",
378
+ "\n",
379
+ " # Display the image on the corresponding subplot\n",
380
+ " axes[row, col].imshow(img)\n",
381
+ " axes[row, col].set_title(f\"{stim} : {style}\")\n",
382
+ "\n",
383
+ "# Adjust layout and display the plot\n",
384
+ "plt.tight_layout()\n",
385
+ "plt.show()\n"
386
+ ]
387
+ }
388
+ ],
389
+ "metadata": {
390
+ "kernelspec": {
391
+ "display_name": "brainscore",
392
+ "language": "python",
393
+ "name": "python3"
394
+ },
395
+ "language_info": {
396
+ "codemirror_mode": {
397
+ "name": "ipython",
398
+ "version": 3
399
+ },
400
+ "file_extension": ".py",
401
+ "mimetype": "text/x-python",
402
+ "name": "python",
403
+ "nbconvert_exporter": "python",
404
+ "pygments_lexer": "ipython3",
405
+ "version": "3.8.18"
406
+ }
407
+ },
408
+ "nbformat": 4,
409
+ "nbformat_minor": 2
410
+ }