brainscore-vision 2.1__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- brainscore_vision/__init__.py +105 -0
- brainscore_vision/__main__.py +20 -0
- brainscore_vision/benchmark_helpers/__init__.py +67 -0
- brainscore_vision/benchmark_helpers/neural_common.py +70 -0
- brainscore_vision/benchmark_helpers/properties_common.py +424 -0
- brainscore_vision/benchmark_helpers/screen.py +126 -0
- brainscore_vision/benchmark_helpers/test_helper.py +160 -0
- brainscore_vision/benchmarks/README.md +7 -0
- brainscore_vision/benchmarks/__init__.py +122 -0
- brainscore_vision/benchmarks/baker2022/__init__.py +9 -0
- brainscore_vision/benchmarks/baker2022/benchmark.py +125 -0
- brainscore_vision/benchmarks/baker2022/requirements.txt +1 -0
- brainscore_vision/benchmarks/baker2022/test.py +90 -0
- brainscore_vision/benchmarks/bmd2024/__init__.py +8 -0
- brainscore_vision/benchmarks/bmd2024/benchmark.py +51 -0
- brainscore_vision/benchmarks/bmd2024/test.py +29 -0
- brainscore_vision/benchmarks/bracci2019/__init__.py +8 -0
- brainscore_vision/benchmarks/bracci2019/benchmark.py +286 -0
- brainscore_vision/benchmarks/bracci2019/requirements.txt +3 -0
- brainscore_vision/benchmarks/cadena2017/__init__.py +5 -0
- brainscore_vision/benchmarks/cadena2017/benchmark.py +91 -0
- brainscore_vision/benchmarks/cadena2017/test.py +35 -0
- brainscore_vision/benchmarks/coggan2024_behavior/__init__.py +8 -0
- brainscore_vision/benchmarks/coggan2024_behavior/benchmark.py +133 -0
- brainscore_vision/benchmarks/coggan2024_behavior/test.py +21 -0
- brainscore_vision/benchmarks/coggan2024_fMRI/__init__.py +15 -0
- brainscore_vision/benchmarks/coggan2024_fMRI/benchmark.py +201 -0
- brainscore_vision/benchmarks/coggan2024_fMRI/test.py +25 -0
- brainscore_vision/benchmarks/ferguson2024/__init__.py +24 -0
- brainscore_vision/benchmarks/ferguson2024/benchmark.py +210 -0
- brainscore_vision/benchmarks/ferguson2024/helpers/helpers.py +251 -0
- brainscore_vision/benchmarks/ferguson2024/requirements.txt +5 -0
- brainscore_vision/benchmarks/ferguson2024/test.py +114 -0
- brainscore_vision/benchmarks/freemanziemba2013/__init__.py +10 -0
- brainscore_vision/benchmarks/freemanziemba2013/benchmarks/benchmark.py +53 -0
- brainscore_vision/benchmarks/freemanziemba2013/benchmarks/public_benchmarks.py +37 -0
- brainscore_vision/benchmarks/freemanziemba2013/test.py +98 -0
- brainscore_vision/benchmarks/geirhos2021/__init__.py +59 -0
- brainscore_vision/benchmarks/geirhos2021/benchmark.py +132 -0
- brainscore_vision/benchmarks/geirhos2021/test.py +189 -0
- brainscore_vision/benchmarks/hebart2023/__init__.py +4 -0
- brainscore_vision/benchmarks/hebart2023/benchmark.py +72 -0
- brainscore_vision/benchmarks/hebart2023/test.py +19 -0
- brainscore_vision/benchmarks/hermann2020/__init__.py +6 -0
- brainscore_vision/benchmarks/hermann2020/benchmark.py +63 -0
- brainscore_vision/benchmarks/hermann2020/test.py +28 -0
- brainscore_vision/benchmarks/igustibagus2024/__init__.py +11 -0
- brainscore_vision/benchmarks/igustibagus2024/domain_transfer_analysis.py +306 -0
- brainscore_vision/benchmarks/igustibagus2024/domain_transfer_neural.py +134 -0
- brainscore_vision/benchmarks/igustibagus2024/test.py +45 -0
- brainscore_vision/benchmarks/imagenet/__init__.py +4 -0
- brainscore_vision/benchmarks/imagenet/benchmark.py +50 -0
- brainscore_vision/benchmarks/imagenet/imagenet2012.csv +50001 -0
- brainscore_vision/benchmarks/imagenet/test.py +32 -0
- brainscore_vision/benchmarks/imagenet_c/__init__.py +7 -0
- brainscore_vision/benchmarks/imagenet_c/benchmark.py +204 -0
- brainscore_vision/benchmarks/imagenet_c/test.py +57 -0
- brainscore_vision/benchmarks/islam2021/__init__.py +11 -0
- brainscore_vision/benchmarks/islam2021/benchmark.py +107 -0
- brainscore_vision/benchmarks/islam2021/test.py +47 -0
- brainscore_vision/benchmarks/kar2019/__init__.py +4 -0
- brainscore_vision/benchmarks/kar2019/benchmark.py +88 -0
- brainscore_vision/benchmarks/kar2019/test.py +93 -0
- brainscore_vision/benchmarks/majajhong2015/__init__.py +18 -0
- brainscore_vision/benchmarks/majajhong2015/benchmark.py +96 -0
- brainscore_vision/benchmarks/majajhong2015/test.py +103 -0
- brainscore_vision/benchmarks/malania2007/__init__.py +13 -0
- brainscore_vision/benchmarks/malania2007/benchmark.py +235 -0
- brainscore_vision/benchmarks/malania2007/test.py +64 -0
- brainscore_vision/benchmarks/maniquet2024/__init__.py +6 -0
- brainscore_vision/benchmarks/maniquet2024/benchmark.py +199 -0
- brainscore_vision/benchmarks/maniquet2024/test.py +17 -0
- brainscore_vision/benchmarks/marques2020/__init__.py +76 -0
- brainscore_vision/benchmarks/marques2020/benchmarks/cavanaugh2002a_benchmark.py +119 -0
- brainscore_vision/benchmarks/marques2020/benchmarks/devalois1982a_benchmark.py +84 -0
- brainscore_vision/benchmarks/marques2020/benchmarks/devalois1982b_benchmark.py +88 -0
- brainscore_vision/benchmarks/marques2020/benchmarks/freemanZiemba2013_benchmark.py +138 -0
- brainscore_vision/benchmarks/marques2020/benchmarks/ringach2002_benchmark.py +167 -0
- brainscore_vision/benchmarks/marques2020/benchmarks/schiller1976_benchmark.py +100 -0
- brainscore_vision/benchmarks/marques2020/test.py +135 -0
- brainscore_vision/benchmarks/objectnet/__init__.py +4 -0
- brainscore_vision/benchmarks/objectnet/benchmark.py +52 -0
- brainscore_vision/benchmarks/objectnet/test.py +33 -0
- brainscore_vision/benchmarks/rajalingham2018/__init__.py +10 -0
- brainscore_vision/benchmarks/rajalingham2018/benchmarks/benchmark.py +74 -0
- brainscore_vision/benchmarks/rajalingham2018/benchmarks/public_benchmark.py +10 -0
- brainscore_vision/benchmarks/rajalingham2018/test.py +125 -0
- brainscore_vision/benchmarks/rajalingham2018/test_resources/alexnet-probabilities.nc +0 -0
- brainscore_vision/benchmarks/rajalingham2018/test_resources/identifier=alexnet,stimuli_identifier=objectome-240.nc +0 -0
- brainscore_vision/benchmarks/rajalingham2018/test_resources/identifier=resnet18,stimuli_identifier=objectome-240.nc +0 -0
- brainscore_vision/benchmarks/rajalingham2018/test_resources/identifier=resnet34,stimuli_identifier=objectome-240.nc +0 -0
- brainscore_vision/benchmarks/rajalingham2018/test_resources/resnet18-probabilities.nc +0 -0
- brainscore_vision/benchmarks/rajalingham2018/test_resources/resnet34-probabilities.nc +0 -0
- brainscore_vision/benchmarks/rajalingham2020/__init__.py +4 -0
- brainscore_vision/benchmarks/rajalingham2020/benchmark.py +52 -0
- brainscore_vision/benchmarks/rajalingham2020/test.py +39 -0
- brainscore_vision/benchmarks/sanghavi2020/__init__.py +17 -0
- brainscore_vision/benchmarks/sanghavi2020/benchmarks/sanghavi2020_benchmark.py +44 -0
- brainscore_vision/benchmarks/sanghavi2020/benchmarks/sanghavijozwik2020_benchmark.py +44 -0
- brainscore_vision/benchmarks/sanghavi2020/benchmarks/sanghavimurty2020_benchmark.py +44 -0
- brainscore_vision/benchmarks/sanghavi2020/test.py +83 -0
- brainscore_vision/benchmarks/scialom2024/__init__.py +52 -0
- brainscore_vision/benchmarks/scialom2024/benchmark.py +97 -0
- brainscore_vision/benchmarks/scialom2024/test.py +162 -0
- brainscore_vision/data/__init__.py +0 -0
- brainscore_vision/data/baker2022/__init__.py +40 -0
- brainscore_vision/data/baker2022/data_packaging/inverted_distortion_data_assembly.py +43 -0
- brainscore_vision/data/baker2022/data_packaging/inverted_distortion_stimulus_set.py +81 -0
- brainscore_vision/data/baker2022/data_packaging/mapping.py +60 -0
- brainscore_vision/data/baker2022/data_packaging/normal_distortion_data_assembly.py +46 -0
- brainscore_vision/data/baker2022/data_packaging/normal_distortion_stimulus_set.py +94 -0
- brainscore_vision/data/baker2022/test.py +135 -0
- brainscore_vision/data/barbumayo2019/BarbuMayo2019.py +26 -0
- brainscore_vision/data/barbumayo2019/__init__.py +23 -0
- brainscore_vision/data/barbumayo2019/test.py +10 -0
- brainscore_vision/data/bashivankar2019/__init__.py +52 -0
- brainscore_vision/data/bashivankar2019/data_packaging/2020-08-17_npc_v4_data.h5.png +0 -0
- brainscore_vision/data/bashivankar2019/data_packaging/requirements.txt +4 -0
- brainscore_vision/data/bashivankar2019/data_packaging/synthetic.py +162 -0
- brainscore_vision/data/bashivankar2019/test.py +15 -0
- brainscore_vision/data/bmd2024/__init__.py +69 -0
- brainscore_vision/data/bmd2024/data_packaging/BMD_2024_data_assembly.py +91 -0
- brainscore_vision/data/bmd2024/data_packaging/BMD_2024_simulus_set.py +48 -0
- brainscore_vision/data/bmd2024/data_packaging/stim_meta.csv +401 -0
- brainscore_vision/data/bmd2024/test.py +130 -0
- brainscore_vision/data/bracci2019/__init__.py +36 -0
- brainscore_vision/data/bracci2019/data_packaging.py +221 -0
- brainscore_vision/data/bracci2019/test.py +16 -0
- brainscore_vision/data/cadena2017/__init__.py +52 -0
- brainscore_vision/data/cadena2017/data_packaging/2018-08-07_tolias_v1.ipynb +25880 -0
- brainscore_vision/data/cadena2017/data_packaging/analysis.py +26 -0
- brainscore_vision/data/cadena2017/test.py +24 -0
- brainscore_vision/data/cichy2019/__init__.py +38 -0
- brainscore_vision/data/cichy2019/test.py +8 -0
- brainscore_vision/data/coggan2024_behavior/__init__.py +36 -0
- brainscore_vision/data/coggan2024_behavior/data_packaging.py +166 -0
- brainscore_vision/data/coggan2024_behavior/test.py +32 -0
- brainscore_vision/data/coggan2024_fMRI/__init__.py +27 -0
- brainscore_vision/data/coggan2024_fMRI/data_packaging.py +123 -0
- brainscore_vision/data/coggan2024_fMRI/test.py +25 -0
- brainscore_vision/data/david2004/__init__.py +34 -0
- brainscore_vision/data/david2004/data_packaging/2018-05-10_gallant_data.ipynb +3647 -0
- brainscore_vision/data/david2004/data_packaging/2018-05-23_gallant_data.ipynb +3149 -0
- brainscore_vision/data/david2004/data_packaging/2018-06-05_gallant_data.ipynb +3628 -0
- brainscore_vision/data/david2004/data_packaging/__init__.py +61 -0
- brainscore_vision/data/david2004/data_packaging/convertGallant.m +100 -0
- brainscore_vision/data/david2004/data_packaging/convertGallantV1Aligned.m +58 -0
- brainscore_vision/data/david2004/data_packaging/lib/DataHash_20160618/DataHash.m +484 -0
- brainscore_vision/data/david2004/data_packaging/lib/DataHash_20160618/license.txt +24 -0
- brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5.c +895 -0
- brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5.m +107 -0
- brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5.mexw64 +0 -0
- brainscore_vision/data/david2004/data_packaging/lib/GetMD5/GetMD5_helper.m +91 -0
- brainscore_vision/data/david2004/data_packaging/lib/GetMD5/InstallMex.m +307 -0
- brainscore_vision/data/david2004/data_packaging/lib/GetMD5/license.txt +24 -0
- brainscore_vision/data/david2004/data_packaging/lib/GetMD5/uTest_GetMD5.m +290 -0
- brainscore_vision/data/david2004/data_packaging/lib/glob/glob.m +472 -0
- brainscore_vision/data/david2004/data_packaging/lib/glob/license.txt +27 -0
- brainscore_vision/data/david2004/data_packaging/xr_align_debug.py +137 -0
- brainscore_vision/data/david2004/test.py +8 -0
- brainscore_vision/data/deng2009/__init__.py +22 -0
- brainscore_vision/data/deng2009/deng2009imagenet.py +33 -0
- brainscore_vision/data/deng2009/test.py +9 -0
- brainscore_vision/data/ferguson2024/__init__.py +401 -0
- brainscore_vision/data/ferguson2024/data_packaging/data_packaging.py +164 -0
- brainscore_vision/data/ferguson2024/data_packaging/fitting_stimuli.py +20 -0
- brainscore_vision/data/ferguson2024/requirements.txt +2 -0
- brainscore_vision/data/ferguson2024/test.py +155 -0
- brainscore_vision/data/freemanziemba2013/__init__.py +133 -0
- brainscore_vision/data/freemanziemba2013/data_packaging/2018-10-05_movshon.ipynb +2002 -0
- brainscore_vision/data/freemanziemba2013/data_packaging/2020-02-21_movshon_aperture.ipynb +4730 -0
- brainscore_vision/data/freemanziemba2013/data_packaging/2020-02-26_movshon_aperture_test.ipynb +2228 -0
- brainscore_vision/data/freemanziemba2013/data_packaging/aperture_correct.py +160 -0
- brainscore_vision/data/freemanziemba2013/data_packaging/data_packaging.py +57 -0
- brainscore_vision/data/freemanziemba2013/data_packaging/movshon.py +202 -0
- brainscore_vision/data/freemanziemba2013/test.py +97 -0
- brainscore_vision/data/geirhos2021/__init__.py +358 -0
- brainscore_vision/data/geirhos2021/creating_geirhos_ids.ipynb +468 -0
- brainscore_vision/data/geirhos2021/data_packaging/colour/colour_data_assembly.py +87 -0
- brainscore_vision/data/geirhos2021/data_packaging/colour/colour_stimulus_set.py +81 -0
- brainscore_vision/data/geirhos2021/data_packaging/contrast/contrast_data_assembly.py +83 -0
- brainscore_vision/data/geirhos2021/data_packaging/contrast/contrast_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/cue-conflict/cue-conflict_data_assembly.py +100 -0
- brainscore_vision/data/geirhos2021/data_packaging/cue-conflict/cue-conflict_stimulus_set.py +84 -0
- brainscore_vision/data/geirhos2021/data_packaging/edge/edge_data_assembly.py +96 -0
- brainscore_vision/data/geirhos2021/data_packaging/edge/edge_stimulus_set.py +69 -0
- brainscore_vision/data/geirhos2021/data_packaging/eidolonI/eidolonI_data_assembly.py +92 -0
- brainscore_vision/data/geirhos2021/data_packaging/eidolonI/eidolonI_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/eidolonII/eidolonII_data_assembly.py +92 -0
- brainscore_vision/data/geirhos2021/data_packaging/eidolonII/eidolonII_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/eidolonIII/eidolonIII_data_assembly.py +92 -0
- brainscore_vision/data/geirhos2021/data_packaging/eidolonIII/eidolonIII_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/false-colour/false-colour_data_assembly.py +83 -0
- brainscore_vision/data/geirhos2021/data_packaging/false-colour/false-colour_stimulus_set.py +87 -0
- brainscore_vision/data/geirhos2021/data_packaging/high-pass/high-pass_data_assembly.py +84 -0
- brainscore_vision/data/geirhos2021/data_packaging/high-pass/high-pass_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/low-pass/low-pass_data_assembly.py +84 -0
- brainscore_vision/data/geirhos2021/data_packaging/low-pass/low-pass_stimulus_set.py +81 -0
- brainscore_vision/data/geirhos2021/data_packaging/phase-scrambling/phase-scrambling_data_assembly.py +84 -0
- brainscore_vision/data/geirhos2021/data_packaging/phase-scrambling/phase-scrambling_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/power-equalisation/power-equalisation_data_assembly.py +88 -0
- brainscore_vision/data/geirhos2021/data_packaging/power-equalisation/power-equalisation_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/rotation/rotation_data_assembly.py +87 -0
- brainscore_vision/data/geirhos2021/data_packaging/rotation/rotation_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/data_packaging/silhouette/silhouette_data_assembly.py +100 -0
- brainscore_vision/data/geirhos2021/data_packaging/silhouette/silhouette_stimulus_set.py +71 -0
- brainscore_vision/data/geirhos2021/data_packaging/sketch/sketch_data_assembly.py +88 -0
- brainscore_vision/data/geirhos2021/data_packaging/sketch/sketch_stimulus_set.py +75 -0
- brainscore_vision/data/geirhos2021/data_packaging/stylized/stylized_data_assembly.py +87 -0
- brainscore_vision/data/geirhos2021/data_packaging/stylized/stylized_stimulus_set.py +75 -0
- brainscore_vision/data/geirhos2021/data_packaging/uniform-noise/uniform-noise_data_assembly.py +86 -0
- brainscore_vision/data/geirhos2021/data_packaging/uniform-noise/uniform-noise_stimulus_set.py +82 -0
- brainscore_vision/data/geirhos2021/geirhos_hashes.csv +52 -0
- brainscore_vision/data/geirhos2021/test.py +330 -0
- brainscore_vision/data/hebart2023/__init__.py +23 -0
- brainscore_vision/data/hebart2023/packaging/data_assembly.py +40 -0
- brainscore_vision/data/hebart2023/packaging/stimulus_set.py +72 -0
- brainscore_vision/data/hebart2023/test.py +42 -0
- brainscore_vision/data/hendrycks2019/__init__.py +45 -0
- brainscore_vision/data/hendrycks2019/test.py +26 -0
- brainscore_vision/data/igustibagus2024/__init__.py +23 -0
- brainscore_vision/data/igustibagus2024/dependencies/data_pico/stimulus_dicarlo_domain_transfer.csv +3139 -0
- brainscore_vision/data/igustibagus2024/investigation_consistency.ipynb +346 -0
- brainscore_vision/data/igustibagus2024/merged_assembly/__init__.py +0 -0
- brainscore_vision/data/igustibagus2024/merged_assembly/create_merged_assembly.ipynb +649 -0
- brainscore_vision/data/igustibagus2024/merged_assembly/create_merged_assembly_and_stim.py +152 -0
- brainscore_vision/data/igustibagus2024/merged_assembly/create_stimulus_set_with_background-id.py +45 -0
- brainscore_vision/data/igustibagus2024/merged_assembly/helpers_background_id.py +849 -0
- brainscore_vision/data/igustibagus2024/merged_assembly/merged_stimulus_set.csv +3139 -0
- brainscore_vision/data/igustibagus2024/oleo_pico_exploration.ipynb +410 -0
- brainscore_vision/data/igustibagus2024/test.py +26 -0
- brainscore_vision/data/imagenetslim15000/ImageNetSlim15000.py +30 -0
- brainscore_vision/data/imagenetslim15000/__init__.py +11 -0
- brainscore_vision/data/imagenetslim15000/test.py +8 -0
- brainscore_vision/data/islam2021/__init__.py +18 -0
- brainscore_vision/data/islam2021/data_packaging.py +64 -0
- brainscore_vision/data/islam2021/test.py +11 -0
- brainscore_vision/data/kar2018/__init__.py +58 -0
- brainscore_vision/data/kar2018/data_packaging/kar_coco.py +97 -0
- brainscore_vision/data/kar2018/data_packaging/kar_hvm.py +77 -0
- brainscore_vision/data/kar2018/data_packaging/requirements.txt +1 -0
- brainscore_vision/data/kar2018/test.py +10 -0
- brainscore_vision/data/kar2019/__init__.py +43 -0
- brainscore_vision/data/kar2019/data_packaging.py +116 -0
- brainscore_vision/data/kar2019/test.py +8 -0
- brainscore_vision/data/kuzovkin2018/__init__.py +36 -0
- brainscore_vision/data/kuzovkin2018/createAssembliesBrainScore.py +103 -0
- brainscore_vision/data/kuzovkin2018/test.py +8 -0
- brainscore_vision/data/majajhong2015/__init__.py +113 -0
- brainscore_vision/data/majajhong2015/data_packaging/darren10ms.py +32 -0
- brainscore_vision/data/majajhong2015/data_packaging/data_packaging.py +65 -0
- brainscore_vision/data/majajhong2015/test.py +38 -0
- brainscore_vision/data/malania2007/__init__.py +254 -0
- brainscore_vision/data/malania2007/data_packaging/malania_data_assembly.py +79 -0
- brainscore_vision/data/malania2007/data_packaging/malania_stimulus_set.py +79 -0
- brainscore_vision/data/malania2007/test.py +147 -0
- brainscore_vision/data/maniquet2024/__init__.py +57 -0
- brainscore_vision/data/maniquet2024/data_packaging.py +151 -0
- brainscore_vision/data/maniquet2024/test.py +16 -0
- brainscore_vision/data/marques2020/__init__.py +123 -0
- brainscore_vision/data/marques2020/data_packaging/marques_cavanaugh2002a.py +84 -0
- brainscore_vision/data/marques2020/data_packaging/marques_devalois1982a.py +44 -0
- brainscore_vision/data/marques2020/data_packaging/marques_devalois1982b.py +54 -0
- brainscore_vision/data/marques2020/data_packaging/marques_freemanZiemba2013.py +252 -0
- brainscore_vision/data/marques2020/data_packaging/marques_gen_stim.py +95 -0
- brainscore_vision/data/marques2020/data_packaging/marques_ringach2002.py +95 -0
- brainscore_vision/data/marques2020/data_packaging/marques_schiller1976c.py +60 -0
- brainscore_vision/data/marques2020/data_packaging/marques_stim_common.py +389 -0
- brainscore_vision/data/marques2020/data_packaging/marques_utils.py +21 -0
- brainscore_vision/data/marques2020/data_packaging/setup.py +13 -0
- brainscore_vision/data/marques2020/test.py +54 -0
- brainscore_vision/data/rajalingham2018/__init__.py +56 -0
- brainscore_vision/data/rajalingham2018/rajalingham2018objectome.py +193 -0
- brainscore_vision/data/rajalingham2018/test.py +10 -0
- brainscore_vision/data/rajalingham2020/__init__.py +39 -0
- brainscore_vision/data/rajalingham2020/rajalingham2020orthographic_IT.py +97 -0
- brainscore_vision/data/rajalingham2020/test.py +8 -0
- brainscore_vision/data/rust2012/2020-12-28_rust.ipynb +3301 -0
- brainscore_vision/data/rust2012/__init__.py +45 -0
- brainscore_vision/data/rust2012/rust305.py +35 -0
- brainscore_vision/data/rust2012/test.py +47 -0
- brainscore_vision/data/sanghavi2020/__init__.py +119 -0
- brainscore_vision/data/sanghavi2020/data_packaging/environment.yml +36 -0
- brainscore_vision/data/sanghavi2020/data_packaging/requirements.txt +4 -0
- brainscore_vision/data/sanghavi2020/data_packaging/sanghavi2020.py +101 -0
- brainscore_vision/data/sanghavi2020/data_packaging/sanghavijozwik2020.py +148 -0
- brainscore_vision/data/sanghavi2020/data_packaging/sanghavikar2020.py +131 -0
- brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020.py +120 -0
- brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020things.py +138 -0
- brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020things1.py +118 -0
- brainscore_vision/data/sanghavi2020/data_packaging/sanghavimurty2020things2.py +118 -0
- brainscore_vision/data/sanghavi2020/test.py +13 -0
- brainscore_vision/data/scialom2024/__init__.py +386 -0
- brainscore_vision/data/scialom2024/data_packaging/scialom_data_assembly.py +164 -0
- brainscore_vision/data/scialom2024/data_packaging/scialom_stimulus_set.py +117 -0
- brainscore_vision/data/scialom2024/test.py +301 -0
- brainscore_vision/data/seibert2019/__init__.py +25 -0
- brainscore_vision/data/seibert2019/data_packaging/2020-10-13_juvenile.ipynb +35703 -0
- brainscore_vision/data/seibert2019/data_packaging/2020-11-18_juvenile_scratch.txt +556 -0
- brainscore_vision/data/seibert2019/data_packaging/2020-11-22_juvenile_dldata.ipynb +3614 -0
- brainscore_vision/data/seibert2019/data_packaging/juvenile.py +103 -0
- brainscore_vision/data/seibert2019/test.py +35 -0
- brainscore_vision/data/zhang2018/__init__.py +38 -0
- brainscore_vision/data/zhang2018/test.py +29 -0
- brainscore_vision/data_helpers/__init__.py +0 -0
- brainscore_vision/data_helpers/lookup_legacy.py +15 -0
- brainscore_vision/data_helpers/s3.py +79 -0
- brainscore_vision/metric_helpers/__init__.py +5 -0
- brainscore_vision/metric_helpers/temporal.py +119 -0
- brainscore_vision/metric_helpers/transformations.py +379 -0
- brainscore_vision/metric_helpers/utils.py +71 -0
- brainscore_vision/metric_helpers/xarray_utils.py +151 -0
- brainscore_vision/metrics/__init__.py +7 -0
- brainscore_vision/metrics/accuracy/__init__.py +4 -0
- brainscore_vision/metrics/accuracy/metric.py +16 -0
- brainscore_vision/metrics/accuracy/test.py +11 -0
- brainscore_vision/metrics/accuracy_distance/__init__.py +4 -0
- brainscore_vision/metrics/accuracy_distance/metric.py +109 -0
- brainscore_vision/metrics/accuracy_distance/test.py +57 -0
- brainscore_vision/metrics/baker_accuracy_delta/__init__.py +4 -0
- brainscore_vision/metrics/baker_accuracy_delta/metric.py +94 -0
- brainscore_vision/metrics/baker_accuracy_delta/requirements.txt +1 -0
- brainscore_vision/metrics/baker_accuracy_delta/test.py +1 -0
- brainscore_vision/metrics/cka/__init__.py +14 -0
- brainscore_vision/metrics/cka/metric.py +105 -0
- brainscore_vision/metrics/cka/test.py +28 -0
- brainscore_vision/metrics/dimensionality/__init__.py +13 -0
- brainscore_vision/metrics/dimensionality/metric.py +45 -0
- brainscore_vision/metrics/distribution_similarity/__init__.py +14 -0
- brainscore_vision/metrics/distribution_similarity/metric.py +84 -0
- brainscore_vision/metrics/distribution_similarity/test.py +10 -0
- brainscore_vision/metrics/error_consistency/__init__.py +13 -0
- brainscore_vision/metrics/error_consistency/metric.py +93 -0
- brainscore_vision/metrics/error_consistency/test.py +39 -0
- brainscore_vision/metrics/i1i2/__init__.py +16 -0
- brainscore_vision/metrics/i1i2/metric.py +299 -0
- brainscore_vision/metrics/i1i2/requirements.txt +2 -0
- brainscore_vision/metrics/i1i2/test.py +36 -0
- brainscore_vision/metrics/i1i2/test_resources/alexnet-probabilities.nc +0 -0
- brainscore_vision/metrics/i1i2/test_resources/resnet18-probabilities.nc +0 -0
- brainscore_vision/metrics/i1i2/test_resources/resnet34-probabilities.nc +0 -0
- brainscore_vision/metrics/internal_consistency/__init__.py +8 -0
- brainscore_vision/metrics/internal_consistency/ceiling.py +127 -0
- brainscore_vision/metrics/internal_consistency/requirements.txt +1 -0
- brainscore_vision/metrics/internal_consistency/test.py +39 -0
- brainscore_vision/metrics/maniquet2024_metrics/__init__.py +19 -0
- brainscore_vision/metrics/maniquet2024_metrics/metric.py +416 -0
- brainscore_vision/metrics/maniquet2024_metrics/test.py +8 -0
- brainscore_vision/metrics/mask_regression/__init__.py +16 -0
- brainscore_vision/metrics/mask_regression/metric.py +242 -0
- brainscore_vision/metrics/mask_regression/requirements.txt +1 -0
- brainscore_vision/metrics/mask_regression/test.py +0 -0
- brainscore_vision/metrics/ost/__init__.py +23 -0
- brainscore_vision/metrics/ost/metric.py +350 -0
- brainscore_vision/metrics/ost/requirements.txt +2 -0
- brainscore_vision/metrics/ost/test.py +0 -0
- brainscore_vision/metrics/rdm/__init__.py +14 -0
- brainscore_vision/metrics/rdm/metric.py +101 -0
- brainscore_vision/metrics/rdm/requirements.txt +2 -0
- brainscore_vision/metrics/rdm/test.py +63 -0
- brainscore_vision/metrics/regression_correlation/__init__.py +48 -0
- brainscore_vision/metrics/regression_correlation/mask_regression.py +232 -0
- brainscore_vision/metrics/regression_correlation/metric.py +125 -0
- brainscore_vision/metrics/regression_correlation/requirements.txt +3 -0
- brainscore_vision/metrics/regression_correlation/test.py +36 -0
- brainscore_vision/metrics/threshold/__init__.py +5 -0
- brainscore_vision/metrics/threshold/metric.py +481 -0
- brainscore_vision/metrics/threshold/test.py +71 -0
- brainscore_vision/metrics/value_delta/__init__.py +4 -0
- brainscore_vision/metrics/value_delta/metric.py +30 -0
- brainscore_vision/metrics/value_delta/requirements.txt +1 -0
- brainscore_vision/metrics/value_delta/test.py +40 -0
- brainscore_vision/model_helpers/__init__.py +3 -0
- brainscore_vision/model_helpers/activations/__init__.py +1 -0
- brainscore_vision/model_helpers/activations/core.py +635 -0
- brainscore_vision/model_helpers/activations/pca.py +117 -0
- brainscore_vision/model_helpers/activations/pytorch.py +152 -0
- brainscore_vision/model_helpers/activations/temporal/__init__.py +0 -0
- brainscore_vision/model_helpers/activations/temporal/core/__init__.py +3 -0
- brainscore_vision/model_helpers/activations/temporal/core/executor.py +219 -0
- brainscore_vision/model_helpers/activations/temporal/core/extractor.py +282 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/__init__.py +2 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/base.py +274 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/__init__.py +2 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/base.py +134 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/__init__.py +2 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/base.py +99 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/block.py +77 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/temporal_context/causal.py +86 -0
- brainscore_vision/model_helpers/activations/temporal/core/inferencer/video/time_aligner.py +73 -0
- brainscore_vision/model_helpers/activations/temporal/inputs/__init__.py +3 -0
- brainscore_vision/model_helpers/activations/temporal/inputs/base.py +17 -0
- brainscore_vision/model_helpers/activations/temporal/inputs/image.py +50 -0
- brainscore_vision/model_helpers/activations/temporal/inputs/video.py +186 -0
- brainscore_vision/model_helpers/activations/temporal/model/__init__.py +2 -0
- brainscore_vision/model_helpers/activations/temporal/model/base.py +33 -0
- brainscore_vision/model_helpers/activations/temporal/model/pytorch.py +107 -0
- brainscore_vision/model_helpers/activations/temporal/utils.py +228 -0
- brainscore_vision/model_helpers/brain_transformation/__init__.py +97 -0
- brainscore_vision/model_helpers/brain_transformation/behavior.py +348 -0
- brainscore_vision/model_helpers/brain_transformation/imagenet_classes.txt +1000 -0
- brainscore_vision/model_helpers/brain_transformation/neural.py +159 -0
- brainscore_vision/model_helpers/brain_transformation/temporal.py +199 -0
- brainscore_vision/model_helpers/check_submission/__init__.py +0 -0
- brainscore_vision/model_helpers/check_submission/check_models.py +87 -0
- brainscore_vision/model_helpers/check_submission/images/1.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/10.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/11.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/12.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/13.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/14.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/15.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/16.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/17.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/18.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/19.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/2.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/20.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/3.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/4.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/5.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/6.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/7.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/8.png +0 -0
- brainscore_vision/model_helpers/check_submission/images/9.png +0 -0
- brainscore_vision/model_helpers/conftest.py +3 -0
- brainscore_vision/model_helpers/generic_plugin_tests.py +119 -0
- brainscore_vision/model_helpers/s3.py +62 -0
- brainscore_vision/model_helpers/utils/__init__.py +15 -0
- brainscore_vision/model_helpers/utils/s3.py +42 -0
- brainscore_vision/model_interface.py +214 -0
- brainscore_vision/models/AdvProp_efficientne_b6/__init__.py +5 -0
- brainscore_vision/models/AdvProp_efficientne_b6/model.py +75 -0
- brainscore_vision/models/AdvProp_efficientne_b6/requirements.txt +1 -0
- brainscore_vision/models/AdvProp_efficientne_b6/test.py +9 -0
- brainscore_vision/models/AlexNet_SIN/__init__.py +8 -0
- brainscore_vision/models/AlexNet_SIN/model.py +29 -0
- brainscore_vision/models/AlexNet_SIN/requirements.txt +2 -0
- brainscore_vision/models/AlexNet_SIN/test.py +1 -0
- brainscore_vision/models/Soumyadeep_inf_1/__init__.py +5 -0
- brainscore_vision/models/Soumyadeep_inf_1/model.py +60 -0
- brainscore_vision/models/Soumyadeep_inf_1/setup.py +26 -0
- brainscore_vision/models/Soumyadeep_inf_1/test.py +1 -0
- brainscore_vision/models/ViT_L_32_imagenet1k/__init__.py +8 -0
- brainscore_vision/models/ViT_L_32_imagenet1k/model.py +43 -0
- brainscore_vision/models/ViT_L_32_imagenet1k/requirements.txt +4 -0
- brainscore_vision/models/ViT_L_32_imagenet1k/test.py +8 -0
- brainscore_vision/models/__init__.py +0 -0
- brainscore_vision/models/alexnet/__init__.py +8 -0
- brainscore_vision/models/alexnet/model.py +28 -0
- brainscore_vision/models/alexnet/requirements.txt +2 -0
- brainscore_vision/models/alexnet/test.py +15 -0
- brainscore_vision/models/alexnet_7be5be79/__init__.py +7 -0
- brainscore_vision/models/alexnet_7be5be79/model.py +44 -0
- brainscore_vision/models/alexnet_7be5be79/setup.py +26 -0
- brainscore_vision/models/alexnet_7be5be79/test.py +1 -0
- brainscore_vision/models/alexnet_7be5be79_convs/__init__.py +5 -0
- brainscore_vision/models/alexnet_7be5be79_convs/model.py +42 -0
- brainscore_vision/models/alexnet_7be5be79_convs/setup.py +25 -0
- brainscore_vision/models/alexnet_7be5be79_convs/test.py +1 -0
- brainscore_vision/models/alexnet_ks_torevert/__init__.py +8 -0
- brainscore_vision/models/alexnet_ks_torevert/model.py +28 -0
- brainscore_vision/models/alexnet_ks_torevert/requirements.txt +2 -0
- brainscore_vision/models/alexnet_ks_torevert/test.py +15 -0
- brainscore_vision/models/alexnet_simclr_run1/__init__.py +7 -0
- brainscore_vision/models/alexnet_simclr_run1/model.py +267 -0
- brainscore_vision/models/alexnet_simclr_run1/requirements.txt +2 -0
- brainscore_vision/models/alexnet_simclr_run1/test.py +1 -0
- brainscore_vision/models/alexnet_testing/__init__.py +8 -0
- brainscore_vision/models/alexnet_testing/model.py +28 -0
- brainscore_vision/models/alexnet_testing/requirements.txt +2 -0
- brainscore_vision/models/alexnet_testing/setup.py +24 -0
- brainscore_vision/models/alexnet_testing/test.py +15 -0
- brainscore_vision/models/antialias_resnet152/__init__.py +7 -0
- brainscore_vision/models/antialias_resnet152/model.py +35 -0
- brainscore_vision/models/antialias_resnet152/requirements.txt +3 -0
- brainscore_vision/models/antialias_resnet152/test.py +8 -0
- brainscore_vision/models/antialiased_rnext101_32x8d/__init__.py +7 -0
- brainscore_vision/models/antialiased_rnext101_32x8d/model.py +35 -0
- brainscore_vision/models/antialiased_rnext101_32x8d/requirements.txt +1 -0
- brainscore_vision/models/antialiased_rnext101_32x8d/test.py +8 -0
- brainscore_vision/models/bp_resnet50_julios/__init__.py +5 -0
- brainscore_vision/models/bp_resnet50_julios/model.py +52 -0
- brainscore_vision/models/bp_resnet50_julios/setup.py +24 -0
- brainscore_vision/models/bp_resnet50_julios/test.py +1 -0
- brainscore_vision/models/clip/__init__.py +5 -0
- brainscore_vision/models/clip/model.py +179 -0
- brainscore_vision/models/clip/requirements.txt +4 -0
- brainscore_vision/models/clip/test.py +1 -0
- brainscore_vision/models/clipvision/__init__.py +5 -0
- brainscore_vision/models/clipvision/model.py +179 -0
- brainscore_vision/models/clipvision/requirements.txt +4 -0
- brainscore_vision/models/clipvision/test.py +1 -0
- brainscore_vision/models/cornet_s/__init__.py +8 -0
- brainscore_vision/models/cornet_s/helpers/helpers.py +215 -0
- brainscore_vision/models/cornet_s/model.py +77 -0
- brainscore_vision/models/cornet_s/requirements.txt +7 -0
- brainscore_vision/models/cornet_s/test.py +8 -0
- brainscore_vision/models/cornet_s_ynshah/__init__.py +388 -0
- brainscore_vision/models/cornet_s_ynshah/model.py +192 -0
- brainscore_vision/models/cornet_s_ynshah/setup.py +24 -0
- brainscore_vision/models/cornet_s_ynshah/test.py +0 -0
- brainscore_vision/models/custom_model_cv_18_dagger_408/__init__.py +7 -0
- brainscore_vision/models/custom_model_cv_18_dagger_408/model.py +75 -0
- brainscore_vision/models/custom_model_cv_18_dagger_408/requirements.txt +4 -0
- brainscore_vision/models/custom_model_cv_18_dagger_408/test.py +8 -0
- brainscore_vision/models/cv_18_dagger_408_pretrained/__init__.py +8 -0
- brainscore_vision/models/cv_18_dagger_408_pretrained/model.py +57 -0
- brainscore_vision/models/cv_18_dagger_408_pretrained/requirements.txt +3 -0
- brainscore_vision/models/cv_18_dagger_408_pretrained/test.py +25 -0
- brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/__init__.py +9 -0
- brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/model.py +134 -0
- brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/requirements.txt +4 -0
- brainscore_vision/models/cvt_cvt_w24_384_in22k_finetuned_in1k_4/test.py +8 -0
- brainscore_vision/models/dbp_resnet50_julios/__init__.py +5 -0
- brainscore_vision/models/dbp_resnet50_julios/model.py +52 -0
- brainscore_vision/models/dbp_resnet50_julios/setup.py +24 -0
- brainscore_vision/models/dbp_resnet50_julios/test.py +1 -0
- brainscore_vision/models/densenet_201_pytorch/__init__.py +7 -0
- brainscore_vision/models/densenet_201_pytorch/model.py +59 -0
- brainscore_vision/models/densenet_201_pytorch/requirements.txt +3 -0
- brainscore_vision/models/densenet_201_pytorch/test.py +8 -0
- brainscore_vision/models/eBarlow_Vanilla/__init__.py +9 -0
- brainscore_vision/models/eBarlow_Vanilla/model.py +50 -0
- brainscore_vision/models/eBarlow_Vanilla/requirements.txt +2 -0
- brainscore_vision/models/eBarlow_Vanilla/setup.py +24 -0
- brainscore_vision/models/eBarlow_Vanilla/test.py +1 -0
- brainscore_vision/models/eBarlow_Vanilla_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_Vanilla_1/model.py +64 -0
- brainscore_vision/models/eBarlow_Vanilla_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_Vanilla_1/test.py +1 -0
- brainscore_vision/models/eBarlow_Vanilla_1_full/__init__.py +9 -0
- brainscore_vision/models/eBarlow_Vanilla_1_full/model.py +84 -0
- brainscore_vision/models/eBarlow_Vanilla_1_full/setup.py +25 -0
- brainscore_vision/models/eBarlow_Vanilla_1_full/test.py +1 -0
- brainscore_vision/models/eBarlow_Vanilla_2/__init__.py +9 -0
- brainscore_vision/models/eBarlow_Vanilla_2/model.py +64 -0
- brainscore_vision/models/eBarlow_Vanilla_2/setup.py +24 -0
- brainscore_vision/models/eBarlow_Vanilla_2/test.py +1 -0
- brainscore_vision/models/eBarlow_augself_linear_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_augself_linear_1/model.py +65 -0
- brainscore_vision/models/eBarlow_augself_linear_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_augself_linear_1/test.py +1 -0
- brainscore_vision/models/eBarlow_augself_mlp_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_augself_mlp_1/model.py +65 -0
- brainscore_vision/models/eBarlow_augself_mlp_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_augself_mlp_1/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_0001_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_0001_1/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_0001_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_0001_1/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_001_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_001_1/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_001_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_001_1/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_001_2/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_001_2/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_001_2/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_001_2/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_001_3/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_001_3/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_001_3/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_001_3/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_01/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_01/model.py +50 -0
- brainscore_vision/models/eBarlow_lmda_01/requirements.txt +2 -0
- brainscore_vision/models/eBarlow_lmda_01/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_01/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_01_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_01_1/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_01_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_01_1/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_01_2/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_01_2/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_01_2/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_01_2/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_02_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_02_1/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_02_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_02_1/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_02_1000ep/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_02_1000ep/model.py +84 -0
- brainscore_vision/models/eBarlow_lmda_02_1000ep/setup.py +25 -0
- brainscore_vision/models/eBarlow_lmda_02_1000ep/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_02_1_full/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_02_1_full/model.py +85 -0
- brainscore_vision/models/eBarlow_lmda_02_1_full/setup.py +25 -0
- brainscore_vision/models/eBarlow_lmda_02_1_full/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_02_200_full/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_02_200_full/model.py +85 -0
- brainscore_vision/models/eBarlow_lmda_02_200_full/setup.py +25 -0
- brainscore_vision/models/eBarlow_lmda_02_200_full/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_03_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_03_1/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_03_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_03_1/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_04_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_04_1/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_04_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_04_1/test.py +1 -0
- brainscore_vision/models/eBarlow_lmda_05_1/__init__.py +9 -0
- brainscore_vision/models/eBarlow_lmda_05_1/model.py +65 -0
- brainscore_vision/models/eBarlow_lmda_05_1/setup.py +24 -0
- brainscore_vision/models/eBarlow_lmda_05_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_1/model.py +64 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_2/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_2/model.py +64 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_2/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_Vanilla_2/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_0001_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_0001_1/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_0001_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_0001_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_001_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_001_1/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_001_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_001_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_1/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_2/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_2/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_2/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_01_2/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_02_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_02_1/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_02_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_02_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_03_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_03_1/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_03_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_03_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_04_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_04_1/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_04_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_04_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Mom_lmda_05_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Mom_lmda_05_1/model.py +65 -0
- brainscore_vision/models/eMMCR_Mom_lmda_05_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Mom_lmda_05_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Vanilla/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Vanilla/model.py +50 -0
- brainscore_vision/models/eMMCR_Vanilla/setup.py +24 -0
- brainscore_vision/models/eMMCR_Vanilla/test.py +1 -0
- brainscore_vision/models/eMMCR_VanillaV2/__init__.py +9 -0
- brainscore_vision/models/eMMCR_VanillaV2/model.py +50 -0
- brainscore_vision/models/eMMCR_VanillaV2/setup.py +24 -0
- brainscore_vision/models/eMMCR_VanillaV2/test.py +1 -0
- brainscore_vision/models/eMMCR_Vanilla_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Vanilla_1/model.py +64 -0
- brainscore_vision/models/eMMCR_Vanilla_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_Vanilla_1/test.py +1 -0
- brainscore_vision/models/eMMCR_Vanilla_2/__init__.py +9 -0
- brainscore_vision/models/eMMCR_Vanilla_2/model.py +64 -0
- brainscore_vision/models/eMMCR_Vanilla_2/setup.py +24 -0
- brainscore_vision/models/eMMCR_Vanilla_2/test.py +1 -0
- brainscore_vision/models/eMMCR_lmda_01/__init__.py +9 -0
- brainscore_vision/models/eMMCR_lmda_01/model.py +50 -0
- brainscore_vision/models/eMMCR_lmda_01/setup.py +24 -0
- brainscore_vision/models/eMMCR_lmda_01/test.py +1 -0
- brainscore_vision/models/eMMCR_lmda_01V2/__init__.py +9 -0
- brainscore_vision/models/eMMCR_lmda_01V2/model.py +50 -0
- brainscore_vision/models/eMMCR_lmda_01V2/requirements.txt +2 -0
- brainscore_vision/models/eMMCR_lmda_01V2/setup.py +24 -0
- brainscore_vision/models/eMMCR_lmda_01V2/test.py +1 -0
- brainscore_vision/models/eMMCR_lmda_01_1/__init__.py +9 -0
- brainscore_vision/models/eMMCR_lmda_01_1/model.py +65 -0
- brainscore_vision/models/eMMCR_lmda_01_1/setup.py +24 -0
- brainscore_vision/models/eMMCR_lmda_01_1/test.py +1 -0
- brainscore_vision/models/eMMCR_lmda_01_2/__init__.py +9 -0
- brainscore_vision/models/eMMCR_lmda_01_2/model.py +65 -0
- brainscore_vision/models/eMMCR_lmda_01_2/setup.py +24 -0
- brainscore_vision/models/eMMCR_lmda_01_2/test.py +1 -0
- brainscore_vision/models/eMMCR_lmda_01_3/__init__.py +9 -0
- brainscore_vision/models/eMMCR_lmda_01_3/model.py +65 -0
- brainscore_vision/models/eMMCR_lmda_01_3/setup.py +24 -0
- brainscore_vision/models/eMMCR_lmda_01_3/test.py +1 -0
- brainscore_vision/models/eSimCLR_Vanilla_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_Vanilla_1/model.py +64 -0
- brainscore_vision/models/eSimCLR_Vanilla_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_Vanilla_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_Vanilla_2/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_Vanilla_2/model.py +64 -0
- brainscore_vision/models/eSimCLR_Vanilla_2/setup.py +24 -0
- brainscore_vision/models/eSimCLR_Vanilla_2/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_0001_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_0001_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_0001_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_0001_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_001_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_001_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_001_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_001_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_01_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_01_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_01_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_01_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_01_2/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_01_2/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_01_2/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_01_2/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_02_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_02_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_02_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_02_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_02_1_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_02_1_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_02_1_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_02_1_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_03_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_03_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_03_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_03_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_04_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_04_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_04_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_04_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_04_1_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_04_1_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_04_1_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_04_1_1/test.py +1 -0
- brainscore_vision/models/eSimCLR_lmda_05_1/__init__.py +9 -0
- brainscore_vision/models/eSimCLR_lmda_05_1/model.py +65 -0
- brainscore_vision/models/eSimCLR_lmda_05_1/setup.py +24 -0
- brainscore_vision/models/eSimCLR_lmda_05_1/test.py +1 -0
- brainscore_vision/models/effnetb1_272x240/__init__.py +5 -0
- brainscore_vision/models/effnetb1_272x240/model.py +126 -0
- brainscore_vision/models/effnetb1_272x240/requirements.txt +3 -0
- brainscore_vision/models/effnetb1_272x240/test.py +9 -0
- brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/__init__.py +9 -0
- brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/model.py +111 -0
- brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/requirements.txt +6 -0
- brainscore_vision/models/effnetb1_cutmix_augmix_sam_e1_5avg_424x377/test.py +8 -0
- brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/__init__.py +5 -0
- brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/model.py +142 -0
- brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/requirements.txt +5 -0
- brainscore_vision/models/effnetb1_cutmixpatch_SAM_robust32_avge6e8e9e10_manylayers_324x288/test.py +8 -0
- brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/__init__.py +9 -0
- brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/model.py +140 -0
- brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/requirements.txt +5 -0
- brainscore_vision/models/effnetb1_cutmixpatch_augmix_robust32_avge4e7_manylayers_324x288/test.py +8 -0
- brainscore_vision/models/focalnet_tiny_in1k_submission/__init__.py +5 -0
- brainscore_vision/models/focalnet_tiny_in1k_submission/model.py +62 -0
- brainscore_vision/models/focalnet_tiny_in1k_submission/requirements.txt +3 -0
- brainscore_vision/models/focalnet_tiny_in1k_submission/test.py +8 -0
- brainscore_vision/models/hmax/__init__.py +7 -0
- brainscore_vision/models/hmax/helpers/hmax.py +438 -0
- brainscore_vision/models/hmax/helpers/pytorch.py +216 -0
- brainscore_vision/models/hmax/model.py +69 -0
- brainscore_vision/models/hmax/requirements.txt +5 -0
- brainscore_vision/models/hmax/test.py +8 -0
- brainscore_vision/models/inception_v3_pytorch/__init__.py +7 -0
- brainscore_vision/models/inception_v3_pytorch/model.py +68 -0
- brainscore_vision/models/inception_v3_pytorch/requirements.txt +3 -0
- brainscore_vision/models/inception_v3_pytorch/test.py +8 -0
- brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/__init__.py +7 -0
- brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/model.py +60 -0
- brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/requirements.txt +3 -0
- brainscore_vision/models/mobilenet_v2_1_4_224_pytorch/test.py +8 -0
- brainscore_vision/models/mobilevit_small/__init__.py +7 -0
- brainscore_vision/models/mobilevit_small/model.py +49 -0
- brainscore_vision/models/mobilevit_small/requirements.txt +3 -0
- brainscore_vision/models/mobilevit_small/test.py +8 -0
- brainscore_vision/models/pixels/__init__.py +8 -0
- brainscore_vision/models/pixels/model.py +35 -0
- brainscore_vision/models/pixels/test.py +15 -0
- brainscore_vision/models/pnasnet_large_pytorch/__init__.py +7 -0
- brainscore_vision/models/pnasnet_large_pytorch/model.py +59 -0
- brainscore_vision/models/pnasnet_large_pytorch/requirements.txt +3 -0
- brainscore_vision/models/pnasnet_large_pytorch/test.py +8 -0
- brainscore_vision/models/r101_eBarlow_Vanilla_1/__init__.py +9 -0
- brainscore_vision/models/r101_eBarlow_Vanilla_1/model.py +64 -0
- brainscore_vision/models/r101_eBarlow_Vanilla_1/setup.py +25 -0
- brainscore_vision/models/r101_eBarlow_Vanilla_1/test.py +1 -0
- brainscore_vision/models/r101_eBarlow_lmda_01_1/__init__.py +9 -0
- brainscore_vision/models/r101_eBarlow_lmda_01_1/model.py +65 -0
- brainscore_vision/models/r101_eBarlow_lmda_01_1/setup.py +25 -0
- brainscore_vision/models/r101_eBarlow_lmda_01_1/test.py +1 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1/__init__.py +9 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1/model.py +65 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1/setup.py +25 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1/test.py +1 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/__init__.py +9 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/model.py +67 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/setup.py +25 -0
- brainscore_vision/models/r101_eBarlow_lmda_02_1_copy/test.py +1 -0
- brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/__init__.py +9 -0
- brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/model.py +66 -0
- brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/setup.py +25 -0
- brainscore_vision/models/r34_eMMCR_Mom_Vanilla_1/test.py +1 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/__init__.py +9 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/model.py +66 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/setup.py +25 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_01_1/test.py +1 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/__init__.py +9 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/model.py +66 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/setup.py +25 -0
- brainscore_vision/models/r34_eMMCR_Mom_lmda_02_1/test.py +1 -0
- brainscore_vision/models/r50_tvpt/__init__.py +9 -0
- brainscore_vision/models/r50_tvpt/model.py +47 -0
- brainscore_vision/models/r50_tvpt/setup.py +24 -0
- brainscore_vision/models/r50_tvpt/test.py +1 -0
- brainscore_vision/models/regnet/__init__.py +14 -0
- brainscore_vision/models/regnet/model.py +17 -0
- brainscore_vision/models/regnet/requirements.txt +2 -0
- brainscore_vision/models/regnet/test.py +17 -0
- brainscore_vision/models/resnet18_imagenet21kP/__init__.py +6 -0
- brainscore_vision/models/resnet18_imagenet21kP/model.py +119 -0
- brainscore_vision/models/resnet18_imagenet21kP/setup.py +18 -0
- brainscore_vision/models/resnet18_imagenet21kP/test.py +0 -0
- brainscore_vision/models/resnet50_eMMCR_Vanilla/__init__.py +5 -0
- brainscore_vision/models/resnet50_eMMCR_Vanilla/model.py +59 -0
- brainscore_vision/models/resnet50_eMMCR_Vanilla/setup.py +24 -0
- brainscore_vision/models/resnet50_eMMCR_Vanilla/test.py +1 -0
- brainscore_vision/models/resnet50_eMMCR_VanillaV2/__init__.py +9 -0
- brainscore_vision/models/resnet50_eMMCR_VanillaV2/model.py +72 -0
- brainscore_vision/models/resnet50_eMMCR_VanillaV2/setup.py +24 -0
- brainscore_vision/models/resnet50_eMMCR_VanillaV2/test.py +1 -0
- brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/__init__.py +9 -0
- brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/model.py +72 -0
- brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/setup.py +24 -0
- brainscore_vision/models/resnet50_eMMCR_eqp10_lm1/test.py +1 -0
- brainscore_vision/models/resnet50_julios/__init__.py +5 -0
- brainscore_vision/models/resnet50_julios/model.py +54 -0
- brainscore_vision/models/resnet50_julios/setup.py +24 -0
- brainscore_vision/models/resnet50_julios/test.py +1 -0
- brainscore_vision/models/resnet50_tutorial/__init__.py +5 -0
- brainscore_vision/models/resnet50_tutorial/model.py +34 -0
- brainscore_vision/models/resnet50_tutorial/requirements.txt +2 -0
- brainscore_vision/models/resnet50_tutorial/test.py +8 -0
- brainscore_vision/models/resnet_152_v2_pytorch/__init__.py +7 -0
- brainscore_vision/models/resnet_152_v2_pytorch/model.py +59 -0
- brainscore_vision/models/resnet_152_v2_pytorch/requirements.txt +2 -0
- brainscore_vision/models/resnet_152_v2_pytorch/test.py +8 -0
- brainscore_vision/models/resnet_50_robust/__init__.py +7 -0
- brainscore_vision/models/resnet_50_robust/model.py +55 -0
- brainscore_vision/models/resnet_50_robust/requirements.txt +3 -0
- brainscore_vision/models/resnet_50_robust/test.py +8 -0
- brainscore_vision/models/resnext101_32x16d_wsl/__init__.py +7 -0
- brainscore_vision/models/resnext101_32x16d_wsl/model.py +38 -0
- brainscore_vision/models/resnext101_32x16d_wsl/requirements.txt +2 -0
- brainscore_vision/models/resnext101_32x16d_wsl/test.py +8 -0
- brainscore_vision/models/resnext101_32x32d_wsl/__init__.py +7 -0
- brainscore_vision/models/resnext101_32x32d_wsl/model.py +40 -0
- brainscore_vision/models/resnext101_32x32d_wsl/requirements.txt +2 -0
- brainscore_vision/models/resnext101_32x32d_wsl/test.py +8 -0
- brainscore_vision/models/resnext101_32x48d_wsl/__init__.py +7 -0
- brainscore_vision/models/resnext101_32x48d_wsl/model.py +38 -0
- brainscore_vision/models/resnext101_32x48d_wsl/requirements.txt +3 -0
- brainscore_vision/models/resnext101_32x48d_wsl/test.py +8 -0
- brainscore_vision/models/resnext101_32x8d_wsl/__init__.py +7 -0
- brainscore_vision/models/resnext101_32x8d_wsl/model.py +44 -0
- brainscore_vision/models/resnext101_32x8d_wsl/requirements.txt +2 -0
- brainscore_vision/models/resnext101_32x8d_wsl/test.py +8 -0
- brainscore_vision/models/temporal_model_AVID_CMA/__init__.py +17 -0
- brainscore_vision/models/temporal_model_AVID_CMA/model.py +92 -0
- brainscore_vision/models/temporal_model_AVID_CMA/requirements.txt +3 -0
- brainscore_vision/models/temporal_model_AVID_CMA/test.py +18 -0
- brainscore_vision/models/temporal_model_GDT/__init__.py +16 -0
- brainscore_vision/models/temporal_model_GDT/model.py +72 -0
- brainscore_vision/models/temporal_model_GDT/requirements.txt +3 -0
- brainscore_vision/models/temporal_model_GDT/test.py +17 -0
- brainscore_vision/models/temporal_model_S3D_text_video/__init__.py +14 -0
- brainscore_vision/models/temporal_model_S3D_text_video/model.py +65 -0
- brainscore_vision/models/temporal_model_S3D_text_video/requirements.txt +1 -0
- brainscore_vision/models/temporal_model_S3D_text_video/test.py +15 -0
- brainscore_vision/models/temporal_model_SeLaVi/__init__.py +17 -0
- brainscore_vision/models/temporal_model_SeLaVi/model.py +68 -0
- brainscore_vision/models/temporal_model_SeLaVi/requirements.txt +3 -0
- brainscore_vision/models/temporal_model_SeLaVi/test.py +18 -0
- brainscore_vision/models/temporal_model_VideoMAE/__init__.py +15 -0
- brainscore_vision/models/temporal_model_VideoMAE/model.py +100 -0
- brainscore_vision/models/temporal_model_VideoMAE/requirements.txt +6 -0
- brainscore_vision/models/temporal_model_VideoMAE/test.py +16 -0
- brainscore_vision/models/temporal_model_VideoMAEv2/__init__.py +14 -0
- brainscore_vision/models/temporal_model_VideoMAEv2/model.py +109 -0
- brainscore_vision/models/temporal_model_VideoMAEv2/requirements.txt +4 -0
- brainscore_vision/models/temporal_model_VideoMAEv2/test.py +16 -0
- brainscore_vision/models/temporal_model_mae_st/__init__.py +15 -0
- brainscore_vision/models/temporal_model_mae_st/model.py +120 -0
- brainscore_vision/models/temporal_model_mae_st/requirements.txt +3 -0
- brainscore_vision/models/temporal_model_mae_st/test.py +16 -0
- brainscore_vision/models/temporal_model_mmaction2/__init__.py +23 -0
- brainscore_vision/models/temporal_model_mmaction2/mmaction2.csv +24 -0
- brainscore_vision/models/temporal_model_mmaction2/model.py +226 -0
- brainscore_vision/models/temporal_model_mmaction2/requirements.txt +5 -0
- brainscore_vision/models/temporal_model_mmaction2/test.py +24 -0
- brainscore_vision/models/temporal_model_openstl/__init__.py +18 -0
- brainscore_vision/models/temporal_model_openstl/model.py +206 -0
- brainscore_vision/models/temporal_model_openstl/requirements.txt +3 -0
- brainscore_vision/models/temporal_model_openstl/test.py +19 -0
- brainscore_vision/models/temporal_model_torchvision/__init__.py +19 -0
- brainscore_vision/models/temporal_model_torchvision/model.py +92 -0
- brainscore_vision/models/temporal_model_torchvision/requirements.txt +2 -0
- brainscore_vision/models/temporal_model_torchvision/test.py +20 -0
- brainscore_vision/models/tv_efficientnet_b1/__init__.py +5 -0
- brainscore_vision/models/tv_efficientnet_b1/model.py +54 -0
- brainscore_vision/models/tv_efficientnet_b1/setup.py +24 -0
- brainscore_vision/models/tv_efficientnet_b1/test.py +1 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/__init__.py +7 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/model.py +104 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/requirements.txt +8 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/test.py +8 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/LICENSE +674 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/README.md +105 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/run.py +136 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/setup.py +41 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/train.py +383 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/__init__.py +71 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/back_ends.py +337 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/modules.py +126 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/params.py +100 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/utils.py +32 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet/vonenet.py +68 -0
- brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet_tutorial-activations.ipynb +352 -0
- brainscore_vision/models/yudixie_resnet18_240719_0/__init__.py +11 -0
- brainscore_vision/models/yudixie_resnet18_240719_0/model.py +60 -0
- brainscore_vision/models/yudixie_resnet18_240719_0/setup.py +25 -0
- brainscore_vision/models/yudixie_resnet18_240719_0/test.py +1 -0
- brainscore_vision/models/yudixie_resnet18_240719_1/__init__.py +11 -0
- brainscore_vision/models/yudixie_resnet18_240719_1/model.py +60 -0
- brainscore_vision/models/yudixie_resnet18_240719_1/setup.py +25 -0
- brainscore_vision/models/yudixie_resnet18_240719_1/test.py +1 -0
- brainscore_vision/models/yudixie_resnet18_240719_10/__init__.py +11 -0
- brainscore_vision/models/yudixie_resnet18_240719_10/model.py +60 -0
- brainscore_vision/models/yudixie_resnet18_240719_10/setup.py +25 -0
- brainscore_vision/models/yudixie_resnet18_240719_10/test.py +1 -0
- brainscore_vision/models/yudixie_resnet18_240719_2/__init__.py +11 -0
- brainscore_vision/models/yudixie_resnet18_240719_2/model.py +60 -0
- brainscore_vision/models/yudixie_resnet18_240719_2/setup.py +25 -0
- brainscore_vision/models/yudixie_resnet18_240719_2/test.py +1 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/__init__.py +7 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/model.py +66 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/setup.py +24 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240222/test.py +1 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/__init__.py +7 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/model.py +68 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/setup.py +24 -0
- brainscore_vision/models/yudixie_resnet50_imagenet1kpret_0_240312/test.py +1 -0
- brainscore_vision/submission/__init__.py +0 -0
- brainscore_vision/submission/actions_helpers.py +153 -0
- brainscore_vision/submission/config.py +7 -0
- brainscore_vision/submission/endpoints.py +58 -0
- brainscore_vision/utils/__init__.py +91 -0
- brainscore_vision-2.1.dist-info/LICENSE +11 -0
- brainscore_vision-2.1.dist-info/METADATA +152 -0
- brainscore_vision-2.1.dist-info/RECORD +1009 -0
- brainscore_vision-2.1.dist-info/WHEEL +5 -0
- brainscore_vision-2.1.dist-info/top_level.txt +4 -0
- docs/Makefile +20 -0
- docs/source/conf.py +78 -0
- docs/source/index.rst +21 -0
- docs/source/modules/api_reference.rst +10 -0
- docs/source/modules/benchmarks.rst +8 -0
- docs/source/modules/brainscore_submission.png +0 -0
- docs/source/modules/developer_clarifications.rst +36 -0
- docs/source/modules/metrics.rst +8 -0
- docs/source/modules/model_interface.rst +8 -0
- docs/source/modules/submission.rst +112 -0
- docs/source/modules/tutorial_screenshots/brain-score_logo.png +0 -0
- docs/source/modules/tutorial_screenshots/final_submit.png +0 -0
- docs/source/modules/tutorial_screenshots/init_py.png +0 -0
- docs/source/modules/tutorial_screenshots/mms.png +0 -0
- docs/source/modules/tutorial_screenshots/setup.png +0 -0
- docs/source/modules/tutorial_screenshots/sms.png +0 -0
- docs/source/modules/tutorial_screenshots/subfolders.png +0 -0
- docs/source/modules/utils.rst +22 -0
- migrations/2020-12-20_pkl_to_nc.py +90 -0
- tests/__init__.py +6 -0
- tests/conftest.py +26 -0
- tests/test_benchmark_helpers/__init__.py +0 -0
- tests/test_benchmark_helpers/test_screen.py +75 -0
- tests/test_examples.py +41 -0
- tests/test_integration.py +43 -0
- tests/test_metric_helpers/__init__.py +0 -0
- tests/test_metric_helpers/test_temporal.py +80 -0
- tests/test_metric_helpers/test_transformations.py +171 -0
- tests/test_metric_helpers/test_xarray_utils.py +85 -0
- tests/test_model_helpers/__init__.py +6 -0
- tests/test_model_helpers/activations/__init__.py +0 -0
- tests/test_model_helpers/activations/test___init__.py +404 -0
- tests/test_model_helpers/brain_transformation/__init__.py +0 -0
- tests/test_model_helpers/brain_transformation/test___init__.py +18 -0
- tests/test_model_helpers/brain_transformation/test_behavior.py +181 -0
- tests/test_model_helpers/brain_transformation/test_neural.py +70 -0
- tests/test_model_helpers/brain_transformation/test_temporal.py +66 -0
- tests/test_model_helpers/temporal/__init__.py +0 -0
- tests/test_model_helpers/temporal/activations/__init__.py +0 -0
- tests/test_model_helpers/temporal/activations/test_extractor.py +96 -0
- tests/test_model_helpers/temporal/activations/test_inferencer.py +189 -0
- tests/test_model_helpers/temporal/activations/test_inputs.py +103 -0
- tests/test_model_helpers/temporal/brain_transformation/__init__.py +0 -0
- tests/test_model_helpers/temporal/brain_transformation/test_temporal_ops.py +122 -0
- tests/test_model_helpers/temporal/test_utils.py +61 -0
- tests/test_model_helpers/test_generic_plugin_tests.py +310 -0
- tests/test_model_helpers/test_imports.py +10 -0
- tests/test_model_helpers/test_s3.py +38 -0
- tests/test_models.py +15 -0
- tests/test_stimuli.py +0 -0
- tests/test_submission/__init__.py +0 -0
- tests/test_submission/mock_config.py +3 -0
- tests/test_submission/test_actions_helpers.py +67 -0
- tests/test_submission/test_db.py +54 -0
- tests/test_submission/test_endpoints.py +125 -0
- tests/test_utils.py +21 -0
brainscore_vision/models/voneresnet_50_non_stochastic/vonenet/vonenet_tutorial-activations.ipynb
ADDED
@@ -0,0 +1,352 @@
|
|
1
|
+
{
|
2
|
+
"cells": [
|
3
|
+
{
|
4
|
+
"cell_type": "code",
|
5
|
+
"execution_count": 83,
|
6
|
+
"metadata": {},
|
7
|
+
"outputs": [],
|
8
|
+
"source": [
|
9
|
+
"import vonenet\n",
|
10
|
+
"import torchvision\n",
|
11
|
+
"import torch\n",
|
12
|
+
"import numpy as np\n",
|
13
|
+
"import matplotlib.pyplot as plt"
|
14
|
+
]
|
15
|
+
},
|
16
|
+
{
|
17
|
+
"cell_type": "code",
|
18
|
+
"execution_count": 84,
|
19
|
+
"metadata": {},
|
20
|
+
"outputs": [
|
21
|
+
{
|
22
|
+
"name": "stdout",
|
23
|
+
"output_type": "stream",
|
24
|
+
"text": [
|
25
|
+
"Neuronal distributions gabor parameters\n",
|
26
|
+
"Model: VOneNet\n",
|
27
|
+
"VOneBlock(\n",
|
28
|
+
" (simple_conv_q0): GFB()\n",
|
29
|
+
" (simple_conv_q1): GFB()\n",
|
30
|
+
" (simple): ReLU(inplace=True)\n",
|
31
|
+
" (complex): Identity()\n",
|
32
|
+
" (gabors): Identity()\n",
|
33
|
+
" (noise): ReLU(inplace=True)\n",
|
34
|
+
" (output): Identity()\n",
|
35
|
+
")\n"
|
36
|
+
]
|
37
|
+
}
|
38
|
+
],
|
39
|
+
"source": [
|
40
|
+
"# Load V1 model\n",
|
41
|
+
"v1_model = vonenet.get_model(model_arch=None, pretrained=False, noise_mode=None).module\n",
|
42
|
+
"\n",
|
43
|
+
"# v1_model = vonenet.get_model(model_arch=None, pretrained=False, noise_mode=None, image_size=32, visual_degrees=3, sf_max=5, stride=1, ksize=15).module\n",
|
44
|
+
"# v1_model = vonenet.get_model(model_arch='resnet50_ns', pretrained=True).module\n",
|
45
|
+
"\n",
|
46
|
+
"print(v1_model)"
|
47
|
+
]
|
48
|
+
},
|
49
|
+
{
|
50
|
+
"cell_type": "code",
|
51
|
+
"execution_count": 99,
|
52
|
+
"metadata": {},
|
53
|
+
"outputs": [],
|
54
|
+
"source": [
|
55
|
+
"data_path = '/braintree/data2/active/common/imagenet_raw/val'\n",
|
56
|
+
"\n",
|
57
|
+
"bsize = 16\n",
|
58
|
+
"crop = 256 # 48 256\n",
|
59
|
+
"px = 224 # 32 224\n",
|
60
|
+
"\n",
|
61
|
+
"normalize = torchvision.transforms.Normalize(mean=[0.5, 0.5, 0.5],\n",
|
62
|
+
" std=[0.5, 0.5, 0.5])\n",
|
63
|
+
"dataset = torchvision.datasets.ImageFolder(data_path,\n",
|
64
|
+
" torchvision.transforms.Compose([\n",
|
65
|
+
" torchvision.transforms.Resize(crop), \n",
|
66
|
+
" torchvision.transforms.CenterCrop(px), \n",
|
67
|
+
" torchvision.transforms.ToTensor(),\n",
|
68
|
+
" normalize,\n",
|
69
|
+
" ]))\n",
|
70
|
+
"\n",
|
71
|
+
"data_loader = torch.utils.data.DataLoader(dataset, batch_size=bsize, shuffle=True, num_workers=20, pin_memory=True)\n",
|
72
|
+
"\n",
|
73
|
+
"dataloader_iterator = iter(data_loader)"
|
74
|
+
]
|
75
|
+
},
|
76
|
+
{
|
77
|
+
"cell_type": "code",
|
78
|
+
"execution_count": 100,
|
79
|
+
"metadata": {},
|
80
|
+
"outputs": [
|
81
|
+
{
|
82
|
+
"name": "stdout",
|
83
|
+
"output_type": "stream",
|
84
|
+
"text": [
|
85
|
+
"torch.Size([16, 3, 224, 224])\n"
|
86
|
+
]
|
87
|
+
}
|
88
|
+
],
|
89
|
+
"source": [
|
90
|
+
"X, _ = next(dataloader_iterator)\n",
|
91
|
+
"print(X.shape)"
|
92
|
+
]
|
93
|
+
},
|
94
|
+
{
|
95
|
+
"cell_type": "code",
|
96
|
+
"execution_count": 101,
|
97
|
+
"metadata": {},
|
98
|
+
"outputs": [
|
99
|
+
{
|
100
|
+
"name": "stdout",
|
101
|
+
"output_type": "stream",
|
102
|
+
"text": [
|
103
|
+
"torch.Size([16, 512, 56, 56])\n"
|
104
|
+
]
|
105
|
+
}
|
106
|
+
],
|
107
|
+
"source": [
|
108
|
+
"activations = v1_model(X)\n",
|
109
|
+
"print(activations.shape)"
|
110
|
+
]
|
111
|
+
},
|
112
|
+
{
|
113
|
+
"cell_type": "code",
|
114
|
+
"execution_count": 102,
|
115
|
+
"metadata": {},
|
116
|
+
"outputs": [
|
117
|
+
{
|
118
|
+
"data": {
|
119
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAGKCAYAAAASfgYQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy96a8lSXYf9ovIu7yl9q33vXump2c4O4dDcRMl2jQh25QhyYZhAwYMGP7i/8iAAX8QDMiWbNmiFkKUSIriMjOkhrP0dM/0Vt1dXdXVVdW1vOW+ezMj/CHOOXEiMm7e+6peLT2KA1TlfZmREZGRkRHnnN9ZjPcelSpVqlSp0jKyD7sDlSpVqlTp0aa6UVSqVKlSpUGqG0WlSpUqVRqkulFUqlSpUqVBqhtFpUqVKlUapNHQxed/63EyiTIwNvy0De0thq2l+lZT1g7vP967pA4DA7G+cobKeFXe0DUP1/m0WarKOQB0zXVcR7zXt3TNmVAWgOe6Wm7HY8gKbOiaMTJUMMbwSemqbRoAgB2FI6wJ/wA0fI3GzVoLo34DgBlbKW/42AAmu9fI0UjfrPz2sZyJ12UQpRSNFTwcDZbxPH4uDCwA1zkZF0+/XddxJeHg4pj6FvGa43dKp1onbXlH9bfUdhfr6OidhTb5fZjYR3lFJnlOYwCeRjDxGp/jcYQxanz7YyVzm865pWNKdRXO+exUqIi/Bcjz0Q8Zl67jieqkvEcYb9d1cTx4HDsndcT6qBvey5yVcVfluN+lOd97JiBZBUrXh+qI76VwjfuDUpv6mXgO9O89LOmW4rdMJ6w6b7My0OPW9esdGJfiOK/R11XPaFycE7FsXB/1EQBuXLxTbLZKFJUqVapUaZAGJYq4pXkwz+BIGtDMmVEcmj4urzdy2vy3YeaHubnYJBeHNwaWTzJHyuVbD0e94t3PuyhROGbkVTdEUrGRe9Lc1X+sxM/uvOtJFN574fjjDUjZEihuj69n5XMO13svQmo+9B76fcR+xIrX4b2GKXnf0lTaEWOM4nBj0zkX/qhR2i/Noa+e46Vn0udc6ZGze4rfkpYe8jpK41iQMmIl6reP3/Jhv+Ao2Kzm/PVciF3sn3v4JCIk0m9HT2+DVd/Q8EaxTgcKDfSnZbkferPxvMnwwyBOIKPH3pp4E6Ko6UZhswg3R1ULqzZEFeNVfaROk93D9T+MR+/FP1xKVYJq8/DpJEwW29657Lf8zCcyfZRL3gGfflDrs/c+qhYK5x4dyhi2ZPzUt3HYWo/gOddmJg/Rj1XqscN+w2XVWsYIed9b0x7JuSB7aWFVLjAQy6iqnipVqlSp0iANSxRaHDDZqXgFCscNR71TpRIhnUp3XQ0MpbhqCiSZEmil2rZNWoWBCZKJIud9VE3xNRuByZzTfTTFyQdDRoGx+t3m41ES8qNxQrxmtGDh03NOAdEmK6/rS49H916OQvX0qKqglqme1pnWq1RPUQOwXvliG/l3vmYdyXgPPMu676O0fh3GuCWZH4/IFOCxLfbnEJ2sEkWlSpUqVRqkFWA2X/bRZNKkHJXxRrh7S9esAgKYu/fGi1RhM3s446OMkZoOphyadx4+YUsBY6JpIpvwQjg8EzkdOmetElq4nNUcEv+Oppqae5S2s90456x0cSRceB/biRyMYrON+k1HY7JbTbxHTI55CJxZaaa8lES3HRvT2EOU5ui9eyOGAbmk5wyA1GIW3scmHI8zvDLXo7kjGIWBcfSeCVy33qCHficMXgbYGVMYeTWm6qpwYZn0EGRRGlM1tnG4oiwbzluZz9rM04oJpeouf1fySNGowtBvkYS1NCXTQ4HCVp4uHJ2S+dRcY6OEIQ5+pTTNJqJ59SsonWL87Sh8UgoWzsm1wqmkv+W+r5IwnIlqDZ/9SjQj2QcZ5vVQ3el3nuAcpt9Xp+dkDi35Qn8Kj1uG9HkhVuVWvOcqUVSqVKlSpUEalCjYX8eY6DCmZAR1zLkbJzuZUTtm3LNCXSUzNM1d5xymtuISKyaFaWhIBQBM42MbXM4q7l/ORc6xoUo64XiUJQOb3pX5m+Vklu3sdLnHLpTII+dIUDBx1FeGLEz8AOdV7GsuEEEzdJFb7yu+jeIUl1fnl5wDWGqNv2PbhC35BNgqdrz8xuKYmkQayIE1/dDMPTq54r3Vl9Q78OpZlHSipnPsSj5uUVLMBcn+aKZ1LZdd+2VyeuD4ih4QebJS7/rnkr4WbolGXyukorylAsaazrjexQKtO46FD0v6EcuUpOHD1J9CcOuNr6bBjaIRXZGNXrJ0B2t5YI2IaiJm2ygqeSWzHFZ84YnAtvxA9GKOBtxG6s7VY3CpTwXAk4afi8V7Ku49TJOpBbwpLBjDk6DvV6JUEFImevkeJQAWncLLlZU/mvIkCeqgbBMpgM7Q5bLNPWhJ8mv9cnB9P4pk8cvNb++B9HjnY++hnk8WGn0te5akT+kN3ve3p5J9v/YhyftYIqM35gFKQOKCAcID3hKWUpyqJjloGo6KYGCihcrPDfH7cz56VdvihjVcC5DO9WKpFYtPVT1VqlSpUqVBGpQoRgwqdh6NqHpSds/DwNN2zkCzN5FL4J1Ic0zr7IapqZlJzuuKBfC0sWbBtA2iKCEchxFwMOdCjFccplXcoZYuAAFn8/4OPZzNdmyDQhygI6DINPiUq6dzd91mgRvp19/nWozTKqRCddqBL7soHuAFzvywlEoKEajtt65UZazmUqKOzA/RVJlYr1JvxkfJxmOJuXUatyi9P5o4Ur/7Gscy8ZTUU/jnwNR7SKVajBN1yDn/2R+hMt2LM3GVKCpVqlSp0iANShSb4zEAYDabYUy/JTgoc/QmwgVe7fRGzGhJt+YVR8nmeyV7LqKU444gcm4GqkFttliMIDjQcRynxkm5HDAQM0itO+dgoh4xwqmOGZF1XUsUPY7HGInqKrdpHM67/skjoBLnVeauypxGEk20cD1ibYWou1pvX4RF1Jgjdbhbhw4NUOrwGwVMKHZXYVjajBEZRtG7Uc1/Fe0Ydk0uLouftUqffAiBokiFCBQPkaIeXf15yCpY0xC/7RhuZf2xDVWt7sCDkMyiQVBB+5DHW7sLOoykNbhRfPvr3wQA/PBHP8Cd23dC5Y1aAADYJk5aCSCn21eevQ3peqLdVEkEj796D6KL589oo5YpOd2oAtwmq54yYNJ4r+rw8bZeN/ViQmf0xBl6AcVLy8trlcQ639EqMPtuqai6WGOuljYb/Z7S+nz/HHA0H8VRLYuaWcCSd1FiKA7Z/CqLnkNW1j91j1XeD4obcqT1vappPVIGIr24Yw+Q1lF7pRv+w1V4VT+KSpUqVap0TzQoUXzvL78HAGgMsDGdAAD8OLDos/kBAKBrvaB44xF7z+rdKVxrxiPhDJ2yQQd41013/2X72zLQ2DsIiq05VpuJ/p330j+jAG5uNYLZdD+M+JOI96y1co9TgKt0vG/rKNe1tzRLYDFxkVbdMce6HLDz6HMuunwONq9izkrAa1TXaHEte4+JNEUlWEWpgGht9uoy6cE4L2PJIHaMHqvViXfHeRXDWZdmmY9SnDYCkI4j/Zm8q4IpcZQC1Xs5JDvvXSYqJ0JYn3NdFU1VneQbBu8d7lw6ufT960aKTVR7KH/7q2NORTVvPJe1o+8rSC+5scPdUD8Cg6ZUxZase4XvdoiGPOeTdzDoq7Z+e1WiqFSpUqVKgzQoUSzIDnR+sBA1sUUAtV964SUAwM6d27h+4zoAwJNTnoNHMw1cckfs06JtVS6JfAfTeITmkJbvdD5jy4zCKBKz1yyejW0MBK8QyYdj6XgBsZmcMdHcVmxyrdxrhWuKe27OU2Q9lWOf4ypIFCvMbu83lRzdhriYqBem8fFJoXBwUepMY0ghucepgSw5/h2G83PeKY4x1qF8Srkp8GD3JCxVIuHaeuPBEgbu+r0l49l7B0ejz5aurfTcf/TJyZtT0knEtftUlIDuZw9L5PGwsYl1aXCj2DmYAQhqp67j/MVh83j7nXcBAOdPn8bJ6RYAYLa3F260BvNZKNdMwxfYwUgGOpMtpcbYQ4t7YtsuHzXUBqTqylRPxqucyNwLnlBWLWxeLdSycHFbRgVe401GWVgUwcN84S9ZrvQXB33pQc3jPIFQcq20gAwsKiXv5GWt9hZE33+fpQ3rKID7xKKt1Dfpo9oE0q71yKjLj+RyUFA9xUvLVRufNVoZolxOLi+/7P577Bke8RkiVFVPlSpVqlRpkIbDjG+EyzPXcRw/NOQ0MSau/OrHV7FBXNaUQNnJ5hiWyu0tFqGhzRHmhHAyiJsDzYDiZDRw6Pu/ow+G3okVV09/m1zfYPu7oyOTXwujYgeyesrIswsYDyPOI1y/kYCBWlJRaqMilmiyYzz/KKuexOBAAYJDsZjkTSk1U1+V1C+XhNQr1H8YScIa2xtDo0Lf+xIwXxz0tB/GxbmYJ3lSxXVggPV8IPSz5XPB+xWBENejnyfVE9M6QH7JpyaUu799KxJPQFOadw/mHazzHVWJolKlSpUqDdKgRBH1tj7GKqLoqgddCwAYTxoBlg8WQWLo5h7HTx4HAExI6X9z7w4a9tIehWadC+WtNcJ9S7IOvckphy0x9/LJIblBR82UCIxKouilYtVJaKTN+ENCW7O3tuJwY2IV1d28sjU5ldSDmvuWnUjv6AHhR0IKI8hr9fJfduTfLn0/xeq1m5GA2gr8Z27vCBztdKtDp5M5kYQyh9Llx5NrQBRDra68mJi7DuEFCmZYVt0yyDQ309XlevDQPbyKu5UCD9nKXZYtaSTWoMJjFKzEy633FgggCbMtc5Ktc9Z8tgF4bWUNK15LlSgqVapUqdIgDUoUbAFkVNrJ1pInFUkWHTw62g1HhDksABzcCSE/jm8Hi6jHT57D/v4+AGD3YCfUQfGjFosOZhLYddb3LlwnJosc7XVkrEg24uimuD3T4wiMmK1ymtSwm3M4D8JKOMdFEx9aSzaSNEcSHGlO26f9Qcw9kTD7YiXFdZiCnpT/dso5jUMSQKXQNKoOSgIl12K/1uHeQjRTJP2IWILrYzxOh0agNjsnDnYq8Je0weWdVzlRo9BC13wiyaT9ODxHmpdz0Oax+VgpfEH1uz+foMKEUR+181bmxGWV+a2WVKXeNRzdvPcyFzVmo8QdOhOTheWmnx5evY4oLeUoRyJ5FMoPMKxR6l/h+Fe636zBMZekkjIesbIqJCtEAVAaSjLWr0GfU/X6OMf68003mmoEjFF9kvJuSYurv4f15azheoZVT4VzMrnUB9Bl6iLrnMR1urW7CwDY29/HeByaO7F1LJw7CBtH5wDT0kQj724LI6A3t9kZEz16uS0Z57jgSd+8l80gGYYcfORkRS7mUDbKn8LydV7t2/hJ5coZ773SF3HXCi/BDFxf9vLvg9i+6mMuAcuHrb8Ucyevpa8A+OxRT1vjPfLhfeAZ5MDMAM95OnmUWj1Fh/VvqZSTAb8co9a2ZfSgjA6q6qlSpUqVKg3SsESRsuHh/4IXKp/pTJQKdL7t8MPBEQDe3glxorY2NwEAk2aMgzaY0Tq+cdygpZs7Pnqg9QyAJ91KgFetGelxUNo0jkVeVpsYL2KwUaoiI89C1xoTzR0zRNA7o8aNcylrkFqrjcqcgtHllIPe/aJc5TRsEquv9+vIBQ8tUQx6GycqrfTaZ40/TVVK4XikXLbJwPfQQKFcVNFE01q+1Jd2Kj0qZLLjw39RVaKoVKlSpUqDNOxwR/uIswr2kmQSEStg/JL3v4V3wsE0DYXw8B6WOPIxAQB3ZkGyGFuLzelG0nLnOixIeuia0M3OAguJsMrZhGLfREes9f/ZbqxjSEUogZ4l2TajxtkHzF3tqn24yyspxYvzndI1mlS6SP2pzNJrR01r6TQVRz+EUQw62SlJISLWLp4T8DtKDTHj6GdTkoj4b/hlrYW3mWR41G0WJM5SFOBIPLbmaBjVDMAf7OMjQquj2T6gjqygdTAK4MHgFCs2ikAGBh11piSC5GB+0zRiA99KfmojHw1nyZtMqHnn4WYUV2oUwplvTiaY0r0z1yZ1AYBjKyZlhRLjKRWeQaQ4IwC3kMR+0rYg6sPjb9HFK078J1KRPvyZfzwmNXvh1tb5gNQm8iDUUEtpSJWkfhcx78K13mLmBwDuISeBR4nWjCl03z/sfIF5VFa+SmtS/hEVMkg+YKqqp0qVKlWqNEiDEkXk0G2wQwdUNCRFmV19pxKtCLBrvJjRmjGHIA/lJsZgg9RRrG5ysxanT5wAAExd6Obt/V00xCUdsEk+m65aK92w4gCizXnZnjZqQLwkMFKgH/soiM8EoppkxNU6YdokBDnXgZiUJz66F71KAtgWuE3+W3KBSxnblyiGJKdlQHkh7s0QmJ2fc85LIh15lM4NSBSmyNG6PB0tTF/K4KqUh/aq1JLLzoWoX/fGlQUQXkufaRulUOhe33uXNJgSeKDaEhTq1fvp5xBPdLb9uoqe4SZevw90mCQ+655fZsJbinKwrP2ShFhMpDRAy5+N16+4Vtzt/EkUHWu336cqUVSqVKlSpUEaNo9lztt4ybcQYy0pULOwXeUerJqDEemEyrQWWDBnwlFZPXBr9zYAiBSxMRqhpfqsC3sc4xbtooMdkXe34CNdVNM2qj/cVrZNGngBpROJIjeBtVoyYOBSHjMmUJJ6zcPBFQ5JuWdxem45YD3Il2h8QUkn/eC/vscBP3KadYNh1jnawj6I3lBbR1DFUCypzzAdZb6S/9hpWPXERioqZEAp3Y6Qtq/PZB5joiTVEJotfgnGis8EL+gOFgekhhrTtYXrRO3RUMFtCgNiRhvYX8wBAC3piiajsazxvME4eDiTblSi/jBenk82DBefma27Gh+BZQa1jd432MKJx8XZGHJcD8hDoP5iUBBrS6onCd7nigvKMtWTcX2VFpT6SjYHb3ptWVZ3PSL2T8mGL/ySDhB5f9UwqiNr+lGU742H1aqnz9rm8aj09976ka4pj8L0r6qnSpUqVao0SIMSxYg9opUpp/MZy7iMBE+m3dHFuExjAXuJg2w8PCUPit7YMSggSwWdB2xHqh4CmDsKbT4Zj3CSYkgddEGy2F0ciG9EDOxnMLIj6iJD3S24tz0LVAMJgGjF38IItxvzgEdWLdZh5ZLzusJHR61S8q4ugtn87F5dd+l95fr7EksxGJ6q1/jYVqU+rWIwYzDD9Qbw50n1NGSO/NlTQYn+Hg97xagSRaVKlSpVGqRhh7sFhfce2chF8iZXci7S+nqvfiOAvcpqNT06gLBpOXbGC4jtfOD4GxhMKOlRR9LACGwue4DFQSi3uRVCm29sbWKPvL9nhF90nQdHamoNOfIpD22xomVzV2MkhlUCXLtUynAKzI6BohI4O16nZ/e9gcCh6W55JJEQENNqxnNUJhE34rHI24glX6ZfVWbA2sxVwUJ3/QRCIi4O2Av7iD/JJSx5liWDakzZxPahcKyZM13JoERjJr3osQqZLydEKhitLCnyIOiwTZVMYO//e+rP71W0rI+6jlBGosut0b4pnCs1vl4fgSpRVKpUqVKlFTQsUczIIW5jgpa4+m5Mewtx3M56kSQkoY6Jpo7ikNbFqKqLDAgwxopemi2tRsbIb+bujQU6G6LMzkah/JywDQsLS4DE/n6QHjZGGzi5GZz2jtltAMDezh7cgnCQSbCY2mF8pJuLFMO0gIvbKT279YCEv6KHWoyIK3eQ+EUMgTivslaISr6JWAbjHA2PKXqSDRATF2nHO5OJI9ySN5DB9wpH8Sw90NF5JxKFi6BDKO6NepbYDo8zJyIyLpo1O5XaVPrFsa+Uox4nXPKOPSe9ShrEz8l/xvEzfbvaxGQ7N3nmuixPJn3FmPhY8WSqGkbK9cXmGX+yEYdDyrUbOBkroxNt2bzR5VSKPBykQJUECiThm2ycRdJSAiG/Ym3tpsRd/doASF+X59ZYLpX0cc0+ExuknVTeNgVpIPk7b0o7Nso7MIMSxHBoFdXftV6VwvTYYk8ntOnVH8ja9fj0cFvEO9M2dX95HupGlmPK6zgFMg1uFAsyY13s72NEPgqycPHReVEDcaY4E58geQSfLWqlTsuGkRTrl+dAhYm6hBujlzVrZxgfhEc8uX2S+r+N/d1ZUte0CwEJN8xUQqF7qt9ahwNZXKkfIy8LLX95DFx7ExdhNLyxWHTSN34infKIn4XNavuLw2HF5XsRruOwK2WNUh95cW2nYj4uBrmZbAJ+S11LgNZMfZVeWOOJinqsowMBU/PR+F4eRDDHQ1E2Z0rZ4eiv9HpJF6dVdz9HoDfT8rG5S8p1zPdAqepp2bkH8y6q6qlSpUqVKg3ScM7saYjkulgsMJ9TdFcEdc3YhOOosViIY1TMViQqEHFWizxkVBVQO05xrkno70yN4SJol3NxxmQFAdhmhJ15SMW6T/3fmmxgcjxIEMcnAfTe3wlSxPxgBjaVXbigvlqMOrQmqLtarcrJHK+MoPBd5OhUXCDS3EUjAA9IECnLqhzuvpX0rJqKMWVyNZ6N/fKarZdjes54H6W4nFN0XjrFUoTrnFJHeTn0TFtZ06Md7pxSz2USpC94cMcHB4YFCr9uwXuiFNxPZeXw8xGVLNRvDWqXONZ8+PScy+efPne/aVU7PZXZIetapaoq1VGS9kUzMtCRofD8eZ/ycg9LqqsSRaVKlSpVGqRhMHvMuIRHR6anjhzc2IFsNG4wpnItAZPeeAEJtdlelCjunYzo85kLsLFeZu59BzMOZzkm1I7r0CyCyewxKn7m2GOh/GSB/f0QX6prgsS07w9ieBFH6VrhYSyBsQzqS+uNJGjSTKegMx1fUwgjmxUzN7IE7Mw5kVWmpQrL1JUk51yJM3Gqney6Ue0nJtAsVfac6+I1jWn06lXnDs8sPUwW/tHV15e02JEjPTx3+llwWCuhoHmvw/Nm0l8YkHtrO8H0hsutQ+sA7g/qnQxuFHNKGGQtsEG+Cc0sLJbdPKhm0DWYmCkASPjw1nfR+kBN19xOX4Np8fnTgeDryC+LWB3tiyXUtyxITiwLPKl5Ogd4UiHdPrgZzu2FTeSx0+dx9uwTAICZC5tJszXFxSuXAAB3Znvh+bpO2uhIVXVg2bvbx6RGyvrJNqnwpiery8Kd98sFgNz2TXqEUvv4MAhF2/o1SKuKSjGc+J1GKykNVKeLvfdQcaJiXb1sdn5dP+KhjpvVu+c9UJI8ytr+uUd4IV1vU4iRCXpqppX33l9aezNLolih9ztUJv9lKiLRxR2qb6UMguvQatUTl+ufe9BUVU+VKlWqVGmQhsOMMxCNCFRPKVprQztx13WYz4OU0ZhQ3Wg8itmB6D4HRG6TOOeyGTFzPq7vI+A9ok0+1U4cZIIvqyRCHThSLVVlgRahv5Z8H/YRJIXLty9hjuB38dSTTwMAJhubokZzNFwfvH8J+ztkYmvYtDXUMUcrz8wcQ9M0sd80pl3nRdphQcGVbJ21/ohVVE08x5JSlKwUsJZx7UG8jmBmGA4j2HRkxuO4s7STJuzJI78mrYZzkh87clwi+ykzTFvg6DKNHGDLJqg9jswMJHhZAlb2PGPV79zOfXk6U643qkHze6IPRLxX199TK67JOg7FNEpGtldvlOK1tDEEtK42t02pl4hKSV+6nXVMwA+rYtH1lvoxVG9JVVfqT2ms5N0OSP+r+h1/c1sYPPcgqEoUlSpVqlRpkFbko4jcp3hVcz4IirlkbIOOsIx2FnCLsR+jGXOmINrVOwc7YjNQ5qpDEWsVt6LajMwPiwrDD+MLBTJIIznXkUSxsKHfxne4eudjAMDexTsAgHPnnsDOXrj+1FMvAAD+7u/8Lt59610AwOuv/zg8+yJIKWM7wrwlc1rxnjXo6LnG4wk9s0PLwHYPmOpzpF4/Q8YJpg/MdapIuLGyiBMVuCCNhwCEUbBJa8diVfQ+1easpciz3Ho/30XsZ1oH3fHwVOGrqcjKrc/eBWfm5XjBgwOM+9x9qf0HgUuUHSzvjmyB/e6nki2nQn2Up93DpmGrJ9FJQL4FDr/B6qOA9JNHNhVfzA4w6khFNQ5N2GaEtiVAmWKEGwaavemD2TYFcbgjcf3JQe/lImJWhRBvLAsKDoiuRdOFhfHmnQBmL7oWu5Sg+8q1qwCAt376Jr7+C98EAPz27/w2AODt998GAPzsrZ/h+s1PAQAb0zAu87aVfrO3u3OAtWxVZuWcHgL9fGXficIDyyZS2jb1+rx8w0jcEnqRL7wCrNVG59KXlbzPfPPwqo0c6FYPpjfJEvVUFgNr7FEvAqX8ymveKb9KC/TPo/fzg6RhSyH0riXnxXJvuNw6tG6Y88/Ke66qp0qVKlWqNEjDqqcupgwVfwFWH5kIaDZk+jliCaE1aA/IjHYRuPXRdILRmH0PQv0d7+Auspg2Wrsigtj9vokxJZuiphGS4lF2c/SuOkKpx01QB02bBm0bQOmOfCb25/twI3p2kjxutjfwr//8XwIAtqfBG+PLr30DAPCf/K3fwocfXgYAXL56BQBw6ePL2NkN9XKY9NEYWCxY98Ydo2dxvicneXgFbEdJT560p68xKKWtFe9rdeR4eRK4TiQFfV96WxiQ2F/xo8jFIqVmEu7JxfqkPKCCAsrj9frxsCmXcoKK9DDShZdyD5vDHJK2mR5kf0pB+Y6Siqo23f7S/iyv627bXaeeR0naqBJFpUqVKlUapGHzWOYwLURX3WXRUjV/ZTmxT2MxItCWo7F2iwUaS3GiJMpsuK/1XXTKEtM+U5Yklmyyyno0dbZJ+omEbWjAElC8NKK+LQigH00aiY4L8vI+WMzQTCmkuQ+g97//sz8Mddoxnn76WQDAs88+DwD4wmuv4uIHHwEA3n4vgOA7e3swJKm0hFtw9NiymSz/hyThkZQ0/Eym95wSigg+Rq8VCSHiCyxZuI4BbCccP1/T0WPTNKZZW05fY/GhUJ5v817ulXDqvVEo01oYxRFwZ2WzyoKoOkDhMVl6vnfz2KMkHf/ps053l7hoGO9cjwpzUTCPvI/30MwDpipRVKpUqVKlQVrhcMc/VIIcUUFLYgWRAlrmag1AQWbhCdMw3qHtgt5/Og/SxgZx752x5KgWjQslUZIAACAASURBVGw6E0NhcFypxiOGjzCc64F7acXRjpMP2cikxqPV+n/mnIUNxoRjOHmySHI2OlJ1Gkch01oOc3K8of57vHP1ZwCAdy6/BQA4tnUCT5x/CgDwlc9/AQCwvbGNt94KllLXbwQrqRt7FCIE0SKsZadH78D7eufiOTZD5mizkjOjU9JDEtaAZUD+SyeNYmkkogMxmG90oJOX5NWcYEvgjt43/R0kEpPUrx27pCWvUrIyVsPSoDE9bgwm4jKSQAlls8d4TR4mtp2xdZxTJTwyS89DHGYfGYsYhI3zTmx/4/UEn1nD6Uy3yYmfYmn1YgrOdZKd18UvwhUs1XLJRqQe75N31etRod8l3bx+ZibLWopDYhOrxqp3VWkrIsQZ2X1ZW3TK3jXgpwRaE4He9c71OxhNzSPmqurNnHTLVfj4XImTH42pOMoCQ3bnq8ZyeKPw/QHrTxJlmy9dVGARP4SN9q6OTUTJXBajBqNJqvJxrYse1uSJ7BA9HqUtqt/pqE+CmaYQd+EJk2PwMKYNQqmsLKuo9DqaLWquIfWRd7C8eJNqabbYwZtvvw4AeO/iewCAF595Cc888yQA4Gtf/xoA4Mr1EHvq0uXL+ORG+H17N6i2nI9Tb8E5xEfj+O5b8oAnwN34uLjKAuxijCqvNiBPCy1730sMJ2VkoN9xNK21ci0mLkpHtv9HSkUTUf57+W15LWuXXF1V/PByMoWWwmZ1+B5Xunc6tJqupOtZEVApX1OSIKdH8brv0WJDz777SVX1VKlSpUqVBmltiSLmJMpEpMByh/Jc1Ecx3yoxXMQySS1KZVwHSyqL6Ygj0Jrogcb4kNo6OySXCMxO91ZjoomoVSVjaHIG3+loYt7tMXueGyPgasxBbEUtVvKmFr0L/2ktNo4FdVtHcbHevfQW3nrvpwCA7c3jAIALF4J66rVXv4Bjx0Pq1ps3Q9jzH73+E1x8/30AwAb1zS+cqJwsnVvQyDiruHyJEWVifmxORGQ7Ud1ESUKlmc1xaO+jekvORTGZpRJR73koR6ao1hAwXY/TodQv94eGnOCAMgPYz+P92ZAs7tZs82HQYb3Hj7r/snoUJIsjqV+9i8OYWz8oE9oqUVSqVKlSpUEalCgcgbfGKlWeSbl8GCO6amjmWqK7OnWS62CgTPFn5Hw2pgi0Y2vhGBsgdrazPiYIUhwuAHQJWBmBbivF6Vk8AAk/kj2vUYl3GBPuHJrpKHkWA49GHpk4aTYNNkZAJQGjnIfzQZIwFNLEuVb6tNcGqeG9DwKY/dY7b2J7O0SxffXzXwIA/Nbf/A3cuRPSuv7oRyG+1JWPP8JsHkKNHMwofwZhPXZk0VEiqbZtaQycwlkidy/5MwqYjehmHT9nfB88fAE/SSUVFkFsIQ4UlEOhBoztQ5QoIp6jpGExXzXxwD+z9x/+6JlO4FGWLooOdw8j1lPvR++PYlibSH1jh7vqt7zm1e9M48K+NAXWeO3rhvl4FGg41pPypFUrbq8MJwJK7stUC85FiNtw7mn+21iMeFElj27bNBiN2fInts17UsydDTnBdhku+VBZ9WSlPE8EWa4UYpWDvZ33GBU+Hr5lzNZJbNEDCNAtL72xvcnnHTCiWFAd+S3YNrQ5nYzRIgQi/N73vxOO/+GvcOH84wCAL7z6GgDgG1//Gm5cvw4A+NEbASy/eDkkWUJnMCJ1lKiPXCsLulhCeQNLAf84SKPkI/ImD+GUfLGJJ61Okq0b1bZAek48cCPyOBciFcxVgg88nUrCBACwxfhT/XNqXAoe84/y5vFwqDQe+Tk976hEstDyuQczr5LeHXGTdx9H7P5RVT1VqlSpUqVBMkMi2oUvnRYdg3BNKmosH02myrHWKtEc8iPaJLONb6h+5A2mdEPDkoXvwPoduxGcMrrGYGEZhKV+E9PcNEBDPhANmdNa40SdwebxjVXxpKQ/4cTEW0xbiltFe+jubIbpdkgDe0DqI2+Dqal+ZudY3aQGkJ/FGEl+JLbOChQWB/iOQ7OPJA4VOpYKGsH2W1LTbW1s4qUXXwEAvPTSy6GYC3VcunQZF9+/CAC49um1cF+7ALM/DGB7H0OJzxdBimnJm975aGvv2fy26+DFc5uuOafSvqaqJ9NG6cxr8SRTRzUwSxMFedu3sA+e6rm4PsTa9e33jTF9UNIYGJ53Kt2pdDtOcrpmexxglJSN+IJEPwob860fEqCVa1DSsPKLiCpDlqK5rq4XpbcYZr7gdZ8kvSrcu46qpNSm9qdgXyhTuOewpCWKoaRDQ2WSeWjlw80rkZ9xXTucBLDqGX0BMV9nXMIz8RpL54rSbZ+uvXGr+BBVoqhUqVKlSoM0HD225HIo2LTaneScwhL4nEJ3luE8Dl48kCEM20gkFbGStQZj8pju2LyzjdKJoUREbO5qYASctj7l9sJv/ou4a2Pl3pGlKK+LJpqNsjmtjR3tx7rXTxjFqqbAkQjSIbGKIghu6DkdR+R1RowLxqNgausbi79+/QcAgL/8wfcBAI+fCU58v/ytX8Evfi3kzLj6Scij8frrP8Zbbwdv8L3dXRq3iJ+M2lHSn861MDzOyrw4ZrmNnKjJuMZSrKfcGzu0L9U+OCoEBRMu0sZ54URqZIlZWXUMectqUP6RzsK0PoVpfb+A7gL+uU7V92lsNbAcHzGVXtMItPFcxE4fHXzhKGiFH0U4Gv0HbwYM3hY2DIfoVS11oZ/DVm8dHX+cdKYxvre4ms5LGIhRk3poe7homcV9CjE/pAT/X/Ky5D46KReflzPVsUqiMV5USPkmkmSTVno3Cbng4zlWY3Bwwo7r8FY6pxdSVq3xtVk7w2QrqOUsWTZdvxk2hX/++/8vRk249twzzwEAXnrhRbz4/PMAgFvkn3Hx3Xdx6dKHoX0yJIjbnJENX8KXuPhhcOQT46JlkxVXDN4cICRLbPKRKbqfm4YpgdmqaTZA8Lan0hr+5j0id6NOFcvh/jzbg6BCxMAHsRgObkaJRYFPTuqc1iW13roqM5mz+VqE/mtW2tAj8bNYxyqq+lFUqlSpUqVHggbB7POvBjA7iTXFXHsCZottWjjYCHDrc3xvAxbpmWu3vR3Y+KgOGJMaqIEV4KuhOEqWjr7x8BzPjVRQGEXP5VETQW3BqjiWlGVQPYLZGxQSfb5o4VmVNeEGup63cSdxj2wcpDhYIlFYeVCrolMFagXcNuK3EH0xjPiVdKL7McIJMzjI97WLTuJVLSiX+eJggRPkn/H800HKeOWFl3D8eDj3wfsfAAC+/4O/BgBcvX4dbTunZyAJoXPyu6WkVK7r4nVWVXHgQhdHIwkIx+9RBf5rTDoezD255gjAbNP1roc0voWKObgkh8M3cS6LulAZdYiBgpzjOGFRaoxpYy1gloPZJeC3RDKN7jOYLf0rlV+Tm10FZnPCrMQ34bCcssyFewezE0MdeffUr1KdpXPNah589TP268jvWe6VXsHsSpUqVar0AGnY4U556ArHw7u/4AGRi9WhjIWbYWbLG9nto74ttiLWoIjckJW0mhQRFSOMuJFWxSMC0DQj8L6n4xLlvoDlx2TMJHIQlri+8UhhFAzydjEtqWzSzE0qr0CJc6VsgyO32fSc8CJXGTldJ1iQBSiyLTsgeji0HYPNoY8cfRdjgwWnst2gOFqTMWaL4P3945/9CADwwx//AMePhVhTr30+OPL9xt/8DQDAzVu38BNy5PvgYogzNZ+3kUvxcQw0eK3HVIWLiqRiPQmco1T9D4OEc7RmOWirldCpMSedyfiuEvOJwnh8FmgJRvHIpOuU6bYao1i7So1lZBDTUcd6etSpShSVKlWqVGmQVsR6ilYfwjdkoTw8fNxulBlrHg8IiOExWNcu3LUHrJjQcJtOGmFueW4cHHP6YjEUHsE6I12TkBtto5ig0LnOA36UWrPECLdKh6qSwHSk45+YCfihWLDhOEnWKP27qDWjlVKfAfGKcyWpSCKwRknMqP4vSIri52y7VvAV5u4bjiXVecEoOqV3lphMlqUNgxt7IXHSv/2zPwQAkdoeP38Bzz/zPADg+aefBgBc+vADvPv2ewCAfcIvvHMxvpW0paSjDL/wHmhsmvY1dX5LLVgSyyl2dINX46y52rJ1UagjfwtRgpQ3pFlFgYLYAq2gz1bX86BF3iFG7k1ChHCslPya0ikPcKzeAzl3TyeL5Y2xEqcsFfhyCaHfsHa4K2ENJbV3nminFwIru28wttIaAkt6d4zx04Ou+DX5iJd6PfYi3dJzGtNLSxyr1O8slo8SMifT6kuorjBHiyhbIr2mGgyfF1HkS9+D+l7uhlbEeuIfqgUB5YicEqZL8aD4wZwyj2XViTI/jBBvbDPP+uTg0VIIb0tgsw7cJha8YloaFyn2nIZ1soiJ6kS1Gbsdr/FGIi0lICiXi+PSDzuN/kwwBvkHVaZYxlK2QAaKrbEwlPxJFlCx1lVqAV+YkfSu2jbGf2omnJ0u3Hf5ow9x8d33AACnT50BEExsv/mL3wAAvH8xgN/v/Ow9dOTNPRqH99IueKNVTbOJsIkh0LVFaT4apfExauKX533+TulsaaiNytyY9DPbPJKjSc4MdIF4gUJJ7e3MlWX9W5lwKwc1VQXl7aw3IgP1azXo8nLBfLT0fINVl1pbfmkN9VFyRYxKdIF0dQ3fKPrlRKUb55A8/tDrMHFORF4hvtv+JlAYoEH1mF47C3OnV7y/7tyrgrCqnipVqlSp0iCtALMDJaZ0iTkec9cph249oukpcwQ6VzXvjiwpGCVasahutZgc5XFufiHmdRRC2zewHJWWyjSjKH5aBtIdoqkg77ZsYmtUICg2Z22A8TiVXpx1icoEQGLaKSZ0gu5bND3uNKrehNgL2yupS8R9gxxBc95IqHZxGFMpXPsqnMiZlJx52BN5QWav1gCjSXj2G5/eCMfr1zEdBxXcM089CwD45je+gXfeeoeuh3KiidOsjJgwIs4PxHfhc+5HVIP3Tg/WOUxxmIcEVNcBh3XO8cPee9dklPJMP9N9bFJT0QyUr6Ul6aIpSJH6WiZ5arBeVFR9h7vkvgEv7aM0zBiUpgrf8f2gKlFUqlSpUqVBWj8V6pLdylulLxU9mhP2UHAIpxjsjKu1QAT9FBcpm6XTJ+kUO32xKtw6NJr7BoAOMGlQDRiYJC0qADB84QzQcb8FkLAw5HgVQSgbnhEKGyh5JQp3348wWnK40+ax3JRTHEorGCjr95UZcoajwETgWlK/+n6UV6Pa5WdoKI9Ft+gkSm5DKWq7eYu9vX0AwBs/eQMAcGzjGJ5/7nkAwKljIYXr+5S2dX6w6EmXzvskPSuTyD93zY1ppCOtpGTKedgoqIfrB30WOddp+n0r1rDK4W4FdgCkz9R7PmsBerdDLcncCDbyybkHaRpbCvuSCKvrVBJFoni3gBUq8ZlT70rWr6y8BjCKoTbW6dCK7nJTa1Y2iIfdI60ICqhUTnmDCRqUfYDOI1uLQ3hyiaed1qkXRq/UR1Es7PdJEgspcEd64frlk6jkHDOJ+8Mprm18lCScNAcn1J6lcpkXaP2S0ocPHp7ZNW96L1bqUGC5/igaUcuxv4iPKi/S9XC/nPfJBsHH6O/AocLjuSxlNjoX42exv4Z3XlZytlza39/H6z8MWfceO38BAPDFV18FALz//oe4/umn1Cey2hpZGcv7rxCKdL8XuKNQPR2unfXO3Uvbyb0FP4qjWoiOihi3dtA+EKkKVptxlgIA6tHqjaGsWeX5dLQMx4P8Ooapqp4qVapUqdIgrQ9my26bIo7eQOI6xR05RuCMmhMf4z/xrt9FE0rR3DB3C5UQSe3+Yp+fgaHaTI8FBO8dLF8nVrtrvfg8BG9uxTU4q/Vj0jf2jnZaDJfB4UPkkCXNqJYiChx0NJM26TUT63CxAVVfONco3wOWgCyir4XPpAxjlCpBDBBMBJ7zfNe2kXhO0SPfisEB5+JufJSnrly+AgC4+ektAMCpk6fw/LMB9L78cbi2O9sVVZZXUqZE4s0MBYrRPpUBRG/81L0yYonJoAYk+VxSVfo7mbZZPxLNa/9aTl5JvutKAcvj+axHJSOGw8ZpChYWd9ePo5bghuqL81oB0QXDa3mbPpbqAdEFrUbiqS2GOnHy5KORzrv0HeQ9yq/5mKtBvb/SsyyrTdO9zacqUVSqVKlSpUFa0+FO7coZ92Q8oke2gEFOpQccqJ9NVlVBHS8qd600UT3ec2zxnZHoscyFO+/ZN1q4Zudc3D05ZapKjdqLDmmMeDhrt1mjop5SY9kgqCr0/8L92sK5/J7IxHkf4yPFGEvx+fj9SCBfRM92o0eYK3SxDpHYVCIiLmrYgYm5G2WaGb2xdcfDub39AHjv7u7h5KlTAIBnn3kGAHD95g18cuMa1QHpDzsUWoq86TqWDYdpPd5a65H1mSFuN+O+V4CWvYirBS4u8rLL73uUqJRsqnR91bmjpBy/W1Yomuan9wWPu0KlAxVGn72jx5yW04DklMMvS8uV5uzhsboVG0UUO6U58UGIKh+fxR0wVt0rgQCjY0Quzjk4AXLFJ8MAxqQhK7zx6QaFuLA7qIgLsunEBEMcIcR6g5b/mJNFDwlW1vq40uow0jKeLl6LMZyzh1ILv3pJVjaWuCux1ZOU66Lbf0ykQ6U1OK1A6rgf8zUaM+/knJVN3kVA3ilwmjcNsYhSx65QXvwu4gaefoVxQ7eNxd5eCET43sWQIOn5F5+X93zt06vUtoPpWD1IQSDZIuoIPsrih114Z6t2nf7HBjUHCuquu+z7qgV46GO/HwD6Knro/cgW8tI1Yb6U1jIa2GjfitjvqO2N6x23kwcM1PrhFCTPNtulzGRKVqn0OSx7vraUbA2S6hPNV79v61JVPVWqVKlSpUFaC8wGCmK1VztrBnCHQFjJKai8RSrXilyNuWYVuCkCjcq/HXPSpmyC7kcngK4RP4QolRhhd1mzYRb0ozHhH+Ku3MAGaSh5PhVIUHwa4k5vhdNQUkl8BKGcidVxXDTIxmWUEIneT+lbLM9JnkpxgETqgiZ+TrKv77ySLqiI08Hher2JEgsdO++i1LcIqVbfePNNPPnk4wCAC+fOAwCuX78uYzOmOF4xkKNfV780QMNidmJ4IPo7l5QJweQGgMhSq0fAVa+j3hkqs+zaUfD5j1pu6ERFlKmu0/mavZeSSf+gBBdjtelvKo9Ppw0J4rK37pxItTLJ75JUUuq31jncg+qpShSVKlWqVGmQ1vLMLsV6KiUIERMyZ3q7s4OHBQOjKc5hofAFxo2NTRznuC7hwjkYLF1yCmSVCOHOo+VzhFiPrBUnPcMiBZVvRgZjMq71RpBxcWpjL3AbOgh1QN8wTl0zegx9co0GhB9PykhxxgYQsRKrHjMbZsV9lLkFr7EG+juGAadjx5hFLA9OkOQQ07Qizg/pLmMT4tEapIpQRcAeptMJPvwweG4/8fhjAIAL587hk08Y4M7kHNvn1otPZ/o/czxsaXn9sgYYvZ5kbSDvr9cnD3nRiTPeGkx48s0NmDM+bGzgYYDZQ1SKJiEh+5VKQ5QEeqx84Vxer0KRc3NaHU3XqTrWwShKFOuIeMW90BBGseqdVYmiUqVKlSoN0toYRR7xNV5Aj5Xy8Ooc6/JNxBpkh1dAhjDCIoIo9btC+oUTyLrh1AlmudvITbDJbAcvgIVNGQIcdB2sDVzvhJzxnDcY0TCZjp3EAEfluJe841pTzlWRxMwBYNBJaA2NUiC7Vx9Fq2xi/8UsNteXlhhXrwZambvmYFByX85oePVuldK3pzPno424STOhVK5dKyawVz8OVk9nz5zB0088BQC4cuVy6AfPExiYJs0z0MHJe+5Iimpg4oRmk22JBabDqKg31DvnZQT68blSpEiGI5tH90T5a18mgJTeS7ylX6bHMS7hIA/zEI+wWW9CPSxNWzL2ZM/kPnkNxcv0zRVAKnFBVQtmH8stNVt4j4pKK0W/UPkl5pqfw9BaG0WIVUQfT0EG6WW0Qmlw1EfW046oF8cfeLLcxgUymqexHkgNLKtmRD2m2m9IdeIdxCzVkmc2qZk67zBrA+A6omsbY4PJZAMAsCBz2q5bwHHyumwWGmvV5OB+ODSGNhv1oLmTZWLsKsPG9WsRljeKaJosYc+lBvUOtElspiYx8DEWlEz8qIqKsaHiMdOiFZ124wdm5F1JMMjkQw306Y2b2JxuAgCepA3jo4/DhuFGTlZ8CUOPqDJrdOwuz1kTKUmSuOkDJjqZELniqir3anWU3Nj/yoY+2nJ47EN8qZ7bHbqejn9PxZD0IzIvceEYWJySpD9pHR4xi6J0x/e96IumooldJ4rle+VQHs+kiqGhFe1RVDNFo45+f3x6E3cglst2CKMAY+v7S6uopUida63pzZ3+mfL8khVm1VRK5vfymbpKG1ZVT5UqVapUaZDWVj3dLZW4iRw0AhA9gOlv5+KGbRRH6rK9zYgIYiJHrBhAiVHURtVZZBRpZ2+iRzADrrN5yAd9YOc4PjmW9BEdepixmNA6q/btyHll/An6f8SOezU2JQZKGxk4lQ877Y8yY9VllEd2uNbPhczOfs759F7pY1o+eYSCGF4ivnVMIc0ba3HpoyBBvPbaFwAAx0+cAABc3r+KCdU3IQlhCgO74LZCH1s7QsfSIR1Z8rNo+y9N90ekKRvfg7BrJGFY2+Nw6QKVPzpVjG4nf8erQOp1TWdzKYMm3so+lQDgzxItk3qKBgKZU13JwS2RRtcBjI3+mxej+E0VY0E9QAOFElWJolKlSpUqDdJ9kShWhRoQZzI2s7S+xxFDp0LlzEI6NIhLWVdjvOLIo25WYjyJFOEl9ARf9GQSOzKNcLigcBJ7B3O0W5wxiHWRFg1xmR1z6Ak6kGExRS7Ax7hSuYRVEDsSzJmuOGXamhVPHeP0Ra7DRQ4mH9N4n6pbXkZJAjEaKip2Jyd+9AU54WE0RkOS3cWLFwEAL7z8EgBg57076OYzAMCEkys5jxGNc0vc2HQywpzwir2Oot5SO1P4aLzAY2CiOWOJkY6JpZQOesnzHIYGo5+uwTGWuN9V31xPeijXvLQ/JlTS7+NnUKIA+u8gTWxVgozzMfXqu9bjzPX12ylJG/0Yeg9feijRfdsohkQwJ+ApTUKn4kVxHdoXA7o8leM4KKJ5UnCUspuOaqZwnzMengyW+CU5RH8KSyD2mBacUTPBxnQLANDOw6LWtgeykVgjYQflWXKw0nqDHPAv05qqJ8eqISebHttc89hqNZMA2EU1k083De4AwoLq83o7L34WsnE6/YGsObmp3Hga8m+7tpNESLuUQe/TT0LCoxfPvIiLHwS/C086qIOmxcyG92bHpDocA7Chn2Oa2QvylXHK87YfqhlIjO19ukFoX4jSW1zv3a5HQz4TJXXUOnXci+opbhRRTfIw/SSOgg6jeloeDLDk6Xy0qifN6A2wFivVvEdBVfVUqVKlSpUG6a5jPd0LRUvL8MNaiLdv9HTWag+lohHVCl+indtGPw3hAlQeoiQUOksXxBnbJnLyLaksHPlRjEdjbGwGiWJGUVB39hYgwUO4U8u5s105SUyZ086lBq1m8oUyd8k6KDPJHsdY6E9MFCWnYopJ3ytOP5SKQl1a1mN+vgVFih3ZRhzx2bjg2vXrAIAXfuFlfHT1BgBgvwkSwszO4DksOUf6bVtM6D1MN4JJs+tm1BEHTzGsNFco6Vl7PhOF3nv0zBEHrTGVBHJYNcK63rND3+XhVU8DdRSkDe2J/PNAxfGlo8nKhPeyXHoo1flZVj1ViaJSpUqVKg3S+qlQhZbrKUscDO+KOmFQH4CLuRmE74lWivBKdy9pIASIjvpy9t4V7tZHFlDMZG3ENYRbb8OxQwvTEEhN1+Zth8kkOIJtbgUz2cs3LmMyCvWO6BgFFxfjsigm1fV0nLF9yevAz+tioncB3qHSwA6MvVP4Re7EGIBr6pKW6vhdSZsxHlRuHmtUeemGU1B+5oGuBaHkyekP9mB13sUBoMFcdMFE+ebeVZx7+iQA4CcX3wMATE9so6X4U8aFaLO2aWCPHQcAzKdBohifDHXOrr6PqQv1tT5gTdYYSYcrTofGROwlSazFkh79odL05nGAShCIpsOmMV31e+jcWm0WLvUwECVR6O/3biWK1dI2t1vGTIA+l7+8isONlXbMM5mMXOL215UkhsoXu7EGRhGqWl7fUWmCHpgfRf4bUI/nkSQQ4XM+u8/osB6ZpsB7qBDlRgrlYUPg+17gvuVNJ4TsAICOPLkXXQc7DgvRxlZQQVnbYDY/AADw3nRsGjaYprG95E6w8RySfpfUS/xN5tdMH7h2Tqyu5MPWG0FeRwHMTmiNj+eoiTdQi6gntBIsMqiKrn/0Hl76/IsAgI8+CvcZ57E3C8+8dWw7nNw8jc/96q8AALrHg3f3T9/+CQCg3buFhrLqWQLQfddi0YY2xiOZIDDkzh01a7yBGTlp/fIFSyIJWL3MqAH8jIPBTJ9VP4rVpAHr1cpUrxiLQTVUyf/I9DeiR0nlxFRVT5UqVapUaZDui0SxShTrX+xz0Dq+VFTbqIQ+Fkn5UC695H0Es1OnXKpPuNnYb5YCOlJtzRcL3N7ZDQXI1NLbRjzE24OgzpiyqSYaiMUs1+sB8XYWi8sYpC4+O6t8Sqqn0ONVJEYA2vxRKuufM0q95DJpw3uvxi2ey6z87ompVDEgo+pGxiiM8c6NPUzbKQBgSmqmO3cOsL0V1FHHtk4DAD7aa/H97/w1AOBX/sevAQC++uITAIDvf/Qmulu3AABdG95ZYyzMmIN2qaBQQnyOI1FakVYlnLqWfJX/TrgrJuTy+j0+egzjUirlc0/oMyhRLFuLkvS2sXS4JupvVsWqxEU9T/54X1K/1BHv6/tz9PtXUj2lfe2Xj20eDVWJolKlSpUqDdIDwyiSXTKLy+y9ArqJibOKKzfs8Rq0zwAAIABJREFUwW0gILbJ6ihJFsEXJQUmDWICpehAzZhC7EBHXnmtb3Hz5k0AwJiA7tY5WOJEbRM43NlBwCycc5hOGFy1dM5HkYbb1GGvo5JbDrkJMeDhHBsGkNSjHe4UiA0EcFh+d8wFuSSlKZfvSR5a+upJGaqcMomVx+MqCqxMItSJGp/Mig0gEhUbNtggRbTNJnaakDJ19FS4dnxssU3jfO54iAk1++BDuDaYML/+e/83AOAL3wqSxeTOAQ7GmzQe3DkHULRgx/PDeFiJTZ7pj42NHWfuMLCAdC9HrqXaFSB8mCQxefmHQbmJ98+Tw90yyj2zi054iRYgN5Tpv+NSYjddpjySy3GOfv2Fiu8DVYmiUqVKlSoN0hFLFEpvluvekjAWJQyDjnLCxPqkjFH5MPLtGUqUYNMUoxj5aE0VFcfRGkgukSTD8YMWrsWt20G3ffr4Nj0LYt4fDiVCJ+btXCSJCXnlGXVdAyhxNBS3jshRZyMidcScQyr8hoThYOmhi3hFojotSXj54DMZZZq8ApHoSXb9tk3yI9V9W8TYV3yOI4W0ncFsO+AQX/3bvw0A+PjTa9h/520AwLs/DbjEK88+jhnFjnrtcy8DAP7kn/0RAODk6bO4MqUQIbt3Qpt39rHZkvWaCziUsQt0HPuLcwpISI+RWMXxizRGYWNKQgYAOCeOfA09VWfi3Ernd44FDOu7+9/QXXD5eRWm8If+VESYUrr2bFocmawxUNEQ/+wHr65opzTFl0gDaUFteplXpm9UaxD93X8FBiox9EDHVRdKOMfqO5XFVb+OnA69UQxW5+Nk972FIC46LkWWY3A8Vd77COimQchSdDqKxgbpJ4d0EMXG3fbePQPTnbHwpPOyHYHV8JjPQuyhdhqGa2JH2Jtzbm0KUkfmla3vsEsAd0t1bI2n4IVFFhHfSVyi6AvC46Js2MUU1ifjy8+Xr8/eUb982wPbwgTijYSr9yo+FJ+LC5iXRSEyAWqeS/3xjabvVsdVEjcJE9+VbGwwYhbL6j/21bYjYPtEUBtNnnkeAPDcF7+CP3vnUih+MqiecMLD3Aiqp3/3+/8KALCYB3+K63davPY//NcAgI0zZwEAV77zQ1z70z8LbcyvAAAO8Kl4fJsFxfty4b23FuhoN+gc9xFoyHrByljR/UlQfLVB0zg4sWawiPMjXaAtAGu6fh09ZcDyL7MU28p7vU4olYnck5Z3uo4mzoW4QajvLPPBKC13ojpRjRZN6YfMTQvqnaGNYnCt1+VKTJTUwe/HF+7VADe/TwU8a504QEnOshqMAb9bZ2VwyxErgGhvgexb4+4X9quYWbQw3kuoqp4qVapUqdIg3R8wOwFpNCfKu34mUahbS4lvJJ6T2rFFzm+83NeLuOo1hxR+WVUxRy/n7dohmo8yl+08MBcJIWzf0/EG7twJUoYZ8e7P4PYI3SLcezAPgHiDBmP2ANahbYXzCm12WMijR/NYKuGiZ3anHO867i/4GD2po8rO98+pa30Mu/9eRGo2fYHZa7Ple6JU+mPhcTaZ4/xLQQqY7wbDgo2nnsb53/xNAMDrfxTey/d/8mOcaHcAALu3Qy7ujgawm2/j7f/z3wAAXviVrwIAnnryAmanz4VGdkPbB+0YB/NQx4i4ws1jATT3ix2MeYJ2LFFYWA45TxKkJ9VjNx5hRvNI8nqbmKpX8/Em5+iOTIdz9FSMspoWSK8rDrYUGTVyy+raEeKzRzmUOvZVGWwelnzy8+uc4/aS+hMpUUuawyD43VKVKCpVqlSp0iCtJVGkpn3rVVyCcvJrsdJ+mZJpoYfv6dein5QRrlb6aCGJi8RnynsJv8AAMOsCOw+BBzrh8oEDctA6IMlia/MYxk3QfS8WQWpYUP2NMWgk+VGoY382gydTTr7WoBE8RDh4O6e/nXQ4gskWrZi08rETXbljbMLFtJwx5EdfYirpLqMk0QcrBedQHmaJ9JfhPutyhAl+Qn1jXT+bMZ/GBC+QGfJfvf6XAIA77QLPfPkXAQAHCGa0V95f4MbFv0r7Ng85LcbzfezuBvziuz8NuITfGGHjxCkAwEtf+AoA4PYlj6kJ9R07Edp8ajMc291NkTRv3gqSzcHBAo4kCB5TjkGlHTP5vsZCJqUke/JeYk35OOAyRvI+5DtA8Zs5LK1nfmmWljXG9PFZLWXkMY7Qz+EQ7u2jyNE5rXep3N+sH8WUI1J3/z59T9GUP3ZMDoPRZg8Zz0mq13jLkAOfjkdm+uPXb2dVP4av37fERb12lRpoSPV0iEb6f+YLmIPCvpUKjCeETK7om5FbFnUAZmQZs7MbQlYfP3YaZ08GlcXlTz8BACyaqAIyY7WoAoDrxBpn7EOcoQkmsDT8rFrT9tb8s5N+WzVq/BG5CE6b1PPbqVHVMWbib9o81Lnii8j8P5LQyLGB8pe5BpU/KM4/HjbSs8eewPEuLNZv/vEfAADai+/iaerHF74dVFCb1xb40W6wXmo/Chv4NgGvz7/8NJ57/jkAwB999zsAgOv7t3GwCBZtTzz1DADg1S99GRfffQMAcGIU6jh7ENSMn3QjzCiM+YmN4BW+u7+P/fk+9Zd8cCgbn/UeEx5vYnwaY8SaK/U9yeezBrU16I10st8nGlroEvVRr1iEWyWHvWI8EvVSv2Iqh54qToZjzcf2ZnlZjyUAe6YCyzoXbwYyY4BCXWty1CXVk1xTG4VfshmEebLcSkqXzqtIeO4V3a2qp0qVKlWqNEiHVj2trXuS8gPi7bpt8jl9by6Tql3R+2iKylyNY5M0H1Ux0SObuWxIBFqWBjw8Zz3Frb0Ach7f28Pj558EEMKQA8BHswCetosOvgsSyIS42Y0xsCDPbUOJkYz1AoyyL0bLIb0NBMV2rEpyHt5nqiqYqI7IQpB7qNhN7NnutdliLOe1PJ0fc1nepBwikBoI5PUfijL1Ab+nM8+8gLc/DpFfd/eCD8SN17+LGxRK9syz4V2YLz6F4/a/AgAsLv5yKP8XQRX1a//z38d//svfAAAc+1//DwDAP/y9f4btpx4DAPz0Ung/Xz59Are7oHq6cf02AOA6qR5Pnn4MHYU+53y6060t2DZIFM6Fc/ZWuM92HdpZUHcxh9w5pc5RfFr0pWHVTG5Ym6pX+tyyfllHR1r1VFS1ZBKnFtmjUQk/U5wzMYWAUjVoeD+L+yV+QquWIsU19wK/Fv4szlzhuGP02L6JcV8u8UtlleVUUj0Vr0WdFh11WHybFMp7Jcf8WfSrq+axlSpVqlTpXsgM6dLOPHe8dzFPq6DNK3OP51BOlOaxDonps7ztVWBQzoRYq+6h7c8aE3EC8rhubIxK27EqXNKaGowYSCXMAdZgbAmIJp35qc2T+NIrrwEAnnsh6L3/8u0Asn5w+SLG5Eg3GXF3WnEma1namIwxHlFeBAJDWxMDXZH1JQyid3DXZVKDd1gQ9sHSApvmOufRUp4NYnThFg4k0Mi1rvXwVK+A39S277yKF6WUs5kxQPidvnsRShKHu8idSmRgAn6bxoojF3PaE8Jzfvc//ft440pwrru5QQ9wcgufXgvc/eNf+TYA4MazL+BSF7znx9vhvRzcDBLI5vxjfH6TcKWPg2R404yxeSK80/Gnof7XXjyLW/MgHV569x0AwNW33wv9ef8NTPYDOD45GRIknTlzFgcHARdp6JnOnzgDAFjMDnCTcmDskzf4HC08vRCe/w1iYDNP79NyAi0TpeES8Jp+Jamjm45KXJTQbV5Ozy3m/Psc7lCOmbAe+KSPiXOdW16H4DKJv2laV+LxmZh9Z+D3krb0+azjBVnAxPhNBWlbmHvNbovRR7+JdQDuZLyNljjzH1xeqVKSuFxx/dLXVtG1N24VC973oID3i+Rp4rcQzUgkvIa6riaXTAmZmFHMNSnCCMBjThnReBOZzQ9w604AQc+Rl+/nus8BAG5c+wQzUlExGLu1vYnNDUpsNCF1TePQduQ3MSa7+yaoPEzTYEYWVvv7YWNZtAtw/HIvC0vMM80qKvH/cE6FDedhKS3aSLK1yTmAPgbaOCXbm/IN1R71Nv0ovWIahrxqG1oQrTXoaDMajTkESih7eqvFE6eDZ/b02ZCQ6Nap0/jSNIz9q7/+qwCAf3fxA3xMm8COC+offyZsHN2tDfxgTBvhq88CANo5sPBBbbQ9CdkLj71wAaNjAaje+Du/BAB47A4lUPrLt3DnjbdCfVeCJ/flDy5hdpuebz9sBnf2Qp3z/WsYjcK98xPh3Vq/CbdDebw7zrQ3gqPfo4Y/Sc1sxbFfTnehdircsiwb23Kb/3SO6YVLtCW6IfGJgtxnslU1BOf0/XPcH5fWn6qSYn97Wm+lUtLPQCdjOckFoMLyIx8X9czlIitplR+FJGJLIldkm4JPbqZLWj93uD4to6p6qlSpUqVKgzQoUZTVUofcNks1rLPLrQTNWRxXiFUGeAWBgjnicM55RJ8KqYu4WnhYSkDEnFJrPDrevYmRn/sWn94KKogrxFk+Q+aVd176Mq5/EtQNkxHFCpoAY+JmzThwkydOTbFxjKQAMsPkOEJ20qCj/M53SHK5du0abt0KKo47twlQ7TYACsXN0Qw5Jo/zKt+1ss3PcC9Yq5LrsB9DwY5bDPCc8uTWoJiA6Zn60Q3PF1a/dK0XdYsj/djZC0FiOHlujMX1AAqffvmlcO2rX8Nbf/0mAOCp4+TvsNHgThckiZvTMC5708CpYzJCeyyosjAO57YWc5y7HvwhbvzwTwEAl26fw7UrQeW0/VxQX51/5vMAgDPHTsD9Ughbvr0VVE+LkcGNvfCO9glo37kR5sbsnYvYvR36016/AQAYze5gy4T5cbATyh20BxjRs0uMoLaNI9T7YNb7Bo0SDcupOV3v3DK/iXKSHROTihXY+zykkEmw3vitSi/ZCAVq7clzdwMqGZmSHrhWFQ+t50GeqayAmNJ2WY7reEv2Dryu36QX9I0raMiPQve3l1RJif8mG1O6kNSfGrL0aZVarEoUlSpVqlRpkB4qRnEvsonsnQUnNeYvnNPmdXS0RkwVoxdzv+IYTToCWi2hvAt0mJPJ5CdXPgYAnDoduN9Xnn0VX3yJE+QErvDd997C/sEtaivUNZ/N4S2ZWBKgOp0GjtdOHOwknDtxOkRGPXkW+PhKuPfqFeJgdw12SX/u0gCjAV9oUo7HGPRBucZAgpOayOXxWEWTOqrLKu5Rg45ZtfKrGJNGvRjhfBxG1ibnnn42YAkbx0/gOoHBb/+LEBX222cfw2vPBSnuxjvvAgAeOzjAz37yQwDAhddeBACcfCZIIDvjDdyaUJIikijG1y9h54+Dl/bOX/wFAOCj/c/hzPHgrX3j94KU8dG1/w8AMMccbpOkPopY6x4/j+3Hgont1hPBTNeS1/6zzz0n6VpPngjH/bfexFu//89DfZYc9SzgF2RiK0PAP1wcNzXK9y7XD9Nh4xKV+laMPaR9BumH+oRLHelf8+mPspd3bGSYW2bMRM3cBKTLG43zufd8HmperxYplo1p1rWyNKfsgDWa1esjhgZX31clikqVKlWqdA/0yFo9rYxNktmLLU2YzhICH7t4sxerRJJAELlvCXHhPFzLeRFIh+477FKoCE6TevuTcHzl5Vfx8kuvAoBYLp09eQG3d64DAK7eCPrvznyKZhosmlpK37mYkemstWhInb6xGV7R5tZxTKdkRbUZ9OO3bxpcej/ce5tiTnnLSXMiNyRcnymZ9JnIucTMO3FcxIGP6lBSRMoMLeGkjJFzMalSrMSSFGFtPL+5HSyVniCM4Jo3ONgIXPrJW+F57/zev8ZLf+NvAADmhqL77nyKx3zABL77f/1DAMDjTwaJ4thTX0G3EcZyl3CMvb/4HuxewIz+wf/yP4VrWxNsHA8WUG/QBDl4M/Tx1NTi8uX3AQDuk/A+R7d2cfMnFwEAH9OcsJyzwgITMoF+lhIpfe4rX8YBjf3odDCj3RxZ3P7oQwBAQwkGDDnxeaskZImADCw16VFkMqktPdf/xrTZcqmuonNYr/yQ3OOLbfZMW5Xe3eSYV4Jz8KV4Mko46Ek20a+0j0HoKvk78PqePkQhF7XhVM/JMGmr/46GHO5KZfqpWUvSZfzm8j6WyCSqhjKt2CiW35x2ns/1r8Waklexsv7SfE3qdS4pZ2DEw1nM7QzEvl+Ar2APmrbRUIweG8FeyX/sgDGh2KM2nJs2I2xskbkj+2eQx67b38PuzQBcjidBBfXUhSdx4UzI0Hb2ZDhn7B5MExapGcUbut2FRbC1M/jmgJ6TjvYA2xth0dkhtdT4zAkc3wyL6hu0WF2/FlRh3lqZmJKoDV30Sqexcp0TQFJAU9F6+GgFQP4OaNXHLmZ8kAQq8XuWXUp9INSO9TDkWdr5MG5jCzQIoPTpE2EjPHUyLNhmbHBiK9x7gwwFps3jmH3yEwDAJ1eDh/btW7dx7aPgDzG+Hd4BaeYwv3oLl8mnwp8IY3buzGl887/4HQDAb/69/zL0Z9xgQf08fe7xUO/1cN++b7B1LWwQu1vhHcy9gd0Pqqz5h6Htxa1QfnHzGtqrob/vXaF4UTs/wPlvBA/xbZo8ixvXcI3B7r0wB9hnxxoniZQ6Q8C88WgW6cJINqXQFL+h0rcXNueUfK+O9FvmTV15jffA1f7378SoQqlDddDP3Fzd+sjM5cCuCrcvamK9ovOGAbWxuaRgsmCX1k9XAPnzpUqPgV7cB1e2NQBur/xEbCOL22Al/eVWLfyDmqe4hq5ys6iqp0qVKlWqNEj3RfVUcvhYN5ri4dvw8X8V54hKKWlHg0S5PkpxQxk30TQGk2ngdI9vBWngzMnTOLkZuN0nnjwPAJhuhIbGE2BCuZlPngoAprcWc4pAeuLUFgDAmgPMSZJgoPskgrnkwu5gjsCVzlw4HrROuIJzpyly6R2LZiP06ea5UO+dW+Tl3Rl09Cxy58jK8wn4bSCOipK+VobDiAMfS2SmMQJii1rARC6tZx0LFUI7JvsWSY+9mUPILBo3An5pGLHhrsHuBW7d7Aev6bd+fAsfvhOkuk+vBW58vrDYI6e9AwTp6/T5UNc/+O//W/yTf/EvAQBf+ca3AAC/+Ou/hqeeeprGMnDye+0+dkiN9/VvhzDmN+lZ3uuAK6RidBQheHNrEwsW72dBOpoeUFKj+QzdTlBHLej9nxkBN370IwDAmKSN443F578akil9+JOQ/3txJ0ib44VHQ972m+SM16GLZrTiZeyjdC16xdI3d7jvMFWF5PeuYEMLdZQ9vlPOuax90H+mqiqTlIuSiDFpvcOd7KuXDk/3MraqChEGMmnqLuhuw53nVCWKSpUqVao0SCskipKTxuq9ZWmkybXM1e6SvO9HZfdeRaE0SVlAccmyczt4E7hJzj20sTnBU08EfOHJC8EM8tjmcYn/tEm66t1ZkAau3riEpyjvAWMfzXiCsQ1g7MSE+yZjg7alsBSzwBk3xJHOugOYloDzdkTHKeYzSsXqYxygEbFBj50Kev0PKG7UrGsRQeTQHWsAz3rPhB/TppiI+mHE5EEQqUBpeL26TRg6boz1n23UEfML6hq5QUyUHbB9MnD/jQnP/J0/D3kjThxbwM/CzWcpjhKaMa6SJLG3R2FOnMUu6e6Pk8lqR/3+6Ts/gdsNIPYXP/cKAODaxUv46fcCB98RyPKlb30dB8T9d/vhuE/9v3pwgMk09O3CsYBzXPMtPiUpptsMUt2ExmBj3mCLJMgDijK8885FnKXQI9/+9SBF/Pk/+kf45c9/MQzRxXcBAB9dDKD5eGLkK/WjMY2jhclxNvgoLVJ/GVQvsqRmScrNNSh+234JDpKWK0Wg1ce8G96bqKfPhH7AJI52aX9iL5yGW2RuRmA3n66aTGnZ65eKvwqVrBvXadDh7ghouK7l7yCn+5a4qET3ZYMYat/0bbrpj/QoAe86jKZhlpw4Fhbx84+dxisvBnv9k9thMba+wXREizxvGMeCKso3wA3Kfnb89AUAQDOycKRqadsASC58h5Zs5xfkk9FQXbabwnSb1DdacF0MTugoxPXYODQ2vMKzpOYa0+Iw9048rC0v8iZadDCo3boIbEtWvYLVk2kK707tzKLiEz6Cv/ROPG7FiAA2tkVj39gG+/tBTbO/CMcJjfel/QnsNGwQZjtsuJubmzi7HcYZVy+Hw5UrMLRRniSLolNnQyDAS29dxP7VsLH8yR/8WwDAGxc/ws5+iA31hS+HII9vvP0zGOISnn0rGAhsPhniS22cPo3nCAgHtbMJwFL2wj1ySDFkgHDru3+FnTFZO3Co93c/wGgjlL99juYCLP7pP/mnAIAxAfMnyON+1BgsaOz3SV3YOcWuqZhdYoBh1fsLjavfmtb5HocXwaGFqJRbu1QmtwYK2qVch8lAN6Lqs7Q5lZ4z2rZwodhWaVNYY1jCM+U70eFpPd+UVf1Yv/7l9Qxfr6qnSpUqVao0SMMShS9cXkMuS0XBvurnqIHtofZLJNE4mTNhVcF4jDNnA2f+0stPAAAef+ocNohjNBQeentrCxujwPGNTQBNTx4L0sN0chwbW8Frd4PiAZ06d0FUMbNZ4IJv3rqK28RBz8mPwlC889ZtwxuOUR44aN/tgAOLbo0YOG8xpn7M55SSdR64Wes7jJnbJA4zWLEy6Exgsm0iAi2JlGgc4eHoD8tqDa99Xwugo0T2pDhWmIiaRKu0DLOFNC7TDYttin11LDhGY+NMeLbjj7+K8XZQ1xxQbPj9nR1sbgapYQtBvTPdtdj/lExgXZDwzp1+AQDw6ZUPcWwa3sfp00HK+KVnXsbLX/4CAODVL4Xov//4f/vf8aVvBJXQtY+DBGI+DmrFzbnH9/9V8Kp+4iuhzPaTz+CFx8K79yRV7lJ8+e3f/VVcJj+b/Q2KyTX/Em698QEA4I9fD+a9n777Ntw8SDbbxzbk+QBgc+GwPQrPN3Yx0m5DJrMHFJa8XSxg6T2zWWX0lVFseCEe0BBF9ZG6q6BqWW2nP9BGXl7Xl81heMXHK82AyFDFPNOpZFPyFNeP5Ndhn5XvRuyqHqQ1qlhxbh1pYNVat47qaR2qEkWlSpUqVRqkFdFjc8Asxi8qYMNiqmegAKzM8QPo75R3m4i8fz0t59VvlyTZCUdOTkQO1zh//hRefDmYS7708rNUx0K4X+5nt2jREU5w8mTgTrcpKc7x42dx+nRw1BpNCMicz3HiVOA25+yY1syxcZwcqfZD/fN5qHPuF/Ab4drWOHDBYz/GbBGkhYYTLnUe3ocKb1+8Qc8Z8I6RadBS9iNK74DOeAGKCfNFZ7w41fmWpYDoPZd4cCNE24wacK+OGc7hGI9oFGZE4L6NJrMnTgZp7cmnz+D02cBN22kwDT3YC5z3+3/8PmbzcO1L3wopTs+fPodTTwXsYPFS8Hp+/6XP4cPLwSFuh3zT3iWgu1l0mO211FYwNjj14ot48bXgRb91PHD8v/gbv4733nobAPCtr34TALBHDnW77QFefClIHtMzFA/qYB9jwj7M7dDW1iZJoN0BHqf5xx/a7nSE9rFgUn2M3t3zE4ef/T69+/d+Fvq7FeaLbTvconSqbRvGcbK9jdEkSLJTAtetbeBpTjqyfdaOjjZzRg0JhijigHgix/wLtu+NB8h3EM/0cYgSOK3L5/hJTKWr8Gr5w/jsGqJ0ISl+9TWtwcic9QbxSkW2kNjosFqQo8BjVzodH1E7pXpzWgFm04QrTAy9KIt5/L0bIh8teS/Je6wCbBtaaae0GJ8/Hz7KV15+Ec89FzaISTOmKjqMCdzcPklWLdbC0iQ9eSyoP06fDOqHU2cex5mzYaMwpCvy1uAqeUzf3gnA60F7C/sHQaVxZ5+yoM2CKso3Dp5DOdBHP5oCZhQWon3KqNa6DrdvBh+MuQn+BSdPkEpix2Gb/D8aAlRnrsWc/Rdo0ZkvAHAGPLH+4g/QRptuSVwUw5KzB6t+7azgYGsp50ayIcsi0e3h2HYYm2eeIxB+OkNngrrlJG2qk71Q/uAYcOVK2ADe/lEI1PfKa1/Bj978DwCAKan4pidO48XHQn3PvfplAMD2yfB+3vzh9/EjWmCOnwsL9dtvvo3HyZKt2Q39+cZLr+Cp7dD+jN7H/u2gzhrbKb71FfKtOEOJjixA+whu3Qwb3K2dYKRw884B9ijM+K2/fiO0M93GfDNY0V14IvRt+/wFbJI1lzNhQxy35JFvgBF5qnPEmf3ZAToKFzIeh3e8vb0t49tREqTZQdhgvPdwnDKRqBk1wlRoNU/8rnOg1me/03M59qypHOqlRGyFoxdAZj7jZibMpyQqU2rt0mTM1iWjO1naFGzhIWTPSTefpU+yltVTYbzUObOqkQdIVfVUqVKlSpUGaVCisCOWKHzkMhP5kEXYFLC+32D1XZEKBTwiDvs0ca6vvBTUTY+fP4uxDSL9iADSyXSK82cDB3rmVFA3LPZ3sDgIHN9ZMoE9eSJwiadOnMKI6vCKKbqzQ/GCOPDfxgig/EOOWPp9ClZ3MN/F/iL8XvjAZTfTFiPyBua0mb4zaClU+alzYc9/7EIA0q8v7mCDANQxHRfw2JuHRvdIB2ZmMbJNKw4X2hghPoOc4OB0qbYpoZaFB+/E18Pa0Pb2lsHzz1Hsq3OBg3bGwTfhWZqGJBWOozUyGG+wFEjmv/s38OyF8P5ukLTmFjfxve8Gv4ifPhkkw2/+5t8GAOze3MXGVngvDT3fYu8OnqR4Ut/5938EAPjBX/wp9ikR0c1PyVOeuPZzpx7Hf/bf/HdhOCg97qkzp7A9Cs9w+kKYMzOaXzfhcI0kijGB8A0MPv4kqKou/uTHYTzu3MK5x0OI8qcp1PzP/uxPAAAHuzM0JA1sklnt5mQMQ6q9Ob3PML5hbKYcSYBSunrvxfT4gMq7DrANq63C/ToqgctiqXGJcHLA3BXpVFF30R89PVDybQIEwi90krj0AAAgAElEQVRh3A2iOa1IFqZsqMqSgckCKKZl1LmBZStvc6Xp6rpgdklNx+eGxLQHTFWiqFSpUqVKgzQoUUymDI55SXwPR05fXTQxlQitxSQjRb7igVDiCUq6yKYBThwPOt/nngtg6NNPB1PYM2fPYmMSON3TJwOH98rLr+L0yWCaeedm4DB379zAiLje4xQSe/sYxXCyLVpyGNuYhmut85hSJNnRmHXyC3Q+6LTnXThiFOrc2ffofKijI+OBrt3FjEwoRxLR1WI6YQewcO/pE6Gd/Rt72KCw2s0klN+aTjHtAsc6mZFi3c7FK7ljEJTGynn0IsrqdJZs9urh4zmxtCUponFg0amxQZq68OQxPPPccWpzh8bgACCzztE49HtMf4+9w+kNMm09Gd7P2HncuhawnRMnglTwya1P0ZEUPGuIcyYA/Tt/8m/gOsKM2r8X6jqzhZbewXf/9A8AAH/4//xjjKiOhp7BEXD8jp2gmwes5Nf+zt8FAJx58RU0ZwPOsaA+3j5w1G+LDXIaPP/1XwD+f/berNmy4zoT+zL3cKZ7b81VQGEsECAIgCQokpKoVrPbku2WpWiFPDx5jHA47Ff/DkfY4Se/2REeo61oyR12W5IlsSmSTYikSAgcQQIkCzUBNd2qO51pD5nphzVknqHOrUKBVHfEXg91bp2zzz57586de631fetbACahxnMMapS7FG1MrlzF9//iSwCAj3/qkwCAm9ffAwDsvXMAy3L1WYINmN6Az32bx91iMqGxnM8JIyn5uAeDIQYsTZ/nTKdta3i+Ls5J+9/0HhYiS4JHrPWSF8HpgLCy2VqIYjmyAJTP6xNA3CpXO4YYYSm7YZLfDInvq3TYpaUnzXjYNd66eQgw+5eRNVGMYgPe8cvK3nQRRWedddZZZxttY0Qx2uECsNajbZglw2QMx89wh4DVJipY/94v24wFlpqKF0WBU1xUd+YsMU163Ofh7NkzCC1FBue4F8HFiy/g9A5HFEOKKMaHWyjY6ywZN9g7orz2/bsfYGeHqLL5kKKSrOyj5CIsYykC8GGGPBMWlch/sGfXC7DsTdiKex24FobplJ5psq4xKsVhW8IhRgOWuOjXGLDCreeitrzfQ87eiS2YjtlO0LKECKuLJP3sPQlKIWU9AYYjSJ86k1K8KJGHFH8ZIOMPT56kY3vm2fM4eYrG4ZBVW6spsDUifEUovI7P05gGJ0+wR8zjffLcWRyyMuuVm7cAAFunzsJwxLZ/QNv94KfEBmunFTJH+7t3i5Roq16BW/v0+QG46PFUgWLCRYuCJ7Uc1dkx3vzTPwYAXPvxd2n7py7i3Keo+O7ix4lpde5ZotCeGF3Aafb4pyUNzE4Ablyl4715RPPpZFli0Kdr9dX/5y8AAPPrxI4b5j0E0IWZ8XgEC5Se5mzNN+RgMMRJlnGZck+LiufO0dFYo7ReSfNkOBwhsMJuVVFU1bpIgRM6efaIrmTK5HlkzFIjVfOARkFYpM7KZ9Yk762yo9atRCs4x5rjOHa7x7R/JbHcB9jGB8VJBkbr2qGacYOZCYf2U17AKo+WK0YNp6WMsViOmoz1GuKKpYJmj25LF26hYjxWAkuYmjPFtdfPceYM3ZQ5d4yznCLa3R9rh7EnQOH7nTvXYDklM2JJ73x7G3VL4PT+mCqiP9i/yT9pkfMNOHT0O8PMoDdg8cApjeO9e3cwnR8snIqtaZsyDNF6GvuRkbSNRc7AdssNbEKeoTS0ENVyDThVdWp7hIzb5DkRlcs8rKXv9jjlMhx41DWNXVMzvZJH0TUuPiBaGWesaO0YY6JsudBvGSg1bUCvRw+IM09wGuapJ5RqXHH3wP7wrNZ7yINlxik54wN2WPTQGbpWOUqcO8sPmymlcG7uXsO0puv26deo+929Xa7UbiaYejr3a3dIcO/sK5/GLa67+Ef/2X8KAPjRd76NYp/px04uDJ+vKXD6HKWZnrlEPbnPvvginnmF0kVjdqZuM0jtLkzQP0VEiDlrct2fNbhR03HcZdC7Gt/DwX2aP8UhVXJfukDOxr1rP9PuWL43hJhohuU8zm0zR9vGboEAMBrR9W/aFhU/UBru6DevMk2H9vv8gM4spjMar5rHUVZ971tkXHAktTswPgLhyUq+3MDsWHqskGH0e0BEs2WhzpY3T74fvxwX9vj3uu1l7vpksTZLr7rvNYdtERuDpcuX/n4C0C8/bNZqOSVjJtL+QVO7WKHxxsNa8whbqGdYPf74gEqbL21eg7vUU2edddZZZxttY0Rx8SJ5T7NZjfGEwtlZj15z1huajmvM+QnVcmVx8JnyzhJoCevIbo9v68By9iSC16e3eD5b2wOcPksh+pCLvmC4Erido1+QlzqriHJ5cAgELlw6xUVRZWYxnlLa4N4BeaSOaap52UPFnvCsYr2e7YGCg5MJeWz39/ZQ10f8+xQ1WPZ4vW9iBXegVIFv+xqR9Ti9AlugL+B4nzyuMcgjHfW8tmJtGeiuMIeTFqvsoA1djbqh36/5RyuVYTLqyLA6OtAmhXk2Xr+ouyNfpvPNC2C0QxHF088QeeDs+Yvah1y0jXJrURhOrTjy6CcDGvfedg7T6/HuafudUxcwPEnX6v6MIrO92R5MoDG9+u63AQANNxEK1QS2pO/eukEKrR/73N/HzXevAAA++/v/AABw5sIzuH8tRocARXMAOWo7W6zjxQWZ8/19fOMv/xIAUA7os2cvUerpyedzTJjYMOXmQ6effRaOU2zbHNHu378PXGUF3DffpHNhz7/sGTQcNTQcsfRChqJkim8jcyag4JDMJ94pABhrtTBP6LSt82gnLKfOxJRer1TPXdKWDffu9t4lKUkyazIsSAirLUYSmzMsYWU78pEXve7o8aYrSpL7VIr+pt+Kh7q+gdIa8PhB52Dih/GzlOmx/Bki5K67Xz3Y4BE5uxKBhBDf8uknSEYq/Z30OB82W7N54LqIorPOOuuss422MaI4z5o046OJeisDVq3M+dUak2jMsHfTenhuriNP+nXtDD5SCzbBKaIXkueiuEnvDbdKMJ6Hlgvc6ob7R/QH2GL9pSyjiCH4HpqaFUunDOBnJaYMpIoHZjkH7X3ANje1EepiXVdw3F5T9HVGo75GMnXDrxpRRMqqUgZ9DnB0Uc2YNpqXmFUczU0ZsGYguBzkyNmDrrkZk4FHm4leBx13z+cYNPSdecVRIm9iHLToDdJgyIY4zNpx06zmQjnCKsqAJ5+meXThIhUnVg1wcJ881c99miQxqukM0yOK4uo50V5tSfhPfgLIWItpOmY5Epvj0vPUgOitdwkT2Nrewc42nfP+7cu0D55/fV8o5jC5Tdd7iBxv/4CkNT7/uxRRnH3iSdzN6Dcyjhoaxn1sCJge0Xcv/4R+8/TFJzFmzOH963T8b5uvAABe+XtfxEu//usAgM/+9r8FALhz4gR2OZo6wwDz/YMadosIE/ml5wEA996mpk399ghDlhQZMtW2ntWouKmSBnWNh2hpiafduqhRJpiRyKnYLFMZGtEEa8Zj8Kmj5OK+HuNyWWPROJb80MjCJHpLD/ZcTXJfRq99Nb8f0/pphPBgf3mx4/Kj4Zyb+kAYm76/dGzroo51QMaCBMkynvpgkN+kwPw6QtByl9t0E78aJcUdbwbPj9OM2vigOH2aOOtlmavEddWTm4hTOsYAoJSBiJHVcw9emxRM9jAfbeOipT67Sx/ybyeaSUzf2N4e6CImPavlIXjixBCxL82cj3sMU9CNWnFKZDw5Uq56b0QLmAC2WVlga1s46zRoB0dHmPON7Vhfp+xlaFlW3OYMOpZ0rNNqiporvzM+tlH/BOAoZZGz9Hg1bTHnB8WM9YWkEVBZ5HFxyCWFElDJYsLV3WVpMRjQdjPu1lfyg6N2QGBpdZeG+YLxWr2zY38Z3krmwminj+deoMr3nVNMjpi3uM39ot/6HkltFzZDzmMuDZ1a1j06cW6ExtM4zzgHNjMDDE4/R5+f/RgA6medZSyiaHkh5QMqUaKZ0/E2nGLzVY0bN4gB1XAa5qkXnsf3RSTPi2gevWYA7t5l0JlrFO7fvYmdHarYHzU8tjz53/nmV7F7n9JcW9t03Du/8jlsnyBG3XssY373gwOc3aJaHn+JBA5v3/gB/c7kEFNOb5qS6zOGWxhmNFFrZkLVTZ08rCXdyuCzSdQT2KFxzqtjleVxGZD05ng85fOkfYxGQ1h+cApLynmvKVUk9RYri7DSI+JvJhSnNQtiSB4km1LL8Z34m+sW6MUFkuqrFveVvrdplVq3hq1jd21a69LtN+0v3nJGU7sri30IcTsRfky2Sf9avS4LP/rA4wW61FNnnXXWWWfH2MaIYotTKMSJJ09gysCo4zRJCB6eQ9ymYRqfd6ob5F18Ui2LOf6is1HkvdCzsOTmQ6dObisQLzUII9bEGY22ERi4rFnLB+0MhSPvynFax+c58m2ucGb9oJI1eihyoTMVCqN3Tv9uOXzPcos+h/emEeCfvZseAJYeb9o4zhlHEv0BV+UOB/j5faJ67t0nD30YiEIZbIaslGOj38ltT8fccw/noqm0WjfnyKbkKKYsWriWq8bZ0wwWqgkkLEkYs9IC1fDUystt7OxQ6umJJwnMPjzYx2c/T7UHJ7fos7Zqcecmefcf3LrJ25GXf+36fYxO0W+++CrJjE9nwOUrVI/Q26LI92jSwgdOtzmaiwVf/9YUaNmbrjjaOZgeadvawz16fe7SJRQ8vs0ReevSAKp1baRVSjrKG4zv7fGYcgQi0aUF9q5TCuzNr1Dl9ctNjfASnftRTeP91Meegv/pe3Rse3TOw22KvsLkfbAjj5ZbrE4OG2R9ujcl6p/P55jNJZVJc6zHtTt5USrNOee8ynQ6hvOLLQOsNXqfSMag5XMaH021WVKPq8LbttV5HauIgWUwW/utp9DrUrOs1Bb6Rq8DY1eigdTTXpcSWrVVoD2C6maD/7wJBN8YHaw9BrP270hCSCKPh+jjHZJroPe5NhJLt3t06yKKzjrrrLPONtrGiGKHFVHzIk8wCc5ZC/AaPJpWqnyZyukDJuy1eS+U2Tw2f1+TH1y2D1O1uLwfg9iAJWeU7vTp0xiNOPIJ4iERkNj6IUoGv2v2eIoiR5PTsWQMgg8GA/SYrhn5akwtrZuYN2Zq5mxWa17XS6RiYstKNycPcFJTVFC191G1RK0VTKNpAM/Ne8BEgXNPnUfL203nBPyWGVWD22GBnHWgsoKO1RaNRlE1e3l57iAp6tFQKJSMp7RzOKZ11hwJeXj4pdyv90F7U6hfxy1i+/2zOH3qKR4HGpe8CLj4BBeiTWg8itLjM08TrfTjrxIt+/CAqK7vXz3CN96knP3u7tsAgPPPvYRrnMcfMmng87/+D3DnCgHK14srAICDO1R5vT+7i7qg69Fy0eEHR3e1d8M7PyRw+qVf+Th6p2jee442pMmSMbm2PnA8P3MY5Py39C1pmbgwPzpCNWWKNP+Ou/k+vvNnXwUAPPUf/Rf0vSefRvss4RbYIm99u6CIojJ95LnMHaZHtwaTGe23YiLEcDiKUW3SiAgA5nWlCO2Qo6XBaAuOsSApoGuD1wii5DkzYEyybRul4jZTUawNyPi+0ry78UrYEDMSift2hTYagkemFdTJvFI9pyVX2kSMTCizIaTf3Zz/T49Vfyv5XvrO8vur35X3Vn8jrPyxusu0VM4sfLyIeRiY1ZatC7Tb1X3oe6sVkY+MqQDHPSg4pM/zPHbB4geEhK3OBwUHq4rea+sAx7IQ+rpGaOsXbcZYndwVVz1XVY2XLnyM3+Mwnx8UuQFKFtATWY/haKgMEH0YYAznFm+yUEnYl6FlUHMm9KGQq4THgFkkxnrU3JxGbmhJ81TzA9QtAeciQe58Hz1pUjOgB8B0MobnBXzAQHSv4AV6e4j+iIUKORXishY1L2IQsNfWKnAo3x2wpHfTJrUxnF5s0eqNIVWtwYaExCIrKTeFOnURzz9PVcw33ifZi9HQwVo5d645mVfIc2HP0TkdjPnBWR/heRYRvHN0g8YPfVy9Rg+KX/uNL9LxjqeApzThF75IKao+p2iO6l1MuZp+zo2q3r38Y2wxm+rt79O+vvj7/ya2nqAHVfXeFQBAwYus85TSA2LmxBEaKwNCr3KjO4+M013Xfk4pqDIvsPtdqpV46jO/CQDYeeFV3OZK9XO/+joA4Pp3vwUA6LmRPngsz01XeuStODuxSloujCzeQyZVtI3H/gERNw5Y9nw4GiijSWorRDIFAJpGhCJ5bvR6KJguOGNiRtu26giOeK4VRaGOkqSlZH5neakkB6mzsQYwImmekFDEhE0oFkJYs1oGrCZHjH6+6nM+KBGzni10vK17UhyfXz+W3JN0DdSMHb+zTH5Kfyok3zUxn5bsd/ULx7HGutRTZ5111llnG21jRDEYEMhrkqe60CWlsUkIQFsv9nz2LkQRQY422tYrCGpXUlAfwjY1T1F6YK5A+3xGx/bd776NT7xCEcXFC0Tb7DNIN9rJwGrMKIdMIww1mpZojA3XElR19KpFL2fImksm5JhNJ/ybdIxboxMoGCSUpjI+NJhpt0t6rwC3wUSJwBLQLXupNpQoDHltJ5hzf7g/UY9vyDLnwz5XOo8y5HwOYL6+h4ENFDVYzqNldoCCwf3A9FzOYKDMW1iu9TDSZSlx6CTFYbKgAKAwZoWPPxwGjIb05uufegUAcHD/JgYc5fSY5lnmE8xm5O0GQx7r6Sdom5NntuF++jM6lRP03mR6FZbB3Z//mKqwn3/6Ffzf3/syAOAru/+cxorn8Pbps3ji03Tdz16ka7U1zHH9GtdbyJz0Fueeex4AsP/Gd/hEuaFSMJppbDVwStr9aO9xGkdrLXJ22/bep5TY8GMv4wRHD7tX3gUAPD3ehz3JVPRXX6Xvfpr7dX9tjFM8P454HoZeQE9SX1zoYrNIP28ZaJ9yu9QsL5SYIvTXpm1Rs+hhjy94r4xaUsu6bE3TaKTS5znmvUfFqgUT/q1er4fBkMF8bYwkUXqB8dGY90fzyRiDoL14aSTT5INQfKOlx5XUTSk4vQpwLzvuC2D5ptzQY9hHUgqQZNNiGopMWcN+mUjA9NilCMTAJgQBeUlSUMesxV1E0VlnnXXW2UbbGFEUOctUewNXMv7QZwregNUo6xbzEXkHVS2V2QFNTU+rOdM8q3kVFUY/FEFr0ZabrxPIJe9JNXP8W566tz7YxTe/QZ7i3/sNkoW+eI48oFBbzI9Y92jOEVFo0Ah2xy0vTVYg53yt4AaWQerZdI6K8YqyR+O3vbOFEye4jSqDj/N5o1XdZcGU1pwiBWfmCBy9TCcEqDZtwPAkAZyFIc2p8cEUriFvcGtrkQqLvkNbcMjCEUMbFDrQHHGWl8i4WjfL6BysEU8wW6/wK2CYXFATohaPlQiHzu3sEzUuX6F8+ydepGKyc2cuYo9VXbdG5EmffvIJTGryurOSvNP7Y6LJvv3zt1GVlGM3rIhrmwDDzZfCPkUgr33hRXz6BQLE37j1TRq/Of3O0bVDXLnyDgDg5X9I1dLZmZMIrL01vsbU3MvXcOFpaqP6E218w8A/TIyKBZYA4IzQrekeEUKEQYBlL7k6oGjp6O4efud3fh8A8C+vE713dv8OwBLheyN67f3jPwAATO6Osf9TwnZyxttaf6S5/mAkmp8lleT8mcijzyaa6+9xNHDi5AnMuKju4EAKTwtsb9OclX0JBmEzq38L7pdlmTZHajjE8t5jzqGyeLADBtCBTIFtmS8m1T/lc6HxFtBrEXgNwSbZBLvwGe33IXikeJDHLySAx48GPmoJ8WXF2TgEBlF9V9ZCswiEy18PqAh/mOiniyg666yzzjrbaMdEFOQteN+iLcgrKArOLXM+s9+vMRyK+ihjFE1AzSyjySHnS7MGjYsZs1+s8RPW5JozFz2qgAw//AHJRpw/TedXNFzcVJfI+7ydtMPsZzAsJSHU4CwfCgEKzZx7F/CptS5DyQVJ26zNs7OzgyHnbXfvkWfZtFX6rKfjYAyil51AYOrslD9zPoNx9LlvaF9HBw22RtS34MxZem/OEUvW83DMLBJ9ex8MfGC9HiPSJlH/R5pOhCBFfm0ybrFdpnhcIotifCTMStFgr896RucNBlvMYjoiCi+GBZ688ByN0RZFR9PZHo6mJHdx/4C8+/fv/RwAMK5qOMZUAlOwx/tzDEEU22zO/UWqAfZvElOq4Lx3yzIt/bClnn9b0xgNnEfJdND5IW13++YtXLhAchotXwORoymCl+CMmuWA8+miE8LDmOVcSOm8NpsS5tTPfv4uPvfb/zYAoPoh6Uzdv38X0+efp11wbwg8eYmO+3d+D8OzNI8Ovv5/AQB2WgOTLdNMAzK+HnKMFdOubWYh1ZESiWRlroWbmgnwDodHHOlxZFEwfuFcpLYK5bJ1jUZYmWqqZSQPghh5zGua89k4U5q6SbTRpFGVZTfZmoCQ4g8LrwbLmm70+nCRxC/LHsZL/1AlABveDHJ9fEoNjq8PKgx8mOPY+KCQ1EiW5frQkB7NNaeghq7RDmmOczSubsHrFSqWgj46nOrE0YYiyWmLhHEMQ9c05EjDypUQ0ySpJwnBXNTryfQOh+NOPrMxvddMaJGdFhn8Pktbb9E+RicyOE7JOGkBFzJYTkNV0u2NAdgi28bpU8SJP3WSXtuqwRF3MzscU3plXh/oAyXrCWDNXfNCBpPRgrHDnczs2GE0pPRVweB0lgGntil1MxDwnQUDYQFv6FykSt4FwPHN6BgI9q5C8PSwqxoCS+cNaQtN2zFq7vwmMuo+swgi+OiTgFQWIF4A5Lgunn+W9LUAFJw2Oji8iwvneZHnNFN1cBfVnMZIFvIe12IMsgDwQnT7Nn32zMVXcGZED5u3v08PlP/5f/0neIdpqKKRlTOwDO81JbTNlNnq5j1dQCv+zXs3r+PS56gRkeOq+95EOgsmeko8/XITm2PJDeiY3GFJhpHOne+f/d1b+B//h/8eAHDUpzF6vpngLF+Plp9K97aZ2vzq6yj3aFz2vv3/AQDqdld7PReSS2wNHDe0spx+FA6KbRpYTh44Ps/9/T1YJ42O+DW38CwWOeYuefJZv9dDJlrzkmWEUfHKlsc5y2IVcZktSpsb45EVIu3PD7rcwMoypIJhrY7pMkgdgoeBOD5SuxPJFFCHJqZDZbt1xQ1RZiqsUko3WUgObp2lZJsHrsObF+iNlNUlsHrhexar55oC3MsPBnP8w6JLPXXWWWeddbbRNkYUlsPEwhbw7Nn2A3mHrmWZVTg4JxEFg22NQ8uS1Y7bM06OKtQVeUZSsaxAs7HJE9Loe2E57DTLf6d/rFGnNV57N0t84lqH2ZTeu/E+Hc/Hn30eALB7b6o01pILiIIrtKpam/dkBiWnF+R4xZvLbQvD2knzioDoo/0jGE71CLg6bw4x4c8te+vDgtvNDlrVZe+1UhmbSUdMBU1PnT4BaHqJQUc+Lm8CVNWX2562IdJtWxclzhspRJPKcJZdr9tKPcaoGm8SRFxAtCjjLpFFaGlqbfefRs4uphRfWuvw/gekUTUa0nzybY1zZynKMPfpuKWSe2fo0HIapeUiyXNnn0DPUHrkuUuUpvng+geqhCpRrlA6QzCanBBa6OHuvcTbpc8Ob9/C1uBz9F0utAwM+gZrY9MmGQGPqDigDcPlwzgnhU6ewwCsPDw4TbLrN9/5MT77OhErwHperVTQNzV2d2meuhOUZqxmd9DjQkWRCrc10LDisLd8DQSIBsC1eqjZc2zqGgVHbCrFX+QqqZ5BJjvZbF6rZHtPNMSKDJXnVCdHi5mxaOaiAsxtdzmaKspCG2ZVHJ274NH4RTDWmEipVdqytjq1WpAXXCRTaIi3ICkr3vTS/5NivMU6NAGKjynC020fnEpft991e9lka8Hnh+hDngY76Skv02MX97vxULqIorPOOuuss822MaLIxTsNHs4JsE1gYr9P3hxMUCVNkXnw3sC34oKyl/NkpsV39+4SuCUtGEMImgtVitpCDvDDUc1SvRd5elpr1bv7+Xvk1V68SJ7sJ155FgW3qTR9iigmbYOGMQ3R5s8zIAj1tOD9i2yBm+PgkDyqA27bibavdOEZe32mtJjVBO42jmiS84JxjiLAgimFPYrc5ofAmZIKBA2HNjbro245l5wLjTHpQeAFmyDvrW5bVFwI2YqGlJui5j4bDefJpUFNWnSlmj6wRFFE0pjeIubAWdNo/4D2efdujTOnt/gz2n5n+zQyI2PJAH2oUbOnDUdYjOXWqNPxLqZjkXngvHfb4JlnubHWIX2v3yvhWiEcMHUy6d8p+ejDA/LQj/b2tM2pFA/evXkTpaXf2GJK8/yutKwNUV4iUSuNztiSB2tNMoXjXPeME/gxAeg3v/JXuDqi69x77Vfo2ByN2d5ug61PfgIAMARtf/int+Ga23xITG0G0DiRqxH6qpybjeMNmR9G5T9s4n5GyQf28vnwB8OBKg7XlZBXDPKeePyCm2UAF2yKuohEbT4AeY/vJY4ycmtJGwXQa+dcq3NFIglZHwwSFeoEB4g6cmkR2dL1SKn0K2D5Ygyw+vcmn3rd+vTREXYeVql2/WdxDJbXwkcpCtz4oNBewT7TC2F5kSqZBQXjdXEQmWXXAr7h0JUXocz04LzRzwHg6IgXqNrFMEh1Xh4/2FkXngUfiAUCYMYaOt/5AQnCZaMCF5+kWoY531CnTm9rGqpgJo/JW1QtS0tLz2LWxun3CtQs4mY8fw9n0VR0Y0hKpuh5FBnfeJ459nNi/dimRckVy4M+PRzOX3wa29yvOefPxtMWgdNWvVLa0skDOj64BWismxoN/y0pJa9yfog1Claqti0yThvJIhuMWQQAdZwFzKQPq5oW+Zu372I45KpxLnu3ZqREiSkTCibjGp4fVIfjis+PgeYGeHN00UgAACAASURBVP8Wifv1WSzv7u5NfO4zXwAAPPs8aTN99ctfRl4It15uCqmp8Vop/MIzBIL/+M4eGmED8bzev3eAjEH60QmaC2PwdfGtnvNCd7UH8NLTildhSbkAFcEL+zSHpvf28J1/+n8CAMpvUY3Phd/+DwAA51/9LMZcP5NNWZ/r9N8gfEDpwcD6YDbEhVOFOPncXcgRMlFFoN/OYOEgLQO4PmLuULLYpXS9k8egMUabNUntRDWvMZ2RozKASKtnsQ6HwWyrDqFBKw+AOHixK2MpTChHLCtAX0U3ytq0qprPJc90rRKlguC86rBJzjZqSLmVxkVyLLTXdQyq5feOc16XK8pX7WEX6nXifWu7460T+4tl2CsPiEdhXXWpp84666yzzjbaxogiyqEYIEhFJTfBYe59MAE9lm92TPNs+kDTZxB2xJ6Um+HkCXoqT86d5n3RZ0eHY9R1pLrRHx7rw7dlfvCDzZjV56C1RlNPtqBjvHOPUgtvfPO7+MKvU+hfjihi2gotehyBDEZCO/SYsHc3m9J3y4xrLXoWFiLhLZRVILcM6HFlbN3cVwnvLDBoytvP6zHmlbS4pO9dPP+iSlxz4AYfDMqe9LKm7SX15F1QvSgBup2vVRXUK/0wA+yAj5fGviyZElnPtJJcPExSmuQDsNIqFOQqI16VLdaeeuqZCyj6XL/AwOfe4Ry9nKXPgzS7atWzFdZtywSA8XyMwZY0X6LPbu9ewZvf/ToAYLtPnv/u7u1Iq+QUlaRLbGaUbPHD71Kl83T/QPWZJMLav7uLgj3xHW4edDsF/9b2el7ipSfy+XLN5D1vjFZrD1muu90u0R5wf/DL9Nuv/bt0Tb6/1WCXUzm9cxQJ9V78Vcx2iRIsVdiFb5VQIJGFE/lwF9NSUj/jCw/LkYGOewh6HxrVkJKUkkXLytESoRpr0Wcl45bTRofVOKoV8GzI+f8uBK2x0GZJxmqbAlFPsJnV39We8RIdhFhjoenkEI8356jYwel9LtGu1AKF4LQ+KKWxapqSxwMLgPUGW6DqL6fLHz8FtSn19ChRwabUU0eP7ayzzjrr7LFsY0QRn8hmtZZNwCvbQ5aTZ5SzlzgYJFpJFVe+Fg5FQR7JiL31GXvldd2g5VxrxB4NVp7Gj6jIuG5za60KUDoup7YMrO3tjfG1r78BAKgc6RJ9bvQyCs7bngiUY9/u9xEq1n3KxatmD8zlik2AX03oYTAQ8J9brR4C4EZEjquN25ypoq5WqKbyHJW0ORoenHlNUcxgWKKFgLdcDMi0yRA8Wu6Z4ZgKG7xXDEi0pAIyICyqffYYoG8Kg5y9VFGRdfCJrhO/GBMjFAbQ8wE3hRq02DnFvTgY1/KNRy79PUWNtQ2omHY7ZQLE+B7RdafVPZQD2n/B1M8DzPDX3/qXAIA7N0iR9P1btzHs0TUSCna/R9dg5/QOdg+pkPBwl/YbKocMEY8BgNn0EIaJCT3VbBIvOJ2Ta/CvZa/MJ0VO/JbLLByPFQfY2JsfoeACzvY26Vv9zR/+73Rc//V/joZ1xTxHo8WlT8D/iHCZOVO3+9kMngsncwl6kupc9Za1d4ZBkHauqjrrtHVmUUrDr0RPib8qGIVzDg2rMWxt0bh75zFj/SzxQqWh03DQVwzhiLfJQqzmhyoIRE9ei0sFe0PQcRbcwnkHI5GKRqhG57OxMWqlc7EIonYslHPvIZMxLGBvi9c0euMh2Z6HNuq4rsdAHsM+TORAx7S6jw+jbLs59aQATtpIZLGjlfFAkctCx+J6pUW/xwyMHlcbFw2yjIE3nkHC3y7LElMjTVM+moEFFllPYiRhIIAepycaEcgDmhndbOPD+3zcHpbrEaop95IOwHZBjJhQ0RDWjrZxdY55kEpT+p1+r1QZ8CnfIAYGvZwbyzhKxc0rlmout1ALMaAZ8rFuYe8+sV48EwRGWz3ssYihSJVIrUJog7JIhP0En0y4IBWsBSxz9zPpq8wAeWbnypyRxcRao5fIKcstmR+ZNFCi7x0c3USWEeDZcDOoUX8Lzz/7MgDgaEyL/N7+DNWctptWzAbzdL6jUY75jI53lzvW9codvHODpD5ucz1MVhSYModf5Mv7/IDe2z9QYFQeZkVRwPtFEPTkyRMYMyvq5pUrNEZSG4KHTCSki4SuIvGJIW3k54ZrPawHOK0jC+Pue9RIaftbb2Dnd6lD4H3usT049yTKp0kyvT6gh9+8rWMzG7+YBgwhSneLTEYIDl4cJb1mBZzMO2ZmSY/tvCgx0/7ttK+yV2olvjCbrLEYDmns/RIQHULQdKy8Nm2rDyNhzsFARQzlusRFHsg5/1iyVL3NDDynPtsqSs3I4ItsiddOhTa2IjDiMLWaSpXjca2L4oua7tJG8ZFplfLeZOw/OtIT7+/RU00fpXWpp84666yzzjba5spsG5K/6dVrpSmSV/YSWLitNQE5Rxf9UgBShyybLexf9Xhym4SA/BoCVtSegtHQeVP4dGxopRLHwkFn+pxrENir+OA6eZXXrn6Ai0+Rx285DYTaYSDNfTLS6yk43nfeY15JOoi8rNLWOJqyjhK3kcxLC8vV7sGStHTD/aOnR1MIGb3MCVCdj3N8cO06AOCJp6gvtveNpg/qqVCPxfPIUHhuVgMGIU0Ny3m3RiIg59QrdAziqssbgnpQsVGVU10dEzdTE+9UfJB+v4eMx7niVKNpPN67/DMeDzqO/aN7MD2O3GqKLIRqm4UM9ZTO4dmnKCX4/tX7GHK00DZ0rfpFDxmTCgpOc824XmTqW20oVEgaowlKpz339EUe26fw5T/9EwDA3k2ixYq3D4NViDJsUOQxJunaKcBrrO2eMmU1DwaOvdOWPy05ujz88z/BhdepUtxvUVOj+Z5B72XSo6puXKXzrA6wxRGyYZqxeOjGGzhN68SGY95xupRPZntrG9MJXaOqksZZTMlVQjM0PdU2rXr+XHKFtm41guixysH2Dl0nay2mPAekLicrcuScIqo4Gmwah15PQHQBwmn/zrtYr8Vp19AEjZC1ottanZdKmZWB914p8j7EOhCZz5kGNk7PxftIzwUojbvc/CgkBJyH8fw/DD1203uPY8cdSxdRdNZZZ511ttE2g9lCIQMSz5KpsC62RBWgTABS54Ag+i1GcpKFegdSZRkrRyOQFAtDzWpEsSAxvGqPCtLIOZlM6KNOz+HOXfJ8vv3me/jNHtEvLftUwws7cNJSlM+vx/nSxo9RG4oekDEoW01Rzzifyt/b2e4jK7hYjqnG26DIojAnEAJhE0+cJ0rk3v4+bt5kfaRtBpvbTCmflim21m/pcWWFUJnlOh5pLnnmCBuo5kewLD3uWtq+bSf8/1qvszQp8t5hUTOHcr6CZUtF7XxO28/HBqOMZdeHop/lMd2n6zhj7KGurebHy4KwG4Y0cO/2Ic6fpGZCn3z1VwEA13/6F5gd8Tg30lCqjC4/57RP7FBU9fRzT2M0oO3O7XCUNp2h3KLxuvTqawCA3f19fOlLf0HjwJLbPWmogxRBO97HSgFgqRjOfFAsyEkuHDlqlrIXUa0+H3/7/nVUX/sancMfUETx3iBH+wRFQOZJKshs964hsBpCtvSbCDF37oUe6wMyK1gdE08mE2SCeTvZjnXL3AQ9vn6DgUja12hamuMSIcB4BYNr6fjFh3Hu/Dnkfco63L5NleXBexQFU8cLJhZksQBX6dxCkshy5IWA0xG/UBxO5PNNFnHU5cjXWB1nIbSQuCpnGrQ3QRaBdo1UeB9JtCGtZ7HQHOh42fMPExV0GEVnnXXWWWf/StrGiEKKrUJI9FpaKc6JjBcptmlYEsO7KNPRNCIj4ZXyaVIGDShPLrpCUtCXshYSzYgH2rpowpg1irKI+5VncxsoegjWIBjyfoV19M5P9pFnlAf+4t8nSuLpUwNtvCJa+lNu+Zr1GrQg+qV4Y3Xdg3Gk/JkbwjTG0zFstsvjwHTXHqmJbvfPYtCjXhYG5BF/6c//OWY1sXyKPh3vqdMnsDUi/CRnbajtAbdLzfsIHO3M2qgem2eUz7esduvdBE1DmEA9o7EXrSDnatUSErzKJgwaVUYNNBL8JgDg4ICO8YPrh9jm85pLNDXcRr/kCIspnWVvB4cVeZkTpnzOx7TPKz+9j+efJubPV/78+3QusxE++/pvAQBef5UOaHy0j5rP5eRZis5mTHWdzR3G9ykCuX6V5C+m4ykOpxRZfemrXwEAND72MMl5TgqT1zmntMqEJ74I0gDqQS/MPW2rCuQSkfHHVZahlValHJH1pb8Daoy//GUAwOnP/DaN38XXcHvKLVO59Wt95YdoWRKk4PvFBgX89KK1HB211mEomBRHi7P5WGm6BYOGLY9FU1ewEqHy9nmWE1sIcX3IrUWPQ8GG55HIfFy5chmGmY6i0ty0wPiIroFl7KgoskT7TcaSXq21ipEpbuqtNlOSRcY5pxkLMfHyi6LUfciaFbyPOJwUCtos6TUiBX0SOQGWNcFsQtP10oZ2gR67Prr4KDCKD0N1/TDHsvFBUTXMw2+DPgwkBSGD7l1AzROiUrGwVt9rOPxsqkrlyOWayj7ruk5E+1YPfJOuyeKb8hL1TTb2FtG/RAcnV3BLFj5XA1d+TpTMz/8KfePpp16GkR7Zc6JwnjzJYolbfUyuU4qo4urq+bTBgNuOCdg7GR/Bm0M+F3pQnOT+0U8/fxGupZTI17/2twCAWx/cQ2B68dZduvEQhtgeSJqG0mP9gjuTFT146R2uk7yXjJtMNKcLv6SNlO0arKbWCiUbtAomxhA9occmnHwAuHbjfVx6/gUaD14g5xnQ4zTDaIteD6a7OGIwf8KNgi7/jGoKrl65Chtouy/+5r8DALh+bRffeOMtAMCUx3k2OcScF36pjpeFoE1a2xRyvq2LuL007wlxjktqRm5+E+wCzZVeQ5ovxaKlE9Do15w26JGPHCxX0Uuleq3Iah/NAT3Y3Peo9/jZ88/iPotX5hcv0Wdnn0ezT7Tinpnw7nnxDgaBhS1rJgg0NmDOelzSdxs+LpJCeddrjKBpyPERzdu8LFFwjYcoDgTn4dpFYFm1oepK1w3Zl7UZ8p6kgeIiv3x/y74oBSW1S5LCLgDR9FIGtE8cTCatJGkjSTtLPzNbZDF13kY6rQhfWq0Ql05+ViX9c9ZGC00Lx+SJIM4nXKKXtQh+x4qNtEA8ptz9mgfMQ2Wejt3m0dNXXeqps84666yzjbYxopjNyHOoax8LdpaklL3zqObsXc/Es5thPOYWl0x5m80mWn09Yznpo0Paf1VVscHMUnqKflQAp9jeMCwBqul3UsLiRvBnScIYMDFcD/EZWk3pvC7/jOip5/7D55AVtN3du/TeyVPkXXxw+y4O74tiKdM3ZzkMK78GpsTOZwFFn1uhihYOS7k3TcCYezife4IihU9++lP4y3/xZwCAvKB0VFkA01N0DoMBA6Q9jlw8YjaIX4vcagVyVMo0UYKaX1spQvIR8BfdHusdjJM0VBL+isqseGrstr/z3o9w4QKlxz7xIslljyeHuHbjMgDg9c8QQDs7uodpzS1Ya06h8Dl98jNPYjajz+7sv0P7/dl7+OCDn/E4R8/Rmui5A4BJKKhGW2eyZYhNagQsDcl7Onfi/DBLadC0tG1ZW8yElJDBx2UAJ7RVocJ6D0DaBHMaiL/WhhyO00C3vvLnAIBXX3wVOx8n5dzD6hkaq5d/FdUtovM20z0+F6Zio4VhssNM0oVpPK3efa7Rheg6GQaarQdsLmAvfa+u5qql1WcyR5EXyER9gNNRojlljdWIJQq7hhgt8CEVRan3srRPjmMcCz3lFYiV9RkXj5rgNS3mmAouxYaubaPem1zbYFda2oYQFMSWsoCafzMzGTJOPUmPdFiPYKVpE73lfKUpaG0XLALPSeW3SajMcdotRyAJQUHGA9HWpqhW3kks1bk6JsroIorOOuuss8422saIYjolj79tvfaSwJKmj3cB8xlHFBN6mo4PJ5hwRDHniGI6mWA8pv3t3iUQ9/BwrPsQbyz2VF94VupfUb5m8cma2sOrIq7bx+JT3Nqo3/JdVh39p3/0R/j3/v0/AACMtk7yORGOcePqAao5Fx5yk6CyOIGmYrVULgQ7uXMRFfem2GFl1HMnCPQdH9W4cYOA18uXbwAA3vjrb+D2rfsL5zQcbuHMqScBAL0e4Ra9gnPFsFo8OGVtqMPxfTTNhMcoelRGQc1FSQIDA+9i3ph+e42cgIk9AqJECL3kGfDjdwmAPn2Sjq3MAg72OHp486f03jBoj48nnibc5eQ5OrerlwO+9xZFIN/4xt8AAK5f3oP03pAmRd61SrLQwDcBkc3KVPBxnom8A9LZ8Hh+1NpWk8HAS28XyX/DwHohWPDxcu6fjpuObXyPGlx98J1v4PRrRBOe7jC19OMvoblGEdvsR4SRDSQqyBwsu/A5X89RALKwiMEEOGRCGxUcgL83Go40q9A6ocO32t9EgK3+YIA8F+o441U+jkOM+KRwDWjZ0xbMEkgK8qRhVtJSdnn+ee9jcWEmJJOkaW0QsFlkQGKxnEhzeHil4MpalOc5MtGJ4rGS4r22qlFKI7MEf5Si3ILpznnI0XD73raNx8s/ru1lg87DeF4K/S2GDXiQrV/r1q+jK1sdg4lvfFAcHsnCZCRqgm9lckVwaT6nCzCfUag5mUy0cY3y9ucz7O1zD2lpWNSIvHDCeVaQNehJJutR8hBYSjE84Ew3ofkJlLT2U3mVRXLKjXT+6I/+GP0B3civvkqskwzSM/uE3lyOGTfXbuyhbWixfunFVwAAz529iKJPTKjBkOsHGBS7vzvHT96mm/2P/9k/A0Bjalkf5/49Gsfr1z/AqVP0cBFZZq2ULadaVVt52n7eHGr6L2pCOTD+hoY7EHoX+yULP12kpR+2SlSrYoNFn1kwL71MzKWf/+wtvPxJAu5PnqIbau/gNrY4lG88jdVkSvNkOp2jz2J/V66TsxGQqe5Y5NPHY5Fq80wrad0DbrI0ecQL88InD29RIp/3tc5hMUYXhRTAjH/x6iCy4NYq6N3nxj73vv8mLt0mmfHtM5R6Ojx3AuUr1Hd7fpkacU05ZVqYI5TyoKjZeQkGjdz90vQnBARO9cjD1/E9in5AySnSqiIHLzinneqk4r+ez9Cy5L30LxcGVTDJgqgPCq9S6XId14HZC0J3yppkzacyak6JfhXtW9JKIu6oO4g6aOIQJoKPIaTO0SLrSR9YbaspJS/absbG6m4W+Mwzq9LnLbcMaISFWEVwXzgDNlUUW86ArrWHux/XPjAWlr8u9dRZZ5111tlj2OaIgmWZA6ymUbi0As7FyKLlWomq4hTUdK4c6oqB6/F0gv0DAmirutX9AhTqKZCU0PH1yWhXPf6AJMxI/4+HTz2tADjBYDn1lLIf5el/cHCA/+V/+t8AAK+//il+Je2dF1+8hBn3Qv76G0Rt/c63f4jtEYHS/9V/+RIAYHvrHIKhsRkNyFO7zym5P/rDP8Of/dmX+ZAYgPMehRHuN43t3Tu7uHaVwHQJaw+OKAW1tTPEaIcvL/f3rpop5nPy0muO/up5g/mUrgcL52rP7GndauqwcTEtsBKlrWusIirDIUaLp89SVLC330OwB7wdHVvZr9HMIxmCdkbHPxk3MCwH7jSihbb6jBz7oIoA2go1UddeOxOWKJTk9cbvPJJpOmONLZQHy9y1ur1m7IRgwdFdr2eUV1HNuL6kuY7xt6h6/NQ//k8AAPs7O+h/giKK+l2KKKq3aT617RSG62aEGpw5i0aIIVn0YLXPumG9MtaPmk+n2gq1EOKJc0pDFu++bWtUrHVWcvqsLMm7NlmWpK1iekXqVgSQLvNcJcJVAUK+l9zPorTb75XqtUtWo6paTSXJPJE0knNt4q3zfk2S9tN0lEPCYab3EsA7SCqLI4s8L2B7rEjtY9ST8+/3Sqpsr2om+oQxWq5s96IpFQKMNKBaA1iv2ML6thQp4EEppeUZuk4FY9G6iKKzzjrrrLONtjGiuH+PIgoPoOXcpm8lfy0AotUmMdLEpGkcpqySKlWZ8+kM81qUGBexAZ+4VBGCSCKENX+JrYskFiKFDQ9KoZqFDZXf1sbqbvFuDAImXNj1xht/DQD4xhvfBACMtgYw7I0dccWpcwZ2m4Z6NCKvend3H1kuev2Up//ZOxQdfPWrb8AtgZuAVUwn4+rWumpx/770bCBQPe8TddbMZmgYsM5y8mDaMIXj6yi6QL7NFJsQXZ0xY07TqorV9pLLzWLV7HqN/MUctA/AhKOS23eoIOzw6EgrXMdjph02OeYTOt6auaFzgiowGpxDeY7GaP8efe/G1VusEYZYKr4wFxa99rXV/Q9R8f/LMZNEMYsUTe9a1V3qc87fhhp736b5duFzvwUAeOLCp3Bwmtv3vkZqs/cvvwkACJO72irXpfpHWlkvOmvJXBdgmQ+sV5ZouGJevP1BWaJe0gIzCEovrmV79uQL29PPtEeEg9Jp4zl79dLlPZkvPqmgliijqRqEfB2mIb1UpI0zfWat0V44JtGwkwhB57eNfrYU3mnxpc11PagqUbAI6A24WRn/pmucRsHlQBSheV9FC71PpMDX1Ql1V88Gy5mO9Dy1ZCAkW4fFNXbRzMr/josoNj4odnfv8cFYBYa8F6E57vPscw33ZKGpqxYHY7rLZ/zA8M6rVLCmJXwExMUiaSYyUhYBbAnHjhfdWvzu2g/pRR8YYe3iJxdOmVkhoPXy0JAjo22OjvZXQE0E4O5dkqf4b/+7/wYAsDXaxtYOTarXXiO2yvfepErjw8NDld9Y4PDLw1mE2uY17u1yzUHBXfU4PdD4IfpCFrD0wKIHk4CP0iymAEDXSPoqV0xAaNomXhvNnISVdN7iY2JxYXbB484ugen/7598CQBw6ZkdDLjxUzunebS3V6ENnKIw3OTpgI77yfNnMBxQLcaVn3OTIlsgOEkXSfoj6DMjhDhucpTLMyGY1RskFfJ7KEvTbvrWppsupp407QGLlZtXhAg9NBURnBAmgOrqFQDA5E2q1v7Y730S106y/MzHSYp9+gKlOevvXUUmUhycrqkyi2ypRoYYN4uLlDwwqtk0Ssh7+V5Av1yWffG6qLd8fST97Fyr6ahUckMW4fR+FwKJmLCfrLVa6S3Wti1qdlLlHs2yPC74IZUFonMUBpQQTqwN0WGUKR9Msh4tMaJsppesZmUASgnzm8x6MsiUYCLp4ch+yvj+AzKWPsiLHK3KJQlJwyVzUlK7cV5v6qa3zolb6fG+ppPfsnWpp84666yzzjba5tTTXUprZEWuAlgZUzhz0TJGq+B0zWD20dFUvVLRTXHeKygnILZKCpkkVZBWVa8QFYN6qrEfcOrxrnmirj2zJc8hqfqMYGz8zbCUKlvwQtWDdWvei/+1nCbZ59aVBwd7qK/QGL37zk9oOxcrWJ2E8kmqQEJt1SDyHofsddc1pa2OONX35NNncOYseeZ5Th7PcFCgxzRTCbkNGpVtdgyuN9qsxScjz+DcAyKKmPZbBB2DsZpauHKF6gCqowm2e+cAAH0G+Lb75zCd0Xfev8mRbEaV7fd2j3Dmpefo3CVlYE0UpdKq8JRjj2NtnZ7fL8M0GtZK7oQxoe8I0B0iZVxeA5Cz57/7LUpBvfwbv4v5eZIcvz1gavCQrnVmSljxYnkfrTWwMmU3ic7xR3VdqYeeF7JsBPWEMxX45PMB0GM6r1ymej5Hy5HHgNulFlmGVtI6et/EObac5jSItRhiPoTY6mCBgWD4/GOUAVCjtIpbvXqmiRtjoQuULEw+1gfJZ9q4KBhlSsTDCZjx/ScJgX5voNRaqRORgnJjcj3eECTVlqHkWqiWK8vbptYISNcqvTFDlDRfw74waQJrWadsIUXfRRSdddZZZ509hm2MKO7eYZXIItfiGdE1KQuJLApUTJ0VrKJ1Timthgt3QhtiXlL1gSXvZ2C44QjSSGETIGPWfbS63cZ8sVaZRy9UANK0zaFZ0ZUyK05Y/L9ZBccDFprDA+Td5DyWIsUuOlPOO2Q8vlrFCR+9D/VIrHprMvYfvE+Kq0fjezh7njzyM6e2+fUUzA7vNwje0mhLyYavR+1EgjyoR6LRYAgJZiP52BjhRQ9QPDGnwB4CeUqnti+hmpD21QtPUwHi3bv3cOcmRUX79wnfunWPcJ0bH7yPb37zewCAGSvMWgOpo1qIQRVS0UpxGauIb6VA38aWuuvwi8c0k0YI6qxGsDIk0W38YxXAtBx9Hr1HeleHP/lbnDhJ0dndGeE41U0av6xq1QuXSDVf5yOmjZb0PcF/oGCvY/JDFoDpEUWhPVaPHfT6Wr2sBZE25uYbxgTANPte2UPOxWk+wQcFNJYLaJP5pUrWa6ihMbKP92jjFqNzovkywMyYSQgtKqGABwGWna5ZOa9/mkdxrR6HBIZ52YtRC0daNrN6LjVHL4IJ5XmJNoiMu6jOOr0yQkPOUKLmXxYAXXSuqAgZDzSfpDXMStO3uP4eZ11E0VlnnXXW2UbbGFGMD6QUv03alvLTkAtLer0+siXtepvnmm9HouwZvWOytfTK1Hk3YfE9JO99pJZgFA9gBgCLqdxlKZGoHGojjhLpE0oHFI/b+6C5y0xZYOxm5UYjEGFMLORhFetJ6Xv0Kvo948MJmoo884alHIwrAUeefNYj77P1XiVYBGuK9EOADy0ZgzXjb9Y0rdXL7iD+SNtInnmIV14mraJrV0mqpN/r4YknSOJjsEXH9rffJ3pnnuc4PDjk/Ulka9DW4lWF+GrimKefYe21C+vS8w80k2hafXgL0CS4HodHSNhty+Y1Py9MMoMAaXtK1/bKD97A658h9tzTQy7g3KbmRkeN0UnT4/u4aX1UQ1rCI9L39FhDfE9u4ybUMFysV4FxsFGGPnvp0o+llna91qici1By59UUhRcPbGcdpwAAIABJREFUm3tb5Bksq9bKPZQl9Fjx5JVGaq1iYz7BNuSelKhAmFST8VjbPOfSkMuahd8AgKIoFth+qVmbazMv2caaTNu5GilKDGnr4EXmVJZl8E7ub9qirVtYHtOcm7hlWY6eqNeyNJK0YV3fcjWJsVeh3wds/xj0WIni0kMpJGvE1K02d+C1LIJcPsDJkfm4oKaaTfyWHmhM1ywDRIklgHVsTrT5BB8mrAppSLayEMTvR3psun9+1XRaEgsqJx4qGSwhtPcRwJRwWXZrEfQGaTkNlGVWfzemV7AwhkAkD9gMCC0d03RCYe3uvSPVm+kPecKZCvcOqYJXOo21rQjkGXi3ONOssfE3pYo+JAMhx+FXx1TO/e2fvI3XX/sVAMDHXyEq58deeAF371Ha7N2fEbgvQ+qCiw8s5bMHfS9NLylXXi9BejOvOiYrHHRjVunNuljgIzGVitZrZ1ZLOtKHWQJsA4ALGcAaS6UjZ+DOu9/B5MY/AABsX6SxPfcyqQXMrvwUc252VUgK1PlUSV+PI4ojyjWjT3yIukeSUnI+ILCEtwxWU0W9I6lVECp5672Ot5AS4L2mo4TunGdD9GQtkXuE91k5p+OQZHt1PciSCnh9yChNVs4l6HvSTM17r78lwoLD0UhTPNrhU5w176lhUnIuedHTVJY0p5rP5/qdnMdtIM3gfYAThwbRZH5K868yK7QcQTqIBc+U3LaCSNPHldolO0wc2BVy0MNbl3rqrLPOOutso22OKFTmJERZcX4vK0QW3Cj4GUSXhR7x9FWtao6ddCx78A6xKlJSMgKKLjzzski9VJqcOoqPFlGk3qSCw3mMfoyCvInXuezumYQiqi/8hw1JZ9C4D/HM5LitMQihXdxOog1Ezzg6SAGGL5fx8XjMUiMiJRGEAl4iirF4HIeopbr7kKqkna8wr8jbFNBNlGiDjcWQEnQFG2L/SDk4H4FitxQ92BBg+DrLeM99hb9+668AAM+9/B8DAN760Vu49NwL9PlcaMAEkCKrdeBcKzTCCCKGRvoYZ2kowWMp3qddSX0G75PrvOoz+RXwbzNyuNQKe+HvuKtMU0lWtKpgkqmyqJ3kTby0Sis3RsfSMyrc7t3CPtOsLzz96wCA/ic/T59du4rQ54K4XQa4x1PAcKqTyQwm2Ni0SRspcQRiAgBJp8hZFbCsQuBbArXn00obBRXczKjHr2havb+lhappHRyvH45bL1cTD9+nz5UOLWSaLBIxZA3KrE1k8JNrthB6x7QypaX4PmHaf9s2KnfuOcKft5WSd3bOUIFoxXpk4/FYo43cSkFfTDt7VqvwtVePP+uLBLrcj04r0HUtMEHvOSlYDK1Bv8eZAKbOZqDXqZvoeHtOXRvrE1KODEYkRaR0Xv2oo8d21llnnXX2OLY5olh4yEiu0Kb/XaCySXtFH4x61YJlhJDS5ZJcGtbjCAsKsOveOx56WDzONR+tvGcRcUas/v46C5pjTBLZSznt4w51vWbSw5kWRin2EQFe8a5aAafHDrOKvDa9jNZFj0cICyb2D0h84uRV8vpp1CVe22L+2ISgXn3JXqEBcOXGFQDAP/nD/wMAtZt98WPU2+PHP/5x8vuAyQyMnNcCLiKfSw46XrXloSRIaPFKrMWvErzlo6DDPq4tnCe/l4cAMEDcCvU4K1EcEF6xdYewnukRS3689nGcef05AMCdr30VAFC/9RZKBsKVrkuiawCi971QFLgsMwKfANzijVsEw7pS7BmPGKQe9PtaXBeLOqGAuNx7rW/hK8YXHOtEBc7r2wy5zlOJYn1CFokEkUbwBF6fhDRi80yBa8HjPHHj9XMAqFsHy159weC64BJlr686aNJAC7AaZYjcic2yhT4bALU6BijqTjEPQHSuhLQiUigtmox+q8dKvKL75b3DbNqkwwfCmmQRiuq3UV6Hr3d6aY+Z6xsfFAJkepsuhMLAEPZO7IkbHxRWq5l9IwMRL6KEq5puOuYgTZKOipXKD/uk4H0sA2BYXcBDCArwaXpnzQKz9C3+N1k05Q+9EMudk9cfweM8KMLyxUdMB8m1cq1n6WREKWMTQWHN2kjIG4wyMBaAVyl5kSpsYyKDRlMiZHkeNXdkcbAmU+HEn/6c0iV5VuD9W9TNT5krrIntDGCki1hydsv3QrBBJ3xQLZwkFSEpH9k+0RQPid5YzAQuXZ+FFNEvx0LM4iYd8TwyXhinJVU4uzrDrR/8AABQcJe1C5+jFFTz+U+hyYhJVhxwWuXdy3DccbKUWokQYodAuZcTKXQxPQ4fGT1aA+FDrECW9SOwcOX2Dkqut9AFMkTg1eZS/WzVyZHFWHuxZwVy1nrKOUWaIemVnvSUzrLFVNnipeO5lfTfjnpOEbSXh90hd+yUBl5FUaIouWNjj9NkWY6mFnCfHZssdTrlN1mtIsSmaJLezmGoWRViCszCoWkoPTzlbGGfx7EoctS53F+SQk/ujZRQoyPA90g654+Z2F3qqbPOOuuss422MaKQUghrAcuNipTD72IKSnvaKIUR6nUuPKhW+LHH2BKw/ahRxOoBrPt/+nM2eujCkU472SzTJulb/C9/z4TVvJhZG28cG+6tHt/x5y8OoYOPgHKSf7PLTaBs9DqcUmH54mUGclEz1eeK6QntU2ygFONIW+Y9ORfpgVlMPYl2TVZIyqyJUuaqZcXphyxGRwvXJTkHeYmaVNJ8RlKDSPw6fi+NKGRfPlEYW7o8Rk72AfYLT1VpmtMn6SLyZtE67N64CgBwIO/zs79NEcX45A6uzVn36XlqtGWf/QTanxKwnYscuPfcijPxzE0kNigYqhGIV3A6CTjjPSQedEPU0sODPWwFqu3Y2qLjmdc15lxvIdFrlsUUjqZkNAKJTYck3ZnnhdYtNBrFBK2SlnOR1CpgYkOkBZUBSWXJGHiNhgXUtrmoZkOLjOS9LM81aq5ZS8oFD8u/K6q6Oc/v2XSKlhW3JYo3yDRSd0wk8AnAHSqh0tNnRV6o3pZthLbsNFqIuHVYWHoWPsPxgXIXUXTWWWeddbbRjgGzIzi9JNQZIwaYpVwXvRe9N8kdRu9At3rECCHtF/Go+4htDldB6lhg5bEGuVigqPKP6n7ie3GnIXWvaKMEZ4ljFY6hpB1n6zxYq3TZxLNTTi7gWsEy2FsvEkqfDIN4NwFaIKVU0WBif4T09/3ib2nO2CYYk4B6PnpqSmjIDDIbPTk6lwSbkqghi++JN6v9DGK3VsXLlJbaesgVj+zliGkoGJ8GkPHypf/9OzM5bgujQKdc2tICluVg794lrOf7X/sXAIDTO88hsOdqzz5J33v5U2hukH6Wq4ngkFmvqsJRXUAKvIzSnJVYAK8tP8PCfbg4cFIFHbzD5OhQ/wZII6pklVnBA3xwinvKHBAA24eAliMUIdG4vIUtmKIqWktZphirRBI9ptw2daP9K2SuZVmWHLbmMDSSEF22FPeQ6mipQCfO9uIQZNZocV+mmGyMYjKpVpZI2buETJGozqraM30mFdrGRGxH9PjaqollDHqf2Q0JjLCwLq2zLqLorLPOOutso22MKOQ5EpxRSQ55wreieAqrdMpY0BQ1dGIT9VjcpPSvBSkF9gClYMyYFc8u3U6L5bC6j9Sijv1SBJDuNpFUWNFGMQZeGAxOtkvyfWu2Xz0IuxJNwSTev+wiJd4ssZmW/36QpUVlikfItQixt4YSslxy7OLVSFBiIuahQ2RDlP9JNGyMRCGqoYH4f/EUpQGCRWRfyX5NgPayUFaGRCW5UigFbwlIdX34KPKgdMYIK/E2uYlyMsJ0SdRSkR7/khxJ1E5Zz3papiin76/rq7CWDr2mx8LCeSTn7uMpoM24YCtv0UqnPz6Xy3/9NwCAUy/9GnZOkZzH7d4Z+rnnX4E5fwkAULOXD1ToCX1apo7QXk0W54xcTwK9aPvkupilm0IL5KyFZy/86JC6Hjo3Qm9IKsd9Zg/VdY2W6b/SDVNCJwujbFS5p9q60u5/xZDoo0U2gE+wKwCwGu16zfHDRA02VUBOClqFeaTnwHsre0WaVqFzadrYKlVuJWtVBVai1iZpM1twJCSdBD2gUYbxSWGeTEH5Q6m2jTKgpFAWSOaYYhWrE3dBuuiYePmh6LFIJrzE8nKj22B0sihwaGN7wyAz2vuYnlhJVT2+LdZYJDfuhp9aWePT/y0/CIBE28gki4P8pnwtyT0lPxCF3eS91WAvXUA+bG2FScJmnVwyWUKIDwFZdHykxdqoNshfDDoH4uiaOA5yHS3WzLP4oDNLlbFp+i+VKpdFIc61ZABlTJM6CpsvXjlvkvSMtBkVhXMXb5aFdtry4OT0RIilAaskigTw1LNckw5N7cMRMDabCfFEm5I1f4oWJa8rI8fCe9xP/ebX/wrnf+8iAOD2mL44PH0e7SUCto/ef5/2O7mNUvj/0rM6eggLjcbojzXHlvwdH9axlmqZKDCfjDXlOdomgDu3RmW1JYdicnFGHVqXpItAdGtxZGtOo3nvtOZAaPltM9cfz/S+lTWp1vlZZLTw5nmua5rUaQhxJweJFwIk5AcATVPrWYtKRTDQim85F/VNvNcHi9C5i7ynDp7hXtutC/rAlhtA1leXOODaYtpmsX5tQSXiAWuJiSnmB1mXeuqss84662yjbY4ofPRql4FRAaish1bGRupskjqRp2jTxgpFfjquiyw2heOpLdMwiaK57P2GpIpsFZE0yWbyugpSByzLKSGERAF90UsNIflPYiv7oJKxxd8Xj9uYtemMR4ouQpIiUpA4nrOAvUhaV66GBdH319QjwkIKhLaKHtpy2iYEH4t+Evl1rarV400IEHLJ0vSVXo5kH+LnsLCm8SmWyMeYpqKWTi8Em2gmJUOgtPDlL8SIIr0+D0o9pfZRRhY2xMhRadkhg2HKelGTZ1lyWmX3ne/h7G9+AQDwxJnXAACzZoTq2VcBAEenqeixmR8AnoFtvr8l1dLCxsydpHSSVNxCfLw0TXMhIPh4gfLkhqgmVMzmOf1SliWWp1OU3c+0OjokN24mWmB83M28RWDQW7ZfRJq5gE8utonpcpOcu1IuNOUTIwW0MiC8j7aNFeLJ4iIy660qO4vMeK4Nn6J0usNgtMW/z/fN4SEm4zHvjUyZviGlkYusegYnrVVVaSJeFJMWoQI0yMfMzy6i6KyzzjrrbKMdox4rj1gTMQeNKOgjizYqrkqhVEI7FIwiuBhReOVhyu4/vLcVMYLkibmwv2XMYZ1XnkQna45phVprUu9+GTRKmtuY1INZxDSwkAtf+izgQ2MUa85KXfSFYkClswJhyV+IflryiY5zVC5V/f6QeNgq8sXb24AQEvcHPEbqmUfcIqzMg3gkRhsj8FvWRC9J5p8JiDGKRGdxCASk9MlciVFtElksJeHXRb7r8KQHbfNRWzABGbuKPceFYD5HIdRnxhfygqU0pnu486O3AABP/hsvAQCuuRnMifMAgOJZeq+5fxltQyBzjwc6k0gyZFHnLcGEtHdPeksvBvtxLfAq9BKlWKxV77tlmqnxXjGJjPtuSGbCFLkCwBV76s41iTozb+cjaNyamo8nXtdM90/vZdZqGKBFc20TwXpG0OWaNnWrxXJR3iiC0kLvDcHH4kEsmrWxGK9gBdp5HRTPLKyo7wa0gldIK1kTFZnjMh3vY4vFObyY5NDB4k2OX2OOqcyWuMUoL15vTtEK8l51keRBEVLcRFgDSYWu3sTyvw9zQ5m40OlbG1hP61M563a8moYxS+cewipzZV1Gad0+kCw6yz+/DiN81AdGen6rWkWr6YHg4wIdU0SyjdeHuhCWgrULqTr63oPnWvBhbdxqdCFXdUJ9GMhCHtMraagsUvUhismppDjUaTGZ3Ei8EBjFEiMLJn1ucoqKTk8cHtl94mysS7U8in0Ez45gI4Gr5HPKg1ENK7mAjdY9ONz90dsAgGdeJ+D6/Jlt3DYEHg8ufQwA0F4+i/aIqrXD0mJiEyZjHIP1Hf+W39G6HGsSTSbeKqmp0S5vTQMIM6jPLKO8r3sXParY3KtV8DjjfRR5ibKQ+gzavuZF1oQAayRfScdjbaEpqoZTRFVdaXpTRAHlArZtq6kkmVF0v0mKSsDvNjpUDL5HrSePho+7ZCn2rMgxnbN0PO+rXwzQO0WfT6Yk/Dibj3n42sSdSx4KPLH1AYrU5M14Xx23vnSpp84666yzzjba5joK1dzx0NJY8Q4k1WJMrC9ItlfnQ91km3iPWHhNMMK4vQFW0jUG0d3dUKF9nGy5vievSViyrlp6ueFN6jNJlKHAU1qdmWytUVeSCrNLvyXVz4sVz4jf07GMkdtKsibhdq7tUS5fkP7mwer103GQ8D2LldAKirkkwkoiLW0Tu1RHYYvY5vNBGrqyDw1WJXJDnGP6HWvSb5CpGmwES6VCV4HGOoa5qhdlQ/QopYuvs5HGm0s0FWXXvVu8RjY5l0WiAhajxwWSxsrpr6ER8GtyjaNCgIHjimlppelthcxKuogjCXbKe+hjsku1Ere+/20AwCu/9zEcMpV0fJ7B06cuwty+AgBoHTez4jqN0rUk4wvA23h9QiKxzUeH1ZgifrRcV4IApX7q+SEqH7R8jIHB7LLfx4ArrK2VGoQaASVvz5GFyWKLUtGB4toJ1zqEIM2SePyCU0VeYaIWudUISFKasT6s1barRmvLog5Vzikt7+LS2WjTLZHFt1qjVfF5lmVPI+mWa1paY9EbsFT7Nl2rhq/7bDoGMo52hLsbrK5H0NqkNdGDLqXm2KxOF1F01llnnXW20Y6pzCbbRNEMISSeaMw/rgKTwPos/N+9qcf7gMNafdouoAgLL+n2cagiGGsWxijo38u/9zDvPY5pxXwSqSz3lDA2aM5f89IuRAxBPO+AOAxLlfDGp3MhRoiiF6V+aAgaYYWlIbULg5v8ocjog+enRqohwAjYa+J5am8N1e03+rk6aGn0oK1yRe8o8bWWSBrYcN88jlGUwfNIjtUGjQQdR4G5Z8DWG6AmQPfOj34IAPjUb9zEM9vPAwDGLXmp7vlXUF++SvvdpRy4ES/cGi3IFBygWWkV+3imw5bMJwGxG6a6Ou9Rcj+K/oh6cZQnT6ka7CE3b7KZRSOFeRz1bG1zO9OqwnxOlFyZOrPZDMaKii1FKkVR6N/K0fBS7BcVKWQOBO8VzBZVAWuBhqvGRc1WIwpjtJpaKLTTukFZsCIw72M6HaNhgkJ/SH1F+n0qJnSu1f1JtOtdUFxI+2JsCBgeZm4+8oNi484TltS/FrYs75GkPxa349dVnHstcL0KUkfA2KwF/zZcqI/42bruQS+mFdwatRolLejEN7HiO32uLNdK6IOlDbG3taaPQhwHuQMTLrdZGueHnU7r5qnWQkTNNyGMIL3c+mBDZFOFpKJYX5eZIsavAvkLVfiLT72Ax783DBK2kT5cvT7opc5BUi7GATkP8+w29Uq//eMf4dI/IhD75pQW3uaJFzB77mUAwPw+PTB6nhbexmaw3GWudJJCqVYYcx/G1k3tZeag/L9pauzvEzNrWNNxnDx9Cv0RLZwNPxCDsZjN6W9wI6f+aAcAkPcaXZjrahJ/RqTppQrbpZIDy6lum8xLdiQyA62cloprA5w4QdLqAqpPplyrYjJNwfWYyVXXDZzIl3hhkwY47iOvPcdZ7mQ0GsExW0xYYL51OocX1rbHsC711FlnnXXW2UbbGFGkoGVs8KGfrmy/zuH+18mMMbEaOHkArwQN6cNZvWX2KoJdSHcA5I2r56dywnF8N7WETWs4fhGNcRb3uRQ9+EgblajAG6uic/otk3i4WIwKQjAxrcPbkze2BJyb6L0t686srYuhDxbeoqDkAYB55nW/MTVoFqmvdNa6w0zrP9jTNLFCPc6FJCwRgoDWiKST6KOJJORVReeE8hvV4pWH7/R8gTxeQADA5b/9Dl781V8DADy3/QwA4OhUjuyZFwEA7WVqq2r2KQXlbKPnKYoN3hp8NNknieCSt5bnB7+dGaMCgOMjERZsMGAxwLxHnvloaxv5RCqiBVimCKvX62Frm6KNI8/V29ZFIUL+MWq6JWOYUmDpYM1S6JvnGQLXRbRtPJmTpymimE4okpgx/dUHr0B+KfTbAFQz+lxTfXkWNadE/DDn8837OJjTfkV63MMhXyKcHLd2dPTYzjrrrLPOHsuOwSiit7f89EztF94C8u/AwgOc2OPMG59EIwlKHh7sNUXn9Bc/jg9V3Jgca1jCHOA9ogozR1HGwJgEa0Ck1RJNb9G7IcB46biARbwivlC+dW2kINFO6u0tjqkcayqZbpCe32LUgHipkohCIoX4Xe+TcVGgcxG/MAvHGrf/KK6y0QiWox9PgDMQ89gtT8QsM7ANgaw5+4YHV67gvb8lGfLnfus5AMAHoz4m554CAMye+wQAYD67DwAo69vIWQdKrkVtChRyvR/jpMKapWW5QFYj9vQ9OY5qhoqxhuEWAdzUEIm89K1t8ugt00ins7G2/ZVmPyF4pdNCNe5SfGqJuh5iIyDJthRFoYq2qR0eEDVZCvSkEJDA8EWyiAlAIZ/rfPVxjjFo33D7WuMLxTS89qQOirM8KMB+VOsiis4666yzzjbaxogibayznEdfr/KaeAFm+bPElM0SP1t+8qVfW6fntLLLNVTE4wtJ1vzYWgrG6v/DkrZ82iRoWVHWGKjsQCz3hxbBPKo8x0Lqe/m7SQp9RWYkUQFe3mf6t77jQ2wzKv1jkPSvkO29iQ2OnESh/IXMqisv2MfCtbVx7kTWaoxUls9lLVwh+zdA9NBkH4INmdgeVbpPJscUEqVk8dJ1+2TexcZJooAco5YVgkyKz2hq28CvwSseRoE2ysXEiMxqBGW1EY16uklAK+Ng+PrkvsbV730fAPDiF34L+P/Ze7NgS47zPPDLrHOX3negsS8ECIAEQBIgtXC3JVKkJC7WOCZsyRPSvNgPEyHJb/M4enGEFZqZsGcc4dGELU94keygHbZMjUe2ZFGmRIrEQoAAARBbN4BGo4He0Pu995zKnIfMf8nl1Dm37+1GN5Xfw61zq7KyMrOyMv/9B3D7lj24uC+Yyr55292hrqOvAgCWjp/CUuQoVihRmVnmuU5zuZYgR9qvx0HKpY6VUSeq0oXqfgZ/PuLYVB2x/IVzwUprdXWMLVsDJ7H/xhCqZCmmXL10secEShLPTvQQ2pIrTy5G4TeClCD+ZJ3GhK/z+7EWFy8G50Ub619QaVUpXtSEw4sAW6JFE5naSqgQ0X2srJBCqufI1BznSpmO83uZIUmYdX2GMlu/zPRHUnERBO96QSkOmlv8k22O4AVEGaJVFNe+8kyjNhlqw6ASKl/Q19PuAfj8JTtfxEc33vOiCo7tZYQ1pvnrpA5OUiZafokhFZ9orRAX5abglPkqQZdX57gv5aZa22x8tspLZmgZB6//41cVr2mj//S25KeW3Jq8/Drh4Tl7G8H4IH7Kn0/lOV4cr4sG77z6MgDg/KGwYdx+z0dxelsoeO6OO8O14w8AAOw7r2BEoo0tJBpZAkAB9zbPp8L7mhGxdEokn3JulBGm/doazo1Px3PRj2J7MI/t+x6LMc903C/gncRz8pYU0qU3s05Y1o149vI1MoudTKQcNZPjXNFmPRpxb4g4cr3DmpP4eEBMy2Bpcw7lx7H+5aUFFlURsdqPneTnrozf5aCJnhoaGhoaBjHMUTDFqHb4Aa4hp7GvdTCLXjNLrYjW9BiUVE0pOhCWWnEIvdxWkVToqtL69LmyWGK2t15M40YMTMKahzYKJc+3hbCtoRiLKGMZ5ziqsDxQt14o/3xmpV3KxBMJhanEV/E6E9c8qC6VBVItfCt52XppGz9CuEEuzqHbpRynAqZrTtrpUb7H9ULf6rJ3YD04ZleejCmEkk/nqbUGuBREIq899hcAgNvuvBs3bg+ip5PjIK7xu/YCAMZmEZ4CYlEdkwmsmcLGJBheGWriqGLe67S4mRMjAO4s3bZgJInRhTPByfDShcBhLC4uccIgSv3aAzCg0OPRG9uPmfP1uSjMqhcfYa3EPKPEblohTiNFXuTO9eytTROxn4zFuxsiUiWOrQfN71DpeLwGjrYVTXP7IJxM2us2MvHQOIqGhoaGhhmY2+GuTMZTQqiz64SnqMq2y35W+y7aqvCvz8pCUbpGEUZUhRVlGMc2Yu1j+eyUU5muoyhUJzOQKBWzZxljWEUhBKlwGaJnMPxg4picGh7D52L5kVFROUVvwEmPWL9guYSEJFBtzFgwbXZL0TOdpq4zHUUHkUeTjLhPnq8UlwjyYUmVC67XK0W/bj+gHdKIK5E61gsdUo1+swGvE4WvcBLUboijp5K1k97iyLMhV8WZj7+O3beFEB57TgdHu3fPBvPYS94Cdmt8VlC8LmJFxoNbmczKKcccIrmgcjLfaU6Iw6/WdVF5iudE4937CUcEpgnYT6Iyvr+I8VrQRywtUuykbRjFuE6rPaVdFbcA+g7YrLazklciljfGsHnsKJrdTiYTfkmcnjf2JcQOS79ba02aAI5HLeVsaGqurq1iQWLkhDqMVcY2qUTgcjFXrCdALVQVxSudk33iOtkoMvZsGoYshUT/K4uVz/wBgm0+v8VwyauXyVYc+ap8dURPQ5BvUYmIWOQkco8kHhKU+MWL5ZStWPuY6s6WV8Z/kk0sl9mFD7v0fQCA3hjeiMR6zoofReWjhLoXCJZDpOjukg+c5WzxoAiL7P2VAov1w1NF0uxMNEAXJfOfBHIUcSi5DVw8ETaDQ889i/vufT8A4IboKPxWXJH60QgXJ2G52DKJCux+zOHcvZkunDBqQafxkP2z3Fiq0QIqBBP7bhjZIIwaD8qzTdZgnCTRew4vvkopEnqL0WJUIquuiF9ESmTotmhrRNlIOm43R7Wg98Jh8cXfgb8feNiFLi3nHJCt9PRfZw1n5OK6sBkRxVKaxTOyAAAgAElEQVQ00VNDQ0NDwyCGRU+0mXqhANgfgG3NE7o2XEq2M/mHqQEV5jmUN6IM1WakOTGtRAt5jB6ng87wfdPzGYdikVLUiYsq9J6YFqaikdAFYk2FgjB5w7XHsLKrJ1O3xOAdQvVRfaF82UbN9FM5p8fWp+UBi2zYYtGckyGFtMS+QhJZ1ibNRu/Fnp+6RAl+rCgfTYxP7XppgNERWq2aD5BxN0rWwu4oRtm4J684ZeUV7yB28vQcr0SqinDkuFzMy8c+rSkhCr3H3qUyIQCOxg8GvbiDgztFfdGc0xAJmLXHwMD4UVKvsz4xwQXEa9t4oTHF095hFNvWxfhBh599Bvd89vMAgH17bwQA3HTnHQCAU88/CTcJyuA+mmYu2AUYL0mdgBhwmNtJsZMm3A6eOzESrTOdiHd4Tnj1TcpYApFzYLEf3WBUiHyJJuER051SJqI4KTo1hxHDd6+unMHaaqwvmpt2ow4LMeQ3KZ3tIqUzFW6RuCmdE1z8KSxH8fXF9+gxid/VZDLh8rSWmNESjwfP4+hTQV7ky6MFrEQ/DTcREZhPlP8k6SjXknnROIqGhoaGhkHM0FGIxNbL5h3OZRFB09t0pFPP565XlFL0kuuoeqxXa9mE9mhqmcXhaSu9EPKFAnag5rKckNByYB1FvGQ8MlG/xMvpvSjqSAluICl1iSuQoLubLF9V+h46kpzcSjuJe+kMROeRZ1AaeaHIWYws+Tm8s0lxZ4qhCtfzTwPzUXkyPqbCGZqpn5hRSlOGl8izpKx4+60jOPn6YQDAbQ8GTuKW28Lxldtux7ujGF/ofHS4O7+KUUwpmrQnS2wlEgFlXlwJz6z7lxtnmMpXmNyfSx9UjWT2Ks8p9SKA5BVxE1JSG46j1EVnvNEoHG03YoOMhZFeRsM5ikTrnCuabJSjKjmjSrTXjvs+WgwcxXg85hYvLsXcGkvROdA5jKNXtzbh1RGSNwNzKrPVx2ayj6faECUmSSbo9btZXC9ILK0qSnijV6c5IIp29b/Ez4sVe2XZlBIQIfEaiZxExCAbi96A8mfN10ZuhvpA+Bz0fE2v6XbwJunAoaK7fLFSIjBZGJUshBaaXs//dAVLowBIu6UPZTndm6xXlwHqTIdx7Hwfc4OP3RrGJ94CACxfOAkg+AYAwOiBh7Dr4eClffbZp0P5p7+PUUwU1Kk0BDGxHiv+LSvVTUHQGPQqiCYPCLd2I+KSEpoUKbdwvqqyP076VFHcx/5aO2JFfschORZYzEQLv1d9mPAGVHpmL8ZNYcuWLViJYchJLLW4uMCbEYkTaQM7f/Eixqtrs7u8QTTRU0NDQ0PDIGYEBQxHLcZgrtlpkiej4kzlmgGwifFgrhXUxFEpFRt+bIbJcJWqMvm/vriQ6nqJxY3/KvkVN1FTfXSSKCvI+zWsvBWjAZMlNYITBbthcZMKIshWEpYV5pxjW/taDFBGafjyekEDfS1Se7bCMcGAvGBNR/F1qO/CkRG1HMQIKYvFMXeMnOTw5B5sFq1bWjODRlFK+rJRG1tngEkMBT+xgSJ2/QRHng9xn3YtxUB6++8FANz5qU/j7eUg7lhZirmn3ziB/q3gb7HISvsezqTGDt6IpQDPHZAvgRdT6mpLN5OjmAGSKjL5LHS0mLFGD2nTw8c83uMoP7K2Q2fJjyKM6Whhgc910eyVwr8vLo7IshXb4thu37kDoxhD6lLkFPpJzwmOLl2KyY+iAnvt0iUWlfEIeV+I7jaKxlE0NDQ0NAximKMghZ0X6pH2LaviQAm0bNEV5340ca0p6xVtXAi8DQoVU9UzWzkM+ozbcF7sGJXg3Rfl4qVe5MGil9BhyeM86iQkt+UjuTxvNieqqdRsPhtA6CedpjX8L86D8ZQFXOwYmYX6ieJY+DuRrrBZMVslK4NoZiwGdHv+8r8qCQvu0VkKlR5jG/UdXn3upfDEPpz72F8LDngHb74RR1cjH3VL4DK6Wx7A+MQboSsxMZJO7iTKbDKhtbCRF7MxFlIIf546tXlfchCbQyHPx4ZJYitRcFuIniVArvlI0Ttj+d2urQmXQfPHZnNhdWUF1OfVGHfrzJl3MY5jSVyr6x1cjGS7GhMWMRfhfTHezKYAqXRgA2gcRUNDQ0PDIObKRxHSzeey72Frpjz2f0iaU5QarONKQ9IabqQWkY9znQXBrWT4NTPa7BoqzjHazkWn3GRTT5dS3TUHm6o+Ah46mZJuNyBOXGwpqnJPsEOcM2zRxKalnecyHFGT/J4m4qQmdTgYRw5xNW5V+kXHWmKmPKwC31fUFM7mVnze+8J81SiZtVh9E2Vu0I1SR0zNdZBBqFNcTBefSdYviYVaxRKq1vpURzgbMhdIv9QDPsjAFydkUbMNFy+Ec6++FHJV3P3mK6HMbe/D0iRY5titIaLs6J6PYOXl74X+nQ4Jg7Z0I3ZiIyc1StDpYHg8JBFRz5ZhxHno8cg5CD2HCZozrCOd2LUQIfnPcJd8Qz5zhvXeS34JnkLicEf9nPS9erc5lyTfxoon6yrP71YiDoujrPei2wl917ZcaVtnoZbsbRoGN4qukw+RG08NZk23OldZGHVDrlA4ousAyhpgM2rLFLBXDFPek0xMtVD36UfjWLcpXtvkER08s0nBHRf2iVGLfCzHOm3HXtgcNycxKS0n/Fx+CcZXRYYSCC4VFaQmtuw2DmVjG1Gy/ooG4FDRiVkoJX6qbRRX4HsxALoYC2nEqZYXMYlr9fmoLH3qL/4rAOAjd74PO7v9AICLJnhtn993C3DgdgDA+Fwwq+3MKhbJU5mC5cVge9qrP/e4Xg/0WG4U1XmiHjDNxkB/0bINKXKaiWwhHHnTcXIHskgXIT98TsA6NesygjCZv9TusksbRRM9NTQ0NDQMYk5ltlE7GrHSWhQSfyhFZs49pFRf7Wm5aKvhWoKOI8QerDr+E6d9TeNGBZFUnCAU0tt4VgrS0SnqjVh6qspaXxWt1bnWKUKmynmrYoxJnCaj8iSnOag192xZ/yo5wRNzXiCeD7+pOJzqs6LTWLTBzdTfS0rWGsxHTdcSAXmleLcxXhSJLKyZ8HjQrUefDyKoe597Fgfv/TAA4KwLIqi1HctYjLm1Lx0LIqq1lXcwiulRR47iHVGso56dGSlvuIXdkPvgPH2usWS1a2VOeuV1X3kv/MyEqOePoyydcUJOzQ85J5IXEW/WuAxqTiW23BVA4ygaGhoaGgYxw+FOdqqO5dGREsgUd1wQuSIVU8/9pVNVXCfQcXucqVyrEYCsnMh0WUqaayLX0RvlFqiIdwoD0lufXLOXQc7kyjlvZtCtKoKpy3RATOA5MThgU14AnnR5/LB46Eo+2So9B0d0dXLOcTTdCofNDTHTKUzdpUHdzQg9YrrTUQwtYc7zMzrSu1wM7Xnl6e/hI/eFEB67TdBfmKUl9LuDvmJlZzj6yXmMV4IT3jI59DlKBGTQE5u4ybGIaigVtLXBqp2TNpbRpPW7TrkSp0p3FefinGOxOsIznau68FbaSeuqFxZfGxwV02ODwzy4UZCHoPPyYIpjw0YXTprD1gv56gJS7ijlZ4K2ZVyr4MRoWreqjBYAEgPFiyYV2zg1P8hB1/ayAbEFlwPH2DHkBU6iT+eq1kwkjrKcp9tXFsSATolP5SNTBVR55d6Q3mDlY+xUGdlQ4kbIi0THmx/W1FhB2hu7zuBvqFcfPUuy1JOYAKv0JYMWybFCFR28CSIkZ4LF0sSKXf8oWjiNoi/L0VdexU2vvQgAuPnBAwCApdUel3btAgCcu/Gm0PfzR2FWo6gpegJ05M3s1PJpRJm9GUpp9g+ZQ/Q0zRBCNgHKejh9owCcIqLK54gfWTkXjTKrE+V3PONq98mGwuOWUCVZ/dh8NNFTQ0NDQ8Mghs1jl2MUTVhEs3hMgok0eqb+IHGAKLS00eZ+cadXBr9JshrkHIawdqUC0kCYvlLBV8N8u2tJjqVuDrV25OV9+TvpX8ZjqnI1M2ufHXXBlKqm8S2fXfqJlKKItB2pts0Xf8O4V1SDTAk7FUU075QbUyMtUyiuE06BFLqc6zlyr70FhyPXTuMm7zP0OBO3EUVEpq7Q5h5oMQ0dM87XGKBLAqABtcRdKtOVUlLG9vdSjqKqGuvZ2cBn3AZg4FhcE8soj3lus/fIX4zQo9pwM84hN2EuZNLF79dYVW/0oI6Jp92FVRz+7lMAgL9y38Ohjm2LOLd/CwDgxN7AWfi3d8BdDHGL1uJiEbOqwnrHHtkSD6oTjix5P+lHMSUARHGC1gUDo37XFolStCefieP/iy+fvw0v3vlJrSXnWwox9ZWcG1DxpXiJk3XPZ9+jbrkK4l62y5fzmZ85ECON0DiKhoaGhoZBDHIUC0ty2YnYFYDIkfsxJBVgL0nEeefr9Q6Y71pKVleIAod3uDyRyUY4ilr609k1TN+9q8/IqdP0YjhUqNqkWPXc5ut3NAMy7BxZUkq5EtbAKC+ySJf0ooyNeW8iL0BRWolzIorbwllVH4KCO+dIg44iNVU1Op/vOqW3uVy/U1wJKbV7LWPndsT7rKJbdQrXzCDEezVEmWe794ZT1SYpcFOGOnj55t7a6lXkicSM8ehiilL2t8MIxElQvC9vw1U/Bk6+chgAMH47ONfdft8HcWE1rBHH9u4BAJzdtQfjk8thbKJ57LiPCY/gQVFjmXMyov+k8Uj1mShgil/ajHUTvoeB2GJE8dsp352sCvNxFOU1eXbyHdK5LIZezRYgfEvxPfOYVriZdSiHhjeKhRgszHv0tOCzEo2yeXlQ52xMmTUxACYkXoofvw+lQx300SM56sZfMzH2Gi4LycbIc1uJOPr0nFE+Dd5k4iurPjtaNDthx2Xxk/lDYlD+31gV9mAGETLNF8OKYID8iIwB+kLER8SRg4/9JCsi30MWft4oJMBcLiXR7iNe+6hUPcrjVZ99q74sFBYT2vT0JpzlT48d6GCwcuZdAMCrTz8DAPjMAw9h754gctp34AYAwIXde7G6vBMAsBqT69DL7uCVRZ2EZs/FL95LOPKNQESpfCL8uxna801CbglVD70jY1FkDQwFkZ8sQv9scDib6KmhoaGhYRAz/Cgkvg7tUKLLi1SL9ehIHGWUos/LTyCEyt3wttZw/cErNpgV717iOJEBhGPilYMCMjU98aKsV0H8xBI3nlPiKE6WFJ/tvIRjJqyXs/DKTNFoKi/+ZEV3olwUsRhdyRP1+F6MAeDT8uE5GWsw4zOqUqLZOWOshIuPJrBG949+xHcwMiNW3r76/A8AAB88+ga2HfggAGD3nmAye3zPDVjdE2JCTVaCv8WY2Effw0ZBl0m4nvI9rDeek5hnl6KWa4iBSGCMyJTq74x/8TkJTqg6xWI3kdTU0iBXn09VzAjA1ziKhoaGhoZBDHIURNF5Z4XCyCgfYzx73LJSyhpOyi5Ho2ID5SZh6vdAfJaG6wjMUToxERVyXGTQklOUb5KwzTIXmEOwoqwWOXbkdnXaVdYhkPLUc/RawryyanHoU7638d6RN5hwlNls7nqlvI1cj/MIWnEEmT0Q4lx1cku4pjWZVE7FVMudWr33wiFkSu3gFJhS2t6DjVCofotO/SYFfjRa6ccYxbDhp4++CQB4/vHv4oHPhyRG23dtBwDsPXgzzr91BAAwOXs2HoOuwvgVLOQ6CtgqNZvrW2a9qzQSANVxjbISCnl63tRMu7IW1sJaNB1FQ0NDQ8N7jUGOQnZpSTiSW3YE5Du3Z0enJIHRtb/Bvze4DiifeZEbmlQdjzwkDD8Rwb04p5GoX7gIwBHXOhYLJ+IQRKfh+V4xdDHpiaSt66U+ldwbUi8Z4DLBT/0w0jYdN030FuCjidc7It34yzQ8WGxy7rTF13pareGVs6Ap/jIXw2ZKXriztaBnePXpp3HXj/8MAGDnjmAeu2f/fry9YzcAYBzPTc6fCcfxCsdAssIyTG3h+jB9PErT4Cv/vdV0DleivmAltSmPGMSw6Ik/BsPBykSDWDPd4uJK+R2nnzXskV3bc4a8n8UbsjZQQz2YT6mzGUie4yvnquUzdjP3kNa/K/tyLctZVWnFdZXlqkmmTFluCEP9TLw+ST/qvJhpqnPsdd2T1y5tFEY2CvYlMGqjCMceTtquCRQEJWCfJT3q1htt0KOIqeSNZsvTxdVYiZVFScAMUIyH94Bn2VOm6Lasa06MgTkKQlVsk4l2vQQb5JZ6tVGwrlx8GrhtlvwGDAf3owx9J4+8icM/CBnu7v7opwEAu7YvY9f+oMxeOfkOAKDfGry33dlzas7G9jvHXveZc1HR3tC3KfONl6pShJMjTaI2H7FQGgOsZx1JxUvV77vyLJGsliazqH2jWr9dWfc2svY10VNDQ0NDwyAGOQohXQ0rzzS7HI6ecyFLulSJ4qnZvsKETekFq6aIDdcvmFVQ3AO/fxXPhk4lHFP67q3xcGxiSWUAS7GjKBw5PCtyTQw9S9Oq9z1sfK5VnMSQiKCM+hkfrLpnIZFcKanXKLa/NypqK4fhlQYTF9El1H5GcXv9rRG3YVhxnXKyXt1Zp5aTeF4m/ZiNbgc5KlJMK+NZLtaRV/rqJbz85J8CAO77YAhBfnDPFpy+KTjfnT9+DACwFj21zcoCzGrajsRoWVHN0yj3WdzAkGL8esY0jqY6BtA8TFNmNzQ0NDRcBQzrKJgZ8BKBJOMUvMeU3Yp2PpEtZpZgud6s4UcUQj3a4pyK5CBy5j6jjK2lyB1sTus74WDdRCl7WSFOlHA074QpyCJf0VHMK8dNijET4JNnq1Oc3Ch9BisCkGalkEud15xEHEdjJDozWwtrRXt6zmCabJ1isyldhaJKAWCS1BGLTcKPxZHB2SMhBeqZN2Ouivs/ghv2BWX2u/v2heMr0+XqxnaK6pW1pcY1AJjKHWiHxvwZhYXF9YKB95eGPUm5XKPunXdtnTXvBzeKvpfJm+fFlgQrKPIZa9GTOqubVZzbbCuBhvcYapIzSFwSVqR4ksQekIUibgY0q5zx5eI6cey/QP4InRFFck9Z5+JtnbHIxaG9jjiglKDTFKIGplhsvC8VqBKYzklsHkUcGfaB0H4MmVc3tdUZjnzA12DVppfl9Ua5UcCXiYuCKDhuFOoc/+I+jeJ9E1agU2Bw0/ds0fTiU98FANxw2924Yf9eAMCFm4K39pGlEGh8xcg40HOsspzQi+GQ6In7mfQp3Uw1rlfRU83gpGqco5TeQPx3nUr35pnd0NDQ0LAhzPCjEPESp6zMEokkKVFqlAlVZjzz4V6zuqBdT0RUVDynDkxCiV5FDDFH660qUzjWrs289zoKrRtESqk4IxES6C7n3sakiJ4AJPzsKE2lgUQEoKRGE8V5sMd3PFotI6UWOClgajRTPotNcSU7nT7SiP8xmZQmpFkn3xKJ1jjcOImxOvFh4k/QeekzeaV7FUkhM4Ut2hvbWJ9F2bepnklc18jGVKeux0Is9+YrQQR17uRx7LsrpEUlzmLn7iCKWju5gD6yR5bEi+NexoHWhwoFnXswh2vIriGLhJuJnpTvi8yBchRM7mE/L+ryyBk3DSwuif9HhUOfWVedw6rf2TiKhoaGhoYNYC4dhdY5uEnKUTjn2JlHU8SO81DQ0Us5U+7mtb0wdzkMurZcDjzvzo2ijbre6TfIM5jOqDgZztq3hZMQLk2uTW+bJKsRue3Qw4ad9Wo9NZjd+vWDauw1laUppJwaNBUBdvy/Hxn4vpdyCFyE9tIGQk8oRpHEdYrzdtRLxQlxn7MDRnFA6buyKlWoV2Nqc27Eyw+bULixajaVjRR6J/VxmiWdf4ljTfXxmkfMUMqJwUK/o+I++85g1Fzg7poyiq2Reyz3U3lSR5amJyUSPHMGZ08cBwC8+tILuPGO+wAAN0bHu7vvCxFmz5x4GysxWZK5uAoA2Drx6Jn903lIrPqtiXXFPSRzK56jo1UcBdtgy4tnHWvy+uVboxtz50guqXVClTJ+QDeQcEtcLJ3L4fG8MKh70yRWSj2jGqDqZWMRzWWma7g6NRUzNgppKOdmZvZW2MRcSaiVUX38wBMP4AobOYRqONzrR/oCQFsrCJxLx+0vI2rKNvqIRezhJIQciWh6j54WXBWOnNeCCVn0xEsARnG2G8rFbVRojYiu4mMxpeVzlKndpbOOy/fCET7isRtF8c44+JEAgB2JH0M/pkVVrZAmXy2z1WKTYWBgJrFNsW2HX3gBj/zkXwUAbNkeNordt94Z/n/f/eguBbHU6muvAQAuvX0coyxrW0D6TdSU24Ne0moBFRHV+ojKawVpn8tzNcg6mW9+89eh0URPDQ0NDQ2DGOYoxlqMQcfZprB93zMnQaazaUyh2TtZLTZJzQv1eiEOxLpTC6uuTwrnSqDGVXE8I4jIjk22rVGUs9wjfjtputHOgM1MWWzaexYb0bneOeYqCi/YSgKv5OFzMIYGopAn8ZiDMoHNjEWsle+Lk4ZZw8pvEQGnicaSBpkyJHv5G1x2yhXRBfNk7rBggulrH+NznX/nHRw/fAgAcMPdW0O7d4fggHd/6qfwdoz/9O7CNgDApQvfw2glmNiiX431SpIz7Uge/p8xyL78bUxal3daqFHjaHOxdom5OZsNIHcDCefycam/Tz5PUovEFYHq1XNiuO2No2hoaGhoGMQgRzFek2ivsvvMx1E4V1IwLHumK3NuU1oRPKiXvYbBSZuUgjnX2fxl1lUAZf/5bTvhvlw6ZPE3zY8sD1KsBQBgDRxFcFVUmeWkW8QpGKmjZjBRoeRKk+eByWkMy4tH8TixotPj+E9ct5G+Rr0LOq90hfGa1ZRtvEZjZX0e1ilrkupLRsZWYwrJF4xJ1FGQBAHnz+KZ7/w3AMA9sY3b73oYAHDDzttxaXswlb14LHAWl3a8gsmlkOCITYgTwQFRxLR2aMpY2lYd+8xbW8bKq7GimGCGSw5Fqp0nzSzfPAMz9QxawZ1xmumtWkqh/wezAsbrd59z3Vq6UUfjKBoaGhoaBjHIUazFBCVhZ40nTSb/RIUSrNhdaUsoMfmcFyKL5nuuU7/8mmpFR31s0BQ6mTAKOcQpRVWiI0fRYw3EcS21pgUmQD9KB98asOVU1ynZ7xTquxbCY16YlAVK6u8guV+MahsAjDrDJsbElTrjhIsiyy/rJHIu62kUhc5E5yboxeQj5HhZozh+/eoFHPrBkwCAhd0h1tMjDzwKAFhdXMTSUtBbXFwN6VG75WXpbLSy9MYrxznpwhCqvZrSVe/18jG95mquliukj5gFP6UzNa5nGkqdh/RlVh2DG8Vk0pcnjdhQDzeqHMicRRsa9GRzqtW7mS8qa0/4LaO6nkkxLSlJ3m4D7e0+nc3XdRXtqLHoU+7lG4qNyiOPM3Q1MTRBk8CTtGmQcs4Ak0kmFoAplLFqTcN4TIYVob8LC5br6zlmkmFlc58tuCKKUqJEHYfK5x9xRUkYnBXCdSUTsSLTisWofqfELbT7eVj26o5HpeDmjVO1VWfkA8I4zhNfTaIBoPzmjIGPbXJ2Es/1mKxeAAC89dIPAACrJ0KO7R1btmNp7RwAYOdiWHrOOQ8bTYER36dT7TSVDW0oORe3W5/MqDOjfWUq36vV5eZ4dg3Da5sSmQ0q0/U99IPWDFuUrfmayAfvleg/7/vsNa6JnhoaGhoaBjEjcVEFOgzmIDKm0VTOFUcNWygTg+KcqiMtTdvrftRhvLCXnGPbKYo5iix6CyYHmUAaK3FGxoxaa7WzLl8j81KTOeM5OFj2GJY5WaSiZEZRy3zkXI1i7JhrSbmTsZvws9hs1/ZCsbLozKjnBgq95zIWPvvUPFzBSWul8HzRnD1zFDaK9dYmHl0ct3ePBk7itacfAwA8sHc/DowC53F+V0hmtNJZFZaLOC0tG5pX+JQ3LZEvZXUYTBNLXUtIxWPZeNC/rhQbTRMlyZxdf6fbKtvQ0NDQMIhBjkLLZAnrt+BUCrWpHEVdR4FCltbwo4Z53q2OBEqxjRLKnIis3nCE0z6n5DuhvilGlDVKdp/Mycg1UIRTFlpbiDFHPFWj3hLVk88u6fLSRqLgKdcDOeN1iquh5EceFr2LhiY26lacYeaanQFj6lLjPMieVqee9W6j35XHKLZpjbmwBXRRfm7XAq/w6ne/DQC45/77cPPNIYTH5JaQLvXEgf04/fbrAIBFjizbQywO0jhX62EscnPh/HxenyRwmk1xJxFra3qGTdH3+cpvOpJExSDX43gvjqHGiP6R+52k5UWhW6th/aKn9wBVRct1avXUcHkovGXVIkcWTtZ49CaNGyRWTx4uLrpkRWR7V3roGvGtKBx0zbAoKded6nbozUHEOrJJTdswld5VHUtlNgxUIDra4KR8rpA3qsLLJsSMR0e2+NGPwthF9MGgCYtxw7jwdggY+PoPvo8P3hIsoXbGLHh777oD7x76YahjcjEcnRFRR2YBV4dnP4vMjTmeyl7kdbJ2zBNrTG8mrKyuKvtrdcm4zBJHNdFTQ0NDQ8MgZnAUsmtd7VSlNdMxLY7icrNrmuNMBVeV6HivRWvv3fPnnU8SMl2iprIQiBXcBpjYrFz815axxkIkahJPkJLacJ5tOmeNYtWZcBVqjJTfEm5ciYtyRSMMG2L0atwlVL+J/8fyVkQLxkmfRqMs2JN3/FNiPtFDjdKFUiGDzFYEcB5uwMy6hEffRxEYew5bdN0otjfWNVkDAPzgie/izo8FL+1t+24GANx2/704/vxTAIDz50+FaicS5tzGhvfKtJPDp9M71gmoxAaWW5mbjeq1RScBq+WjzpcBfhcVn5rk3AbWyeGlpyZdiQdSVjvdfi3mzLjsiIqEtEDjKBoaGhoaBjFDma0VIXRu+n43K2a8KB9zBy9dpygLJVKtL8+JAHaoC4Pt5FpzS7wERpNmqjn5FqwUZ5Vu5XJS7zWVHA7WGb4tEYsjUCsub4e6LgrUWmemk+GMLuYAACAASURBVAs+NCS2Pb33veZzBK76mk3+WnrLEWeFCVDBbpD3T0a657lm1TikD+jhxCkr6juCvjjlAtJ5QlQsXRHKzjk9r+mWVAHrreSqoCRIFkYSFkVfNec8k32sv6A6Oi85cCBHW0mMw18mNYCSl6VaX+6LOPfRWK3C+RAFdkzlopL6xPETOPLCYQDAB37q7lDmpv244+HAZTz3zjEAwOT0GkZRWW/ZxzDm57Cd5CHxQRmy4Mesn3WWYjdZftvWTqeHk6RT9B2q9ye6nayQ19S6XDPJ3EL9I2LHPlNc186Abo4vUPetUFaHGuNFvSZTG70UmcEyzNgoZJLXvf7SBsqgznYJv1wUntmXsVHkd1yLVlWlqmqzkCpqw0aRlRh419ciyHrHqYxkJN5xlPSn93BxUSVrJmc9L3QSQE/ukW2F6nQwXRq+vJ5RsPKhQj7OOj1iktKaiMjnpzUG3qYbkLUGtqN70oWgGxku5/h76dXOlh/Vb7Up5P3MhWpUjjOFUzviZtNZg+e//zQA4P6f+HEAwJ7tO3DP/fcDAE4eehUAcOSZM5isRrHSOGwYizHr1Ng5NfaqTdzONJe4bi+3dMaaUSd46d7BW6866v4SlU2hFiViHd93Ez01NDQ0NAxiBkdBR6OIpOk71GZS5mno23KHX1899XPXDh+RUvnJlSqVuglP1ErLomqTHK4tVHitiriNKWhSqPaeU6BKImERqJDtf+D8SVzFtYV/dR5mFS2Auf8K5S8KRBFFzKIC9f89PPePuSVrOVw9icCMleREuf+TMVYFPRTRrs24Eg8RdxiKJcQKUglVrlGc8obFwlmsP1jX48SbRwAAxw69DAC446GHsXtvMJm9+f2Bs3jr8Ctw42hjSzGkXBBndRjBxCDsLJ41Hf9XMwNdL0dRu08C6s23Fm1G0MB56qhzCroAXyzE3y0VakNDQ0PDpmEujkInT6kpta9E6N16VETdttk6imtR93CtQOuTTHbuMkLBXGHUFPO2PKeYI+GYSE4OOIo2q00ixzR3o+fyBOg7ZIgUsjWswGTdh62ENCdlNUQRvZkIaYLpt8SeEo4DfI7alStljQFHmxWnNqHI+TsnU0sruqA0+ihH3OKKhfMIP0bMWvRYuxgiy7701PcAALfffRe2bg2pUm+4804AwK6bb8E77wZT2eWlkGoVq5Gj8BN5B/zarRr8jWv3ricdxcw1N9G3pWVrTqDT0DiKhoaGhoZBzMVRYMDF+2pT7evhWgLlVepPKB7Q+pyLrhx8/kuL3zdZR2Ey0+QaRyEWOtcKTOW3A7WwZjacz1cDgFUUbCKjnPAm4WgVtY5FGqtw7DqTcGJAoGrLfBUytj4rL3Y560fiEMZcT7Rs6sCOVmR15NjxyoszFucxcBx1V9SPpdVTMieo4b0uR/3T1mC9vsQmtst2hMla4AwO/yDkqnjr4Ydw8MPRAurgQQDAXR98EKeOhPhPq2dPAgCWYlUj41Tujhgl14yURXrNguvykDr9rq++9eoXLhfT8lkUXJEBryHaIS/egVkKycGNQk8gmmgUZrnvXVF+3Yl31LX8qTqHbb3s+gY5MWPM2qvbnSbLiaWzIG56ca1n96uNw/QXweaXqshwAqJ5aq0jj0tU68uVMo+93A9j9n0iLtHfBSAhyIOSNfvojcqxbVSyIl4wo8gphtDuOxSbqrWaGOEWxzLSQt7L4EE+5RQ23PmBEHJmymKQBfTrrAVGodyEWh9lYqEsBe0TkRkphSnftbfqjceBYVNh2ZfhaZNyEO9rOioDYJv1ysBjIbbj0pnTAIBXnnsWBx/8EABgy5YQevzgLbdi7623AADefSWIqlxMoub7np9JAxzSPtHz82Ti4muQf+85eO5k5VNMX59q4vghbIaovqbMnt6/VDRZ97mqo4meGhoaGhoGMchR2Iomjtnbgd1QO9xd7RhR68F8Ia619yMpRtcbE6dhQ/AGpW2mUkgnU7HCESJQxBSpWkKQi/Nbb0ougG8grW8nybTYuMN5gBzdMvsKnWgrbV/kUJxLzialPCnNpeL1SiE55pPRYafVd5mFmzbecB+SFKgg5TdxD+C6hCb1fGST2nhtRKHCe8emxH4txH9689CrOP5mEDPtuj14a++98Ubcdd9DAIDnjgfOYxKNDrB2CcaN03EwNaPYEkNmydNEOMNSkIE17lrTelc869NLTZnd0NDQ0LABzIgeW+oO8k15etq9dJdNEn1Iocoza4rLqw9t6ijy4LI9OcXROIzNRyDeRAEdz/J1rXAslNg8D41KesQ1K7ltpOCVpSUnOorvv594ThREMv9AtZPcPz7L6PlSttdW0vcWHEVRQs8tAyiuaNpd3LdOcQYkEbCaM1DVSsircIqjtoJDn+g+0a0UYdeJlkB0gTHWk3cTdDEEykIsf/r423j9xecAAB86eCMAYMeO7bj9nnsAAEdfew0A8PbZc6GyvseIEkpRmBaUqDkHEoY4Bbpe1HetMQhzY0inq+fQBpTZ9YcMs2pFU6pOEHn91w6KOChe5VA28tHkgcacq03Xhk1HsWEA6SRPN4M0KGUsTbGheiVy0inYsykgNIMOZx1zRdcCsHFTfP37M+l8Cq3ONriBQHYeNfGTtshCbJso3El6xkcP0G6QeOlTkD8uSPU79tY2USTnId7gLIZJbPjC80nE5uDVphR+rF1aweGXwkbxvgc/CADYf/M92HcgbBq3vu/9AICTbwSPbu8cx47yFdGdmZNQS/pcXuVf84ie6rgedhZtFDC8fjXRU0NDQ0PDIIb9KJiqkd1GUgZP5yhMooCrcBn8Y7ro6WqKcAbjpRhTKLPhvQoRnSoEryXUhBPXI6pzwQPQitnwC/n7kLDdBrkXsfGeOZR+oigqlj1JkiQA8NZw/myn4kZxaHNDdqMiIjI2b7tHzRi2KMUmqyJm4rhVMMofohSL1uJGUbspwqzzSqykFLrsfZ0z1l7lC1cTS0JV1zTtJIqL/ylTYkpM1BmDtw+HqLFvvhxSot5w070YbQupUnfdHkRQu+4OHMXam6+hf+coAGB88TyPy7ycRNq5Omchnu1DovHr/asC9JyZtd42jqKhoaGhYRDDDnccZVXvtkTxa5kWyXk1ZR6PWV2znlUIiKffEI8xqbupU1Rl4nuRG3PMGiPRKKULyvCvIPests1LLhmIxzefcyrxk4oPL0SYcColhschH9dOj1+ljeyYpO7jBClFM4bf2ZWK7ZWfs9YIh6B0DuwN7PS8S2kfVrY6z3NFchd4+MhJmI5OGriYcYdk8o5yHFhwPgqKROucYac9z7L7gK6rUe0envQbFR0FHSXarFYO0yBYeJdyudrRk8bAqdSpBZcBqKi3sXzv1PiSIl9xBWQYYFiRAfa79TKHaA5a7lOsa2SZEyKubuQ9xpdWAADHXjkEADj34Bmc3xG8tM/tvgEAsPPRTwAAzixuh7kUXAr7i5Qg6ZJwf6S36CxsdCik9yfT3IA9CuXDlDXLSLCv0gFXo3Tk42Huy28jT4iVOu2JviAPgjEv71KX3sh6UH6v83NFMzYKfsY1glJpyf9dhiXDtde/zYOeguu+V2SDm9OYawKVEfEiamEP5N6qqOVp7mwYhzFZPZmYF9pa3mT4k1d+BJyVzspiQgu0Uz5JdK/jhVplLqNjkqWsnP9lmJ2hRU6BF8gyRElqxxI3biP9Zasy2qQGnufVssWh0+HRrYRF++jzLwEAXrz1Cez60I8BAHbs3R+KL4TxXjx/EW8fOhzuHR0HACy4NfTRC122T/2sSncrxgBcPDGAyIi+GcRR6Z1fq3f6/bXvdtq5q4kmempoaGhoGMQM89gIbzFomJzhSqZCnQfV9JTV65u/L+t4UXO70L4HuJY95q8MtDmjEv9lxhPOedHZUspUOmEdTAykZCNn0XnL4cvNKBPVeoicC5TLWcS2EoOIm6S4AjWHM3oumWPJOfkdjtNHA0aLJURsVFDMJLXpRTSTNFGZjNOzDdbxfXmLzi4AAC6cOgsAePmpJ3H/npDMaN/eEIK82xrCAi4fvAlvL+8AAPRRjNU5xyKnruKjUj7T8eDoHOUshap8G0PnuNqKVGPaOamjfI88pvQ+zXvP2zeOoqGhoaFhEMMchSYM1pnNZr36gvVCdngJm113ohkyZ0uVuBuBfnbBUfhNesgVwLAJ4PoU6dc2alxmGY7ZG8BwTKhMsdsJ99CT1/YIwES/Z4GDh40RXTkclPEqeicp6yGKYhBnoypim3QyiUXibEZ1eZ9SvYOxjTTdzx564Yr8BfrI/XhrRDFPMZ/gxfiDp7yVtqW6WyQOiOrTM32M0hvrP/vGYZx48SkAwMF77gQA7Nl5AACwsGsn9txxBwBg5USIEeVPnsaIKyZFtBXDkSzSrq/YeShCvnCwDddLnUOOaTqN8pxqS0WncSUSwW0UjaNoaGhoaBjEfDqKaxg6F0BNNVAk4/FemUdeOzt2w9VHQkWSubdTtFO8RrlXbK90dcRFwIEMoSjsBZuQA5LDh8NpgNkFyaFgRBdQdTglSyTd9tk6Cm31JDGt2MSpbhXHn0ssryLF+ozCNUaE52JCr2XsKcfug4dePEdtszBxzCm0yvj8u3jzhcBR3PSB+wAAN3wo6CrWtm3BwQ88AAA4c/wQAODsuSOwq9FMPibLMF5/3Tmrp/U/uo2pEkaPG5dP9Bj52qLKc/9m6Tmm6yiuJcwwjy0bbApv2LpSp6yrknVJXVsvm5V7RmvTvnkhXJ/n/4ekKXMnE8o2JwPlya0+5vVKbqZN2o2iHLdS9DQrjtdGxVCDbH5149+sZ8Y6KN8NknUklIvjMOkdCqNV79CNUi9pMn81nWGfAx83FtcZWDKnjd+Xc14S/xREjFELtBafpW0M4hKTXNPj6LJOWWvQ02anwo1zEi0qTn2BYSW8Fm2Rr4kEbxDxUkGI+bQPVAf1jxIi9RjjzPHgff3Sk38BANh3170AgOVdt2D3HTcBAG59OIQif+HYqxiffAcAMLqkcndHk9kR+ZXQhm+VZxjLAacIp9cxx1KxUa1Ebf3g5nIdamGadlvyzCHoJXwj30sTPTU0NDQ0DGLdoqe5I8RuEPPvfvMpXtPKp1Qxb1v8vO279pS9872rlDLV911fCuxZ0OKDMnpmYW7qVEZmJaVwVEekiEmKFQLRuuQGW0nJGhzuvDqTiZnKlqE2aecx+2bOxStz14yq1Q8VJb8KyV4rmByntEMxcHzKeI4MwI6IHujXgh3ykRdfBgAcfSnEgbrlYzdiae8WAMCBBwKX8fbRh/DWE4+FeychHHkHw6lYiZMgH3f91uuY9xspOXwZ09p3UnKGeXmdmnieeNRacrVOe6N1oXEUDQ0NDQ2DmC+EBzauX9lsrqN0jkmeFs9N0X34lHqbV0ehKqhU+aNEaQfMG8LgR6PvSieQXWHOwsmbp+ix1qhYWSTfJ5n/xAjF16k5RicpblRiHpu3RxTc6bzLZf369/RrNaR6Hz5ZlPEV/SRT6ZoDYk+x/EmVhhjA+ejFSPocY9H5sDSNTwcnvNee/B4A4MAd92DL7bcBANyBvQCA2x/8KC6+E1Kmnj33g3CtX8NCrK83FFurfHwWT1gaNRM6BtwQpzULpc5G572ZB9xqUrddAc5irqCASdyZXNFSwex4KPMN4jzlagryIc9s72tBntfZDj/d8zxRUl+DfhTrET1Na/N64t9cb5uIVwpd8UuISudeEyjhR9+LJzLrf5XrsgTGo6OEGWcRlbW8kcinJtrkalhyXxNMlB7c+W99pPhTEnRQbWykmKeAgc6xxRT5J8ChSkGWIqoaxSnnyMudnumMxSj2ZbQWzh37QUhudOTep/D+20PAwPG27QCAvbe/H7feH+I+HT4WlNrnjx8Vi6K4IVuQMt4VgSYMLMtu5hHhTPe4rm3qxd1TzyUK8TnWjNqnZ/zmi6Ga6KmhoaGhYRDziZ4uw3z1SmMe78V5zW4lnHoTPeWYN+7NNQ9TVwDLdU0F52am6kjuFr3cplTc8aC5CHqmRBAo0ocaL+JPtu4Ue906dbgekeAUzhDpZeNVfNdYH0XVTapQivyNw8PG8OzE2ZhuBDcOv7dEC4HJuZCk6LVnnsbBRx4GACzeGnwslnbvxS33Bd+KC4dfBABcPH8SfjWEIcckviwSCfZOZdRl+98pIr6BllfXoHXLK4o6N7rWGigxFNW7wXfVOIqGhoaGhkHMFevJO+0cVjN5y87VEhglQkGSk2YPSs4pylWJY/NbfErEZYUqhnB+Ol2pd+JUmZhVYURqTOVtpTxTKF6SFLF8V7WD5d6U3hJeyg3AmOmUgpaF5+fTOuYjNTjKpi/l3Sb8k5WPxwEl67TnF7LfRMU7Q/9l6uW0V/G0qSztzWTE7EldJpUBHDvQUXnOKeEMaxbJmSzMSJKdyziScxhHlO1UWtVMoG68YQ9kFeqs6JCORMtmsVyJculTc7IwX1WDlesejAE8Ow8KCZuPPc99p8dPPmDS6XBrncTSmrg1AKKIPvHiSzj5/aCvuG1HSGq0fc8tWL3pZgDAngcfAQCceuco+mMxFlR0LJzQ3LAeC31QoI/iEtj7BXgsxpatqDbOoSfNPTQBNpWucRspR26ya+r7MrqOtJzwiuXaacz6uf5ZwcHnEj0ZTB+ucC27OoV9klPUCaVGG7Beqjaq6vVZu2+OBfeyJCjqrQDJwq7HTUpnHzvKCSQ8vS5Xv78oMAdmTZryHahJWLH9ZjjFtBfP2GSR5bzVDU2PQehNKT3l1WKciKN8es7o8WM3ChJ7GB5AHjUHXljYgZ9lUHqu0GIsFIKvzaM5LdOkf3oTnT5SecSBGtXlraov3+DUepcQhGQ1REcvBgJ9jIHioy/E5NI5vPH88wCAG+7/IABgtGs/thwIYcl3fyB4a+9/8xCOnj4RHrAWdtNJP47tWMVCVKD3k3BuYhbQR3Gf5cbNt1Ek/c/6NO1qea68Vie94n9qV5jrm7usNU7QRE8NDQ0NDYOYP8x4AaGiysBWQtSkIqvUpO9qKErnjc80X13l/aIIp4tl+U2mqa88NOeXi5RMpV/WMCk8PW7UlcNc4itf54tnhY1O6tDUHhH3Timnec6H/60y3CfltIFhMWVPJrFGiS6jmMuSl7cxbKLKdQHK67g27imVqunieb+HoVDl0ifhjooG6iOXl3NJe7OYXqayppBp6wger/8wcBQ3vvgCAOCOg7dief9uAIDbE3wrdj74IRw/9S4A4N1DxwAA3TiIm8z54xivnAr1jS4CANb8GruGK8n5VBHwekz8a4FJNwtDrgCbicZRNDQ0NDQMYi6HO61PK5RRAAqFDIyY+amtiJRrJqujFvl15ua4kd0z13PMaTsmyjZVvlDPqCT3FQ7kusOAl2hCwyZKVX2tnojlao9JeHSmZJ2DE9HnPFxh1OG94UQ3YmKLeM3xXLCRJgtRnehcLKcTBrETnHhtO6TjJ5GhpEupEUg8B3WtMk/VHVPOSy01IxNAPp2Eh5nCUcCo8mrJcNwHSczEVfANEghq9UI0lX0uKLVvefAjGO3cDwBY3hs4i/N33YNtq9Ez+7bg3e1PnAEAXHzlOVw6Gu7dQqqj8UV0XVCc+0knzZ+i65qlSk2EJzZdb0ySrrUmtpnNecz6fjY7+VHjKBoaGhoaBjHIUciurmTwgzuU7ISlBc08sRCvPDZCydbv9epvfoU4rOsfCd2jjHWAVKZbdNZfHV1UXu9m3Fevq9THMeNNJktWyOUiPalT3xVT4x5MbdJnRjqfTnI+cHljuKBzRKVqWXXNIkraG58AcEiLIR1FcSlFqYwsaeQkjlXlWXRkYynLJ0k/QzoK5z1GLugaTr12GABw/MUXcfPOYCq7dEOIA9XvvhG4f1eo75aoMzoROIstu/fjUiSRLx4NMaQ6M5b8s3YU21HpLrV1PfNWbLaTe2tmryntvk6Lq8r3tVkYVmaT7fXMtqcnk2ByelBYkUXHyBr2vRq8yPYZScSSD7A6lT06b1xFwef1IIr4YEYH4yUztQjHB4JXZr/0EevxiIfaojn9yZeFeSbLkBgBSP1DpGDaUi2Jy/1QpnkMrzchTO13DdNY7vk3grIuuaF+DycFitcsi107yX2tprIIjsgc04hXcv6NQIXLVo+2lLeaMqkl4ttySSbxlU6sU/PcnhbHa+oiRH22krxJqqXNUcVdz0xhtSDN6GGhzZHyhPMCOkEXPbkvnYrxnZ7+Hm68+U4AwPLWIILavuMAuh1LAIDVtfCs0c1hg7FbtmKhD2KmS2tBqW1OrWFhvJKOhjU86I5SFVJ7kjFAASEGps+xNOhmhXCqrXtFHK16vYTNIsSa6KmhoaGhYRAzzGMr7GdOZBkdbterc0MUXZ1qmV7vdCS1FuVLEZhm9mok/NAz63v49SNYuhx2NPd0nho1N3/WnG3ZTNHTMNdwFZTn4kob/vVq3BLJK1H8dDQsOuLPRsW/5ltrYb7pkdYWY8m0qqJcKTe4tWUsgQ3Zh9ROVhz0CpmA8ZJjXHFfJh8IVgAbmD5S9y7Ecjpx6BUce/ZZAMDBXcFDe2l5L+z2kODI7QjHC9ujie34dthxUIgvnnsLANA/ewH9qTcBAJ0NnEfvetgo4bCcVSlyGDO+JVOjwTNOq3bR+8v7ToHNFzdpNI6ioaGhoWEQc6VCTeKbVxQzpWt/KgvlcvG6JHqPSiZFDdWc2mr1F7RKJWyIloXX5HYSq6jDPKhRXDq+iuD64TJq0ErIQtaPOvdQcAgcv6ee/OhydRRD54auX04d5Q2oy6PnMe2umFSL0lmU2Z6ixpKS2opCVzgED09xoqha59UcZDYjllfcSzL3RcGeIzcDnoYqv5YpuHl81Phx0FYHOOKZot7FeqOYEaJlyVx4xKF7FyNlvnriBA4//l0AwPYDtwMAtu2/HTu2B+e7LaPwfY9jXeMDB7BoQviPpYuBs5hcWsH4YuBQFleOx2f2ogNiY4TY1s4Mhv6RdaGm44sHpYZN1046VvSYU3RIVxrrzpktb5r+rVgxJN6CsZj+TqqLa/aUZGGX6cjKnIq4q/78oeu1BtSUr8P/63a85xjwe5h9bzjUrGX0a6/GsZlmt11hpTcSSnk9ntTpuc19P/Mla5KVURNMImaIhFMPXq2pHHtmu8RrIpwzovz2VtWfj7MRMZPEBuKrcymzZ86kbL755JKIl6jdInGS+cIWW3TOq6CY8TChmruOn8ItW1vDu2+/AQB453Dwjzj4gY9gZ/St2DlaCHXEAIYXty5jsu9AqO7294e63n4H7o2Qn3v8ZtgoFowVH4/Mos0AVferXKxd81eprYVqQa2ui5vtF7FeNNFTQ0NDQ8Mg5hM9QSj4vnDxNJkhPWCMVqwR9WT5d57uMcTLCTtlamaXU0GmOGcq1FCNe2Dv2aydodAs+9+U/UyuZCK2HwkQFWUMJLKnQPxDcnVoSX9uhuhpZnPXKVa6bDFURfQ0bIqouYfyHM3JOgUpntl9zUyXxFZsimvLPthK20hxrIN2efKnKNsxa1i0hzU1LuWeVCVG1ae+c6a0eTxEjOZ0e+NjPInUiNzvJ1i7GHwk3nrpGQDA4ovPYPuuwFEcXIp+EaNgLjtZXsAKtgIAVvfcCABYuPUe4KY7wzNPvBrqXTvHLgKW1grLnRsemAHU576MUeZZgFnc8NXgMhpH0dDQ0NAwiBkchaKGUpHhYHikNPG75iym7YzaFHbavfGYi8C9Ll3Stbzbptq27Pk9BpEzNjWQ8hHl7luT6VepakWdDeUFqN6ziSj5hPRabUhFNpvJ09MKi/IV/6KhBsmp9fZby4Vreq1aXzeFUiPugSr1MLbybl36LFY+O8DkthaK6kwGkt2607qcd3JKMqyqj3gefcvUEtP/z7kNA8nLoYvzKVHasxI5r8yJ/oKpfOPRRcr/7JGjAIATzzyBu28NXtr7ti8DAFZGQbl9GotYHYd7R4vRhHbrdvi9B8MzI5cxPrWKbi1El6VXNvELsV0dOkQHPvJwB+DYKGHK8MxAMI+lW2lN0e+nHFT+lbL9afENYr6ggOq55BGqG1DoL/XEZDj5GLMJmrLvTp2jZzmuQ0qSh6R6LpWXnC/SxqpdM22EOoVeZVGvCFQS7S6g7L6n5GCb58WxyKfiuXwVRFtFL5XiNbFcYej54ZNjDTqkCY+WWjimWZGkCtJKu+c454biMUzDHGOuFfPlxlLzQJdsc/q+or16zc/npEHx5RpAXA7oST0pkb0oYRPJCb3Tae3X4rFSjKUV84kWN58qZLEDLxsFlfFG8lZTvQZi/cWLpeX/6Ht1PI7gQJ3j8xcAAKdefgY3vhwsoHbeGEOPL4QNY+/idsCF+twoDOTKtmWYG24JdewJvhju0mks+ksAAEu+GxRNAh06TxtFzPntDXzc1Wm+pWt3JoLVv5PxpR/p+0nL5RtpOudrxNBG0ERPDQ0NDQ2DmCF6ymJHX2Xk/hPGWKWU9nwOSCk7iYl+lRq6SeDmb4AKqCmfL6eWqVfmbFsiMqiIo/xAXwu63FRaZGZlz5ZyU58zpS/rGf/1viuvuAxtfDHN76N2DQaFqEqPR570BwagWElGeXdTvKJaDwov74rJufelKLgGzcVU+2LStgFelN3MNahvOuduDTCOP/sYaOvEiTfx+g9CwL8H7rgHALBnIXAWq7v2wZmw9J3sIoewdy+6u94HALBHgpkszr6JfuU0AMBFjkI4LJuY+AZYcIwqxTldXqrlawuNo2hoaGhoGMSMWE9aRnZ1t8Vh2a9W6UxvV7gt1SVQ3Q3z4bId4+IxiMJLyrX6DrJXxZSYUa9v2Euz/hupmL8WrTdVbJfnqM3FuUq5QQQBfFFvrR2DIP0Dx0lyXC97PScvIT7Dll/OUNytzXT0mmUWzc6DrtJeVsKrL57Ka04l6jb82iWceeMwAODcocAh7N1/FwBg+5azOLsQQpAvLgeTmbuzYQAAHlVJREFU2ZXd+2AuBN3EtlsDZ3Hx7ZewdvoIAGA0CV7bojrueT6T2raHYdNdDyfls6GrjkBNz1Yr9x6hcRQNDQ0NDYOYoaMoqfHNNruaB5SkXjvmlWFAJEmMUUJRU5jZKcuqmjx/HmajMh4z5ZC16/k55qDmaMMUzCm5n7ey0rkuNeMIB5/QefFShTqlurQJYBy4KsXCMmi5upmhP2bluSj1BtPqXk87LPJkRon12BzzL9ENkEMpOtE/0HthSyfPzmx0ozdGsotWLJuqz6z8ngvJ91h5huWJFNvtxZmOnmllLWLNqTKgsvGbHjnK8eGx8u4JAMBbh58P5W4OVlB2604sbQ/1bel2AABWF5bRL4TfbnkPAIT/u2ApZe2lWL+01WY2yt5YuBg3zlasnpCUvr4kG+uI9ZSaZQ2WNLVJtz7x1TSPVxZHpRZ1Wv8lbGryOF0HkgK6pfJY/fy5m/3e40pt4IMSH1OWo+/JIX1JVCYjOHztEZVxr72K9XZ5VvKXzVRm166X4hwRyZSK7spGlAw3iZ7EBJbu5QXVGNlrU4qpOJWLoWZuHjWRSWEvP7WKOBcqG2bxHQrBUvPFGMVyC3H3W+snGJ8P3tqnjx4CAIwOhThQ23YdgPExQdooKKmNHwHj8HttHBaQSW9gYzkyBujjhtSFiV10b1MJtQpyb+2rFfupiZ4aGhoaGgYx7HAXHUm0iZ6EKwZfy6HLp9RmRvFYy2XqcW9S6krfwyy3E++6XKEFo8VR6b6f1K8coGohzXN4pV3NRWF5e4dQKEZZuiPtqMWoutKYl0oZLkedqfnLV0RaqBCeIrFQN9aU4LPba1R7Z3EUUu306xsZo5qSfL31Krlc+OshqYt53BTHnIu7DCS8eIVczMeoNqeNKSPbGmMKqrq2VnjlFFtTAOcOnEZ9s1lg2WCVGp+xGst3sLB9MJo9/0aILIvusVDGL2HrA2Ft27E/mM6OF7djbMK5bstiqHbbVvjl4IltJ13Sbg/D66M2tDBKRDYLl8MN1GLLVcVbm8xpNI6ioaGhoWEQM3QUOjfhbEp7M5FyEXNQdrZClRn+o6hTD5F3ZuUBCf9RUdpO/b9+Km3nXOXKUkMUXQ2aurlsrNNDyKNUZktdSpfJvpI+uR4rmd6cjXA4AzqQGo8ZK5r2ADU2lT7kFZuKUt+byg011PiwCrWqrToysi/lctNqjUqaM8TRbEiJPQBxLkW9q6zkigc2sTasi/TKZHYS14g+cieLvsdS1FeMz5wDAFz84UuhjFvEwijEeNq2tB0A4HbfgBVEE1gbOJHRVouVhdAA0k14friB95Q0hCQvIrnQMeamzrtZ4znIjV5dxelcymzvvSh+iwhlm4U5F8JMyZZN6+QarF6H4i8Hie2kJp+uO/89z4e9XoGBtLZyrWJvXvXQraCyjF0+5uxULdQ7/28Me7CqnVk+ErVITI31NPN7MtXfWSOz1Wk+sVByzpRiwMHNaUOhqPkXUNtNS7M/Rdel89mYEIcoNE3EU56tjaSOeSyg1ivWqCr06Vu1KOaCV/dwVkyeJwaWxGhxwkycbMdaNE3f+YieNQ4B/taOHMJKTFy064abAIRseecvhthNbnwGANCvvQvbr8THxmd1QRTVO8DFDcLq90N+HPOInuywQMfk65m+lszhK79pNNFTQ0NDQ8MgBjmK0YJSIMVfbijpxiZC75RV89jikZqqrHADKgQz15F1JXiOYuozNxsFS1rlklT5q2QKN6+UcZqCE9DstfRL3VjnCKdx1TP7LeJFYVByjWdOhaWwFequjEs0zLnM4+FcF4KV5TTnPJzOdwAUZdUY2DgyzHRYK2amcxKk88y/wSC9+n7d/kyWpBk38p+wTo0f2fpSqm0ApicldnzHdoQ+Pm9igihpHMOC96vv4sRrLwAARluD6GnLDW9j4oK05PyRkLjo4rHX4C4GsRX6yG1EjsLbDp4TnlGaAvHbYnuaAYPZmcYUg/dcXdFT4ygaGhoaGgYxyFEsLBKFpGSEfUqZ0HUA4NSiFZm1VvTUJOmify4pqaQcH4lyVTQkVyKUUk4de6O0S6L5zeoaRm2nL5yAigJVjd2UMtK4tKn677TGzWQDhq/Pqn/Oe4WKrFSYvNuK1iYn5Geoi0q+V06a8mUnRSSNyBApHGuYpv7IuKj1GiAMPDK+r6w+g/JcrQ6lUOWhJV2Fh5iOs/5igPrlinS9whmSbsMqL3qlVmA4zRnEi6w/VImI8velTWLZjJYizPYeIxs9oqNHt+s9p1E1C9Hc1VPeiAlWTrwFADj29HcBAEvbXkFvQ9ynC+eCR7c9/w4WJhItFlDMj1drUGKvG9o96jou6HKO0E//mpPxr06f9LtJVomqsMfXfsYT83OogxvF0nJM7tF7zttrXWTf4k7RT0T7rwIdK4UxDZJ4MooRU2TZPGBzlspL0C3NbnFIDq8sspBaRpEts4feqOKzrWLv+cWpdhfyoHxUZDNTj1ft0mEK5GOWpE3ZjcmzZPutSdak3VLVtDAT0z74wcRCbHc/p+yppqR0bIoCAOiUrb2v1qcn67THzBIDsrywqNUk7yftnzGmeH9JrUWqQsM1z7MF1MRGYd2Pvx0pPiv9Uw9gvyPqppG2aVGVyV5+Ik6j8NdO1Z8bGVjAdKl4jo69m2C0EJaL8TisAQsLC2pvp8RCplCIT6LYZjQaoetoHOLa4hz/NjH0t7cOhsMrUMIg6kdYj0IdoV6zMILvYztpvK3lEBsuelp3sY2dteyFPTkRMuL5d49j4sK5UZQbGe94znLubhctokwPXuq72G7vEbsHF/tsjOUxpT70eu2id6WWB+5qmlEh3jIktqydlB82//7iNWsM+5JNQxM9NTQ0NDQMYpCjWN4aLvdjjz5SCRM6ToR1dJNMQOK9UPg19qYQC8wL2W/rlDSx0HTSq11WcRxTzCST1I7XNKjdlSvrVHhXqdkNKM1ryraa9/qVQM1MVk6V6Ubze+iGoXzw1wQ8lCw4osagDvhAGBjx5JagUEJZMrNNFHqH1bU1AEAXxSrBaj6aoMaUojt37cT9990PAFheXk6euba2hhdfehEAcOyttwFESUARJFG1M/tGJ2trsIYC741ie0ZwkRvYu28/AGD/gX248WDIfb20FERKLs7Js2fP4oknngAArI4Dh2DdBAu0fnE0hDKlc6dZG/5cRPxGXBxxX33vxAAojjOL56y4lDMHrCXjNW5xA5gWv2uez7JxFA0NDQ0NgxjmKLaEnbtfcJhE2WYXuQezJrLDSdwDJ2OtNxAFGUDyWhTnCEMeoTUMhYDWppG51WOol2LL8Emug0XsSrZXl9XPoczYZOQy6Muh/MtxK537LqcntXoBwHjh6upmy/qh0+fAkGlrTXlclhfqUF9j7kHptS6H4rqSKNUnZTrVwAmRHo7MR+VGZhRs2XcheB0oSiq9CkfRUhcsrA3LxcJCdDqbeNx6ewjd/dnPfAYAsHfvPhw+fBgAcPz4OwCAyWTC1774hZ8DABw6dAgA8MQTT+DsuYtpf02pJ6N+Li4sgpx+x3EN2rplG37lb/8KAOCRhz8Szm3dAhvTnK6srSbteOmVV/D8C8E8dnLuHNe/JSYxurhyIZwDVHKkdLA8SpPqpaUljNcCh7KwHMdq0eDSanDa4/SuZKrsnVjtUyXqO+B10k5P+DR7nazo3jLOou977N+3b7CexlE0NDQ0NAxikKNYXIo7Tmdgo6WBJQ0/cwWerZh8tFDoexWrnXdiAxUhfxOaXth6qWfGM0pvwY92iBZYXICvBfnsvG0rZfFXC4VTG4Yp7iFcjvxzSJasCsU2+oLzCZY/2fwwiYEGVUqXhlHReaXWTogGJikXE8IupWOZOLVN61v98ZsaC6lWv0bxLO/FXLNiwcJhVBTT71PmAd6VuR44hEbvision/n0p/Cxj30MAPDYY48DAP7j738dFy6cBwD0E4k+DQC267Bz104AwFe+/GUAwI7t2/Ef/+D/rfTUp0eeT4brpTHYtWcPPvnJTwIAnnrySQDAn3zjT3Dq9CkAwDvvHAcAtmpaW1vDyspq0s+HH34IDzzwAQDA7/7rf8WtEdPh2ELiCry2WgvXxm6Mbdu2hv59KfTviaeexCuHggMf6UNoznXWKqsxeQ5ZJ/mKJeV651jF4r7QGXZ2hNtvu2OwnsGNYtvWoIzq+wnWJpTUIy1jO8cfY8/WnQ7e5TIfGeSclw4+FuXnMJhfN1+gK6alHkb5dsjuUYpwqDMoTQavIQxtEIRZ06gc5nKDTS6tF/l+UfxN25gErptahyo0pJA2qShGH43aiHgcE/PY6SKtaxJeZjmyX8XGZUw1pLi4G8km4sjcvEvFWN57bFkKgfQ+9/nPAQBuu+02/N7v/R4A4Nhbx0IVzmFxMYimbrvzNgBh/QCAt44ew7snTwMA/uDrfwAA+IW/9gu4/fZQ7siRI/FZ4O+5ZgDTRZES+Sp87NGP4uSpsCn8i9/7lwCAN984wvfSBkF1LCwssEj6hgM3AAB++X/4ZXz729+O4xLHoGIAsy8qy733OH48bECLrLju8dFHPwoA+OjHwvEb3/wGT8VuJGa01BfLoq1oIuw9unjDnn17Q/snE9701g/ZYMTvI1zhNA8w+Mxn/spgLU301NDQ0NAwiGGOYlugICaTNYyiIsiukblc3CZXJkwxdCTC6QDHURSFXGfigCiZJCRvabpVE6eUUVX5ijonOyXXyxEn60IrIHiNsucl1eqMsL3UbgekvulIWPbLFUEMUrBzErfstTovl2ZKmtTnHNcccD4dDzYQ6NW5pNr4PpQXmTZl1SgchTIkfZrCjQQpU9ovUwtfX7ehrVWtGzDYvrJ4Odd9NseS87niGnpMhLOQV0DlleMbk4RRlKScBw1TltIA1/NXASCYv378Jz8BADgQqfDf/d3fxbunz8RnhDq2bduGn//SlwAAt0dFt+vDJPjt3/5tXLgQFMVnToc0pUeOHMVdd9wFAHgjchSxUbFNqWc0AI6jdMvNNwMAvviFn8PX/u3XAABHjwXOBl0HkAOdjfGZaBydjPPnf+ZnAAArayv402/+KQBg+7Ztod6f/Vl876nvAQBOHj8JAPi1X/01AMBjjz+GP/iDwBWRg+H+vfvw81/8eQDAn/zpnwAAjr19jJk/MiGOSym6ruO1sB9Trm9g567dAIC/++t/FwDwjW98A//lj/9LKNen4rzhuGLD57nd+w7gx3/sx6r3EBpH0dDQ0NAwiEGOYuvWsLOurVmYcXC24fR/FJnSWfST6I6/HM71F8H2eJyp1HhlTpbubJejUJ0eRVZ2P22Sm4i5mbIkyo6Oqr5E7r2upl0T8FBibK0dMBklqp2yNsHRrojhZJWBgFZS5+/FeEyj2WfG0dLtyBSBwqSoGEQVDqGm/6HIpRWm9T2GcAOE+hxVsdeIo6YQHla/A/XOCpYmlL/1tlvxgQ8EZe/X/t2/BQCcOnWanceWFkM8pa98+cu4OVL63/9eoMY/8MEPxmcLKU+K4BPvvIMde3Zyr/hHZtBAmIwn2L4lRHz9ha/+d+HcZMIK6w8+9GC4zXu88srLAIBz0QSWHAX7SY9bbrsVAPCTP/ETAIB//i//BU6eCDGe/ubf+BsAgC984Yt44bnnAQCf+fSnAQD3vi+kTv3zP/tzbF0OEpdLl4L566OPfJTn/3ceCzGk7KhDD9LhRq4hxqVyTsJqLI5iylUHfOHzXwAAHDx4EABw4dIFdl48f/58Mh7W2sF0yfR+nBOTanGYDP9//OMfR+/6egURgxvF9u2BBVpd7WBXL8Unhw2DFlnngUlPm0bo9GRk2VPSs4VCyj4GaHFNdiWxiYf6nSrxfCLyyD92WXxSG/rUntmky0NSh4co+MQYXX+oaXndjuRMvkBvSFsufco3WJdY+ZS7ZCGqU2uDqfZlqBnq2bnSkcQrTp2sKKVlD5g+HushIqb5cwClx7UxlRGqeWbrOXeNbBbF3jnQrhAAkDSY8WSvb6DNVYUFpI02Wjl+6hOfxpNPhoX/6JE3wzVjYEehws9//vMAgI8+8ii+/a2gFP7pz/4UAODff/0/AABWVlYS5TgQfA/Wosc3x0sTbw61h4V2LSws4uGHPgwA+NmfDT4ZZ85cwK//2q+H+raFBffc+bP4jd/4XwAAl1bi2hW/363bt+ILPxPa+9obhwEATzz+GFtv/vCF4D1+7z3vx9/6pb8FAHj4oYcBAK+/8ToAYOeOHejign/zzSH50Re/+EV87d8FEdip0yfjmMqcIf8PrVTevm0HAODLPxfEdQ/d/yAe/UjwBXn+pbBJHThwAATyYaExq4XH16AgjH3f82Y+jtZXVO8nP/1p/Nk3/xwA8DOf/FK1niZ6amhoaGgYxAzz2LDbWasVnKmJVd8DkxiJkeybF5Y872TE0fQSbFEwN6FYI5cqMiU+QyIDTUlrJXk8WrmDmsMemEr0JLb4QnkVrPEmUJpzK7PneuTwVS0qKpXI83EW3HXvM0V1+ZzsLJc0Ktf5tCBLl2OmWsZwKq/5SnlfKXfNwftBDrwoDiXapfhOBhBxVJz/FpAsweHagf2B6lwcLeCZ7z8DQBSqXdfh4E1BPPKVL30FAPC1f/u14B8A4BtROfzY48HHQsdCWozU7cGbbsKzz38/PlQOOSdBEWh3bt/NnASZ5P7n//zHOPRa8FV441ig+MfjNbzzdvAM3717DwDggftDDKotW7bg0UcfBQD837/92+Ex3uN977sbAHA++oGcOHECX4qK+WeffRYA8I//r38MAHjr6FtYWQkip698JfR9dXWV+7e8FERFl9YusRKbPMlpfBa6jju6J7bx0UcexROPPxae9U/Cs958800WL1H8qve///0AgKeeegqnTk03nWVXMWvZM51w6623hLrufT9+53f+2dQ6gMZRNDQ0NDTMwAzz2KBk6kamCJrURxlnP3HMUbiY5GOy5tBH2WU/EcqVdC42UyJrcm8wYqIR+Z6YNpZ7nWWOQmnFEmV2dgMzER65f55Xprvz4b2mQjWnNV1XMp+Doy4zfQxq8aJMhTxM9AUe2Tn9jPWN4Uac5Qqdhp/K2Fx3SJzVcg4EKDta4UpIMX3s2DGcPxuUwlbZkH/up4Lz3UrUYT7++OM4fTo41W3bTsYwEnWWTOnvvPNeLvNqjPvEqkAIl0tLxCjK5h968CHcckughH/rf/0tAMALL7yInoxsDCVQAg5G6vsnfuwnkv598YtfxPeiB/dLL70EADhwwwH8UtRHfP3rwVP8m9/8b7g/ciG/8//8DgDg0KuHeAxui46C5BXunMPf/jt/BwDw4v8cYkmtnFjhvixEzqKP6+S472HjO/jzb30LAPC+O+/CP/ln/xQAcOT1YC5srMFHPhT0Fr/6a78KANi+I0h7fvM3/z6+9e1wLyH15OaT8s3F9/dXog7p8ccfxxuvv4EhDIfwWA7WBb4zGMew4i4mLXGjcPQLE7gFCh4YGrDWAS68V/Tj0OC+N0okFI9OFi0WepDztgFodkvUARFx5G68urxWcIuFk5wjb0gWj5EXqNXfU8xoZSTpEIcThimDB+ZWJQq6bUMiM72Dzeupnp/q+LYyX5lXfgNJCGpev+NYkpdoZQNPK5zeEElW5ArFtUkWgtT0IP1FYhKL9D1nqJzLPfcNbMWYQl1XFXdlg+L/tv7aKn4O8URl8fWZ8QTShG4cakPEoV795mrzNb5sVjJYVeFtDLnD79mJLwsdlxeDCOXC+YucsIgsabz3ePTDQYTz9BNPAwBOnzyNBz7wAABgz74gTvnmN78Z2+CxZWuwFHrkx4Pn8nM/fA4X1sImYzv5LlnpHb+zbUshNMZP/9TnOFwIBR+0SmTGfgZdh09Fvw8KANhPghL3/ffey34X5C391//6f49T774LAHjplbB5/I+//Cv44Ys/BADezLoRrQsj/OSP/WQ4RwmX/ITH4cLZ4C9inIGnYKk0/1m8Z1nB/IXP/3Ro6/PP4cibbyTjfPedd+PX/qfgv/Hqy0HE9nIMC3L8+Al0MVgjfWDjyQSWM+yRL8mIN6jd0UjpA/cFK7Y//P/+EPfeFTbuaWiip4aGhoaGQQznzF4IYXc9HBYXw27soj/FJJpYjcc9FkZRiR2Pi4sTNo8dj2KY4rGDJzfdioTB5z+MqdgAZjdtEKzo4fSMmgMRxTXbKXMSF8PiLc4BrJTgRdhuP4USvlZRcG2p8vtyq6syA1XRU3bnDE6r4TKhQmZPA1Ho27dtY86DlKLLy8ssZtq6NVD8H//Jj2PHriAW+dZfBJEIfT+jhRE+/omPA5D3+MwzzzDH5DndqApvHk1K778/UL83HbwZ//p3/w0AYG01BvYzhlMpT2KfHn74YRaxUEjzr371qwCCp/O7pwP38MgjjwAA3nfP+/AP/89/CAC45bYgbnv00Ufxv/+DfwBAlO+f/Kt/FQDw3W9/Bx/6yIcAAP/hPwTz3y996Uv4zneCafANNwbv9d73LNaRdLHR2xxg0RYd/7c/+C1Wfn/1y78Q2vHhR3DmTPBk/4vvfCeMaRyf1ZUVPPRQ8FN58ntPAYjhzieUfjZ6pfeOuewPfTi0e0v0A/nhiz/Ez30xGAhMQ+MoGhoaGhoGMchRLEX5pIfH8lLUTcTwseOFCR9XRzFZRxe4jYWFBUzGYfcaRfPHcQeYPg3LS1S4sdM0iJlwe5MVxbli13vPznXsFAOj9PhK5ptxO/yf8oDcbBRRb6uYzyw2PTnlRGKnqC4VjxAhe8kTTDF5Lc74omw1TauuYz3cxY+KhnodmDkP80jJRnSEhHfeCSlLP/zhD2NnVKCePRuo25WVFfzTfxoUr5/4eOAU1tbW8Ed/9EcAgPMXg5nprl27AAAf/8THcd999wEA/vm/ClFeL1y4wNyAjwYyC3bEOoeFUaDkP/upzwIA3njjDbx++DUAwNJiTHHa90B0fiNl9t13382K6oceeggAWAn+9a9/nbnUz0VHwSef+h5ej5T/L//KLwMATp05jTePBoXypz4dFNak3/zEJz/BaV237wxK++WtSzgZHe1+7udCzKdv/Ol/5bGkYWYOq+uYwyIO540jR/DTnwv6it17gi7hoz/2MXz/+0H3Qe/0xZeC7uQrX/0KfvhiaMdyTLw0mUyqjqdbtoT1nExriRv80Ic+hBOnTmAIjaNoaGhoaBjEIEfRdWE3H416LMTde2FhOZ5bjcc1dPG37Va5vLFkIRGdTAwwzkxVmYJMQrp6ucay8pyz2FxUnfGYyvLKFDe2zYvpqVHRT7m8SjgiuH725CQyR34NpUVRfr16I9QQQRGzykorN2XO9UXJuYYNIw/dEk4mBxx+9TAA4MK582wG+od/+Ifxfs/moodeDVY4tuuwEPNR3HxLkPV/+lMhTtLu3bvwe/865K8grsQ5J3lqSFfhZW248UB0MLs3UMHf+rNv4atfCbqGR2Koi/3793MU4r/39/8eAGD79u0cm+r++4L8n+IZXVy5hFvvCJFt90ddwu997d9gEtmYnbuDW8DWbVvx6c+Etu+/ITge/qf/FExnv/LzX8Ef/9EfAwA+99PBRHi00OEzn/0sAODUu8EJ7pVXX+XR7MkCaUR2dR47dgTL0sXlsNZ+6ctfxvbt4dxj3wnWXb/4N/8mXn41xK1aWApL9i/90i8BAJ75wTP48z//MwASmsN7j0WOVBvNhp3DzsjZffgjIQTKpUvB2uyhhx/CP/o//hEA4Dd/A1UMbhQimrEYdeHl84YRxVKjtVWMInvYRcUJMFasvpj2WTJ3JVNSXnitijOkFoVc4uQNajlgLx+ZrbFqrzaJJXaTw0NbiPlilvQ2FcBs7sY2j+ipDAS4Oc+siYEGRRvJeMRTehG6zL2/FqK7oY65RU/0L8B2/YRx9IH4/d//fXz5KyFr2y/+4i8CAL7/9NMcGpy+kZtvuQkPfCAoV///9u4npWEoiOP4L0VacS2KFTeJSBHB6g2Kt7B3qmcI6AlaN/4DN+oN6r8odWHp0lZrceViJmlXbyeifD+bLF8I4U0yb968xWU75KfbtZ5F7U5bky/bzTzbervoaVfUwUdFkcjCvC2Sx96KfG1lVcM328/xmGWSpJOzU318evvykQWg7PlJzf2mj9uRJG162W68HmvJA1B+WNJLr1e8k7d3ltbZre9oo2apskNPleWl96P3oR588t4aWGprrlwuFpmPPaCMJ+PpOeUzpwtKlmq79/Lb+rYtMFerVaVpas/eJ/6Ly3M19hqSpNqr38+R3c/1zVXR5C+/StOCgzzNVYpKqlRsnk6SxMb3Z9w6aKk/6Cvk73zmAgB+RfRTC68AgP+BPwoAQBCBAgAQRKAAAAQRKAAAQQQKAEAQgQIAEPQNpH6gktjTKqAAAAAASUVORK5CYII=\n",
|
120
|
+
"text/plain": [
|
121
|
+
"<Figure size 504x504 with 1 Axes>"
|
122
|
+
]
|
123
|
+
},
|
124
|
+
"metadata": {
|
125
|
+
"needs_background": "light"
|
126
|
+
},
|
127
|
+
"output_type": "display_data"
|
128
|
+
}
|
129
|
+
],
|
130
|
+
"source": [
|
131
|
+
"im_ind=15\n",
|
132
|
+
"\n",
|
133
|
+
"input_im = np.moveaxis(X[im_ind].numpy(),0,-1)\n",
|
134
|
+
"input_im = input_im/2 +0.5\n",
|
135
|
+
" \n",
|
136
|
+
"fig, ax = plt.subplots(nrows=1, ncols=1)\n",
|
137
|
+
"fig.set_size_inches(7,7)\n",
|
138
|
+
"im_h=ax.imshow(input_im)\n",
|
139
|
+
"im_h.set_clim([0, 1])\n",
|
140
|
+
"ax.set_axis_off()\n",
|
141
|
+
"plt.show()"
|
142
|
+
]
|
143
|
+
},
|
144
|
+
{
|
145
|
+
"cell_type": "code",
|
146
|
+
"execution_count": 103,
|
147
|
+
"metadata": {},
|
148
|
+
"outputs": [
|
149
|
+
{
|
150
|
+
"data": {
|
151
|
+
"text/plain": [
|
152
|
+
"array([480, 242, 116, 255, 393, 89, 154, 246, 286, 224, 254, 1, 500,\n",
|
153
|
+
" 103, 153, 55, 426, 32, 259, 245, 503, 216, 87, 348, 472, 108,\n",
|
154
|
+
" 168, 140, 206, 198, 157, 249, 196, 76, 57, 295, 336, 177, 112,\n",
|
155
|
+
" 120, 49, 274, 438, 199, 19, 17, 221, 63, 62, 335, 363, 443,\n",
|
156
|
+
" 31, 142, 247, 99, 235, 285, 146, 294, 386, 34, 373, 150, 433,\n",
|
157
|
+
" 159, 172, 464, 179, 269, 355, 371, 132, 209, 16, 314, 323, 223,\n",
|
158
|
+
" 227, 402, 11, 67, 405, 147, 205, 45, 43, 106, 207, 504, 330,\n",
|
159
|
+
" 97, 166, 144, 417, 276, 4, 74, 152, 316, 317, 82, 27, 10,\n",
|
160
|
+
" 290, 98, 488, 263, 52, 452, 378, 461, 441, 95, 479, 143, 457,\n",
|
161
|
+
" 75, 35, 467, 109, 100, 409, 485, 511, 501, 353, 502, 456, 498,\n",
|
162
|
+
" 92, 390, 36, 365, 398, 136, 219, 345, 305, 362, 413, 463, 38,\n",
|
163
|
+
" 312, 420, 325, 324, 251, 510, 300, 60, 240, 59, 396, 354, 389,\n",
|
164
|
+
" 465, 180, 8, 2, 64, 165, 442, 131, 70, 307, 232, 352, 41,\n",
|
165
|
+
" 191, 408, 430, 265, 18, 505, 289, 424, 5, 282, 79, 123, 236,\n",
|
166
|
+
" 288, 496, 111, 241, 277, 65, 77, 182, 73, 321, 148, 359, 96,\n",
|
167
|
+
" 379, 380, 366, 308, 256, 33, 268, 135, 372, 54, 375, 302, 266,\n",
|
168
|
+
" 237, 356, 322, 231, 279, 414, 174, 499, 66, 492, 406, 358, 3,\n",
|
169
|
+
" 459, 445, 69, 434, 425, 260, 407, 313, 126, 184, 226, 23, 12,\n",
|
170
|
+
" 347, 25, 21, 47, 273, 262, 257, 428, 476, 421, 309, 275, 187,\n",
|
171
|
+
" 399, 304, 419, 243, 344, 411, 360, 319, 509, 439, 491, 454, 118,\n",
|
172
|
+
" 258, 395, 494, 44, 214, 340, 466, 357, 20, 332, 418, 422, 392,\n",
|
173
|
+
" 487, 155, 163, 261, 13, 162, 477, 192, 105, 272, 248, 169, 183,\n",
|
174
|
+
" 217, 278, 193, 381, 506, 72, 296, 40, 388, 233, 15, 370, 228,\n",
|
175
|
+
" 24, 156, 203, 215, 7, 138, 469, 455, 204, 114, 234, 264, 280,\n",
|
176
|
+
" 151, 460, 253, 303, 470, 48, 185, 450, 68, 130, 122, 211, 160,\n",
|
177
|
+
" 451, 61, 382, 374, 478, 250, 197, 327, 471, 175, 493, 440, 385,\n",
|
178
|
+
" 225, 341, 137, 301, 244, 483, 6, 368, 200, 238, 400, 220, 149,\n",
|
179
|
+
" 267, 252, 141, 320, 202, 39, 115, 213, 51, 334, 171, 437, 46,\n",
|
180
|
+
" 447, 104, 361, 462, 133, 306, 333, 489, 173, 403, 431, 346, 139,\n",
|
181
|
+
" 102, 178, 427, 210, 475, 93, 338, 339, 291, 195, 391, 229, 188,\n",
|
182
|
+
" 497, 349, 482, 458, 113, 329, 145, 53, 26, 423, 384, 81, 14,\n",
|
183
|
+
" 415, 444, 435, 369, 343, 474, 383, 299, 287, 326, 194, 29, 342,\n",
|
184
|
+
" 85, 449, 377, 292, 212, 58, 110, 315, 364, 189, 80, 448, 230,\n",
|
185
|
+
" 507, 222, 495, 90, 293, 486, 101, 432, 281, 30, 397, 484, 78,\n",
|
186
|
+
" 318, 297, 158, 468, 201, 94, 42, 164, 129, 88, 401, 119, 376,\n",
|
187
|
+
" 404, 328, 416, 91, 84, 429, 387, 239, 0, 56, 167, 127, 490,\n",
|
188
|
+
" 22, 271, 83, 298, 367, 170, 410, 310, 436, 284, 283, 107, 128,\n",
|
189
|
+
" 50, 270, 351, 218, 9, 412, 481, 350, 337, 176, 125, 473, 71,\n",
|
190
|
+
" 121, 190, 181, 37, 331, 86, 508, 134, 124, 117, 394, 446, 311,\n",
|
191
|
+
" 453, 186, 161, 208, 28])"
|
192
|
+
]
|
193
|
+
},
|
194
|
+
"execution_count": 103,
|
195
|
+
"metadata": {},
|
196
|
+
"output_type": "execute_result"
|
197
|
+
}
|
198
|
+
],
|
199
|
+
"source": [
|
200
|
+
"np.argsort(np.std(activations[im_ind].numpy().reshape((512, -1)), axis=1))"
|
201
|
+
]
|
202
|
+
},
|
203
|
+
{
|
204
|
+
"cell_type": "code",
|
205
|
+
"execution_count": 105,
|
206
|
+
"metadata": {},
|
207
|
+
"outputs": [
|
208
|
+
{
|
209
|
+
"data": {
|
210
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAA4CAYAAAAYY6KYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAHDUlEQVR4nO3dQU8TXRQG4NMppUUBjdGNce3fNP5NNy40MZqYKCAUKO23aM5wGaalDNKWz+fZTJm2U1fe3Puee25vNpsFAAAA91Nt+h8AAADwFJlMAQAAdGAyBQAA0IHJFAAAQAcmUwAAAB3sLHvz48ePT6LV34cPH3qb/jcA8G8px8i2zrjlvXzd9rler1dfy9flddFzV2GMBHg8kikAAIAOliZTAEB30+k0Iq7TpPy7VFVVfW1LoiLaE6ryuQBsxtZPpnKgWDSQAMA2KUv68vXV1VVE3J5cRdycTO3szIflfr8fEXeX++V9kyqAzVDmBwAA0MGjJlOrrJStmjg1nyWpAmBb9Hq9W+PUbDarE6m8TiaTiLhZ7pfJ1GAwuJFS5XPbfqv8DQA2RzIFAADQwdbvmVqkrBUHgG1zdXVVJ1CXl5c3rpPJpE6Vcn9UplcR18lUys9ELG9mIakCWC/JFAAAQAePmkyt0mXorm59y55hBQ6AbVOOTZk2ZSI1Ho8jIuLi4qLeP5Ud/IbDYT3mZRI1GAwi4uaBvuW4WaZZi/4NADyeJ1Pmp/0rANvmrgYRzTK/nEydnp7W97Kkb29vr/5eTrB2d3cj4mZzivLZzZI/YyTAeinzAwAA6KBTMlWufK3SBCI/U66iNcv7lp38DgDbrm0MayZTp6enERFxfHxcp1Tp+fPn9ess78tkajgc3kqmIm43o9A2HWC9JFMAAAAd3CuZWtYEorkiV26WTdPpNM7PzyPiepUuN9kOh8MbG20X/Z69UwBsg3KMW/Q6x6psFHFxcREREScnJ3FycnLjM2VSNRwOI+I6rVrUNj2/m/fsnQJYr7/egKIs2xuNRhFxPWH68+dP/P79OyKivuZ7h4eHsb+/P/9H7TyZvhgA/MNyzCsnUOVkpyxzj7heSDw7O4vj4+Nb9/K7z549i4iIg4ODiJhPqtrK49vK+wBYH2V+AAAAHfy1CKi5YjYajeL169cREfHy5cuIiDg6OqrLGr5+/RoR16ULVVXVZQ25Mrdspa3X6yljAGDrlGdFNZOrTJLOz8/rZhR5HY/HdWVGJlIvXryIiHn1Ro6X+Zler7dwvJRUAayHZAoAAKCDBydTzbasaXd3N96+fRsREe/fv4+IeT14NqD49u1bRET8+vUrIuY143kafLaCvWtlzcobANui2QSi3+/X+4LzWo5bzYN8Ly8v6/Ev91OVqVXuo8pmTW17s/Je2bACgMcjmQIAAOjgXslUW1vyfJ0rbNn29fz8vN4D9e7du/mP7ezEz58/IyLiy5cvEXG9ijYajW4dSDibzaRPADwpOZZVVVXvb8o0Kf/e2dmpx7dMka6uruLs7CwirhOp/Hs8HtfVG/l54yPA5j24zC/LGfI/+RwAer1efP/+PSIifvz4ERHzRhTZLv3NmzcREXXZ33Q6rcsgAOCpaU5uyslUXnMMHI1G9YJjTrQuLy/rMbVcmMy/814+o6qqhY2YNGkCWA9lfgAAAB10SqbKcr9mu9e8Hh0dxefPnyPi+vDBV69e1WV+Kd+bTCatLV6bLdcBYBvleNVW5pdpUo55+/v79UH12YBiPB7fqtDIEvrJZFJXgOS1qqqFY6NUCmA9JFMAAAAdPGjPVHlgYLZzzRWz6XRatz3/9OlTRMxX4vL93FRbHm4IAE9Fmf4sqqhojpF7e3sRMR8P80DeTJ8Gg8GtRhVlq/NmMtXv92+1Y28eUwLA45JMAQAAdLA0mVqlNXm+n6tpWQ9eHhiYhw9mXXj5frmCt6zG294pALbVbDa7cVhvyuQok6ZMpg4ODuoKjRwPh8NhPcblWJrf6/V69fPLVurl7wOwfg9ujd4s02trTtE8i+ohvwMA26xt8S8nRdkOfX9/v251nkajUf3dbFiRny/PYczPKOkD2DxlfgAAAB3cmUzdt7yuXD1re9ay5zSTrPv8LgCsW1t5XSZG5XiYr7Mkfm9vLw4PD298b3d3t35esyxwMBi0HkWS95rj52w2U/oHsAaSKQAAgA5W3jPVJVXqShoFwFNX7mnKca3cO1U2kIiYJ1N5L/ch556pMplKZfokhQLYjKWTqbs67HWhKx8A/zdtY2XbOFd298smE2VX3JxMNSdfg8Ggft32u20TLQAenzI/AACADu4s87tv+d7fLPcDgKdilXGvmTiV9/r9/q1252WSla/bGj0ZcwE2QzIFAADQwcoNKO67x6ltv5V9UgD8362SElVVVTeZKO81k6kcN6uqqhOpciy1DxlgsyRTAAAAHaycTHVhpQyAf9VdR4q07X3KtKotccr3jK0A2+NRJ1MA8C9bVPJXTojK8r3muVHl5/J18wrA5ijzAwAA6KCnnSoAAMD9SaYAAAA6MJkCAADowGQKAACgA5MpAACADkymAAAAOjCZAgAA6OA/zw8J6O71ynIAAAAASUVORK5CYII=\n",
|
211
|
+
"text/plain": [
|
212
|
+
"<Figure size 1080x360 with 2 Axes>"
|
213
|
+
]
|
214
|
+
},
|
215
|
+
"metadata": {
|
216
|
+
"needs_background": "light"
|
217
|
+
},
|
218
|
+
"output_type": "display_data"
|
219
|
+
},
|
220
|
+
{
|
221
|
+
"data": {
|
222
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAGKCAYAAADpFhtSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dWYye51k38KckMx7bM/Z4iWM7dhNnc5M0CUkXWpJUVVskkIoorQoSBQkhOEDiEIlTOOCIA4RYxAEViyIhoCJI7QEFIcJSmgZCmmZrNjtpndix43gfz+KE7+gT+j7e62/m8juTsf37HT6X7ue5n/299Er/533/9V//NQAAALA8P/BeTwAAAOBypJkCAABo0EwBAAA0aKYAAAAaNFMAAAAN16biQw89VEb9nT17thy3uLg4cvm7775bjvmBH6j7ulS79tp6F6ampkYuX7duXTlm/fr1Za3rnXfeGbn8/Pnz5ZilpaWyNj8/X9YWFhbK2oULF5a1fBiG4ZprrilrExMTZS0d42pcGlOdy2EYhsnJybKWdI5HOi9pXErNrGrpuk/7nI5jul/Sua5U1/alSM+J973vfctaPgz5OHZV+52uga60b50xGzZsKGuPPPLI8jd2Ffv5n//58sZ+4IEHynHVczpdP91rPN3X1XMkPW/TOzK9E5Lqfkrvs7m5ubKWxnVq6fmdnsXd53R1HNPzu/vc77yb0jM6XcOpltZZzSNd253je7F1rsS75HLWuXbSb4bOu/9itUq6Bk6fPl3WfuZnfmbkxlwZAAAADZopAACABs0UAABAg2YKAACgQTMFAADQoJkCAABoiNHo9913X1n793//97JWRUumGMUUiZiiKlMkYhUHmuJKUyRsilJM+1ZFQab9SvHn3YjIKpY0zT1FqqbjkY5jFS+axqQ45zTHzvFI12IV+z8MOTa9Ewea9qsbx9uNW6+OYzpWqZaMO269e992Ylq78fhd1TzStrZt2zb2eVytduzYUdY+85nPLHt9Kba7+9xP93z1zJ2ZmSnHbNq0qTWPjnQdnzp1qqylT7ekT5KcO3du5PL0TEoR3Bs3bixr6Z1Wxc+vxCdCxi2ds+77s3oWp2s7HV8R54ybKwoAAKBBMwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA0xGn1ubq6sTU9Pl7WTJ0+OXN6NPO6Oq+LFUyxmqnXjZ6v5d6Oju6rI0m7kbjfquTpW3bjSNI9OVG9aX4qzT+czXcOd/e5GeqdtdcZ1PglwsXl0rqtxx6mvhO51msZ17unVfu5crbZs2VLWqhjrFA/dfU6nWvXZgBT3vZrS3GdnZ1u1FD9fRaqnTx6kCO4UjX6lxnOnc5auq7VyzUHHlXk3AwAArDDNFAAAQINmCgAAoEEzBQAA0KCZAgAAaIhpfinB5sSJE2Vtampq9MaurTd3/vz5spbSrFIiTjX/KuXvYutL86/SmYahTrfppHStJSnZLqmOR1pfd1uda2cljn0nRa+TRHgx477mugmX3XV2kui6qYJpW9X1uNrJmGthW1ez9E7oJH+ma7V7r3Wu8XEnpK4l6V1dpRumY5hS6K7UxD7g/+VOBwAAaNBMAQAANGimAAAAGjRTAAAADZopAACABs0UAABAQ4xGn5mZKWtVhOgwDMPCwsLI5UtLS+WYKk59GHJc7OLiYlmrIlzTmBRl2o3u7kQRp31OVjOKtXusqnErEaWddCLJ0xy78+jsdyci/GI6scyrHQVerbMbcd6dR+faWc24cvHnqyPFbKf3Z3X9pHdT+nxIusbTu7qKdk+fRdm4cWNZuxyiwDux7913HXB1WPtPPgAAgDVIMwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA0xGj1JkbCd2OCzZ8+WtTQuxbRW8a5VdPswDMP8/HxZS/GoqZaOVUeKdu1EZq9EHHw6Z1VUb/f4rkRM+Lh1Y9M70vFYiWj3zvrGHY3eiTsehnysOsejO490XjqR9axt1fnevHlzOSZdq6dPny5rc3NzZa26ftI7K70/t23btuxtrbbOPdp9DwJXB/9MAQAANGimAAAAGjRTAAAADZopAACABs0UAABAg2YKAACgIUajdyN5q9jXFLeaooFTbPrS0lJZq2zZsqWsLS4ulrUUMXvttfWhrKJYu1GxKdo1HcfOmG78eSdKdiWiczux6en4dqOvxx0Tnsak+zadl07kfrp2uvHnHd3o/O657syje32PO6J9Nc/LlW7cxzLdn7Ozs2Ut3fMnTpwoa9U7rfqsyDDkd9358+fL2q5du1rrHLd0rCqrOT/g8uOfKQAAgAbNFAAAQINmCgAAoEEzBQAA0KCZAgAAaNBMAQAANMS8zxTTumHDhrJWxcWmuNUUX7x+/fqylqJYq3UePny4HJOibm+55ZayllRzTFHxSTpWqVZFLKc451RLcbGpVl1X3djucetEhF9MirfurLMbtZ621YkXX4k4+45uRHu65lKEcrXOdHzTtpJxnxfR6OPTPacd6Zm6adOmspY+91HV0mdA3nzzzbL29ttvl7X0iZM9e/aMXD4zM1OOSdJ9mH6HVESjA4l/pgAAABo0UwAAAA2aKQAAgAbNFAAAQINmCgAAoCFG1KQEm3PnzpW1TlpbN30nJV11ksampqbK2jPPPFPWJiYmytr+/fuXPaabuJWOY3U+u4l96fh2EgI7qWUXq3V00/DSuLWSoNadY3Wu05huwl4a19FNtht3AmM3STHNY62kKV6t0jN8NaXE25S8Oz8/P3L50tJSOebEiRNlLaX5pVTBKulv27Zt5ZjNmzeXtfTeSimd1W8U9xmQ+GcKAACgQTMFAADQoJkCAABo0EwBAAA0aKYAAAAaNFMAAAANMRo9RZmnCPEq5jTF/6Zo16SKdh2GOgI1RRSfP3++rO3atauspdjXgwcPjlz+1ltvlWNuuummsrZ3796ylmJr0xwr3dj0FBnciZ/txp93oq9XIga3E2/djTHvRruPW9rWuOO+u1HraY7p+VfNMcUup1rSOVareZ6vZukZuFasW7eurFXP6bRfaX3dT1hUkepnzpwpx6TfDNPT02Utzb+KkU9j0nMCuDr4ZwoAAKBBMwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA0x1zXFo6Zo9KWlpZHLUzRwNWYYcizppk2bytrJkyeXva0LFy6UtXQ8UjRzNf89e/aUY5Jnn322rKVo9HvvvXfk8tnZ2XJMJ1p8GHJcbCdKNo3pRk5XutHi446j7ka0p/knaf4pXryzvnQvjTtGvrtfnfPZXV/3nK1EjD//e5dDLHaaY3Ufpuuq+1mG9LmManvp0ycLCwtlLY1LkerVuPS82rlzZ1kDrg7+mQIAAGjQTAEAADRopgAAABo0UwAAAA2aKQAAgAbNFAAAQEOMRk8xv5OTk2Wtik1fXFwsx6RI8m5c+fT09LLXl+JWUwT3uCOz0/HdsmVLWdu1a1dZO3v27Mjlr776ajlm27ZtZW3//v1lLc2/Oo7pvHStZnT0asZbd6OLk07k8bjj4Ich71snoj3pxqZ3jnH3nKU5Xg7R3FeycV+PKyFFklef7Uhj0vWYIsmT6jimz5ikY5/m3zke6f5Mc0zbAq4ca/9NAAAAsAZppgAAABo0UwAAAA2aKQAAgAbNFAAAQINmCgAAoCFGo6fY3SpCdBjqiOsUZZoiycc9bv369eWYc+fOlbVufHulG4ecIpbTOasi6z/wgQ+UY9J5PnbsWFmrYumHYRh27NgxcvmZM2fKMel4rGYkeXd93Tl2tpVq3ZjtalwasxKx0dU6VyI+vHt/jlv6JEPlcojsvhKs5qcXutLnQ2ZmZkYuT+/BdD+lmPDOOzK937vPwPS5j61bt45cvn379ta2gKuDNy4AAECDZgoAAKBBMwUAANCgmQIAAGjQTAEAADTENL8kJfpMTk6OXN5NvZmfny9rKW2uStzauHFja1tp/il1qNJNqEupSONO/kq1KpVvGOrkwGEYhiNHjoxcPjs7W45JxyMlSCXVvqVtpePRTWAct5VIFVzN+XfmmM5Ld+7pPquef+n+66Yspn2rtpeO4biTJa9ml3uSW/WcTul1hw4dKmvdd9ri4uLI5efPny/HJOn3SUoqrM7n5X6egZXlnykAAIAGzRQAAECDZgoAAKBBMwUAANCgmQIAAGjQTAEAADS0o9E7Ub4TExNj31aKL16/fv3I5XNzc+WYmZmZsnb27NmylqJTqzl241ZT/HInGj3No4q5H4Yc2ZxicKvY3aNHj5ZjUmx6uj46xyNdU0n3eFS1dF66104al45V2rdKNyq+Gz9fufba+jGXIpTTOetcV91tdXSfmTAMwzA9PV3WUmz6wYMHy1rnkx6d++xi20qfMXFvAB3+mQIAAGjQTAEAADRopgAAABo0UwAAAA2aKQAAgAbNFAAAQEM7Gr0T5Zsij1N88bp161rrrOKXU+xrik1NtRQhXh2rdAzTfnViqoehjmbunpdU60TFX3fddeWYI0eOlLWNGzeWtVOnTpW1HTt2jFzeifAdhvHHW3d17omLWSv7VuneE934+e5xXK31wUq54YYbytrzzz9f1s6dO1fWqmduesekez59hqX7rACoeKoAAAA0aKYAAAAaNFMAAAANmikAAIAGzRQAAECDZgoAAKAhRqOPOxo4jenGbFdx30mKRq3isodhGI4dO1bWtmzZUtZOnjw5cnmK2U77leafxnWi0VciZruzvpdffrmsffSjHy1rR48eLWtVfG6KWk9zXFpaao2rpDjydJ7TtsYdcZ7WdznEsHfvpWqOnedRWl/Xu+++O9b1wf81MzNT1rZv317WOtdkeqam+PP0DF+/fn1rnWvdm2++WdbS52VmZ2dXYjpwVfHPFAAAQINmCgAAoEEzBQAA0KCZAgAAaNBMAQAANGimAAAAGmI0ejeut4pETjHEKTa1GxNerfPChQvlmBTFunPnzrKW4lareczNzZVjkm6MfDWPdHzTeUm1znmZnJwsx+zdu7espX3+xCc+UdYOHjw4cvlLL71UjtmzZ09ZS/GzyeLi4sjlnXM5DP147s46u/NIz5Zubdzr63wWYCWecZ37rBv5DpcifSLk+eefL2vz8/Mjl587d64ck9651113XVmbnp5urXOtO3z4cFlLvxk2b95c1qrnXHW+hmEYpqamyhpcqfwzBQAA0KCZAgAAaNBMAQAANGimAAAAGjRTAAAADTHNL+kkZKV0sm7yV0qt6qYRVlKS21NPPVXW9u3bN3J5lSY3DMOwffv2sjYzM1PWUhphZ0xK2EvnM6UHVVLK4uuvv17WNmzYUNbSMT579uyy5/Hiiy+WtXQcU7pUdX1UKX8X29Y777xT1rqqdXaT8lYzUS5dp0m6hjvphmkeqZaecelarUjzY6WkRNNvfOMbZa16rqb1peTA9Hy89dZby9rlnER35MiRspaeZTfeeGNZO378+Mjlhw4dKsfcfPPNZW337t1lDS5n/pkCAABo0EwBAAA0aKYAAAAaNFMAAAANmikAAIAGzRQAAEBDzK/uRgpXulHl3Ujhccdzz8/Pl7X77ruvrFXRxidOnCjHpIjlFJu+fv36svbqq6+OXJ4iuFOM8sTERFlLqvOSYmmnp6fL2vPPP1/WUuzrs88+O3L5L/7iL5Zj0vH49re/vextDUN9ru+9995yTIrBTfdEN8q8MyZdw0mKdu/c06t5PFKMeVeaR3U80rHvHENGG/fnNy4HaZ+/+93vlrW///u/L2uHDx++pDn9/773ve+VtZtuuqmsVbHe6fMbqyn9Pjl16lRZ27hxY1mr4s+HYRi+853vjFz+5JNPlmPSufzUpz5V1rZt21bWYK3zzxQAAECDZgoAAKBBMwUAANCgmQIAAGjQTAEAADRopgAAABra0ejjjk1PuvHFVUxxii9OkaovvvhiWduxY0dZ++QnPzlyeYoCTXGlb7/9dlnbs2dPWativdPxWFhYKGtJWmcV25yOfToed955Z1k7d+5cWati5P/4j/+4HJMi8FPs6913313WnnjiiZHL0zHsRnCn+7YTZd65/4YhR/wm3bj1Sppjimivxo07av1iqvOZzvNKxLdfrc6cOfNeT2HV/fmf/3lZ+5M/+ZOyNu748+Q///M/y9ojjzxS1nbt2jVy+cc//vFyTPpcxrg999xzZe306dNlbWZmpqwtLS2VteqdfOzYsXLMU089VdbS74n0KZDqHb+axx4Sb1UAAIAGzRQAAECDZgoAAKBBMwUAANCgmQIAAGjQTAEAADTEaPQUmVnFSg/DMJw/f37k8k7U8MWkuOEqNvPs2bPlmDTHKuJ8GIbh4MGDZa2a4+TkZDlmcXGxrJ08ebKspXP21ltvjVx+6623lmPm5ubK2vz8fFm79tr60nrhhRdGLk+R7/v37y9rKZ74uuuuK2v333//yOU33XRTOSadsxTHW21rGIbhjjvuGLk8Rd124+zH/bmDdL8k3U8rVPdSuu6780ixu+P+NET3+VeNWyuftbjSPfvss+/1FFbEG2+8Udb+6I/+qKz94z/+40pMZ6y+/vWvl7Xt27ePXJ7eZx/72McueU7/v7/7u78bubz6jMYw5Pfx7OxsWdu4cWNZq953KcZ8y5YtZe3AgQNlLb3/qznefPPN5RhYTf6ZAgAAaNBMAQAANGimAAAAGjRTAAAADZopAACABs0UAABAQ4xG//a3v13WqgjRYahjOFOkd4o476ri21PkdIpDnpqaKmspOrWKbU6R3u+++25ZS9HXr7zySlnbunXryOUpVnpiYqKspdj0FJl9/PjxkcvXrVtXjjl8+HBZu+uuu8ragw8+WNa+9rWvjVw+PT1djtmwYUNZS9G0KY73137t10Yu/6u/+qtyTJKir1O0e7oOqlq6X7qfQljNiPYkPZPGHS+etpWOVXX803lZiWft1aqKsB6GYfiLv/iLsvbTP/3TKzGdsUkR1o8++ujqTWQFpAjur3zlKyOXV+/OYcjvn5mZmbJ26NChsvblL3955PJnnnmmHHP33XeXtfSJkPS+u/HGG0cuT3Hq6Z379NNPl7V0Xb322msjl4tGZ63wzxQAAECDZgoAAKBBMwUAANCgmQIAAGjQTAEAADTENL833nijrKUEmCqVLY05depUWUtpVkmVpPP+97+/HJMSzVIa4a5du8palV6XkuHSPG644YayltJ+du7cOXL5iRMnyjFbtmwpa+m8pHP9gz/4g2WtcuHChbKW9jml11UJQbt37y7HpFSn5KGHHiprTzzxxMjlr7/+ejlmx44dZe3IkSNlLaVEpuTGSkqxPH/+fFlL5yWpkujSfnWfHyuRENiR5lHtdzoe6V5ieVIy3K//+q+XtX379o1c/tGPfvRSpzQWVRLuMFzZaZBVauxjjz1Wjjl48GBZu+eee8raiy++WNb+8i//sqxV0jlL80jPx9tuu23k8pSInKTEwfROSGm+sBb4ZwoAAKBBMwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA0xGj3FW6fo7jNnzoxcfuONN5Zj5ufny9rCwkJZSzGtVdz6fffdt+wxwzAMBw4cKGuzs7NlrYoXT9HRaX1pjukYVzHWKRo9RV+nWhWPPwz1dZWuqaNHj5a1KgJ/GIbhjjvuKGvVNXfo0KFyTIrAT5Hk119/fVn7/d///ZHLf/d3f7cc8w//8A9lbWpqqqx1YraTFLOdov/TtZ+uq0qK9+3s18XWuVZUz790XtZK5PuV7rvf/W5Z+63f+q2Ryx9++OFyTHqmjtuHPvShsvbBD36wrKXPVFzO0mdR3nrrrdY60ztt3Ou75pprylp6Tt98880jl6ffQl379+8vaxs3bhz79mCc1v6vBQAAgDVIMwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA0xg3hycrKspbjyKvZ4/fr15ZgUb51iflPt9OnTI5enKPB77rmnrKWo5Oeff76sTUxMjFx++PDhckyKfN+9e3dZS8djcXGxrFWquQ9DjjJ/3/veV9aq6+PcuXPlmFRLsfop5nznzp0jl//Hf/xHOebuu+8ua+n6ePnll8vab/zGb4xc/vWvf70c841vfKOs/dAP/VBZS9d+uj6qc532OV0fKeY5zaPaXtpWilpP99nlEI1eSXHwaZ9ZHV/5yldGLv+pn/qpcswXv/jFlZrOslTPq2EYhi984QurOJPVk367dN6rwzD++zBFnKffDJ3nXFrfStizZ8+qbg+W6/L9tQAAAPAe0kwBAAA0aKYAAAAaNFMAAAANmikAAIAGzRQAAEBDjEZPccPvvPNOWZubm1v2mL1795a1boRoFQ984MCBcsz9999f1u69996y9vbbb5e1Y8eOjVw+Oztbjjlz5kxZO3r0aFnbvn17WauO4yuvvFKOqWLMhyFHTqdI9enp6ZHLqyj7YRiGs2fPlrWHHnqorL3wwgtlbcuWLSOXb9u2rRyTosW7MeGPP/74yOXV/IZhGL70pS+VtTfeeKOsdeLPh6G+Vk+ePFmOSddAivDvRplXUkz4uCPEUzxxdx7jtprbYnmee+6593oKF/X5z3++rP3kT/5kWXvkkUdWYjojTU1NlbX0KY1K+nRL+gxIUn2ao2vfvn1l7c477xzrttLxhauRf6YAAAAaNFMAAAANmikAAIAGzRQAAECDZgoAAKBBMwUAANAQo9FThHiKAH7rrbdGLr/11lvLMVu3bi1rKXo0xRdXEcApHvrgwYNl7YEHHihrb775Zln76le/OnJ5ioNPMdsf+chHylqKaK/2bf369eWYdKxSxHKKzK7i1tM8UrRrmseOHTvKWhXBfdddd5VjknSdpvNZxb7fcccd5Zh/+7d/K2uvvfZaWfvQhz5U1tJxrGLrU2RwiiBet25dWUufUKik50CKaE/nLB2P6r5I0fnpUwiTk5NlrfOMS/Hy3Shn/qd0TtMz8JZbbhm5fNxx2avtd37nd8paOh7VMyv9Bvn0pz9d1n7sx36srP3BH/xBWau2l36fbNy4sawlt912W1mrPouRni8pGn3//v3/+4kBy+afKQAAgAbNFAAAQINmCgAAoEEzBQAA0KCZAgAAaIhpfinB5o033lj2uG3btpVjUmLV0tJSWUspaSmNq5JS+R5//PGyNjc3V9Z+6Zd+aeTy5557rhyT9isloSWHDh0auXz79u3lmJRUVKXQDcMwLCwslLXp6emRy5988slyTErlS2ltaR7pmhu3ToLaiy++WNZSEuRDDz1U1l566aWylhLgNm/ePHJ5SujqJv1dc801Za2T9FelRw5DTiVN91mVPJnSNKuU02HI92Dnfk/HKZ1nlifda3v27Clr11133cjlH/vYxy55Tu+l9Fz68pe/XNaqpNnvfOc75ZgqEXEYhuHHf/zHy1pKtvvTP/3TkctTEnF6NyXp+vjc5z43cvnDDz9cjrnpppvKWvXOBcbDP1MAAAANmikAAIAGzRQAAECDZgoAAKBBMwUAANCgmQIAAGiIGbkPPPBAWXv66afL2qlTp0YuT3HfKTo6RZx34q07kenDMAzf//73W+NefvnlkctTpPeWLVvK2pEjR8paFWE9DMNwzz33jFyeItpTdHSaf4qBvv3220cuv+OOO8oxyfHjx8tainavpOujE3F+MdV9kWLHP/CBD5S1F154oaylCP8UwV1FzKdY4MOHD5e1Klp8GIbhwoULZa2K/E5zT+tLEe2Li4tlrZp/uifSdZXiytMnCKrnRFpfmiPLk+7DFM9dXa/dZ+DlYN++fcuufepTnxr7PD772c+Wtd27d49cnp6b1ZhL8RM/8RMjl585c6Yck6LigZXlnykAAIAGzRQAAECDZgoAAKBBMwUAANCgmQIAAGjQTAEAADTEaPQUN5xqVRz10tJSOaYTcT4MOfa4kuKtO+sbhhz7XsVKX3PNNeWYFG1cxUMPwzCcPn26rFXnJcX7njt3rqylOaZY6e9973sjl6fo+a1bt5a1FLOd5li5HKKjX3vttbJ26NChsvbggw+WtbfffrusvfHGGyOXp3tpz549Za26BoZhGKamppZdS9HF6dmStpX2rYooTvdm99MQ6do/evToyOXp2HfuCUZLn7D48Ic/XNaqZ//k5OQlz4m++++//72ewjAMw/CRj3xk5PL0Xr355ptXajrARfhnCgAAoEEzBQAA0KCZAgAAaNBMAQAANGimAAAAGjRTAAAADTEjd8OGDWVt27ZtZa2KIk6RvN1I8hR7/O677y57fSmuPM0xjevMI0Ulp4jldDyq45+ixTvx0MOQ9/nUqVMjl6frbX5+vrWtdKwqaZ+TtK1Uq+af5nH8+PGy9pnPfKasPfbYY2Utnc/3v//9yx6T7vdqfcOQ962K6t+0aVM5JsWmpyjzNP/qfKao9eTEiRNlbWZmZtm1bhw8y5OenakGSfU5hCoyfRjy8+r8+fNlzXUKl84/UwAAAA2aKQAAgAbNFAAAQINmCgAAoEEzBQAA0KCZAgAAaIjR6JOTk2Vtenp62RtLMcQpyrcbf16NS+vrRGlfbB7VOrv71YnZHoY6OnXdunWt9aVI1RQjX80/7Ve6dhYXF8taN769kuLb0/lM0fkdS0tLZe25554raykmfP/+/WWtOjdpfel4pHM2Oztb1iYmJkYuP3bs2LLHXGxbKU64ejambaVaupfSMa6ug7RfjE/3MwqQVO/q9AmIhYWFslZ9jmQY8rskbQ/4b/6ZAgAAaNBMAQAANGimAAAAGjRTAAAADZopAACABs0UAABAQ4xGT5GZqdaJAu/Gpo9bmkeKwe3MMW2rG3+exlVzTPuV4vHT/Ofn58taFZue9ittK0nrrPY7HcPusUrXRydeOY05fvx4WfvRH/3RsvbKK6+UtZMnT45c3r1Ok3Suq2j6vXv3lmMOHDhQ1tL8U1x5NS6dlxS1nsZt2bKlrL322msjl1fRyoxX97kESXX/pudE+txEeh+fPXt22evcvn17OeZK9vbbb5e1rVu3ruJMWGv8MwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA0x8imlcaU0v06K12om9iWdZLVh6KXGpW11E/uS6hin9U1MTJS1KgclvDwAABJGSURBVJVvGIZhamqqrC0sLJS1SjcJMqnGda+BcY9L60vHPiW5vfrqq2Xt0UcfLWsf/vCHRy6fmZkpxxw7dqysdVMA03OncvPNN5e1ubm5spZSrqr5p2Of0gHT+UxmZ2fHuj6Wp3M9Qtc111xT1tI9f+7cuda4KoE0jdm5c2dZu9x1foekc8aVwz9TAAAADZopAACABs0UAABAg2YKAACgQTMFAADQoJkCAABoaEejpzjqKjYzxQavphRvmWrd6Otx68Swp3Ep/jzFeq5bt66spejUxcXFkcvn5+fLMd1z1rlO0zHsXh8pQryK2e58YmAY8j6/+eabZe0LX/jCsrf10ksvlbUNGzaUtRQ7np4TnRj86nobhnztb926taxV1066hquY4WHInwtItY0bN45c3r12WJ50vmHc0jM1vavTczPFple19ExK78hdu3aVtcvBtm3bytrhw4dHLr/c95n/Hf9MAQAANGimAAAAGjRTAAAADZopAACABs0UAABAg2YKAACgIWaVp9jXFH1dxfKulbjetRJxnqR40bUiRbGmCNcqpjVdbyneOsW+dmLk07aqGPO0vouNW79+/bLXl6TzkuK503F8+OGHRy5/6KGHyjGbNm0qa3Nzc2UtqY5j937pRK0nU1NTZS2dl82bN5e1dB1cDs+yK1mK+IdxS5+NmJ6eLmunTp0qa+kdWT2n07u6++mWnTt3lrXLQfrNw5XPP1MAAAANmikAAIAGzRQAAECDZgoAAKBBMwUAANCgmQIAAGiI0egnT54sa6dPny5rVTxwiodOtW6keic2eCWihqt1pm2lfU4Ry+PWPfYpwnVmZmbk8qWlpXLMwsJCWUtzTOMqKWY7RcJ2o9Gr7W3cuLEck/Y5zT/N4+WXXy5rv/IrvzJyeXoOnDhxoqylCPHuMe6MWYnnTiXFsKdzlu73av5r5TMUV7pz586VtRSbnmKsoWPr1q1lLUWjp1r1CZz0jE7Pue6zeMeOHWVtrag+b3HkyJFyzOUeB89/888UAABAg2YKAACgQTMFAADQoJkCAABo0EwBAAA0aKYAAAAaYjR6ir88f/58WauiMScmJsoxKRo4xWmmcePe1lrR2eeV0J1HdR2kuOAUm17Ftw7DMCwuLi57XIqVTttK90uKt66uuTRm3bp1Za0r3dPVvv3Zn/1ZOebTn/50WUvR6OmcVbpxvF2da7/7KYQUGVxJx0Ns+uqYm5sra6LRGbf0nNi+fXtZS5+3qGrpkyPpkwBJmn/1m2HLli2tba2m9NuFK4d/pgAAABo0UwAAAA2aKQAAgAbNFAAAQINmCgAAoCGm+U1OTpa1TsJUSulK20o6SV2rnYbXmWM6vt10w9U8Vp15rF+/vhzTTexLSTrVHLtJaCnhKB37qnbttfXtmdaXUjO7XnjhhZHLv/jFL5Zj0jWcjnFKFayug5R8mM7ZWknGTNIcq31Lx16a3/hs3LixrKXnGaymzZs3l7VO0l9616Xnd0oO7KT5pVTbDRs2lLXVtHfv3rL24osvlrXbb799JabDCvHPFAAAQINmCgAAoEEzBQAA0KCZAgAAaNBMAQAANGimAAAAGmI0+szMTFlLkZSVFPGbIqxT7HHHSkSLd6LiO3HZl1JbTWkeVTRzGjM9PV3W0rWTYtOreO4U2929PlK0exUlm6LR0/WW7pduhPjZs2dHLt+5c2c55q//+q/L2o033ljWUozviRMnRi7vRsWn66NzT3dj2NP80/XYIRp9fDZt2lTW0vsT1ordu3eXtTNnzoxcPj8/X47pfsak2tYwDMObb745cnmKP7/11lvL2lqRjgeXF/9MAQAANGimAAAAGjRTAAAADZopAACABs0UAABAg2YKAACgIUajz87OlrUUCduJe0yxwd2o6s6YThzyauvs81rSmX+KCU8RxOnaqSLV0/wWFhbKWhqX4qirKNkUP5vivlNUfBqXVPv2/PPPl2MefPDBstaNAj958uTI5d3Y8W5UfCU9P9J+pW11jlX3ecrydD4RAmtJegbecMMNI5fPzc2VY9Lvv+478ty5cyOXHzt2rByTfr9u3769rK2m2267raw988wzZe2DH/zgSkyHS7D2OwcAAIA1SDMFAADQoJkCAABo0EwBAAA0aKYAAAAaNFMAAAANMRq9G8FdxQN3ooYvZVwlRQ2nba2V2PQ0/zTHcR/HcUv7la7FqampsrZ58+ayVkW4pujolYi3rmophj1FnHdrKX6+muOJEyfKMSn29V/+5V/K2q233lrWqnOdonqT7r1Uxdl3t9VVXXPpfunMHbj6VO/P3bt3l2PSJz2S9EmPSnruHz9+vKxt27atrK3Ec7qSPq1QxcEPwzCcP3++rK1fv/6S5kTP2ugOAAAALjOaKQAAgAbNFAAAQINmCgAAoEEzBQAA0KCZAgAAaIjR6N0Y6KrWje1OUZVpjlU88DXXXNPaVlcnYn41Y9i7keSrKV0f6Xym2PTZ2dmRy9M1lWKlU7RrWmdHip9NcauTk5NjnUeKWj9w4EBZ27VrV1lLcfbVuU5Rsd3n2Lh176XOuLRf474Wr2aOJVejFI2ensVJijnv3GdpfemTHlu3bl32tlbCjTfeWNaeeOKJsvbggw+uxHS4CP9MAQAANGimAAAAGjRTAAAADZopAACABs0UAABAQzvNL6WaVVYiOWvc6XspOSttq1vr6K6vSghcicS+tM5OUmFK7Oues+np6ZHLu4l9p06dKmtp/h1pnxcWFsrauNP8rr22foQcPXq0rH3yk58sa88880xZq55JGzZsKMecOXOmrHUTRqtxq5kO2HU5zPFysVbSTmGt2Lt3b1lL90t6f1bvtO7vrpT0t1bS/Hbu3FnWnn766bJWve9mZmYueU7U/DMFAADQoJkCAABo0EwBAAA0aKYAAAAaNFMAAAANmikAAICGGI2epHjdKv4yxRCnGMtu9HVnTDc2eDWj0ZNOnPO4j++ljKt0I4g7Ee1VZPow5Njxblx5VUv3S6qleaRo9879mT6fkNZ34MCBspZia2+//faRy8+ePdtaX5Lupep4dJ9j3edOtc7uPFie1Xy2w+UgfX5jz549ZW1qaqqsVc/39NycmJgoa+ndlN5p4/7ESdddd91V1qrY9B/+4R9eqekw+GcKAACgRTMFAADQoJkCAABo0EwBAAA0aKYAAAAaNFMAAAANMRq9G2VeRUuuRMx2J9Y77Vc3orgjzSMZd5R5JwL6UmqrqRMDnSJVZ2ZmWttK6xz3sepeVxcuXChr1RzTmGuvrR8vhw4dKmuf+MQnytqjjz46cvmWLVvKMemcpUj17nGsdKPRO/fZSnzugP9prUQlw+UgxZ/v2rWrrJ06dWrk8sXFxdY8Unz75fDpiN27d5e16rMjR48eLcfs2LHjkud0tfPPFAAAQINmCgAAoEEzBQAA0KCZAgAAaNBMAQAANGimAAAAGmI0eop9TbUqLrmKTB+GHKOcpHlUccMpGjjFIXej4qvaSkSLd2I9u3Hw6dh3jtVKxNJ34qjT3NetW1fWNmzYUNY61/fCwsKyx1yKdH9Wx6QTp36xbT333HNl7Y477hi5/LbbbivHPP7442UtRfXOzc2Vtc79mY5V53naJRp9fESjw3ike2nr1q0jl6do9PTcTO/47m/RteLuu+8eufzpp58ux4hGv3T+mQIAAGjQTAEAADRopgAAABo0UwAAAA2aKQAAgAbNFAAAQEPMgEzxkSnGsoqWXFpaKsekWOxxR3CnaOCJiYmylnRizjsx5hfb1rilOaZ466Q6nysRB9+JW0/7leaYYtOTKlI9XdvpXupK26uk45vmmLZ1/PjxsnbfffeNXP6Hf/iH5ZgvfelLZe1v//Zvy9r1119f1s6ePVvWKmmf03Ec9/0uGn18HEt470xOTrZqV7LNmzePXL5x48ZyTPoN5Rn3v+OfKQAAgAbNFAAAQINmCgAAoEEzBQAA0KCZAgAAaIhpfinFIyXsVePSmJSgllKwLly4UNaqVMGuTtrZSuimAFbHOJ3ndF6657PaXjq+aZ+7tU7SX5KOYydZKB3fdN2nFL1uAmOle+zTPBYWFsrak08+OXL5z/7sz5Zj0nm58847y9r58+fLWpXm103lS7VuCiArT9IVcDm4++67y9qxY8fK2o4dO1ZiOlectdEdAAAAXGY0UwAAAA2aKQAAgAbNFAAAQINmCgAAoEEzBQAA0NDODk+xx1WUbzdGOcVAT0xMlLUqNrgT634x447I7cafp3HjnmM3Nr06nynKfiXiz8cdK925J4ZhGNatWzdyeTqGaVvz8/NlLd1Lqda5drr3dDpWR48eHbk8xan/9m//dln7vd/7vbL2m7/5m2Vt//79I5enY9+9NzvHPl3b3WcL/5NjCVwO0u+rzqdb+H/5ZwoAAKBBMwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA3taPQU19uJnO6uL0UsV1GQKXI6STG43XV2ttWNOO+cl27seFIdq25cdnce1bhuDHuytLRU1qpY0m40eoo5TdfOuPe7e6zS+VxcXBy5/KmnnirH/Oqv/mpZe/jhh8taFVk/DPUc0/FNnxLoRqNX98W4Y/8ZLUXhA1wOZmdn3+spXPb8MwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA2aKQAAgIYYjV7FEA9DHTs+DHWkc1pfilFOsdgpTrtaZ4qcTvvVjQmv5j/uePnuuHQ8VmIe1X53Y7uTTtx3irBO+9WNzu9cp13ddVb32cLCQmtbmzZtKmtpndU8Xn/99XLM5s2bW7WDBw+WtbNnz45cnq6B9GxJ0flpXCeinfE5cuTIez0FYA07f/58q7Z169axzuPMmTNlLb1/JiYmytrMzMwlzelK4p8pAACABs0UAABAg2YKAACgQTMFAADQoJkCAABo0EwBAAA0xGj073//+2UtxSyuX79+5PIUv5jiqFM0elLFKKd5pDjnbnR3FV+8Etvq1sY5Zhjy+az2LZ3n7n6lKPOq1o0/7x6rSppHiivtfkpg3bp1ZW1+fn7k8vSMSNf3c889V9Z+5Ed+pKydOnVq5PJ/+qd/Kse8/PLLZS0dq4ceeqisVefmW9/6VjnmwQcfLGuHDh0qaym+vTpn1fkahvFfp1ez559/vqy99NJLZe22225biekAa8yLL75Y1t5+++2ydtNNN5W1ffv2lbXqsx3f/OY3yzGTk5NlLf0uSL9Dqmj3HTt2lGOmp6fL2tzcXFk7d+5cWbvuuuvK2jj5ZwoAAKBBMwUAANCgmQIAAGjQTAEAADRopgAAABpimt+BAwfK2oYNG8paleaXUkFSyliqJZ1xKd1ramqqNY9KN4UuzTGlAFbHo5vu1R2X5lhJ6YBd407z6+xXWmc3xTKl6KVauj+fffbZkcurxJ5hyElFO3fuLGsptadK4rz11lvLMddff31ZS6mC//zP/7zsde7du7cck66dt956q6ylc3bLLbeMXH7ixIlyzLXXxsc+y/D000+Xta997Wtl7Rd+4RdGLk/JjSuhuibTMzBdj3C1qpJmX3311XLM0aNHy1pKytu0aVNZq9IDn3nmmXJM9Zt9GPJvr/SOr34P3X777eWYz33uc2XtX//1X8vak08+WdZ+7ud+buTy3bt3l2MOHz5c1nbt2jVyuX+mAAAAGjRTAAAADZopAACABs0UAABAg2YKAACgQTMFAADQEDNyU2xjihWcn58fuXxmZqYck+IXqzjki42roiVT7Ovi4mJZm5ycLGspNr2KiExRyWm/UmR2J047HY8U992NAu+sL8XxdiPaO/Po7nOKOa32LUVYp+OR5piuj3R/VrH6KVI1xZ+n6O40/29961sjl3/2s58tx3z1q18ta+m+PX36dFnbt2/fyOU33HBDOea6664ra2+88UZZe+mll8paFdO6ZcuWckwVc8/yvfnmm2Xtb/7mb8ra7OzsyOUf//jHyzHp/ZPeW+n9WY1LY9KzLH0yJdXSOivpvdV9dnbeJd33cXrOdebRXV86jtVzv/u5miQdq+r66J7nNK57n1WfSUifGErPjzTH6jf2MAzDY489tux5pPdg+i2a5l+9P1NEe3pvPf7442XtkUceKWvVsfrlX/7lcsw3v/nNsvb5z39+5HL/TAEAADRopgAAABo0UwAAAA2aKQAAgAbNFAAAQINmCgAAoOF9446VBgAAuBr4ZwoAAKBBMwUAANCgmQIAAGjQTAEAADRopgAAABo0UwAAAA3/BwhY6E6TVBJgAAAAAElFTkSuQmCC\n",
|
223
|
+
"text/plain": [
|
224
|
+
"<Figure size 1080x1080 with 2 Axes>"
|
225
|
+
]
|
226
|
+
},
|
227
|
+
"metadata": {
|
228
|
+
"needs_background": "light"
|
229
|
+
},
|
230
|
+
"output_type": "display_data"
|
231
|
+
}
|
232
|
+
],
|
233
|
+
"source": [
|
234
|
+
"\n",
|
235
|
+
"v1_ind=np.array([427, 208])\n",
|
236
|
+
"\n",
|
237
|
+
"fig, ax = plt.subplots(nrows=1, ncols=len(v1_ind))\n",
|
238
|
+
"fig.set_size_inches(15,5)\n",
|
239
|
+
"for v1_i, v1_ind_ in enumerate(v1_ind):\n",
|
240
|
+
" v1_k = v1_model.simple_conv_q0.weight[v1_ind_,:,:,:].numpy().mean(axis=0)\n",
|
241
|
+
" v1_k = v1_k / np.amax(np.abs(v1_k))/2+0.5\n",
|
242
|
+
" im_h=ax[v1_i].imshow(v1_k, cmap='gray')\n",
|
243
|
+
" ax[v1_i].set_xlim([0, px])\n",
|
244
|
+
" im_h.set_clim([0, 1])\n",
|
245
|
+
" ax[v1_i].set_axis_off()\n",
|
246
|
+
"plt.show()\n",
|
247
|
+
"\n",
|
248
|
+
"\n",
|
249
|
+
"fig, ax = plt.subplots(nrows=1, ncols=len(v1_ind))\n",
|
250
|
+
"fig.set_size_inches(15,15)\n",
|
251
|
+
"max_activations = np.amax(activations[im_ind].numpy())/np.sqrt(2)\n",
|
252
|
+
"for v1_i, v1_ind_ in enumerate(v1_ind):\n",
|
253
|
+
" v1_im = activations[im_ind,v1_ind_].numpy()\n",
|
254
|
+
" v1_im = v1_im / max_activations\n",
|
255
|
+
" im_h=ax[v1_i].imshow(v1_im, cmap='gray')\n",
|
256
|
+
" im_h.set_clim([0, 1])\n",
|
257
|
+
" ax[v1_i].set_axis_off()\n",
|
258
|
+
"plt.show()\n",
|
259
|
+
"\n",
|
260
|
+
"\n",
|
261
|
+
"\n"
|
262
|
+
]
|
263
|
+
},
|
264
|
+
{
|
265
|
+
"cell_type": "code",
|
266
|
+
"execution_count": 42,
|
267
|
+
"metadata": {},
|
268
|
+
"outputs": [
|
269
|
+
{
|
270
|
+
"data": {
|
271
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAM9CAYAAACWhEKIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOx9WW8kWXbex9y5FItVrOrqfbp7unt6ZiSNLGuxDVg2YNnP/h2CnvRseHoGhgH/Df8DPcqAXwwIgkeQBpIsaTTjmV6ruxaSxeKaCzPph8R388sTJ4IRmZEk2zrfS5CZkRF3Pffe851l7fLyEoFAIBAIBAKBQCAQKI/GTRcgEAgEAoFAIBAIBL5piINUIBAIBAKBQCAQCFREHKQCgUAgEAgEAoFAoCLiIBUIBAKBQCAQCAQCFREHqUAgEAgEAoFAIBCoiFbRlz/60Y8uAWBtbS19xr8nkwkAYDweYzgcAkC6jsfjdF+n0wEArK+vAwC63S5arfnXjsfjdOVzGU2wbFTBjz/+eO3qu4Af//jH6YF8L8vNMm9vb+P+/fsAgMFgAAD4x3/8R3zxxRcAgEePHgEAfvd3fzf9/9lnn6X7AKDf7wMAdnd3sbOzM1eG4XCY3k3w3drWP/zhD0vVif2k8NpNn13m/qLfVb2fWKZOZWHLVrb8ReUuQtk6ffzxx5mXeu+0n62treWWrdFopDnjwZtHeX2nn5edTz/84Q8v+duiOdtoTHU2zWYzXbvdLoCZjNAr7yM4XwaDAc7PzwEAJycn6Xp6egoA6buLi4tUFr77v//3/35lnbw+Iq4aH0X1t/O7aEzWLfOWmUsWq4ryyvaoOpe8tUnB8nI8XFxcZGQv16Nut5vGZLvdnrtH1zk+S5/j9e+idaobi8q1IpSt0x//8R9fWadGo5HKyLmq7VfmOyKvrmXaoM71dpk1Z9H7vHvqHHt1jKNl5EeV+VRG5umaVeX9dd9/HXui68Y/tToFIxUIBAKBQCAQCAQCFVHISCmKNKo81VuGZ+5FovVTzZLiKq32qkHN/mQySWWkhrLVaqV6URNOzWSv18Pm5iaAmdZsNBqle1gXatlXoSEMTHGb86Ityj6pxtYDx5zH5tr5tCiTmAfvXV75OP897b9lppSN4hzjfDo7O8PLly8BAEdHRwCA4+NjnJ2dAcjKnlarhV6vV7leV8GTXfZvXotYk7w2v63jmOWtu3xVn+e1qdeWajnBK8cUwfHWaDQSE8Wx6JXLPpO/1etNy/ibfj/BuTcej1N7WTnlMXtAfpvmMVj29/pZ3vhaVTtdXl66c32V89qTN6t4vmIZlqZqW9TVdiqfrTWHvqNoTBXhtsy9fyqoe0+zCCofpAgr5IB58xs9lAAzUwk9pNiDhQ7sVS3YClsn7yClCys3c8fHxwBmZn/dbhdbW1sAZnVSc0fW4bYssoQn2LX98zYot3WTB/h1qmOBqXORumoT6I0Tvt8K/slkkplr9mpRtPmoCu+AZjc5rVYrzSMemnq9Xtpk8Ts1+eX8oYksD00vXrzAixcvACAdqE5PT9PcJPjMdrudMSVeFnmmlrYtdIOom3W9eigyw7zNsuO2QNcOO29Go1E6SNk+aLVamcO9HsAInV/W1L2oX1eJogN6FZPuuvuUJvL9fj/NUVUy8urJN7sXKDpIeTLTU1zaZ93UGLbv1XFTpIi5bfDkfllUdRlYFnaMeWunlss7rBft4W5zP/3/jKK5fF3rZ5j2BQKBQCAQCAQCgUBFVFbVWo2baod4qh8OhxnHXGqINzY20m+tllYZqVVpJpQdymOkVPuoGnR+Tu04zYna7Ta2t7fn7vfYOWXi2C5W63Yd8JgITzNDTb69fzKZ3IjWrM4AEZ4Wo0xdlqlvWS0xx45q0KxmXK/2fi2j1dg2m82MqWmZMuXB00jyuRw/nU4nzQsGnen1esl8ivdx7A0GgxQ84vDwEADw/PlzAMDBwUFipMgMKxtFlkuvZIvrgjJSalZp5Yc1IQOyMk/7g/evra1l5KCO11XPtTJMZZEpo/esVaGIOQey5uaDwSB9xjWJv+t2u2l94tjk2FLLAp17/G3drGcZePLEW5/zoIxamWA0i+DNN98EMA0Cw0AwZJlp0TEYDDL7BWWpPCYhr8+bzWbG1FnbwGPjq47RqmuAx5DaZ2g5bH0vLy9d6506UQc7VLfp3zJl8X7L9tRgMZ65qV3HVGbnMb+3kY26DSZvdaHMnCszN1a1fgYjFQgEAoFAIBAIBAIVUVmN5tmPKqMETLV4ZGuodaLGbmtrK91nGY/Ly8uMxv06bPEto6baMGrSlUlTJ3dgqrG4c+cOgJnGXRkprQvgawmvk9nx3q8+BCwH+8ezNfeYw2+almMZLKLZKNL6qrbVMhqj0cj1K+D9duxoYAdq3b3QwXVoZwmVAxpQApiyQspE8TuOK2WyganvE1mnZ8+ezV339/fTvOP9jUYjPZ/1ZfCXu3fvZtIPlMFVIcxZR9ZZgxjo3OezLPtm20qfrwEzrAZ7ER+csrLFk092jKh21/MF03vynl838uSqhjrn/On3+xmmgn2wvr6e2EuOI7Iop6enGRl5cXGR8ffVMq2ivnkslC2H54tXxkfkqrW26lr8zjvvAJi2O9uSewNePbbK86ni1fN9I9S/mSjLUi2DIm24yg3Liih7z3Go+yhbJ52P1hKh7vFWxjfaCzKk5bH7xWUtSKpCrZzs2qnrqhfwRP1seb2t/u6KuoNyKG6ivnn7pryy6OdFflN11iUYqUAgEAgEAoFAIBCoiIUZKdXmWcZCGSmrAbpz5w7u3buXeQbgM1Kq+awbeRqXi4uLTLTBjY2NVE+GP6f/xuXlZfKRokaTv1fNmhd1yKJuG86roqlZ23RqBBuNRiY5JX83GAwKo7UFfHhhV+14Vy0Z+yZPcwbMhxa3kfG63W5iQjQyXpUoXldBNeHe+4Hp3CFjxPI0Go1UF2qjOZ+ePXuGJ0+eAACePn0KYOYjdXR0lNqF9d7c3EzPJ/u0u7ubrpybVVDUDlpXyoTxeJzRnGtyYDJxWn9g1kbAvPzMK8eyvgJFWjzPn84yHMRkMpnz6QLmkyB70ZJWoQn0GBqdZywT2cF+v5++t1EjNzc3k2UBx5bONxuKfzweZ1iEuuH5ZNh+UjbDXrXdPc289dX1sEzd3njjDQDTNrOROJWhok8kr2dnZ3OMFTDvU2XlobIz1gIkj6UCrk5oXhU69ixrob7RtvyaDoJQ+WH9TvW51+WvfJX/UhG7af2OdA+0ivIWrbVs+8FgkMaiF2HVsk+6dnos+KojYN4GXIePblks6zdV59516YOU5t7QAWipemJ7ezvzmQoHK2g8h+26UHSQ4nvVJJGbILvxG41G6QDFhZjtowcp4qq8QHXCGywaBMCaEdBsqt1up7pww6GbRiuA1LzktsDbzFkz1OsUdrro55kbDIdD13zPmstxLGoYcZqf6qa9yIzTmqJ5OXaugh7i1JQPmJm5rq+vZw4Qo9EobZpoxsdD01dffYWvvvpq7jM156O84Xvu3LmDBw8eAAAePXoEAHjllVcATA9WapZ7FXRc2LGhmwDWR4MSUC6wPalw0T5lWfQgZc3C9ODsbfLs/VVQZvHh8zudTiavkm5ONYADMJP1alK3KkWLbmjyzA/1cKsmY/Z+jtPt7e10EOczVCFo66sbdE/W1GnGpOuuVZxoMBcvlYANuKHrnJWD3rhfBiwXTW2BrBn5YDDImP2dnp6m+WMPWScnJ3P9qXXTueaZMBI6D1axbnlBmzqdzpycB2Z9s7W1lWQD76cLgY5ZjtVGo5ExrdXxv4oAGp6pnsIeVEajUUbxpwEcrJKmTnNYPdx5ykpg2q4qswibz1APVJ6igvBk3nUfpq7jfdfphmLfU8ZUzwvcUvR77xlVcbt2voFAIBAIBAKBQCDwDcDCMVtVi2Cd8tbW1tKpn1olami2t7eTZsmyPo1GI/2Onw2Hw5WH/LQaXmWk+N3m5mbSgFMjub+/D2DKUFGbRI0my392djbndM5nWi1Y3ad8T9PIZ1Pjsr6+nnGMJ8vW7XaTVp/aRPavhgLWPqyzDt6zvHHgaSMIq5lst9up7oRqBj0zmqJ3V0WR1pfjQbXLHHvtdjtpItkXZEA3NzczIZtVk6ZaX2BeC8frMqYtfGe3280wUcqM2UAKx8fHaf58/fXXAIAvv/wyXWnKx6S77MtOp5OYUs611157LZkQvfrqqwBmiUA3NzcXCk2tJiH6GTBv9sq6XlxcZBgpyrnj4+PU/jYUe6/XS/OK0GATXt/UoUH35pcNWKDhwHnVxOqsE2U8f392dpYx91ml43Kelvzi4iKVkX1zfn6emV+cUzs7O7h79y6Amdb64OAg8yxegWzY82XMla5iooBp+1tGVllpy/yOx+NUXsuCXFxcZCw/PDZjmTqx/ba2ttJc8QI4eWyBBvoAZuPs5ORk7m+95/z8PLFaaiJt2XeVxZY1qYK8NlGrA2U+7XpL1ml7ezuNQ1739vZSnQjKj263m7EeqGP9vYpBtoEYOp1Ohp1hubQvWF/PZcOGGfewTLAJy9ypxYcd/14gId0vcQzbee8FG1Im9LaY+XnBP27COmdR6D7M2+MC03FkmUOvTzwsOoeCkQoEAoFAIBAIBAKBiliYkVI2x9rRa5hIq5G4c+dO0sKo5pW/4zM0bPqqT/X29DkejzNlU0dkah6obTs+Pk5aNmrJ+f9wOJyzqQem9bwufyJP26Z266wntV5kAjY2NtJvWW/+7uTkJKPdUWayTNjUuuE5f9owu1tbW6l/1N8LmGov8xjKPFStlz5f/VD0nZ1OJ2mX1e+OmnIGTlD/NdU+AzOm6eTkJPkWcQyORqOMZl21clXrVBTinOPh8vIyo4F9/vx58oMiE/XFF18AmAabIBPFOmmbkCn91re+BQB4++238frrrwNA8pWiVrfValXSOHu29YQGzmG9NbgMteK8j22/v7+f5hcD7fCebreb2o04PT3N+N6odrvO+eQ9S9kPZWuAGQPXbDbTOGNfqWaabaEhq+uEx6Sp/xYwz8ZowAK7XnEu3bt3L80vMh3EcDjMBD3w5ERdDvReYCBe1T8SmMpqy7JpSgGVB8A8e2NZDfV19UKoV63X3//93wOYti3HkA3MtLGxMaf15z3Wt4v1ODs7S3NLWV/W0dbz7OwskwRY2blFGSkvoIT6n/K5Wl/rd8O0Dnfu3EltwHYiU68pVBhER8eBDVxRl69RkX8J/261Wmn+8KrlYr/YJOrn5+eubMsLK15Vfnhlzbsqms1mKj9lH/tP/W3tmqv7PA3gdZMBKLx6qr8eMK2vZYOvmg+r8o3y/EyLymD9+z3mlmOS806tzYrGQVVmqvAgVdTpKuitqUG3251zKgdmQm1/fz9NKgo8bn7UuVkDWKzaqc0uWsPhME0GTvKNjY00oXg/63F4eJg6ikKQE84LzJAXBKBOFJn26UFKFxtgdpBSEyTWm4vc3t5eZhCr8+t1wr6z1+ulevKgywhwOzs7eOutt9LfwOwgyHYAVpcjQk0GrEBj225tbaX25uHp7t27mTxlehC0JjAclwcHB8lUkwvY2dlZxsRnGZMQNS/yzIqA6UaAm22Or8ePH6eD0+effw5gtqk4Pj5Ov7Ums2+++SbeffddAEjXN998M8kQjlsVnDbYSxmoyQ9lgEYnZV11nvCQyPqzX/b399P8YjAMjrt2u53qyH7wAlDopqMO81L7/9raWqa+Wk+OP5pM9nq9NI644dAyW/OJ0WhU+O5FUZSTbzQaZTbQqjCxY2tnZyfVk/drNFMbQKnX6xWaFi8K3Qh7EfpsJE6Vvfbg+PLlyyQDOAfV9M0LQGRzni1Tt5/85CcApuOGY4eHAf6vJpUq52z0T841VXTaIBWqPNIr9xpWudbv9+dMNReFPcDquq/zxColKQ97vV6af5QRlGmTyWQu8ATgm6B5wQ6Wgd1DqFmU1o3fcz5x/dLDsEZkBaZ7CNbJbmzrRl6kPTUBY//1er00Fjk+2R/37t3LBC7i2MlTft2kaZ+ORa0fMFPodbvdtG/Q4GmAryi4Tnhmpt65g/XkHH/+/HmqJ03+Hz58CGDazzaKY5FysmzgljDtCwQCgUAgEAgEAoGKKG3al0eLqimAOptT42JN/F68eJGYAg0PDEw1GkWMVN0O/545GKE5fICpNomaCpaNGr6Dg4P0XN6jJj82xKZHYavmos7Tv9bXOk9ubm6murCMdHBVDTK1aNQ8dzqdTAhbdZi/LtM+L2iDmpiRiSLjsb+/jx/84AcApgEKgJlGaW9vLxPopG7WUDW9NlgBr3fu3Eljh/MJyOYuUy0S5xODN6jJKeedal/sONBy2cAHV0HDLltnYzX9ouZVzfj4N0Ocs46Xl5dprFkzvvfffx/vvfcegKlJHzDVNvF+y4RrcI0q0GATXn4UthP7rd1up37ToCzAlKmyZnAcd2tra6kNlbG2jJSaFdaR98aa1XjO3yoDWCdrxgPM58Li7yzr6Wlnl5FzRaFu1exYw2KzHJo3CphnfnXO6e/Oz88zcnwymeQyR8siT4uu2lMthw1wQlZ6b28vyXTOL/6u0Whkgtjou5YJs0/89Kc/BTAdL2QqLDO1u7ub2Bd+du/ePZelAvwgKLxXTTA1SAXrbtmqk5OTJCPLosgcVoMQ2LDt7XY7acbZBmRlPvnkkyQbNIgOMJUHlO181uXlZe465a2LV8HbW3mmsmpeCUzlGN/POlEuv/vuu4nN4XdqVst1R83P62LVPPlgc3GpZZAGnuEYZPvzuru7m8agTXGhLihqKl+UTmRVJtqeHGT9yER98MEHAKbzh+swx6KuTTa10U3BrhmtVivJEwaYYlm/+uor/OpXvwIwk4MfffQRgOlewTtPLHu2CEYqEAgEAoFAIBAIBCqicrAJz0FLw+UC8yGZefrXhK88JVqb7e3t7YzWQB3zV2VvajUW6hxPjWS73U5aL2otqWV//vx5uo/aM56WG41Gxqmfn+u764Zn30xoyGrWWbXnwHw4cy8EstV6LOu7UVSPvHC8HmvQbreTdpN9QG3e559/nv7md9Q+ffrppxlftkXCZhdBw7xae2pqro6PjzNBC/r9fuoX1TQD07GnDBQwH8SFfc2+Uzt9QjWbVTXqqqmyTuGc38+ePUuBJegXpSHO1T8NmM4hagHpB0UN2vvvvz/HRLFOHBN23p6enqZ2qQprS+0xEeoj5jGJwDyboc7WfJaGuQem/aH+WIq6/R+0jtZHqt1uJ42rDe3e7XYz7KXWkX2qvkaL+KpdBW0fK5M0sbFaA2giZ2AmCzY2NtL41xDOwHwaC9UyWyZKGaQ6mEOvbpZlGw6Hc4FNgBnL++zZsyQzeD/HlgbfsQm/6wKtAVqtVmp3z4mfjAVl94MHD1yWivdroApg3tfU9q+X8FfDpy8qH5T58QJ0cLxoCgfWhcFx2BdffvklHj9+PPcZ2ZydnZ3EGrDco9Eo1TNPViwC7xlewlyOpWfPniW/J7Yx++add95JTADlOPv88vJyLiAXML9HsQEPFpV7HiPlBcXi+Nne3k5WEGx/+tns7u6mNtd9IcurKRaAebYuL5XGKuBZG7B+ZG++973vAZjOH5aXgWE4HzQo2nX4SpVhhXQtZl+wLr/zO78DYNpvf/InfwJgtkfn/qPT6aTxWRTev2r/BCMVCAQCgUAgEAgEAhWxtI+U2pzzurGxkdEY8UTb7/eThob+HhpFyIaDVu39qk7Dnq+UTWTaaDQyNtvUEj1//jxpYG3EtVarlbQXGh2oKBLSqmxnvag1/MyGwFStq2UJvSRuNxGVBpgPN8tycOxRo8Rx+eTJk9Rn6pcHTFkEy4xcxYZVhdp/s7zWh2k4HKZycJ7s7+8nDTOZKGWhWBf2K+247969mzS97MONjY1MUl/186lqC63tT80W5zXL+tVXXyUmiiF9NZId38k58/rrryc/qA8//BDAlIkCpr5SZKI0gpLVBpLBe/nyZfq7ClTbzL7Rq/Un6nQ6GX83Tf5sQ7TyOhwO03PVz4LPrdtPL4+p1oSSqiG20QnZR8pssozq92cTxA4GgwzDV7fMsM9XRorf9Xq9NG5Yftat0+lk+kn9XGxKDC9UOFHXWuWNQRuJ8OjoKM01zi9qYPf29tI8YxlZb/Xr0LXBrrfLRO1TX0VqullWDePOPuD6ee/ePZel4pV/k6XStdnOv263m2Hm+Z5+v5+R+2Xh+SKp/w37jHL8+Pg4le3NN9+cK/8vf/nLxN6xndhPDx48SM9V1p/zzfZXXfPKRnT0fGgHg0Fai8hMkdn4q7/6q1TP7373uwCA73znOwCma7P1o/fevag/pf7ermlaLxvNzmNH1ZeP40jlNzDtMxvlEshaUV3nPkmZONaP84R1U+bcJrne3NzMpOa4DnhWGDZKdL/fT3sisp3/4l/8CwDA97///bRH+NM//VMA89Y6XOe8/sorw1UodZDSzvccrwk9SNl8N5w05+fnqaNUwADTxrGVW9VBquiAsba2lnGYv7y8THXhYGQbHBwcpM0aByjv0QzkuqjX7ZycB0+46obDCio1L7KHLDVtss+/ifCYCpZNN2w0W2HI808//TRRvQxEwXGpGdpXBd2gcizwM252jo6O0sLE697eXiYPB3+/traWcbjmGHz48GFmw6EbDQ2fvCg03LLmiAJmbfz48eP0Nw9Zw+Fw7sAHzEwovv3tb2cOUDTne/DgQfqdBrKxwTjYdi9fvszkBCqCN549512bxV7DEdsDVa/XS/2r45TtZjfo+n7rDF1XfiKLyWSSyqbySnNKAbP5sra2NrcYA/Pj25ZbNzN1myt6h0Je7YG32+1mFAlqzmZzLvHa7/czJr9qdl63PLfrq9aJY0fN+Ti/eIDiJuPo6Chjoq19qilLgHk56I25quOPckfNWym7NAAE5yvfvbGxkQlPz2fdv3/fPVwB082uPVxtbW1lZJ6uc9YUtwpsP+k4Y100DQLnCDd6XJt++tOfpr7jYZgBdu7du5f2HpofTM1VAcyZkdW5YdeDh+b5AqZ9YQNo/PznPwcwHYusk7p2ANPNL03oNOdf3dDxaueqymx1X7DyWwMqec8A5t0MdK7m7ZevY7+kezoNIATMlBnD4TAdgK1LgVfOm9jnee88Pz9P+wzOL/bT7/3e7+Ff/st/CWC2r/rZz34GAK55eR0B3sK0LxAIBAKBQCAQCAQqYuFgE3rS1tC8wPRkSA0KtUnU/g2Hw4x2Qh2wrXbIc4Cvm8ImVNtgGanxeJzR/LNcL168SIwBy0aNTa/XS8ybamzzzCbqDn+u2iq2l5oasp48zWsWdv6WJ34Nb20dOBuNxrVrKzSUN8fg+fl5YiX4Hanfr776KrUBHXupRQOQMVuoG+qsbhNnqnbWshfdbjdpXKnFU6reCyfM7zRkPTBP5VtWZTQaXZnV3IJz9+joKDm6Uzuu5oisH9+9tbWVNMdkomjO98EHHyQmiqYhrL8mrlQTSL6bV01EvEj4cy9FgQYGYf/x2RqogH2jZr5Wa6wmZNbEcZVhtbV+FnZcDIdD1/QLmI4Ztj/rq2YXnvlenuN1UULEMshjpLQdPbNzapyplb64uEh14rjm/2rqrKZONgR1nSk6tE7KRHC8sIxqvmpNhdvtdqo712LKhwcPHmTSdfR6vUzI42XkOoMqnJ2dZZLhaoJjjh29h21KjTnH2dbWViq3Vyf9G5jKeN7HOUm5qPUtiyK2muh2u2l8cQzt7+8n5o11Iev08OHD1J80g6Zc39zcTOVXVs9q15fpJ48p8cz3NUw4MF2P3nnnHQCzENNcW3/1q18lRop9zT49OTnJ7PV6vV6hudUiKGJT19bW3OBmhCaUZx34vQ1tf3Z2NhdkAphnDa3MW+V+yZpkrq2tpfdzLv3d3/1dKisZUEItKa7L4uiqfa+V451OJ+1j/+Zv/gbAzMLtiy++SHKHe3bKhKOjIzcI0LJMYTBSgUAgEAgEAoFAIFARSzNSageqiT6p4aImhRqkfr+fnmHt0c/OzjKJNVUzbDWaddnWe9pfy0gNh8OkQeHpliyOauOpxdAktpaRGo/HK/fH8RgvmzBOHaiphaAW786dO3PaI/2dhvX0/GzqZgqLtAV2bAwGg9QX7C/acH/44YdpfJGxIDRp3aocQr3kp9ZRv9FopDIW2aZzXu3s7KS/rT9is9mcC2IBTMezDXig7EHVkM1kYl+8eDGXDgCYtXG/309tq/KAbJMNcf7uu+8mlopaWdZJWQNqd58/f576nOVR35aipIgWOl8830lg3k9FWRmbnFod5/kMasjY/8pI2VQR+m6dX3WwU57Ms8/VkL5sV5XBLLcXUIi/Y108n1Tvs6pQR2TPH8E6k6vvDccU7z87O0uy2jI8Kh80oECdoae1ToRlCTWMvOdza/tibW0tyQ7LXN+/fz+ty5raos7Q+5zH5+fnuSHIdQ7wOhwO55Ih63ea4Jt9qMFQyHTzuru7m2Hr1Y+KcpOhoctCmVSbOqDVaqUyKTtOtp7v4vXtt99O7U2GgFr1RqORZAmhPo3eWr/MfLLQMUi5p75gHEPW7+ujjz5KdSETQtbt8vJyLhgP32P3kopF65T3u0ajkQlEoekFOD5ZTl1HOBbVAoJ143fe2lO3HC8K1KFX1onzRvd0LLf6gvH/Ve9TFbYuXr8pI8rxxjHDsfZnf/ZnaQxS7msS8rz36WdVx1owUoFAIBAIBAKBQCBQEZXDn9tIbprIUSM12Yg71ASdnZ1losDxBH96eprRqus7V22nqX4/lpHq9/sZW3PW8ezsLGkmqLHRBKjWL+Li4iI3MlLdoUu9NlMmkJoKy95oklNqaTWUsWWkNJT6dUE1b+pfQm0y+4J1IwMCZCNHqd+XIk9DsYhfh7aZ1ZRrPWyo3q2trQwTxXmysbGR0eyprwrrp9pd1Zjpd6PRqDIjpREG+bd9p8dQv/HGG8m2nr5RjMz3+uuvp/tYN9ZJoxpSu7a/v+8yUUDWd+EqKFNjI86p7LNservdnoukCMy05A8fPkzz3SYDHAwGidXiXPJ8kzz/qUVgf6syW5NL8l2aFBqYyYJGo5HqyzqxjsrYqcOgq+QAACAASURBVB/eKhKqe0m5le21Udo0pK+NNnh0dJTYAytD9Bmcs+12O9enY5HIaXp/UboR6wOxsbExF95d0W63E8Nto85ubW3N1cWrhy1XVXDdH41GqS2tf6jKpKtYKvssOw8PDg6SZprj8s6dO5nIfxoBkEwdwydfBV1bLRuqLJHKb5affqM2afBbb7015/MGzOTbaDRKz9IInxox1CtfXVDfULt3076w/mc7OztpH8f215Q3no9XUdlXsTeyjKKmH1F5BmAujQbHJOuzv7+f+k3XP44LL63IqiM2K1gHtf4CpuOW39l9RKvVutYyWhSxQ+12O40pyi71w+Z+nPOmyAqiDmZqYdM+QilmHSzsFAoKCi51pid0k0fB6Dkme5TlopNLTULyQg1r2fr9fqqT3cwOh8PUcayb1p/PU+GjYYRXCTVXY301NxaFGQccD1LqaEgBT8GiBynPSfMmciXohGf97CZ6a2srUzbP9GhV0M2KbT/dpOkhnOVW52i9H0DmYKSOsFZw9vv9TPvoHKvaDmoKxY0Rn8Gy9nq9NP/VlIWO1qThmfdre3s7jSc+U0M9M3Qrr4eHh6nOXt9XzY0FzDsie7+35h/NZjOzkWef3b9/P3NwZv+pqSJlhneQ0gNVnTLDO0jpeLCmKay35t7hZzq+7Yar6oG2LPTAYsduo9GYC7ICzCse1LySZeTGSBUswHwaDjWBsRuNVckR7X8NnAFM68ZxZde0Xq83Z9YIzOeNyzObr6sufKcGa7L5yobD4ZzCEvCDU3DMqeko57uaO6rpOjA9XPEAo4crYHqo5MHyD//wDyvXj+1szeZbrVbG7BCYmcjyM7b7K6+8kvqVdaLCqNlspnWCfany5iY25EV5DzVYgZWdetC3snrVa7BnqmoD1Gh9rAuK5l3jZ3r41TQ+fGae4kqffx3IU2J56YuIokAddaNoL6+BKLzAJzaNha41Vtng1cN7d5j2BQKBQCAQCAQCgcCKsbAnmZ7krfZxbW2W6ExpXmCq6VNnXT4DmGooqKXQ0/F1ndyV3dDgBcBUa0ktljVTOjw8zCRM1fqznl4iXPvuVZn26albKXX2mWXbOp1O+i01NGqi6DFS123ap9B3WzML1rvdbmc0tlVN2fLeWQZqBqQJIYFZ+3sOnhqmnlo/1aBZJkq1u9T6lkmmvEhIVjW74ZiwCQ3v3r2b2CY6n7/11lvJmZoBTigrLi8vU11oTqHJicn+si00aIrVQGnS1CpQGcC+0rlpwzWrptGmFNjZ2cmwW54ZnCdTtTwsQ9U+KhPcIc/0xDJKGipczd4AP/CMlyZjVcFo7HOVFVDG1yanJPs0GAzSmCLjocED2Gacqx4jVTejYxl3lQ3q8G8ZTGW6bRt45ohlzAoXgU1gCszaj+zEeDzOBNAYDAaZZOXKVtkAFBpK3ZqVamAUPoNyZX9/PzFlVeG1n8of1l2ZOJaD+wWW8e7du5kARGrya8M/6zvtdRFLnbyxYO+xskSTk3vmznlJ31W+5aVFKCpLFZQxF9T1VOsGzKd/YRk5xpQttQmnLy8vV5a+gqi6byy67yb3b/r+MqZ2nom77kXzTPPy1s9l6x6MVCAQCAQCgUAgEAhUxMI+UnoytKEF1UnNJqck46H3E+q4qLbty9ovXlUX+1y1h9dEr6ynZdmOj4+TJtPaCW9ubiaNoGo68nwgvHItA++5qjGx2nOybsowUdPC/72EvHVrM+pg6LzEn7eBNfPspJU9oyaW7CYwnzQXmE+qrAkA9V4v8bMyNF7fVW0fZSqoEeJYou/BgwcP8NprrwFAuj569Cj5TdnwsoPBIGmMqbklC3VwcJC+o8Z2NBpl5JIyP4uGcLUsjWqMWW+dGzo/+G5gPnCL9bO5vLzM+Okpe0PUMW6LbMHzwg1rkAuFtqnHnnk27XXCY1AIy8oAszGmTLudZ2dnZ+lvy7ZpqHNNL5DXL8vWt8i3wqtfnp9vq9XKsEIee699WGdf6TrnMeAsq/XP29jYSPOIeweVeZx3lplS/yll5jXQk9b37OxsLoBDXfXVNVL3Mnw/WRuVB9xXsL9YLu0PL0VH3XPL0+ITyozzXhvshW2tocTtWlOWNVt2X1Q2eIWOf2vRorLAphPRtdeT2ZaRWpXfURmrg28KyjBTZX6fh0VDnBdhYdM+XSCtMNYCWhM/pbB5PyeZTjx12swzv1rlgYoDn2U8Pz9PZbORaJ48eTKX4wKYN9XiYdLLvWXrsqoDiYLvVhrbOsPrwm2j66gTZdly1yHsvQngTbo6I+3VCW+jzLbVg7sXCcoeoDSvTNFYssFAdGNlF7dFTPs8EyIexhkN65VXXsErr7wCYD5Pmd0wcFE6Pj6ey08FYC6aGjdKuinKM51b9CClGz+rVNHNg27CeL+N3qeBWwg10bEmqPour1zLIG+RUpmn9bYbN29u2fFa5n3LomgjqWNAcxsC8+a93GhrHik9nAPzuRF1TPE9ZTdqi8IzwbSHXm+s6tU+Q00sbZ/VbZqoSta8NcMrf6vVck3i+UwrBzWKnw1coUGsbOTA0WhUKc+cRd6hQ9vOkz8awACYD4xC6H5qFZu/sih6p9d33rixiuOrnlu1HIvea8uqezNLEOjabA/kajJWlAO1SHFVB6q26U3uh67CVWtH0ZwoUgaU+X1VhGlfIBAIBAKBQCAQCFTE0mmLLy8vM3mk9IRnmY6tra254BLAfPx6a8LEd+h11VCtH9+pzq/UJtPkYGNjI5NnhWZNGn5Ww+wuE+RgWah2yDq4evlErOmORx+vSlO2ahapLMtVB4qcaT2nfJ0L9jNP42nNejRsrn7nzVPv/zKgI3W3280EYSEjtbu7mz7T8Lc2PwzNXV6+fJkYKJubw8sWr/X0WINFgk0AWe2hZ5aickrNnfX/ZrM5lxePnxFF42JVY7+MKYjHZpSZ+1642uuEF5hBzausWabHZlimHpjJxjwHev3dKs2tvHmb1xeTySRjXVFU3lUxh94Y13lVxFJZtlnZbxuOW8Ofe6aA9jocDjNmnGVRtDZ55nAasMSyHqyX/a3ey3feBpRZL68aS973N1W/IoZb29+aMRJqBq3rhl2Tl7H+uAnchjJetQcswyytej0KRioQCAQCgUAgEAgEKqIWRsoL/Wk1TJpEkFoYq9lT3wNrn8p3rQL2ROv5BmiYad5HXxCtEx3hqeVqtVpJC6/BAGwyves8+XvaF8/unrDal+t2aLxJ7Xad9fPa3WOkPJ8P6/uj88vzi+DVY1PKlK8syLyur6+nv3klC7W1tZVxJj87O5sLZwzM5s7R0dFcAADAT7Srml7PF4z3LNqHeb9TDZkyU3lhfD0fCe2XIq39qlHETFVlgz2/qVXLB6/cHiOl88YyUoSmC+BzdVzZMeatTddhPVGmTfMc6fPuWVV5i3xjFmGpeLUsFcvf6XQyicbVx9Qm8FVLkzpQxLIU+RUqi1vmmd73y8y1Otb0OuZ6XuCY68JVzEfe957vIpBdkz3G9SbhyfjbUC6LunyeVlW3YKQCgUAgEAgEAoFAoCKWjtrnaVTH43HmdE7NUafTSX4V1ndBE2mpNslqelfNTKjGi0yThmZneViPzc3NVDb6ctAfSv0jqNGcTCZuhEP+f13Mi/eeIrv/m8Z1a0pW9b4iraXOAc+3x9POVmGdripHVZB92tzcTAwtr0wB0Gw25+YRMNUEk23inOH19PQ0zR8b0h3I+oS12+2MhrrORIhlWTwrn1RG5kUO9LTURfet0mdqFT4Lq2KmyrSVRtXTuWQjvakfrOffxv/tGCtbnjpQ55xetKzL1NFjvzyWylsXy2jztb8sS9Vut5OPHGWSRj21UWlXhapzva53VUVe2ao+07u/6hi6buuXq8pAWPngRcC8KlLlbcFtKktZXOWfeN11Wtq0D8huHDxTAjXx48HCUvy62SgK0VoX8ihNb3M6Ho/TwsvyUyhvbGxkspFzIwjMHJ3z6mfxTRzYN42yG82bNBO0Zcj7LG+ToH8X3a8ocgCuow0YYGJrayspFmwYX1VC8GB0fn4+lxWenwHzASWs6ama3eqByh6uyrZPHsqaPJRpz2/KfF7l3LiOxc2a9k0mk4yTtwZH8swz7UFKZXZRThiirrar2lar6rM6n1FknmMPVzpeyh6u8t6jJs56uOKzbzLwk+I2mLCXcerX+xd9z1Xvuur914EyezNttyKl3W08QH3TUcbc77oQpn2BQCAQCAQCgUAgUBFrt8VsKxAIBAKBQCAQCAS+KQhGKhAIBAKBQCAQCAQqIg5SgUAgEAgEAoFAIFARcZAKBAKBQCAQCAQCgYqIg1QgEAgEAoFAIBAIVEQcpAKBQCAQCAQCgUCgIuIgFQgEAoFAIBAIBAIVEQepQCAQCAQCgUAgEKiIOEgFAoFAIBAIBAKBQEW0ir78+OOPV5Ktd21trfZn/vCHPyz10Kp1YlkbjQaazSYApCu/m0wm6Pf7AICjoyMAwPHxMQDg9PQUk8kEANDr9QAA9+/fx4MHDwAA9+7dm/vu8vIyPesP//APK9Wp7nZdRbLmjz/+eOF+Klu/KuW+6pllnlW2Tj/60Y8qNWjRuxuNqQ5kbW0t3WevHsq2Ydn5VFQnLQ//5lyYTCbp7/F4PHfV7+zVQ6PRSO3hXTlf/9t/+29X1qlsH11XIvOi/qqjj5Z5fxlUbaeqcnyZ+VumbleVv8wz6libvPcsWreqv/PuX5XMu0lUnU9eu+hnnjzm32xnvXqf6fWq93i4DhlRBraMy8iVMnXy5pK3Nug6CkzXoNFoBABpHzYYDNJ3vK/Vmm6dO50OAKDb7aZ1hs/UNYt/e2NimT0RsUx7LruWee9eZtx5bcS25T653W7j/PwcAPDkyRMAwN7eXrrnvffeAwC8/fbbc2V89uwZnj9/DgAYDocApn3X7XYBzPpOy8JyFPVTMFKBQCAQCAQCgUAgUBGFjNSqUPUEvAoGq+w7eUJtNpsZjQPrMRwOcXp6CmDGSPE6HA7TaXd9fR0AcPfu3cRE3blzZ+6Zg8EgaearQtu1bJvZ+/R/209lGI9VoEr/16FBLvusm4SnyVx03NSBIk3sZDKZY5uAaVkvLi7S3wDm/uff3pizmlqdm9QU8n8gq2Vapm7XDavBXuYZdf/2JuRyFdzm+VsH2P5l+2jR9ijznn+K8NpWrVT4mcrlvDZcW1vL7C9UbnnrtH3nbemfMuVYZK9SN9RawWtDrlVci0ajUeY+rjeXl5eZfltbW0t9b3+n/ReYIm+/qXsctQpj/5AxJIPY6XQSU8g9t7KDdi/ijcWqfVN4kKpjgtZhZnUTG3c9QPGqmzMAiQI+OzvD4eEhAODg4AAAEu3YbDaxvb0NANjZ2QEA7O7u4v79+wBm1DBpxouLizQwloHXZkUCy242G41Gpv914FUxJ1sGdZrz3cSz6kKeSUir1cqYyN1EufLM91guzhWWcTQazS1QwGzBuri4yDXp07nJRazVauW2j52zVet106hjnHnjwqvfVeaTeShSxlT9LLAY8sar129FyonAYig66BDj8ThXVquZmVUGNZvNjAma/n1bD1Rlcd3jUPd2bGt9L/di7Cv+PxgMMm3M/Zs+QxXtdk28iT6qQ5lynfAOVHY9bzQa6T4eoLjn3tzcTP2yubkJYHbYury8zChwgeXHXZj2BQKBQCAQCAQCgUBFlDLtW+S0lmeSUnQi1pPnTcAzl1KTIX6mTBQAHB4eYn9/P/2t2NnZSWZ8r776KgDg0aNHyaSPp2OepgeDQTph142itqfGpMgRU7UrnulVHjW7CBZ1BC8yAdN+LXIEXrZcq4CdTxyX7XY7YxpntV+rhLKUNmiEsk+cM7wOh8Ok6bPfjUajXOdk1SIqg2LNbT3NbRncpMZuVf3Ffihikr35W5ahquI47z1D7y+LOtuqaiCHslg1S699Z81UVNNund+LTFq+KajD0mVRlJEtHgswHo8zsppXABnzZF7b7XaGpfLm320xG1vVfKqCq/YBwLQNPUbKmspzneIeTZ9Ptw3PtE/vK5KldaNI5pbZ/xTJheuUEzqevbnB/mG/nJycAJgGcGNQCjJSKvu4z6jTtC8YqUAgEAgEAoFAIBCoiFqDTXgaSQ9F/jW3QZOimgrVAFn2iOzT3t5e8o2iLebW1haAKSP1+uuvAwDeeOMNAFMfKb6LQSn4zNPT05UzUnoSt5oS1nc8Hqe/aW/qaZC9kNV1OMiXqUfeZ9ZWWa95YUiv0s7epMbWYxI4PrvdbhqXagdMrLrcykxaLauyTyybXvm3ZaQ8nx7VzhJeQAnr29hutxf2k6oTNzl+dI7m+bF5rIbKhjI+lyofLJvthajX71bdPkUaas+PSFk8i1WVtWzwCFt+z0KA33U6nTRnvDQDFrdhrtSNVVm6aF94Pkx2vHtBd4qYKfZbt9tNazA/a7VamXfq+LltDGNZy6RV7x2AWX+0Wq3Unh7Dxz7ifowBxRQazMDzy/X2XHqtGypLvTFpyzMej3PLaJ9LXPfY8vyiG41GmktkopQx3NjYADDbh7MPlZGy71gGwUgFAoFAIBAIBAKBQEXUwkh5kbJs8lovgaiXkNNqAq86uddxsvfKbxmpy8vLpEF/+fIlAKTEXk+fPk2nYtpmMkLfW2+9hW9961sAZj5SvV4vc4rWBL5Vo/aVtUm2ber5rrD9G41G0tawTrx6EQy9ctStdSnjg6UhTVl+ZdmsJtDzsyEW8d1YBdT/iGWkhvLOnTvJV49j6joZKW1PZaCA+bCk1Ajp1fpIaZ9Y+UGor6L2s2pv9ar+BatGkV9Qnm36dTDwWp4iTbDHVlXRpHoMk+dzWZQYs2547W3fz7GztraWy9ro74p8EFYFll/lm8ouywITm5ubSW5b/5zBYJCeoZpeLyllnXXwcBvkbFWopjxvvwPM+kmTiNp1SCObEuyT4XCYWYM7nU5mj/JNasPriiTnsXO6fijDR/BvzhdlpCxjRsZjPB5nWBNl+evomyJ2XK9F/nTeuMvzsdbf6jj3mK464a01tm2B2T6D+x/OrUajkfqFPlK0HtN9iu4t8sZI2bFZuMMo63zvOSnbzY4XytOjty3VreYoee9fFHaxV4c2u4EbDofJDE8PUMB8gAmGOn/rrbcAAN/+9rfTQeru3bsAphOTnc9DGQ9S5+fnczT/snVTeA751mGP9PVgMHA37cB0cJI61U3IqlBmHGpZdRMNzMZSv9+fq59Ccw+U3dRdlxmqZ9rHBZXjDQBevHgBYLYAXIeZjhe23+Z1OD8/T+OL136/nzlAeWYdVn602+1Ud47B9fX19LduNIB5E5hlUTTGdYNrryojrXzzzGvrBtuE7wOyZhzeoUlNkbzfVTlceeZ+1wHvcGgPUDTPaTQaacxyDGs/Wcf066iHnROe4/V4PE7zkPKN9d3Z2Un1I3jvyclJ+ptoNpsLO1wXlb/sfd+kwwCQ3UNwTKkCR83gOb64Rumh2AvIw/9tyObJZDIX6ECfdVvasKyCdxXl9dxFvP2erhO8VxWvwKwfjo+PM8/ink4PbNqnHpFQR50Ib/x5ZqAExxbH4XA4zLgGFJmZ6juvUw7aclxcXMzJMWBWp2azmTlIsX2UPCDqUJiHaV8gEAgEAoFAIBAIVMTSNi+qyfQCD3gnZntS1tOgl4CTqJMB8Jx2VZPMz3h6PTk5wd7eHgDgyZMnAJD+HwwGePDgAYBZQIkPP/wQAPDee+/h0aNHc3U7ODhILBZZBDJSw+Gw1hO+FwCEGotut5txtqQ24uzsLJWJ4Ml/e3s7MSE88Xe7XZdKXhRFfa3f8Z3Uzq2vr6f6sS7U0j5//jyximwLlr/X682Zt/A9eVr3VZsj2P85t1hGapnv3buXm+zvOhgz1Z5a8z2l3JWJ4v15TFSr1crUkxqmra2txIzys/X19XQfx4H2ZZX5VPZeK9darVZ6NxkgZWutJlADbdTJAHigmbG2RVGgBUJlsQ1OkSf3+X+ZwDarHp/6Th1rlA/sJ2qVlTmknGB/eUEEVl12vSpseOzhcJjGFy0c+P8rr7ySZBzHI+t0cHCQ0c56CUa9ct02XKc5s/ZNHtvR6XQy5ngasIprkq6f7E879gaDQaGpPuUOsSpT2bJtrOyLukYAxYFOrgu6znBO6Li3lhyU1WdnZ6n/eA+/G4/H7j7SppVZBjrubPvruFNLDX7G33JM8f+zs7NUB+7vlKW27h36rlVZGNi1Qy3ElC1kublP5f+dTiftEdgWup+nzFOWjWCdvIBXRQhGKhAIBAKBQCAQCAQqYmFGSk+N1sby7OwsaVx41VMuT//Uxqg9o7VZXWXYRevA5oVWpFZ9f38/MVH0jWLdtra2EhP13e9+FwDw0UcfAQDefvvtVCcyWIeHh3N/A/OhG72T8qLwHCupXVAtGOtLbdje3l6qJz/jSX4wGKR2Ubts1erou+3fddaJ71RGguV89uwZAODzzz8HMO03jlsyiLu7uwCm/l82TLCXGPYmNLI6x2x979+/n+aW1aaohn1VWlodE9Y3Sq/8Tn2qCBvavNfrJZlAzRIZ0O3t7Tl2Cpi2hcdEEavQflrto2oCKdfYV5PJJM1v1tv6pljUOc7u378PYN4awF6VBSxilj3/KRvoQO3Xtb+tT5xeq2oAy0CZXG1v9g/H1sOHD1OdOGZZVsp41fKzX6/DYd5jpqxvl/rQ0MKB5X7jjTfSfWTeKLsbjUaGkbq4uMj4vd6EzPMsRgjtV3sF/GAmdcILE22ZlrW1tSSTKKc2NjbSHGO7c23d2dlJ45I+2OzL8/Pz9FyV9Xm+KtcRXKdM4AP1E7NWExcXF9fCShWF8tY9Eee0+kISGtSA65hld3U9K0oDsQy8MW77vNfrZdbMXq+X2oGsE8ff5eVlkgccb/wfmDE6fKamBroO/3g+3/qFDgaDjF8/+6Db7abycg7q/PEsYZYNsFM444oWCs9kTDuXhWXHsZP6/X66j5107949ANNNrTXb6XQ6tTrNa1nzIu3oxoflfvr0aTpYkErkQHr11VeTKd/3v/99AFOTPmC6ePF+fRYPUmwfttcieW+KhJpufKxp371799KBgoss3318fJzq+8UXX6Rys8w2ipya0XjR7+pcjPUAbANEnJ+f4+uvvwYA/PznPwcAfPrppwCmbcwgIIygyEAgGxsbGefF0Wh0oyYIuomyG009SLG8NojLdWyAdMOcF4VPy66bdZunjHW6c+dOGo/2ur29nTmw6AHBjvvxeFxL8BaFt8nTjQ3bX4Nv5CmWrsMkSc2H2Ma8qvlRUcRDu3B7ZnM6Fig/2Qbn5+dzf+t3egivE5eXl5lDnkYj5QHztddeS/dQLrOM3Oi22+2Mc/8qzc7tAUrntDV7VbMimvax3u+88066n0ojjkHNQcfnc27Z8tRdR4WaKunG0DrN87vhcJjqYJU24/F4znSdV7vGL2P+7Jm82jHR6XQyQX82NzfT/oZ14px5+PBh2gfxHq63+/v7aXOr77OHSPblqkytrvrezrXxeDwXyGUVZbuqTEXQQ4EepKwim310fn6eCRaipn36XF7tuNM1uurYK2Puu76+ng5Q3Nttbm6m8rFu3JOOx+P0N2Uf/9fod0Sn08kEr9G6LSMj8n6r/aSBPCijOTd4z8bGRppD7FdVqNm9VNGYLFufMO0LBAKBQCAQCAQCgYoozQHnxVlX8yqeXnd2dlKABZ4Wqdk7OjrK5FLwwk574WrzylIFXjheL9Q5T+U0D3v69Gkyw7PmYR988AF+8IMfAAC+853vAJiZiwyHQxwcHAAAvvrqKwDA119/nTSH1HYoO1YHNW+ZFDVbYb3X19dTXeiQTu3s+vp6YjpY7l/96lcApgyV1dwq41U38hzkm81mKj81lE+fPsXPfvYzAMAvfvELALM2fu+99/Cbv/mbAIDf+q3fAjBjQ09OTpLppoah9cIPXzdU+8+rmutYh8rrZKSKcg6pdtnO4VarlQljTi3S3bt303jklYzU1tZWup9yQ+cvy6BBMOpmO9TJXNkna85G2Xd8fDxnuqtl7/V6qR08s8Q6QE1xq9XKaLG9wC0sR7fbzaQS8EIs2zYfjUYZpkADjti8H6rprQMek8uyaVAQMjSUeScnJ6ntKfsop9fX19P4JDzT2brnnBfkw1p0ADMNOcvNtWpvby+1ATXVrPfGxkYmYIiy8KsKp+2xbdbMfnNzM8lmDQYCTPuEVhI2JclkMkntQsZR19Q6AmioRtuyMfod209TVXAeUa7x/wcPHqTyKvsOTGXe/v4+gFn/at4iG8hBU8ysGpeXl3MBuYBZn0wmk1QX1leZn+sqn52bXioB9sNkMnGDTgHzTDvHGGW9Btjx8uPVsX/Q9TXPnHN9fT21OcfTnTt3MqanytRwr8s5RNnRbDZT/XSPr64DvI//ryJlgvaTBkWzAaw0wAStMPg7dUGw5VdrkkXLH4xUIBAIBAKBQCAQCFREZeqjKOwvGSnVKPPkzhNzv99PJ14yNfz/7OxszgnOvrMOzZiW2zJRGpqUGiAyUhoqlpqyb3/72wCAH/zgB/je974HAHj99dfn6vvs2TM8fvwYwIzZOTg4SFpZe6pfxEfKg9WYa7JjbX/2AbVILNc777yT+pN+RaqpJiPCdjo9PXUzYy+LooAVk8kklZf1+OSTT5K2kmDgj3/37/4d/s2/+TcAZlpo/m5/fz+THFmT83l9cp323taulxqijY2NNP9uwjlc3+VlHwemZbXfra+vJ60RNa+UGffu3cswUdQ2aXh7tZe2fjoa5rVuHym+E5j3D7IsNn31Dg4O5hKkArPx9/DhQzdpY51ji5pGTTpt/aGUGVOfNX7vJXm0a4GyJtZfQn3orJxYlR+iFxBDEzqzL6i51fupXWef5smhvDm3Kmbq4uIiPVsDM3EuEeqPyzpw7im7q+syMNVQW0aKWETjrO3jrUl8p2VvdnZ2kp8xKmMEUQAAIABJREFUAznxns8//zzJbbVE4DPZn8p45/l4L9NP4/E4o+nXkOXWD1L3SjbQ1tbWVvrMhq/W9A7eemvnoZdqYFW4vLxMdabcoyXIy5cvky8yfchpqdTtdm/cX8qzStJ9oWX1xuOxmyyZ33ljrE5GqsgXXn291NeYV45TygJlajiH7L5c/Zi5Rg+Hw9zURnX7whPqa6bBSshIsS/YBmq1Qmi6EY85DEYqEAgEAoFAIBAIBK4ZlRkpa9/sJaXrdrtJK0RtEu2yO51OOklSg0EG4euvv87YAvf7/Vp9PrxTKJ9PduPw8DBpcVmefr+fNEaM9PZrv/ZrAIBf//VfxzvvvAMAGc3R48ePU/3og3N8fJw0BNYHwWPKloFq/6wN8+npaSoHtRdkn95//328++67AGYaW+Ly8jKTfNQLZ6r9tagmM+95wFTLwDrpuKHGlf3zb//tvwUA/MEf/EHqJ97PPvnkk0/S32pH7GllbwOUycwL3XkdzJTHQllGygtTv7W1lbRcZHh53dnZSWyBMlHAtE/svFWfHNaZmsK6NYCEDUd8dHQ0N5b0+vLlyzRP3nzzTQAzVmAVYb8tvvzyy/R3kb+h9ZHShJU2ibpG9POin3rtbhko9ddaVfhz24fNZjPJLutrp36kXAuoyfSY10ajcW2af20zGzG11+vNhTrWcu/v7ydNs11zNjc3098eI+Whjvlk/dZGo1EaO5zvm5ubib3gesv6DgaDtBZ7bKg3b1fFGFo5oAntbWTBwWCQCb1M3L9/P/Ud90q6r7K+PC9evEhj1D7zuvyj+E6bOoUWOE+fPk3jkP7k6hvmlfM61tciZseL5uxF57RMt8dIec+vC3mh773y63psmZeLi4vctCWtVit9541b792LysOiMPVeePLRaJTOEewLTatko/UpI+U9n1i0/IUHqaKBoYugOnIB080sTQu4uXjllVcATDcQ7GC7+dGFWxdzawqyjBD0QjWyHKQ99/f300abwqrT6SRzHJrx/cZv/AaAqYkfFwB2Ls34Pv300yRYuKCNRqNM/gI106gqCL2Jbilr3XCzPQ8ODpL5EYUg2/3Ro0d4//33U/2AWchwNZVgn6vDsLeRr0OQWNOQ4XCYGUO7u7sp0Mdv//ZvAwB+//d/HwDw7rvvJvO9v/7rvwYA/MVf/AWA6aaXz6W5hW4ur3NxqgLd+NxEYAwNTWyDxrDtut1u2rSq+a8enIDZgX17ezttDHmA0vd4uYFsXibdeFYx7SsrWzwzJRv2nfXf2NjIOABr/fJCjCuW6UvOcc035F3tQcdzalZ5kpeTqt1uZ0wB9eDl5auqc355ckc3ony/lWEnJyeZnCSqKCgKWFAnikw7x+NxZtOu4X45ztjup6enKTAQZbyGvufmnfUGsvK7rvrmhXTXQEU6t7n2UmbzHi0r5xEPXePxeM7pHPCD0dgyVYE9vOnfGnCGn3FfcXR0lBR/vGq+L8pDa+Z49+5dN18R77MbyroVaFelwWE5KNt5EByPx2k88sB+Feoec96zdfx5e0rP3I9XWy7vWXmmsYpF6lcmTLeX17Xf72f26BynOoa9eltZ7R1q6oZNo6Prgwb+sDnwOF/UZJnzTPM42jWhjvrczt1hIBAIBAKBQCAQCNxiLG3ap0EMNMGi1RBrQArN9A1gLgGapymt01RJT7ZKwwPzznY2yenu7m4KbU6TMTpQ7u7uptMxtb806/n888+TmSDbR5NCKhPF7+oK767lV3aFUIc9aivJID558iQxaUxoS1O/1157LWmaWH5g9SZlniaTdSKrsbW1lZg0JkfmOPvkk08SE/Xnf/7nAGYh3S8uLjIhWj3TvusM5EB44T853s7OzjKs3HWaH3pJL22SQ09jfu/evQwjpU7wHhMFTLWcVqvmOQHzOhgMMpqrOsH+6Ha7qR40jyX7tLa2lkmSqMF4Vs10qJmahiMHZmy8holXc448awAdk7a/NaADr+vr65nPdOyoHKkLqj21rBkwYwMon/f29lJbaYoIXq+LkVJYlnIymWQCqmxubiZTNzu+gPlQ6MCMMWg2m5kAI2traytLn5DHbgKzepJVOTw8nDONVWiCWsoVBnm6vLycSy0AzJs21e0ekBeM6OLiImPp8vLly7TOsk7smxcvXiSLD8pBlnsymczJUmDa99YcVpnKVa1Tduw3m820n6MbB8t9dHSU5g/HnA2MdBMoYpGUhbfmlBqsx8oC71mLJN0tgjInXiAMYD75uybn5hrI8acmyzZYHMuvQWzYj7rOW3im1FWQFxDGS4ukjBS/t+cKwE/YXWS6mVeWqxCMVCAQCAQCgUAgEAhUxMLhz71AApqYjZoWnoo1GSxPjBruGJhql6wmWk+/dWoxxuNxKhNP6Qz7eHx8nOrEMr733nuJ4WA4bdplAzOtJtkbXp8+fZq0v3ymamytT9iy9ppFPg2aMBmY+q1Rk0cneLJQBwcHScvBdqJGs9VqJc0ANRYa4nrVCRzVD4xjSZNsUvvFcv/DP/wDAOCXv/xlYqTYP9S4ewEO2u12Ict2XeyUF0aVdXv58mXSQFn/uOvQ+nG+qs+MOn0C84EllJHi38pEAVNNsjIHwLxPptXIa7JXe+33+7Un5AWyQTY2NzdTmTn+2P69Xm9Oo6e/n0wmmZQPdQcwUP+EvLmkDD1lhvpNaZhf3u+x3sB8QCENSqO+OcC8r05ZH4qqsJpj9blVn1VgKt84tlhG1k37V7XQq2Lh8ywLdLyQlVFWk2OPa9NkMskwb+yn8XicCYOv60/dDLfHRAHzvid85/HxcQrSxKBUxGAwmPNdBmZrmo7LVTGIXoAdG8hjNBplmPPT09PUFzbw0+HhYVpf6ePLdajZbGZYdfUn12ApxHUFQVHfWI49lrvf78/teVhu/m7V5QL8fWpRmga93/qqeSkidCzbUPh1y4eiVDCsx/n5uetTyPpR5lE+NxqNtE6z/5TJtelHut1uZo+q4dDrGHdFIeM13YgNMsH9Q7fbTd9RTqjVThlGqnKZl35CIBAIBAKBQCAQCPwTQyEjVRStRW3P1WYYmJ5kbbhjamKGw2Em6o36M3inxDqjhOg7WSYNBw5MNQs83ZKx+fDDD5OPlE26++LFC3z22WcAZj43jNr38uXLzMm51+tlolrVHRnJs2W2PgqvvvpqCgdOlo1asWfPnqXIi9Sssaz8PeBHXvKwaP28CFyejboymWqTzroAUxaK/UJQC/Pw4cNMxCvVrqwqfG4ZqD8K20ATEVO7aaPdXCcj1W63kzaWn2nCXctI6Wc2DHWz2cyEyOYYPD8/T/OU/Xx8fJz+ttGw+v1+0kbVCav1brVaGZ9PZWP4mUYdYvmUbVsFqK0fjUaFvmT6N7+z92sYXFteHaM2Qp/6QXnJfeuU8cp8sL1VC6mhwYGZ/N/f3091sv4Cm5ubrm/AKuRAkcwDZn3Asb6+vp6xoGCE2bOzs1Qn1pfjUtdbfuZp8OvSqnvyO6++OvZsu2uoad5vGWz9rm548lXXRMBPBq0hm20UtfPz8yTDaBlDH0sde9aHXMuhTONN+CBZ1qnT6VSOJLiqMOEK9e/XEPyE+ggB8+kCLGPNOmsUaPXdsfVfZg55PoVaF2A6jijP+O52u51JyKv++mSb+AxlQrmGKyNl52PRPqkOeIyUJtbVaH0so1rHAZjbA3iRCJctd2nTvrwB3mg0UsG0QnR6VSqOV7sAeyFmtZJ1Ti4dcDYUKRtf82Ax9PcHH3yQnClZTw7KL7/8MjnGMmeL5u6w7dPtducmIOtJVO1UbyGyFKvm6tCNDDd/7C8eEo+OjtJByppnjsfjjDnPVX20TJ0slPK1AuX8/DwdMmyOqePj48ykU3M+u9n1ynHdByhgfo4RZQ5SywYuKQPN78S2taHOt7a2SjmtqvmYDXHODcjZ2Vlm3mrYarYL768z2ERRW+qh3gY20A293Qh54evrBse4OkTbw5uauegG0N6nV1vuq3KMWJMKvdaZO0/L4OWB4yaC8o3zhfIcmHdYBqay24ZNvw4U5WrRsO0sE+cX040cHR2lNmD9WO/RaJRRCGgaC2KV4bS9/1kO729bnpsMWqDytUxOpLW1tUzuJw3lbpVGlG/b29upX3W988zReM91jVENMGCd/4H8/rmJoE1FKSs0OJpdR3XPwPutUkjN2vT59rNlcNWhEJg/MLBOqpjk96xHu91OhyQbyKrRaLg59+yea1UmpV5+Jx1rLAfLpgdA1pNziG2he6k6FWNh2hcIBAKBQCAQCAQCFVE52IQHSy23Wq3csKBKeVsHZtWYrgpKpVM7xHLwpLq9vZ1CGDPk9xtvvJE07Db4wqeffpocY8l+KHVqTeo0rPaqAjMQ2rZWq6waGWq82AZbW1sZZ0s1lyrKdL1qXOWEqKwjMG+eY8PI8tpqtVJdtM1WHdK9DLxgE6zbixcvbtS0jxorL+S1fmfHu4ZxtuVWh3obrlsdtjl/T09PM0Em1GSjSkLeZdoszxxRwxGrtpLXVTNSyq6USepIeJpGrYfnvM17qjC5dZs163M9poDjjvOG6Pf7qSyWkep0Om4yzlXLBc9si2A9zs7OMswSWUgNSsDxSGZKy1/ESN00blL2evDcDqzMbTabGfPWTqeTZKImCAWm/Uq5xr5W5tEGVVKW2wu7fZ3QYAP2/Xl9d13BJjxou1kTy7W1WcJ3y0htbGyk/rLm29of+vs80z4NirJInexvdU/tMYQ2aJAGFrKJq7U/bUCTdrudCeRRt2mf3d8p26frpk0ETauXRqORsUrStvAC2S1b7tslMQOBQCAQCAQCgUDgG4ClGanLy0tXA+KFqgbmtYQ2FObFxUXmtFu3NkoZKdVCALOT7SuvvIK3334bwCzJ3M7OTiZs7ueffw4A+OKLL1JoWWqa+Ez1HVFn+jytX131LQpvrJpMaicti5CnYQHmHXuLtNB1w9MIe9o41lPDTwN+iG7Vwty0Zi8PnmZdQ/dT+3IT4c9V2+r5N7JclqW5vLxM49DO+YuLi4xvlDJT1g+q3+9ngid4jM8qocFWrAOzagSJq0Kd1zmXtD/yQsuqv4fH+BaV0V49tkrnqpUr+lmdyPMpsD5zqsG1fqSEF6L7OuH5nahfhE3YTS2zBv6wTL06WZfxa1kGdTh03xYUhYXXfrBWORqQR304gXkm0KYdUZ8n9qEGaGE5VhWspmwY/G9K/6pFjvoRAdO2tvsHyoI7d+5kgtdo2gAr13TM17GnKPKRUhlm2ZuicjSbzbk9n37XaDQye/Vms5kpx6rWV89HSq1YuJeziXgvLy8zftQ6b2x8An3+omO48CBV9aFqOpbnhOkVXt+3alMqm9sBmG20GVHstddeS1nGNUM8gy48efIEwCywxNOnTxMtzzpphDubDds7RK3aoVc3szrpKKxZfpZRozFayj5v4qzCsXSRzZyN5OQ5vBPaJlUn03WaMtrDieYm0cMJcL0HKW/TbQX5cDjMbP7Oz89TnewCNBqNMrmiWEfNC6VzOS8fSN3Z5YvgLaT6f9FvVglreqN/qzmllUtXBfopmu9lDlLa/9exGGv5AGQOVHltkPccD9cZmEHNdWwOGz0I2gOg54RetZ7fNKyiXp55lncg1c2ojXyrMsweWHTd5VjVvrRmhbZsdcN75m0fL0UH+PF4nIkMqaZ99iC1sbGR6SPNuaTPte9etTJP61gUBdYjOIr2pXYv4eWZqxtFe1eu85PJJBPwg+4paiZLpSt/rya3RSbMVesWpn2BQCAQCAQCgUAgUBG1BJvwTm/W8drTXNyENsOjBqlVYEbxR48ezTnrAlOKkCZ9zEXE/EQnJydzMfv1mRrqfFUBJvR5nsM1MH/69lgYtouGA7XmIkXa3bLlK4tFNcBF5kueNlefU0ULcd1j175PzXqsZv0mtMteEBlPo6paVMtQqDkeNbVe3iNrOqfh0otCcl83botpqGomi+ZGmc+IskErtB/yTAGvu488ho7Is6S4LZp3rxxeKHoN/GR/WxSu+LbUsyqus9zKSliGQs2i7Pqpn9kcRcoq2meqOVWRWeyq2qDIpFU/u61jx2M4gHk3AA2PbYMTcf9GxkOhLgKWfVq16bJi0SAWau1SxNBcx57CjjP93wbJAGZzx86li4uLZNJn3R7a7bZr2rcsgpEKBAKBQCAQCAQCgYqohZEqgzrDIi4Dz8mOvlG7u7vpf35HH42zs7PEQDGwBDNIq5OyDYvphX5WXKXlqYqiNrKaB2URLNR53rPdvg3ap7x2ytOeFLFOV7X5TdbXe7dqZqw2+rqZKGDe3txqTTW4ipbNskjKaFmfJ2WrPD+oVYcQz8NNMF5V+9djIMoyTGWYmUXl2k0zdkV9d1ssKIrK4DF6VgbYRN56T1n/wbrkym1ovzrhtXuRz6Hnj0KZ12q13DQCgG9lYd+vWCUzVTRe8qxhbgJlWDQvMNXa2louI0UrI4UN1AD4PlJ5YdBXgarPXsQPdpXw9m3W7xpAJt0K+0n9Dbl/5+81NdNVsrQKgpEKBAKBQCAQCAQCgYooZKQW9YnJ++2yqOMUT81Ot9tNNq9kpLa3t9N3NlTsixcvUgJeRu/T8M3WTlPDRV5XVJ0ieBG7VNNVVK6y42DV2otVjL3bzEQp8uy8NdnrTUAZTcssqRbVll9ZJMtMXVxcuMmj7e/KaOTrxE22M7FIvRZlvdfW1kqxRlXLdBva0cNtLddV8Jh29fXKmxPf1PreJuSxrFfNHc9XsUz6jTIRWVfZr0VMj1eOm14/r4ra5/WDtdLJS4kAwE3uStw0414VN9FXZceR3QcAMyaK+3j2gfpRq+8bMN2X27RLdcyXyqZ93/RFU8N78+DEKzvm8vIyhU/k9eDgIJny2XDT7XZ7LvOzXqseoq6zvbwN7jLvX5WpQZ1BIG5zQIkq8A4PNwE9BHGse+YS3oYjb+OgzvOeuUtVGv4292NZLFOHRcfHqkyMAz5WpQSIvqgXRQEWFjUX1YASlKNXybnbYDoH3C6TPg9FfeTlXLKKOi9/JqGmmnZjrgep2xD86JsGbU9rGqmuOdy3s5/6/X66zwa+UtM+xbL9EqZ9gUAgEAgEAoFAIFARa3FCDgQCgUAgEAgEAoFqCEYqEAgEAoFAIBAIBCoiDlKBQCAQCAQCgUAgUBFxkAoEAoFAIBAIBAKBioiDVCAQCAQCgUAgEAhURBykAoFAIBAIBAKBQKAi4iAVCAQCgUAgEAgEAhURB6lAIBAIBAKBQCAQqIhW0Zcff/zxlUmmrspibfNUXV5eZjK4MyPx2tqam4W6TFbojz/+uFQ67R/96EeZh9jnTyaTTCbl8Xicsl975WG5bZ2azWbKpMzPGo3GXJ31qvjP//k/l6oT+2ltbS29i1fW4+TkBEdHR3PlePToEd566y0ASFminzx5AgD45JNPcHx8DAC4c+cOAODBgwcAgI2NjZS1ezAYAJhlBr+qTj/84Q9L1enHP/7xJTDLHK7vOj8/BzDtp42NDQDAzs4OgGn28ZOTEwDAixcv5n63vr6Ora2tufoy8/VwOExtpX2YN76175cZe95zvUzx7E9mV2e5RqMRzs7OUh0UnU4H6+vrAGbtqFnC7RjXupatk46968Kiue/K1In18d7BOuqc1izpbE/OBY6t8XicaWP2R9EY87DIuNM6WdmlMk//5tWOkaK2p1wB4Mo8KxutDASAH/3oRysZd2XGzKqeVVbmFckHb60pU6ar7l103patk449jisrf8bjcfqb96ytraU5QplHmd3r9dDpdADMzyO+x87Di4uL9Def743nsvOJa5O2nW1HHe9F9ymK5qZ3r7e3sijbT//1v/7Xy7xyXzWHvX2cXvVvLaPurfi/yh79TvvwP/2n/3RlnTiXPJmn79B9GjAda1wzdbyxflxjuZc6ODgAAOzv76fPKPc7nU7aO927dw8AsL29DQDY2tpKY/eP/uiPKs2lIiwynxddT4veVXbc/Zf/8l/SuCPseFf54M1ptjf/H4/HmXGkY9OuTe12O33GPlG5wvt+/OMf59YpGKlAIBAIBAKBQCAQqIhCRkpPnHmn1jztltVKqFaAf/MEqdoNe1qson0rAz35euwXMK+p4ElYv7faLWVj7Hs87XWr1cpoprW9qmoVrtKeszwsr7IwvI9aGDI8jUYjMTnUCLIt8rRtVbSiV0E1Cnw/r9QK9fv9dB/LvbW1lerc7/cBIDE2p6enGe0mNZuqfVet6HUxLZ6mjtB5oQwdMG0L9if7i/d2Op2MhkW1O3WgavuU0chW/W5VsJpM1Xp780vZKWBeTljNGL9rt9uV5tKyyJN53mcqq62Gz/udJ7P1WWwfq3Gsysp59chDne14k2PwOp/lMeKLQtd/O58oh0ajUZJhytyqHAZm8h9AhqHn/8pI5Y1DW8dl2thjonj1mJqifU1eWfPYYjuPyrDGefA08LasVzFSRJl2V9ZA2YY8Vn80GlVatzwZ5jF8dh/W7XbT3oB7Cn53cXGR1lha6ygjxf0Gx2Kv10ts1ubmJoCZdQ8//6cO3c/YNdXrJ68P7Wc6juwcUUZKrXRUtijsmp5bj1J3wadmLbxDlZ2UKgDswUTvUwG56OarqB7eYcATALoZ0kkNzJtS2cOVCgTWSTez2omspy3XMvBMDPkuCoN+v58+40GKE77T6aQ6eaZj9nDINqkLemhjHVhGluvk5CSZ8VH43b17N9HnLBMp95cvX6by2oNjt9tNz2U99SClm2h+t4qNVd4G1R4mdaGhqSP7lUK63W5nNhq6KBeZqNaJq0xbrNlbXZucZZG38dM62A2dfq/jySpbeP9VJkDeprZOUwzdLLF+rJOOf1t3HUce7OKm5S5zmFsVisyx61DaXaeJK1GkSLuNsGukHqR0s6xzRP8HsvNON2R2rnlmhWX2M3koau8iJZy3npQZe1cdpLy6Va2XtrV3gOK1qLyE7u/shrbINEvHgXf1FNZlYOU30Wg00rihQnV9fT3tgezmejgcpr3E3t4eAOD58+cApnsLvofuA71eLx2c7t69O/dds9lcuD7/P6HoQM72bLVa7pzWPaJC9+p2juhBSpWZRUqIMrI0TPsCgUAgEAgEAoFAoCJKM1JEkTZRT3U8AVrmYn19fc5RHpgFD+j3+5mTZKvVyjiUqjZpUc2bal5sGfU71QRZDQoZgMFgkGhd1bjwd1Ybo5+xbtpeZelEC6WxPUaKYLlPT0/TqZ4sBjUnvV4vUxf+Ts10VHvt0aiLQrVr/JusE7U6p6enGQ3R3bt3sbu7CwB45ZVXAMwYqcPDQxweHs7VVx1L1VmR1zyt9TJjrwheHzabzaQxs4xUv99PrBw/U0aKbUYMh0OXLVgFqpqr3hYmypbBMug6Jjm/ut1uZk5oH1nNGKHmPlazVhe855Y1LcrTeut3RczmMibLyyJvbcozxyoyrVRW4CbZnlW/e5XzriiQANcWtWywpv+UZbr+UC7yqr9TlsiyrV4Ah6r18KAMrh1XzWYzM9d1/cwz+/OY6iJZoetWWaiLgZbJKw9QTkZ4rBOtPUajUabPh8Nh+t4GsdJnlYHK7jyTQF1X1UJFg0sAs/3p8fFx2mc8ffoUwGzf0e/3k3WL7qXu37+f/tbvxuNx7VY8FlXX3KLPqjyzCjzTeO+M4bn8eMy2/gZAZk+nz1cLsWCkAoFAIBAIBAKBQOCaUchIlfGd8LR4yt5Yv5ytra1kN0pbVF5PT0+Tdp2aiYuLi3TytDbTy8I6t6m9rLW9Vrtjnm416AG1Fsqusd62LYCs9qYu2BO1F+CC5T47O0v9Qs2MteUFZnWir9RkMnFZvLrrAky1DCyvBpQApm28v78PAOm6vr6O1157DQDw6quvAgDefPNNAFN75q+//hrATJPEZ+3s7CStlNrrW+2mak3q0N56/krWb06ZJX5GZ1cNa2/7ZGNjI9VJ/dvyAgbUxRoU+Z4UhTnVcuWxm1f5W60CHhtjfRxbrVZqa84lftfv9zN+hp5fqMceE8v4sWnb2Xd5KRm8dBSew7b1f1Am12Or6gxiUARPzmo5rM8qr+pHmmdjr1jlWKyLGSqSU9cxf4rYDPUh5HrJ+TGZTNI8sj6y2odcp6npX1tbyzAXXvjkOqwlPH9Tzwnek3+eNUwRW+VZRNj3LDNmvHcRnlzWOe/5OgHTvY9nvcOr/UzXevssL7hGEYraRNdVjhvuLTY2NjJBrbgn3dvbS/sHXrkOt1qttEYzFcvDhw9TyhjueYnz8/PKPlJlmaKqvp95lhdXPb/onrLQ/amXMoPlsYHSdI208mQwGGR8Fr3gE3kBKbQuZesUjFQgEAgEAoFAIBAIVERpH6k8+3DVYHjshGVoDg8P04mdPixkQTY2NpJm4OXLl+l3eezNIhp09Veyp1ai2WwmrYT60NhQ5cpMsZ6np6dz17Ozs/Sdx7JZeJrbsvB+q5o7G3r55OQkacr5Hfvi7t27qT81fDh/b7W6yjRYbdAimgo+z9NWaoJghh9lIuHPPvssjas33ngDAPCtb30LwFSj9OzZMwAzBovPunPnTtJOeZGCvMRudULZTquR7PV6mYiFHFMvXrxIfl/sO/UlY520HlYTk2ebvCz0eZZl0bFqNZqeP4rHnHjvqavMnsZOtdq8T9MF6N/ArM7n5+dJc2nZbL3PS9JbR4Q7lc95iQc1wqMmO/XmN8uRF6pYQ/J74Yu9JL+r8M3xIpsByNST86XRaGTKbesI1B9hdVl4LLaGA/ciV+n1OqDvsuu5ynjKtfF4nGGkOL90/llGqtFoZCxAxuNxmm+e/0/Vsad+F3ZM67ix33lrvsoKOyd1bipryt+VifxXFl7ZPKbZY5/IKKmFDjDvO+5drd+URjctYoLLwGMIPRaTY4pWUd1uN/2G+x5arzx+/BhffPHF3Ge89/79+2lf++jRo3SljxTfqb70bLeqdSqyTlCrA09O2Xa5uLiuF4/jAAAgAElEQVTIfKby2Y4tZU7LMF9XQdcjz0KAz7V7BU2iS3jhzz15XoWBK3vGqBxswnupHaDr6+tpgNoB9OzZs0SLcvPLje6jR4/SgGYjnZyczAnXvDKUhVL73sBhfTzTHetMqIsVhQHLSjr4+Pg4/c2DyPn5ecbEpw563nuOHni4MLG+p6enaYPH+xk6/N69e2mDwQnPegwGA3ey2jIsA50kHDtsPwqse/fupcPSl19+CQD4/PPP8bOf/QwA8O1vfxsA8L3vfQ8A8NFHH6X7/vEf/xHAjKLf2dlJpoA8tAwGg8xiqPWuYyNS1O8q8NkXNrP63t5e6kO2Cw+H29vbc/MImBcydSNPoHpj4+LiIuNYrGYddnypqW1e8Jm662IXHxXOarbH7zi/aC6q84f9xas6xnoLSJ118vL02cOEHtZ51XFnN7XAbCGy/Xh+fp5RoPX7/YxzuZeJfhl4ZlZWvqqZLNcayvXJZJLmCftaNz42h9tNHaSsAlAVDzZNwng8Tu1uTeSLgmvkoapsLzIr0vlkc/4Nh8PMmGN/6eZP8/8A07pZs0wvmIWXJ7IstPw2ZYYeJqxZmyrmvFDceXNTcxvpfLR97R2yysI7ANp56gWD6Pf7mUOSzn37ncp6PsszlSR0A2/nXxG8frVjZWNjI40pPYhzn0FlK/cMn332Wdqzso5ca+/du4fXX38dwMyVQPezti3VHaQsVJljFY2q5Lch3dWtwwY+u7y8zA05P5lMMiSJKtw8JWdV6EHKBo6xByot/3A4zLj6eMFlitYaLwAFn6UmhGWCv4VpXyAQCAQCgUAgEAhUROERv0hjpVo/q01cX19PzAYd/x8+fAgA+OUvf4n/+3//LwDgF7/4BQAkc6u3334bb731FgA/AzS1Gcto1KkF0frYMJfn5+cZDZY6uKoWF5hqONhW1vTq5OQkMQbURh8fHyfNGzU1enKuw7TPPkM1CcTZ2VkyobQBHXZ3d+c0gKwLy2w1oKr18AIoLBqOtdlspr5gWTm27t+/n8bL48ePAQCffPJJYqTeeecdAMAHH3wAAHj//ffx1VdfAUCi6Dn2dnZ2MoE2NjY2Ms6vGpZ9maAntn+UFbXhftfX19OYY1tQW/b8+fPUP9bZdXt7O8N8qonVqsJtW3gOnhqAgfND2R2WzYap7/V6ruN1XQ6wRU676vDK9mS/nJ2dpfsouziOLi4ukvklTVGV+bDmdmqGe5WjcJU66Zi1msxOp5NxvN7a2kp/s/1VC2gdgDUojWXhT09PU3/zPtX+1cmSqsbRjvVOp5P6hY7gnDenp6epn9SiAJi2F9tHtb91mF6Wgcf2amAMKzPYb7rWECqzrYbae+eqyq3jh3JN10XLPHNeDQYDNyAPMJUP/Fvbx2NtFq2jaumtybfCslW6r7DhvRWWOcljizkeedUUGVVTqHCca1JcW1ZlmHSvZINRKQtlmTpdR61plTJpKgv5nYa4rwIv6S4w70rCe/r9fpIB3FN89tlnAKbM1IsXLwDM+oZ7htdffx1vv/02gJlLAc36gHm2Hph3+SgLax0D+EGDWE/WTVNzWJcbZVVt36oLh+55rVltnvl3GajliWVi9WrTEV1cXMyx0HwGkWdWq+NOr9aEW1OYBCMVCAQCgUAgEAgEAitAaaNTzwkbmE+URu2j2i/S/4mswEcffYS/+7u/AwD85V/+JYAZO/Dzn/88aUZ4qtegB9ZG1rOpvQqa4M074QPzp3qyMtvb27h37x6AmaaB/29vb2d8wlQLYu2be71eqqf6TQHzDpeLwHOyZHn4ftW+kOWhNon37O7uJuaHz1QtM5/PdlK/jiItXVlowkWrKSEb8/Dhw8R4fve73wUwZTn/+q//GgDwv//3/wYA/Nqv/RoA4Pd///fxgx/8AAASK/qTn/wEwFTbRA21hkK1iZZVi1Gnj5SC/UPNGccgMNMcakJAamqpHWM9tra2kgZNGam8wBl1+Xt4dbJJnY+OjpLmj2Xk+JpMJmkcsm5k2dR/sUhTtGxdvFDhWhfra3F8fJzqRhmgIW9ZVzKg/P/8/DzVg3UejUaZoAHLQFkZqwX2NHWeM7NNgKqy2Grx8tgHqx3U75ZhciwDrnLdMhdbW1spGA3nCaEJvtlPlIvKdHh+knkWG8vUx4O2LcegJgPlmkTZsb+/nxzjeQ/Xr16vl+pX5MBeB7xn6tizjJTOC441rpWaUsRqxzVYgLLfdl1eJsAO58BkMskwJ6pVt5r1drud1jC+Xy1f8thBDezi+cV5zvPW+uQqkClXX0ab0sVjn87OzjL+T1qnvDQCKl+1T2zwEGXJOX6rwHumF+qc7Xt0dJSsVj799FMAU79rYLrWsvy7u7sAZvvU9957L1nAUL50u920prG9+P/JyUlqt7JQ6xLrI6hrFec+9wObm5upnuwPyrnBYJDqxL0Fr8PhcC6VCsHxbK0aqviwEeqbZNcYDfRm/bImk0km3UhReiQveIn6KXssFTBv1VCEyjUvorDZAU+ePEmDkRuG3/7t3wYwPUh99NFHAGZBAP78z/8cwDQAAIUlnfqGw2HakFjhsIgQVGFlHSc9up2dq+aKXKy4ED948GDuUAXMR4KyG2PtTOvk1mw25yJ6VUVeRJJms5lxHB8Oh6l/OLFYjvv376cFl59p9D4OQjV38SJ7LQpdINV8CpgJ/b29veTg+f777wMAfv3Xfz2Z9v2f//N/AAB/9md/BgD4/ve/nwJQ/PN//s8BTE0BgWnQCTqVsi/v3r2bBIgNiDCZTGoxjfMiHHqCxDrAMkjG0dFRGoc0n+X/vV4v4zSvC/aqDlCeM7wNWPLixYt0GHz+/DkAzAU+ofkVy69tUnajuQj09/agyf8nk8mcGSIwHZNUSvAz1qHdbqf5pQdgYDqX1HQG8Dfty0BNnPI2X2qircomKyN18dL2sL/zIvMRXrSnOsagtxjaiG+7u7spqhYP5+y3w8PDJAOo3OOzHj58mGvSAviBkFZh5re2tpaZ04PBIM15KpZY7r29vVQXbvS4RqmSSg/bqwh0oibLXhAXa06mprL2IHV+fp7ZoKuJn43wpYcaz7Svan05B4oOhxroRANQFEWxywtAZevHNskrd9WcS8Bsv6VBEKwp7unpqRs8wrpBeFEKrUJGFbtqwq6HHGA+IIzmtrwKekjT5wPzLhlWSfz06dN0gOKVa+35+XmSGdx3cD/x3nvvpSATnF+DwSC1nQ02dHZ2Vnmfp3sQq8hW8zarVNHAYew3ts/R0VHGdYNr0/n5eZp7rJM+35r9VT28K7yDtR6ArVk1MBtvuk9iGYmi9ccLOOO5p5Q5SIVpXyAQCAQCgUAgEAhURCEjVaRFVHMUngR5/+HhIX75y18CQDKz+tu//VsAwB/8wR/gX//rfw1gxgpQQ/jTn/40sQkaBIGnep7CF6EQCdVIqaYW8B0Blf7jCZmaEZ74Hz58mGED+N3W1lbGSXI8Hme0m2ouUGeIWXXktE6pwKydaV7F0/fdu3fnmA1gxhicnJwkbYqXX8A6Bi4SbIJot9tJ40CNJMvx+PHjRK3TdPS3fuu38Dd/8zcAgP/5P/8nAOB//a//BWA63v7jf/yPAIB/9s/+GQDgH/7hHwBMWRFqnkjNb25uZoIdqLZtmZDN1gxJqXqrQWs2m6nuZDRoejQajRKFz3lEJvHy8jKjQVQHUo8ZqEOLXuRMTq3X4eFhYqKoDWW/qhO3ZaYA38G2buh49RzVWR7Wa29vL9WHc4qBUDRMP8cYGfujoyOXGS/SoFeFMuyUZ1Yrd3x8nNEseg7tvCpTbOe7xzCoxt3TXC+TL8YLbsM6sozUqO7u7iazHK4j1BJ/8cUXKQAS+4nWEA8fPsy0QavVyg1nXTcb5eVhUjaJdaLDO7Xpv/jFL9LfH374IYCZfBsOh2nMahCdvDG2SJ2KAp2o9teGK9aAEhyPypDkBZ5Sc0s1t7PmR8vIDu1/y06qrLDmg15YZjWjKwoVnjfO+C69qplUWWhYbxs0gnshZZ+UPcvT2GvIchugy8vhtLW1Nfe3Xjc3NyuZ9imDZ9dwXrVuZGE+//zzFFyCwSa4LvV6vZQihRYw3/nOdwBMGSnOQY7bly9fzrHdwEzW9Pv9ygF27PjQd7FOms+Qe9BHjx6lNmDfcjw9ffo0lYP1ZFucnJxkUuZsbm6m39q0R9y3VIG3RywKhMR36F7F7mtVBhStlyy/l8+r6jobjFQgEAgEAoFAIBAIVERpasdqmXli6/V6yW6UrAxPwsDMmZ/+Kj/5yU/w7//9vwcA/If/8B8AzOxMv/vd76bTJR38Dg8PM86jqk2tenJUO05r28+T/uXl5ZxTPDA9yWuSLgBzTn1kb6jtU4aK2lBqW7QMnj3xohp2TTLsOdfZsJiafI5+R9TQPHz4MNWJWllqrTxHyVarVYtjPMF2aTabaUyw/ag5ef78edIeURP74Ycf4l/9q38FYMaCknX6H//jf+A3f/M3Acw0Sr/zO78DYBqWn5pb+kmonxjLoKxBHVp0Qpk9azs+mUySRot9QAax3W4nJop222ynw8PDjHZRQ4vXndDW1knnrecDYR1x+V2n03GdyIFpP1jmRLVTdSW25nOBbKAFnb9s14ODg9Q31OixXjs7O0kesI/ot7K3t5dhalQDXYevlKZw8MLB8uqNZ6vt9hKC2iA2XkLhonfXxe7atanVaqV5S9Z2Z2cnlZdyhH3xs5/9LAWhoRzUVAiUg5Sfnv183UEmPM2qTZzZ7XaTppxr71/8xV8AAP7+7/8+yXiuTZQXjx8/zvgFL2Pt4cFLJ2D/18+VsbGhmj1GyrKbQJZtUmakDh8pDU9urQc0XQD/VhbXtq8GAbJJib3UASorrU+VWjdUHYfqF2N9xlU+2TmsrK9l5brdboYFUoaJf2u6CP0emA8MoalwroL2kWUz2PfD4TCtoxrqnPKA33F8PHjwYG6vCsz2EY8ePUrP557x8PAw7au4fmvC6ar7JS+FCaEBpLxATRoKHZhZTbRarfQslk39uaxffb/fd+UssJiPlAbxsn79us+3AUPa7fbcGUTL6AUB8pgv9dezfolV90bBSAUCgcD/Y+/bfiS7rvJX3auru6e7p+fimbHjsT0JjpM4JCYJN3GJQII/gRfeEOIB3iOh2OYBXhD/BwjBQ14iRSAkoghEMAhydYIz8dhz7Zm+1726fg+lb9d31lnn1DlVp6rb/q3v5XRXnTpnX9fee12+5XA4HA6Hw5ETmdVP+rTIJzicBBEHcOfOnXBif+mll0RE5Jvf/KaITGKmoPGHleqrX/2qiEwY/XDyhL9puVyO+XVa9LpZYWmHLG0V6gttDMdN6Ziter0eTv+wYED7d+3atVjc1ObmZkyLa/lRLwKt9UWdRSRC1a4pxaGlvXnzZugDWByBdrsd+oQtR9onnLUAefuJNV86Ng3lf/r0abAigZHqC1/4gnzlK18REZF33nlHRET+4R/+QUQm7H2IlwLDzmc+8xkREXn99ddDvAC0SI8fPw6aMYxx9NsiiZNF4uPW0qIzRS40hoiNgrZwd3c3zDtYPdBenU4nWH1w/3g8Xoj6N0t9LC2QRa2tE0+iPOvr62EeYQxaqQZ4nCWlDMjbR6wN01Yg1rRq2tzj4+NgkYJ8e/nll0VkIgMwdmENgAXh/v37MXnCtME6DmkeyxRb3rMk27RiM7Smzorls5KFctJEHZ+yCGtkWr9yGTF/eR6jvaGF/vGPfywik/QbiEHU2vLd3d1g1dLWaS7PshLy8nu0Z8bm5maYL+hfWNbu3bsXrPVIRQIPibt374Y+Zy1zEqX7IuBkq1r+WJ4lSax3ItF4Im2ZOjs7i1mdrPjdRSxSlreHFTuOMYcxxHE+Ogby7OwsFqsNi9TR0VGMmvr4+Dh8ry3686RQYcpry8onEo0J4xgkHf/EViQd68TzKi0OSjPssQU8C3i91nstZpmGzIYH1L1798JeCP2LufXyyy8HpmnERiEOdmNjI/QbrE9PnjwJz2K6cSCvLOc9XVpcqGa/Y9ZKzCX2dNDx2pxEGeOarZ5aLizi2cJ1YtZXLg8/m71D9P7BqlOahxbATNlWKqQslsPUg5RlltcHjJOTkzChmfYXLlS4fvnLXxYRkW984xvy7W9/W0QkBPZi4j548CAcvCCEOA8AsIgbCJuHdZ4entDatMwuRTrvDZvDNSHCwcFBJO+RyGRTqN1EWEAVmZ+IDySahp3zWeHwgLqhnCJTQcL5pzgzNsqtF7BFDoS8+dPlxobm8PAwHH7effddEZlsFnCo+q3f+i0RmRKe/PSnP5VvfetbIiIhn9Trr78uIpNx+t5774mIBKKUx48fRyhERaLU8fPS1FsbFLQZb9KBk5OTUE8Iadx/7dq1SM41kejmHmOUSQaKdO3Lstnid/JhHgd0Lai2trYCjTMOvDiAbG5uhvHAbkBJ5B1FQC9M7C6C+pyenoY5hA06rjdu3AjKFNSZXYCZxEUkuolEffDueepluVhi7GIen5ychHKwOzO7ovCz2IVEu+1sbm5G3HVEosQtOr8Op4hYBHo8cw4/VkqgfpjnOHQ8fPgwtC/mO1wx+TAMsJvLKg5QuOJvtB/nWgSJCeomMj3Qoy6cMwf9qg/s1rsXAR9YrPxBSa53InEX/H6/bx76RSayQNPy63Loa175h3exgkhfLRIUfq8+VNZqtRjxFLt4a8WElaeK3bitAPo0sKJE5wni/tLv5PxOWmnBhyVLHuA+VsToTXGWnIEWuA35sCoyPZDv7e0FGQ3l1+PHj0PboaxQRLz66qvBQIA9BuT52dlZkCtYq/f29iL5ArkMvF/KCh4zWpnCyg9rvqAdtVsw58PUFPs8xtLctheRgeyuiDLxZ7jqdZ3XDD1OWdmEKx/SrNRAmlzOyneWBnftczgcDofD4XA4HI6cyKQGLJVKMU0RTmydTidoYkEZ+/Dhw6DdRDD/7/3e74nI5FSPz77zne+E+/kqMqURZ8pLyxUk7ymY3fmSTpqXL18O1iN20YN7lXYBOzw8jBBViEw1ZQjqE4la83A/NDWc6DKvdjatXSwXOR0YKzLVQqOO/X4/aGTgXoX7B4NBTFO9trZWKHkBl18nZYVrytbWVnDFgTXpJz/5ifzyL/+yiEzp9UG3f//+/eDuBxc/WHNu374dzPawIJ6cnIQ+Rt05sDKvxS0tWSdrg7QLAls1dRD8888/H9zEoM1D3xweHoa/MfZqtdpSXPsspAWLbm1the+h/Ue9L1++HOYd6gbNX71eD3XBHGMLzqKw3BE14UK9Xo+5oLTb7RhFPdxFnn/++VgWdk7qDXnCVkOtUbNcr7IizYWOrVXs0iEysbJpQhBOB6EtxRiT7XY7yDcOiEcfMVkDt8m80BpJ1qDjb5R7f38/zGm4BaO/xuNxjEYcrjuXL18OY5jdQDhYmuu06NxKS7aqg6ybzWboJ225vnXrVnBDwv2o/9HRUUQrW0S50+phBXmLRN3DmNBFz2krnUISZTjfnyan56kv5gK7/WDuY4zs7+/HPF6YYEFbYyxPBGu/wK62SdateawdKA+7YOo+aTabsb0DW5a01WlzczNmpWK5qYkMmLBK782yJkYFrKTZGBtM3ASLFFzmO51OmCew4CJtwGuvvRasu9gfcmJbPAPy5OnTp2EfjH6zLJBZwR4RGBva4n52dhbqiXfv7+8nEpmwBRd9A8+WSqUS+gZ92mw2Y+kutAUpD5jAjT2euG5sYYXs5fmivV2azWbMLXhWKgHMJU3gwknd0+AWKYfD4XA4HA6Hw+HIicymD63t45genN7gn82JDRHI+2u/9msiMiGfALkEtM0gnXj48GHMj1VEYj67jHm1s+wLrP1AmWyCE4lCkwGNHlum8B1O+py0DG3GNOv6NM3BcfPQSOr6Aewvq60CGxsb4f3QaMLycXp6Gu5DjBS0EkdHR8EyghN8s9lM1SbNC47rQP+gXDs7O8Hihz754Q9/GLTJ0CjBIvWDH/wgUKIjTg9kE5///OdDUl9YEt57773wfGhpYA0riu5daxNZg4Y5sL+/H8rBVKwiE2sHJ+AVidKvapp6Dry2KKqLgBWHoIlOOHEgwONNE7RwEkUdYL4MWEmkOZCcA6pFJvMFbQ1ZAG3nvXv3YjGRqM/29naoo7biiMRjL+ZJ+cBjTJNkQOs3GAxCmVibZ1nE8HtNSsAxa9oXv9/vR4haRCQS61ZEUmWtoS+VSuFd0MSenJxENMZct52dnWCRguYZsXk8/thyt+oYKZF4LEOpVAqeBFiDsaZ96lOfClZ3tAFbtzV1cdEWqbT4ICsYnq1sHH/LYNIUnTS20+nE4rmZ2j+NYj4r2PvECvbH1bLs6NQWbJHScZdc77Q5pi3Jg8Egdxw5xrnVFyzr8DcTRWgrG1ufuH585fXTqqe2Jg4Gg1xeBzye8TtttX348GH4G99VKpUgj0F1Dk+VT37ykyF2V8elPXnyJHhUwTJ1eHgYW6N4/5x3/4D+4P2pRVqCMnG8O+7TVjmOn8IahbV3fX09fId9T6vVCp+xhXhe4Lds3dWxgjxv2GLNceUi6R4wbEHNkjqB4yCzyHa3SDkcDofD4XA4HA5HTqRapCzWGa1lYYpLaB/ee++9kCgVWlmwqr3xxhvhpI8TMCwBGxsb4aTMp1zWxoospjVjLZfWIvEpVmvoRqNR0ERBe8EWKp14DZapXq8X06zV6/VYrBmzisxbPytGyqLMRN8xkxZO6dBWHh4ehlM84lOglTg9PY3RJ7PvvtVPeTW2rFXUPrgcZwMNMmv/kYAX5QbTzq/+6q8GbTRYrf7t3/5NRCYxcHgWGHnYogMrj0XnnBeWtYOtoRgvHGeHcmCOwZr73HPPhX5iC5bIZJzqscdxI6uKkWLNG881jtsSifpowwKoY9OYdn7Z1oAkbTMniYYM63Q6oa2ZFUpkwgil2fqAtbW18Axm79PywWIDywqOf0mKq2BGLtbicVJQkagPuY6vYWuCTgDJGtgi6M8ZSYleUU4RiaQBYG2sSDStAuYVrDj4jpO0s+Ww6NioLNCa/MFgEOY8xhCPN1gIsEaxJU5rtEXS51MR9dMWqVqtFhk7IpO+0G3K8pa9O0QklpqEYbF+LQKOsdBrE6/j+p3j8dhk6xOxLUGskU9jNdRyap4E16DGt+KgrHgo/iyNslxbPK21h/cobIESiVrb8rDkMnMwfse05LhiXQd2dnZCWyC2EPvTW7duxdZazKUHDx4EixTmWbfbjcV3L7J/4Hgo9LVO4TMajWIWqX6/H9of7cp07Pgtyzr8Du3I1sYki9Q8bNqW55b2zrFo9y1WTy6XTtfB8wzjE+OVLbj6d1nT3GTqSSsrPVCr1YJrEQdQg1IWblL4//DwMByyEMjLExCbCh1cqcsD5BXs6PRZLgdaqFWr1bA44RnYFLHbH64YqMfHx6Eu/G59eNNUjvNCu9vwQU0POBaCaGdMvv39/VB3HKBQ/729vZhrBbv6aGE5z+LFmywtXHlSYMzxJhRupTDDw9Xvi1/8YhiHcPGDW+mdO3eCCR8ugY8ePQoHNL1Q88RfBBYVOeqJzd/JyUnoOxwwULfd3d1IwKvItA/b7XZM4LJr37Jh5YlhwaaFHMsBTVnLC6sOCLVcdxbdMPHvNekEuwVj/mxubsaCWDEmHz58GGSk3kRWq9XYhoU3YZab7LwEO5xDTOfgYNmLed7r9WJB/LiyPAGs3DL8fO2ewe1ZxAbdcmvWbk/dbjdG+Q0FSqPRCDId8wztb7UFL9jLPkBZeWLwTnbzYjdFkeiBBGsTkyWkKVWKOHRY5dYbpnq9HiMsYZdkrQBk+me9DrXb7dgB3QowL6puWtHBckqv+9aBjpUz7OooMt17cC4knkN6E71IrjmknVlbW4vJI77qwxLPa4uyPCnUwFKQDgYDkxwA/+c5SPFhQKd44dxOnLJHZLKnu3PnjohMD1BIwXHp0qVwPxNWiExcavFcznuq+5TbaF5K92q1Gtvw83qJPQravtvthu9Rfg7NwDPQBvpekWh/63CUpLxjWaDnMdeJr5byTc85DgHSJEAAH8os10Erj1SWerlrn8PhcDgcDofD4XDkRGb6cx38Z2U6hhbv9u3bQcuH0/y9e/dEZKKlhZYfWgdoazlZLmtq0rTMeTVLTF1rJevS3+HaarXCCVYHULZarZg2lzOQw7LALiFJgZOLWgysBG26Tkx3CZOtTsb57Nmz0C86EW6z2YwlZub6JJVh3vpomk0muIAWBWXt9Xoh2BPWJ1jUbt26JV/4whdC/USm2qkf/vCH4RnQwF2/fj20i6bZrdfrC5FNJFE2j0ajWHLnXq8XtCgoIzTnGxsbQSMDTRj6kLVN7A60LJKJJPD72M1MW2fYnS3JXYCpj3kup7n55amfZWGwXPxQD9ako8w6ud/BwUHQXEJmYN4Nh8OYXOn1ehEq9EVhuVZasNyBtWzkK1Mx85VdCHncWYlYcX8Rc0nXg9cm1l7ifk1B3Ww2g4zTCSyZVjjNlWUZlrVZ37P7iXbFaTQaMTcppmIuwnsgCywPELZg6qBwJkJCO7N3CJBmkWLqe601X6Sead4jaSkurH0FjyGU11prdELeRqMRs3Kw+1Pe+QSvjbW1tZjrk2UZsywret/CLoZ6r8XWJ8vqpGV8Xtc+fo72FsKa3u/3Yy7aL774Ygg9gccUrLsi07UVIQJI+bO3txejOueksVkS286CRc4B8FxhogTUUxOwsBVQk3ixdUu71bJLot6XzbNvteaj3j9aHgvj8Ti2H7RcH3mPgN+lJcPWZExcjjS4RcrhcDgcDofD4XA4ciLVIsUnsaQkXCcnJ0EDCw3Kzs5O0CzB9xaWmidPngQLDZ6F/5miO43qfBFtEludkuhDu91uLCam0+nENDSsmYLGAZoN1kRw0k48Xwenal/rosDaWa05aDabQXOpE7Y9e/YslhXS1vsAACAASURBVGQQlp0kKmqtqVskmNxK5Ki1KdVqNbwT46vdbgetEeLzmCoc2iZYSBFP9cEHH4QEnRizm5ubwQIEyxWPmXkTiVp1A1jzjbE3Go1iyR1Rrmq1GknAKzK1ZHEyOW31ScKyNNLWWNB1hxaIg/i1VprnLVtHkixSi9RH/9aiIGeijCQrUrfbDdpQ9J9FGcu+20nlXiTekH3NrXgVK15Pv9cKDNfxJ1lj1tLGQhHgGCYuD+aCRb+POY3fYS5y0HqaFpWxCuIJEduqgXqUy+WY5ZDvXVVsF0NbjNjiwvNDx2pwTAOTQIlIhAjEsvJri9QiRDW8ziVRNg8Gg1An3l/otABWLIe22FWrVTP2WXuYLNKX8HBgq1NaXA+vIyy3uS7WHoutCGlWJ6ZyxzUP/TmnrWHvIP6uWq0GjxaQzNy+fTt4UcESxUmXmVxCZEp1fnR0FLOY1Wq1mAWPSTfy9pe2BInY3j96vjOBmabR53h97SlgkcyxJU3L9nlipPKmJeB3Wh5KXA9+Po8/vce2vGNyJ0vOemPSZGUTLQfbMe88X69fvx7bvLNwyyIcFmGDszpbT/ZKpRLLAM1sNhxALRINnNfl4ckElMvlmKDgNpj3MMVucNYGXbdtrVYLfYHDLDPc4DMdjLixsRHbPA2Hw8LZuPCMJCHQ6/Vih9vt7e1QBwhOHJparVZw3UFAKerY6XSCyykOw8yohkMNHxyLcEeyDhN6PJZKpdD2ODCi30SmY1QvFLxp5M3Fst14LKSNBT0nWUhafa/dRXjDzM9YBBazot6Ui0QD5vXGnDdJ6CMcqIBarWbOyyRyH57j8yCNtU8zI6UxPLKc0m5/vOnhw5XFYsbXRerDsNyrWC7qDYOVw01v2pIO66s6LDHS6mwpSpI2K3nLPk9dWfmgc5GlMUZubGyE73XesUajkUhG0+12Y89nV2F9cFnkIDUr/5Hl1matm/hdWj/pscpuYxajX96+wvpiyQFWZOoy8r5CEwek5bpi92W+J82VOM++COv1yclJxEVeZDpHNjc3w3qKw9PNmzcj5DP8u+Pj4+DSB+Y/yPNOpxMjdmImxjTWwqxI21fxZ1mYRFku6oNU2qGG92P6ffPUid+V5SDG4y7tIKUPg3yv5ZptuRPimmWf5659DofD4XA4HA6Hw5ETuRPhaMriSqUSs6602+3wmbYYVCqVmEtUkvZVZLnuE/rkzlpIaCFgmbKykjPFr6WlwrO1JpZPuVprwDTi8yDJ2sAneNYEQouO/kFZj46OYjkW2L0MWh426+u8CEVZptIINNjND2WDNVRnMt/a2gouDLhCE/Xhhx8G1ziY669duxbLccRjZh5TdlLdeAxqF6JarRY0hrCQYQwy+QLTrorYuRkWtWjMg6T+t4KxcU1yQWTrk2XRWEbdZmnoRKIB8zrQtVwuh3GKeYP+aDQapssV5wVZRl2ytB27PGhNnUg8v5+lxWN3R+2iu0hurKyw6pQkp7hu2iJlWT3T5Nqi7sxAUTTdq36nhrW2W+lGIGfH43HMIoX72SIF4J5erxeTeePxuFDXPh4nWchbAMvV1LJgpc1RK9zCGr95A//5udpSxNDWJ8vVmi1M+lmWtSqN5IvbKU9fYS3sdDoRKn2RaK4y7APg2nflypWwz0G5ILOfPn0a9gacYgTlY+8EXNPyH+VFVpmSxzvDct/LKy+yvGcWsq4BliVUE5RwzkK95vD+yiLMsyxTWSyhbpFyOBwOh8PhcDgcjpxItUhlOZmyHz1TxuIUpxPrcjwRYGXpTivPIhYODmDNEzQ3GAxCXXRAGmseLGpfIKt2pajYIpFo3bS2p1KpxKhOgdPT02CR0rFha2trkaSUeKYVz1EEkixS7PuO7+r1erDeaI3FkydPYj7L0Eix5gqWqbW1tZgVkjVqi8SyJfkZs+UQsOiB8XsO0OXYKJGoZSCLJqxoTfSs/k/SnJVKpURLjKW5WrY1I0tMWblcDmNKx6vw79BX8OFnQhD2Nde/LYI0Y9Z4tTThevxYstrSpFvWmyLjieZ9VrlcTtQ+iiS30TKtZqvCeZQ/bc1mra+miWbqZR2DwcloAY7PscaqFVeJ8s3bLmnWoaxEKtb6rMvMZcwqD/LOD02Zze+30iFwe1uJdfV3aTFPVqzrIhZDrk+v14vFLmE/s729HdZ/Tn2C+2GJwj5ob28vxEQxQZqIPYaZKnxVlt8inr/KuE9rbU3bR/L412MKfZ7W7jyG2Uq96Hhzi5TD4XA4HA6Hw+Fw5ETmGCmL/UgkGoeBk3ilUkn0RZ7F7pbElJX0Wd7Ts6VRtZ6htUPD4TBm4cCpt9frxRh02EpnWQOK0rxkxXg8NinWNQMh6tjtdmOsfdBOt1qtmN+xxcoFFBWXY40NzRTE1hudIPX09DT4NoO9D+x3Ozs7QduE/j05OYn5n8PqUBRNvWUF1RpYjsGz6JmtpMj4fRHUuFkx7zvmtTCdp4XAsmpY7G8iUe261p6J2HSzWRma8pQVZeEryyHNwseJPS2ZrdcEfrYV61B0aodZSBofWWP25sF5sPhZuAjWP0Za21YqlZg1VyRKX87gtBfaasUxOxxHlWSRmmdMWvNUxwvyd/x/0rwej8cx1jTLIpVmSVtk/ILxlddULQ+sBN2DwSAxDQLvmaz2z5IiYV5wnDHGAdZ6eHXs7u4GinN8Vy6Xw94G+wbsGfb392OWKIDZDtk7KWn9/ahbt4tCmrdHmoeYtZ/lPWDSumV5ZvEYnnc/nptsgiuCF1sBWlrApAU1ZzH/W79L+iwNXMak9/LhUAsABvP1a2HCgbJ5aMGLmmDWxLXqgkmPwwe7YsK0jcMWu1ZwnhKRqGAscuGd5SKhFxgmKkCdeEGAINQH383Nzdgmlw/IrCTA74omAkBZtWsYZ97W45Jd+/SmYJ7s6R8FrHoRslz8rAVAuzgD1maNhbieN4soitLKz+XW37E7pSXH02SY5XZkbfwsmnu+rhp52va8y5i2Rl7kTZlV7ixKiPF4nHiQYsIQ3R5Wzhz+2yK2ytt+1nP1fkfEnjPW4Srp+dZ3LP+zbEKzAu5rSbTt+F9vQmcdltLmfFoZ0w6hWcAud0z+IDLNh3np0qVwqML4Y4IM7BWgYD09PY25QPI+As9PIh7j3+m//3+FtR+3rml7LT3uODWNDrGx1iYe1/Me7t21z+FwOBwOh8PhcDhyouSnYofD4XA4HA6Hw+HIB7dIORwOh8PhcDgcDkdO+EHK4XA4HA6Hw+FwOHLCD1IOh8PhcDgcDofDkRN+kHI4HA6Hw+FwOByOnPCDlMPhcDgcDofD4XDkhB+kHA6Hw+FwOBwOhyMn/CDlcDgcDofD4XA4HDnhBymHw+FwOBwOh8PhyIlq2pdvvfVWyNZ7dnYmIiJI4ItruVyWer0uIiJra2siItJoNKRWq4mIyGAwEBGR4+NjERHZ39+Xo6MjERHp9/siIuH3rVZLNjY2Ip9Vq9XwrtFoFCsLvnvrrbdKWSrMdbroyFqnt99+eyV1KpUmxeEkznkTOmet09e+9rWxyGT8YAyh/wEeezyGMA55DAF4xnA4FDwfV3yGe3h8oe5AqVQKnxXRT1Y76nfOuj/td3mf/+abby517M2bCDytzLOQpU5Z6sNln7ets/aHvo/vydpHf/InfzIWEWm320Hm4jnNZlNERLa3t2VnZ0dEJFw3Nzel0WhEytHr9URE5OTkJMj009NTERHpdrsiMplbuL9SqYiISK1WC2sC5mO5XI5cRUT+/M//PFOdPv3pT4/xLvwez8W8X19fl/X1dRERuXTpUqgT/sZa02q1QltomcHtjXWH1yH8rdem0WgUPstap7xjz0Ke+cHyLe0Z1jOzjr0333wzvADPsa74m8cCYO099D5kEeDdy5Z5s5BXpmfBInVK6i+R6bwul8upfYc6oQ+5L9P6ddE6LWNdWmTtSUPWPvqLv/iLWOH0PGC5wzKJ9+siUbkMmQf5jO9KpVKs/0ajUdgn6T5lvP3225nq9Md//MdjlAvv1dd6vR7b5zUajbB2YY3i//GZ/l2tVgvPZRmv+5brhvr+xm/8RmKd3CLlcDgcDofD4XA4HDmRapECLAsETmyshcBJr9FoRKwAItPT/HA4DFpRXPHMRqMR02SWy2XzxDsv+FlJ2ocitFxpSNNsLEvrMQ+yaJryapPyvpu1ItpiJCKmtUprHFgLA60LnoXvuN21BZQ/s6xyi2AZbXaRsWh9Z1mDlolVWtGKHBewwJydnQWZ2+l0Ylf8jTk1Ho9le3tbRCRm5WUtIeYULFRs+cI8Yw00rvidSP42sjSG2irEz2UtJ+SCdeV1h39XKpUyy0H+/aphWdCTLAtWn1jPWGTOpXkv6DbmzyzrB2vF9T7EslBlLeuy1/usSLNaJ3lGrKIcSZYoXC2LlYhtOeR+S/rOwrL6KM9zz3PtYVgWFGt8pFmR2IpvWXREotYbq7/xTPzPfZoVbAVjK5lIdK1BmbisKK++skVKP8uS8QztdTAcDjOdPzIdpETiByj+3HKt4EWSCz0ajYILCK5oACzgIvYmHn8vYtZH56c9xzoULDKRLUGTJKwuymaYJ4w+kIhMx4GeoIxF2gzvHI1GkYkqMj2A83dwORqNRqb5Gld9yOKNkgV28+MrH/BWiYuy6K8a5+FysSosu/xXr14VkclYRztC1p6cnIjIxD0PLnrtdltEJnMK8/vKlSsiMnGNw1W7T/CiiOfyXE3aOPG8zAvLvU7PWZHopj3LQUovtrPcz6y6LaNfLYWPBes763BouSsWuaHl9tBrBK/n6ANWpOpDVZr7kqX0WuXhYxm4KOW21jx9gOW/+R59X1al+Crq/lFdS1mpY80RvacZj8dmKAN+D7mNfTiUZq1WK8h43i9pOciKrLxGDz7g6HWED0+6bM1mM/I3XxuNRsylzyo/t4+WI7znzKIUc9c+h8PhcDgcDofD4ciJ3BYp639tkWLTGk6oOOENBoNgiYIrCcBayzSzvyYdyIO0gNU0F8a0ZzHSNCl8ss0SeHsesDS3ONWjL1jDwf2qtU9ZtacWoJU4OzsL2hNtmep2u2EsoGxcDm1R48BKPb7YAgewdtZyIVlWPxX53IuidVtEky1iu2uxZuwiaG+zWM3Ooz9gkWo2m2FeafeMg4ODYJFiK5Xl7icyIacAkYMV0Is5B3c/nqt4Fs8p7cEwC5Y2UVtXuK3TXPuYBENbqi2XFqBcLsdc0RfxlsiLNPnKLnv4m4O3cUXdWbucFkSeF5Z1wrJM6c/YIqXDBNgKyV4s+j2LuPstC0nj4rzLxUjb67Grrki6RdiybrLMttxok6y+F6l9zgvW3kPPEW439FW3243Je3jwdLvdiGeAyJR8p9vtBg8EWH9qtVqihaZUKuXem8OKxK7i2o1vbW0tvJ+v2iLFv2MvJBFJ9XhgLyb+DMgiB90i5XA4HA6Hw+FwOBw5kZlswqKvxBWnXfa1xOlQB/WPRqPggw8NKMDWBIsaV/svzgOU0dIMWZ8VSXQBWCf689a4aC1/tVqN+Z6i7TjOjf3W07SxeesH7QSeLSIx6ubRaBQ05rin3W7HNN6stdF+uJbvLIMpnfmZVhxdHhSpsf4oWLDyWGRYq2zFvWhrIgeqrmoepb1HW2St2MK88RuL1Gtra0tEJnTg0DZCPnMg/5MnT0RE5NmzZyIysSbBOoUrxyLu7u6KSFRbKRK1dGB+HR0dBbmv+7Tf7+cedxYZjU5twDKJ79dxkqy91BpM1ppbYwx9q60+i8oHIOs4SYvx5D7jMq6vr5sxEPrdSf9ngWU5tGQp3s8WD7St1i6z5luXm9NYZCHSWCXyxp6tsoxp+yGLtABrbK/XC39jfWbrtSZ7YRmhLdnc58uMGS8i3v08wPNFry24sjWGvYUg99HW+/v7IhL1RIB8xrXVaoX9DwiLWGZYe/S84PWILVAi0Zgt3McWKSs2SsSW47PIxJJi+XjMp8EtUg6Hw+FwOBwOh8ORE5ljpADL6qA1R0xNqONbBoNBsCLg5AutEvs7WzFSRWgD4PPJsUj6dG/FKeWNXUpjs7His4qydFjvB9LKb2mOcPpHLARrDTX7V9GaGh3LhPeKRJOC4jO2bkKLAg0ZwAw1mhkmySKl29GiYF8WLCpTbSG1aJlnjZ/zpm4Vma0BZY2nSLQvdexevV4vzLd+EY211nSxxQP9pq2lHAuyrPgatkAgCS3mNDR9HKN0//59EZlYkWCJYmpzkUl8K/rkueeeizxza2srNs+YmQ/PSEq0nQVpTKJs8bKsg5YlCletyeSkjZa23Fqn8J4iLdaz4nx02diShjmk2/309DSsh1rG87MWmROWZUF7GHBcFuZ0r9eLeaBwv+m+w3e9Xi9mGeE6nCejX16m1ywxl0WD9x+ambff74e2xVjqdrthP6e9N0SiKXFEphaFJM8CLofIxfK2OG+vIWba0xYUtCV7A6Ctq9Vq6BOks8A60Gg0gifC4eGhiET7Vu+l+v1++K327pknvp/LYcVBiUzWKJwn2DKlLVEWxbkV926lydDWcrayQn6mYe6DFG/srIMUGgGFwD2DwSDm2qdz+/D9TNmbZaM7CxhI7A5k5R2ygo2tHBdJsIJsuQOTAjSZ2nUe5HEfsOrBi5YO/uNFNk9bzANeILX7DG8EsNHD2Ol0OuEzCHieMLqveVOOegLs0pp2GC4S1gGfy6EPrvV6PWZiT9tIXhRYmwpeuCHAWagDup94Luv6FkEKkpVEQh+SePOgD4R4ZrVaXToRBeZDo9EICxeu7LKBhQlteffu3eDmB1l9dHQUnsk06SIit27dCs/E83m+Ya4dHBxEntnv93O7ULOs1odnnrOW4iGJbII36Pq7SqUSc9+zXPyYfGJZ/WnJcZRFb1ir1Wpw7cSGCdd2ux1T0KyvrxfqJsubY00CZLljA0dHR4lEJ5cuXYq5k7KLn16b+v3+ShRfWZDUptZ6Mst9eBmHDJ4zem9i5QDtdrth/lsu9UmpSHjDb+USKnJ/kWUeWqEqSdesz+T7iqwHKxV1vj6R6VzAoWNjYyPIdvQNCIguX74clClQoD19+lREJvNS768Gg0HoZ8h4Dv2Y9yDVbDZj7nv4v9VqxQ5XTImeRnGeZqhgwhqtuGVCPE2KZ8Fd+xwOh8PhcDgcDocjJzKTTViWKEBbpNhMB60lu/Zpi5QmpuBnViqVcHIsIls8W1fyJGa0NF1WwLPlsmdZnVBX65oluK0IsFZF9ysnV7P63iIfKVIDyxpnTdHLiXmhLYDrkUWvz8HHmi6UtRhM3486JbUBB0/nxax20ham4XAYNCW4svkemhumhef/GVlIElaFLAHykBHoS55r0EQVnUQ0D1AHdkfEuEAS2+3tbXn06JGITOuDscYWgKyufXnrg3eXSqXQZrBSwCK1ubkZ/ubA5HfffVdERB4/fhx5FmsrUSeMuxdeeEEuX74sIlMNIrvUaavw8fFxzA13FtitE7+1KGz1HGWyCYvMQLursLZcy3+mRNeupVkTOSYhi5XS8nrQbq/Xrl0LbnuQke+//76IiHz44Yeh79jibbm6zwu2bqG8kMc87rW7v0jU+ikSlWsoE2uo8UxrnYY8KZLavQjweqQ15RfFigbwHMb4KpVKwTKgrS9MIGARAmj33DSLz7wyPKsstcaD5ZWU5qGS9u4iLFM8f/QYYZdr7YrWaDSCbIcF6Nq1ayIicv369fA3ZDbkw6NHj8IcxNp2fHycOE45vUZWoDyW1Yndz3VCXovinMeRRRqB/zU5Sq/Xi8kfPqOwTEqCW6QcDofD4XA4HA6HIydyJ+RN03JDw8BkE5qKsd/vxywGOEFbFimLdnaRxLw4YSclhMP/FrVjku+4pUmxfI5nxU3hOq9FKq/WxvKH1lS5XDZooQaDQazPitbwoU3Z75YDv1FGjCVoLY+OjoKmQWvKh8NhLBibteQ6rqNer5tJBkWWZ+VgrR/K2u12gzYZc4aDRnd2dkQkqpUSiWqXreD884RFkoGycj/pIFAreWeRsQJZn6UtEWdnZ7GYT9CD7+7uyr1790Rk6n+O/uMEh9a8L6JuH3zwgYhEg+8xxuErf/PmTdNKBQ3g97///ciznj59GsYZ6s00urdv3xaRqVWOtaJWkDnmb1ZYcU06PYIle633s3UrySLFHgwWKZG+FhUjpfvf0nKzPMb6BpnXaDSCxvnGjRsiMu3znZ0d+fDDD0VEUtt/FtFFGtI8OjC3u91ujF7/9PQ0zBVcObkz+hp1Y9KUtDJqbf0yLVNphE+8volM5DisNdpjR8ePJT17EVjxflZZIQ841lwTN7H1CfNJk7GMRqNQL7YQaA8d3hcVRdTB91gWJcxzbSHhcum4MN4vZbEizyPXWW5xjJpING4KMah6TolM+why+fLly+FvXLFu3b17N8RNIVZ2OByGOkP+c3xo3vnE5EdJMVLMucCy2krZoMuhE3f3er1Y/DVbndBmeS1SuQ9S1v/aXcpykQB484urtXmfl+RhFt577z0RiU5M3ehcP4tcIEvwOV8t9w99KOQ6Lnuzy6ZZHVzHbjIwrUJoYmCXy+WYwCvatY8FThLpRalUipBMiEwmgnY50i5+qIOIvdCjnpVKJbw7LUdNEeAxwrl9RCaTGpsJ9A9vgHGQwqaImZV0IOY8AbNFgse9ziOC9m82m6FsGJ88HrSSxnKxWnYd9Pzt9/th3GFBeuGFF0RkskhgIXr48KGITF3rms1mJEcWrkXWA+54HBiOcYz33Lx5M2xKceDZ2tqKufuh7d97772waf/Zz34mIhJxj8Di8/LLL4vIZMOrF0jAIoyYBV5fLMIB1M1y5dLKlLTcNvwefZBKc+0rug912fnv8Xgc2hsumJB97777bhhzr7/+uohIkBfXr1+Pudl1u93UzVBemcFtrfuJlRAYlzgs9Xq9MJ8g+7BBtIgorl+/LiKTw79mirPWbt54rlIO8uFXJKr0Qr/osAJmyQWWJed4HmoCk1qtFv7GHN7c3AxkBZBpTCDAJGMiEnHFh/xAn5+enobv9d5sWfXV7VqtVkN9sMZi/1MqlUKZIc8xRuc56OWtE5Ms6QMdKyCwnkAW7O3thbmjCbhu3rwZ1ivUGzJ/Z2cn1B0KtP39/Qjxk0iUTTBvnfBOy7WP80lpecwkZADva9PII3TerJOTk/CZ3ju2220nm3A4HA6Hw+FwOByOZSAz2YT+2zL3s4YvyezGVIOautHSGs5zyk3DT3/60/BuTeXJ2lptdmaCiDT3Lm1hYhID1sixloevbA7PirwaNSZrwMkbGhbkEhgOh8EiBc0MTL6tVmvpuW8sgghLK6E1jN1uN+YagTrt7++H+y3SCT1Wm81mzAWQaUTzmrGzWDJZ08LuOqAsxvuhRbpz504YSzDDs2kfWkK2JmYJlC0aWmPfbDbD+GKtlEg0EzvmBbTSo9HItGSt2mWRtekiE00Xxh00ei+99JKITPoDrn3ox8997nMiMtG64XfL6gd2C9WU5Wyl/cQnPiEiU4vFxsZGxDolMq3b2tqa/OQnPxGRad9Aa8nBu3zV+aY4SH1e7SzLcU0gw2uHdvEQibv3snXLskjpHFOWZwHAruNZkeYKpp+NMuGKfoT1EZ4X//7v/y7vvPOOiIh8+ctfFhGRL3zhCyIykecYv3iWlXupCHB7WHIc4NQWGLeQ35Brx8fHsbQIGAPXr18PY5THAxPTcN0Gg8FKiSfwLtQNZC737t0L8+Mzn/mMiEzn4aqs7LjqtRFt12q1grUJxAS7u7sRNzGRqTyvVqth3mEt3t/fF5HJeEBfow+L3utlgd67tlqtUB/Ib6R1ODs7C14fKDvL7mWvo0yoogmKMP6Pj4/DPEG7fvjhh2FvAPkAmf3aa68FN2xYn27evCkiUZc69Pv9+/fDXhF15zmVNyyF3fm01wPTm2vZm0Yowbmf9DrUbrcjFlBctSWKLVLaAmfBLVIOh8PhcDgcDofDkROpFinLEmVBn+rZCmP5MaYFFOpnWjFGiwA+rhx0pq+WtWowGETiY3R5AR17U61WTS0n/tan72azGUs4WhQ0bWWv1wvaiwcPHojINIaj1+sFLTQH+gMo47IsAdD4cNZ7yzJlJevVVJbo19PT06AR0/ERVgzE1tZWLFiWtddF0tNaVPoYe4eHh6Eu0BpBi/TKK68EjS00LfCNHgwGQTvIWvTzoNXVwdWtVitYOKGJRd1Go1H4W8daQlMkEu2TZWgyk2Qea22ZfhZ/I14DmswPPvggWAgwNtEvzWYzRkGNd+QpUxpQVg6c1UQR3W43zPNXXnlFRCZWT/yt/ec56e4Pf/hDEZlqO/f29sKz2FKMd4L0AM+s1WrBSpUVabIUsqNarSauNSJTq5xluYB84/dkSf5qxTAtAis4XceubGxshDbFnMI93/nOd+THP/6xiEzlA2T+q6++alo9ihx7bPW20qSIRNuW5bmOq+E4D01UxVfIE7ZMaSvLIlr0rMhiTUS5f/zjH8vPf/5zEZmO409/+tMiMpGVaQRXRZaVrfvak6bRaESSpIpESQL0noBj3yBnMAaPj49jgf3dbjdG3mDFqBdZZ03GtLa2FixriHF98cUXRSTqwaMJgopOG2CB+0Eno+U2x34He90nT56E/R08I2BZe/DgQfCOuHPnjohMvV2azWaYS7z3gpUKeyn033A4zL0fnBUHJRJNsGul4OG9oohNZ84xUBh3fNUxUjwm3SLlcDgcDofD4XA4HEtAZtY+ICtjXRJtK58k02I0luUrC2YqK1aLT7b6lMsxUtqyw7BipLQ1g61U1jVvUrOs0OXudrtBywdtMvsAow2g2YOmZn19PUZrr/9eFBz3oLXErB2xKNF1zBvH4uEzaFP42ZbPvmXRwT1837yw5gn3D+qB9oaGCFqy7e3t4P+MK+JwONkrW9uKjAnIQo3M8gD1WF9fD7F30PxBmz4cDkN5ntXeOQAAIABJREFUtVWxVCrF6IDPk9KdtWAYP7AOQGt479690DeoIyxuHEdQRNJGC5i/o9EoaN50gmBLy/8Lv/ALoS7MQCgSTeCLKyjSP/zww6B5vnv3rohE5x76ki1TeWUeW6EsGmVcmVEK5WBfepGoZRPtoWWOlQCSLVIW+2qR/cjzTK+frVYryAPEQf3SL/2SiIh89rOflW9/+9siMrVUQ/ZhDOAZKHcS5qkP2pot4bodORZDM7NyPVHvg4ODEKehvzs7O4v1LzP5WWy5q5IfzDiKeMQvfelLIiLyO7/zO8FyyLEwSVgWK6R+B1+Hw2GYu5jfIlOLIcYXMBgMYpYoZurTsp29T1bFpKjHg+VNxYnuUX7MIXiDDAaDmPdE3hjJWWBrpk5ay8lrUX60YbfbDXsCxEahr+7fvx/2fLBMffKTnxSRiXzWLI1XrlwJz0X90CadTie3dTeNFRWwGJI5TZCmgudYYG1pmmWR0ilz2Eqahtw7QaZc1UgjpbA2XEkU4EkoYnJ99rOfXfgZFrLmLVgG0vrEej8vNDoPkxU8mSXzuPXZIoKe6Su1ayS7hDBVOcrA5nbUU2RS7729PRGZboAhCB8/fhxbzFkQMlkD6la0oEwqf7lcDodYBILC7fLk5CSY62G+x4Z1e3s7RhXONK1Fj8e0g4B2pVxbW4vR5mJD3u12E/P51Gq12ObpPIE+Go/HMYUDNg/vvfdemGc4PKLufPDn+VbkJgmuGuw2inGPhZVpYflwhbLhIMV5obB46wPV9773vTAmIU8ePHgQc8XAOH3uuefCGMgKlglMPMHPbTQaMYUYK/I0hTAfpCz3M4uAwlKw4P+8fZgmX3nM641DqVQKB/RPfepTIjLdFH3mM58Jf3/3u98VkamipVarxdqCDzBFjEEOBNduluw2zbmHcOW/UV6RiWICCkCtGGA3X66bzhHIsmpZbsFpchAK3a9+9asiMllf/vVf/1VEpv2EDeqq6dn1mOCDFA5NOMiyYg73WxtanXeJXT0tkrK0VANFwXrecDgM7Q7lF+pwcHAQIQcRmR6oeN5kKfMiSglWtmNuYD3Z3t5OpaFHnXCQOj4+Dn0JuYDwjjt37gRlF6eswD4J8p7XLZ2nbRYs4h4rx6pe8weDQUzes7u6dYBCfS1iCesAJRI1qqTBXfscDofD4XA4HA6HIycyW6SynKDZ4qGJGVgDpN2N+FRq0WoXqZF59dVXw7ut7PX43yqjdg+wCAIsSkadzHU4HMasDvx/lhOwhbwWI/5fZ/OuVqtBswHNM7td5BkPumxZYNEUp5F2sOlZa8is7ONM8y4y0f7BWsVZtLUGk4lAluG6w3MH2NzcDO+F5hkak7t37wYiA2jScO/W1laoC1stl63htCyTaeNRU8menJwEaw7qqeUInmu9b1ng/tYEObVaLQTuYy4hePyDDz4IGkNo+DBuu93u0sk/MGY4aBeARvXg4CCS1BpX/I3vQHJy6dKlYP2ANYEtVN/73vdEZNoGrPnUlOT9fj8QdGQFxjhb9FAOdtW2XLR137FlCjJGk3Gw5cuySGnL1KKyQY9t/l97ETx48CBokSHX4OJ39epV+cVf/EURmY5LpAA5PDyMEfkwinA1ZWsGYBEyMXGGSJR0CVf079raWqDah5zAWDo8PIxY3ADUE/KQvQlWlex1PB6H8YTUAeiTGzduhP7UY2kVlnfLS0HLXCYAgRWg3W6HcusEu+12O5L4WEQirmLoa76ifwB23c/TT2lrg/Ucdt+DnNKuqPv7+yH5OMYY2iErWc4iY40t0GgXPW+q1WpYh+AZcfny5eBKDosa5PLh4WEkbYXItP+ePXsWKOAhnzc2NmL7X5bF82I8HkeslSJRi6jeQ7M3lZbVTGduXbX31enpaSyNAoeDZKmXW6QcDofD4XA4HA6HIyfmjpGywBo+yzddZKJl0ZYFDs7TmgTWoBcRG4GTu+Xzblk6LCtVWkyX1naORqNYW3AQtCZEYOr1RWCRGOhy1+v10B7QWnPfwI8b2gy2Vi07QBdagFKpFLQFaQk0oa3c2NiIaTQsixSeBS3GaDQKmgpopNbW1mJB8EzZvMg4TJpH7A+Mel66dClovFBuxAR0Op2gjcb96Mutra1Y4Ck/P0+5FoEVAN7pdEKcAzRasI6cnJzENOyYJ5Z2aJYldll1YjSbzTA2oCFD/NHx8XGwRIEsBPXodDrhWUWmeWBwgkxthcc83tvbC3MB/v/dbjcWNwVt5Z07d4LGE4HzTG2v6dJ//vOfJ8a1iOTXZrKcwtzHfGcadMsipWNFOVmv9rdnawjKzTE7STEdIsUEm+uxwH2IcfPw4cOgaf7Rj34kIlPij9dffz1oqAGOz0N902TCIp4FvHajD6wYaSvxeVJsLMdXIi4UsrtcLof1ArKj0WjErDsYI8uIc00CWxMx9tFvOzs7YS220sGsomxAmsUWWnym0sd6CfmtvQlEpn3IY4/jZXUZNIqQiVn2rv1+P0KewN8dHx+H73Qia2t/WDR4rur4dbQvzw3M+93d3RCbiz0d/r97927oP9QX8n80GoXPMJeuXr0a24swoUxeAi6W+6iLtkzxHtpKp8HJc0WSCSVwr76/2+3GCOdwnbVfCmXPU2mHw+FwOBwOh8PhcMywSKVRW7M2SVsA+v1+OF3ipIcTfKVSiSVQnEV5WiQlJk7fbM3Qieeq1apJG53kB2/FSHGb6PbhOBitMc3KEpIXHJvGfrVg4UKdcMqvVCrBEoUra/GWTb2qtWFcRotaHtd6vR40JqibldwX5UdcVL/fjyRXFZlo2zTrHd7dbDYLoT8HrLHNllpo7TCfYLE5Pj4OfcbWVpFoIkdLI78sWHNBWxwODg5iYw7/93q9WJJhZrbLorlcNL4jKwMmns8xHZAxGFulUikk52VmQpFJXbV2cZ7ypIHlmkXhjXfD759jbziZtci0P05OTgJNLrSbuJbL5Vjs4sbGhrz//vsiMtVco0+fPXuWu59YZqPdtUy1LFIWxTJrPjUTFGQB9y8nw9SeC4vQn6eNWZZ5Okl4v98P/YIYDlj/7t+/H+IcmAZfP5etH1mtU3nqxO+w1jddZ06xgVhdTqGAcYXvMHY5YTfex4yU2gLFSd2LhBUXyom80Ye81uB+fLcsC3UaWL7qNZj3JuxBY3kdiUz2GWhvrF/or62trWA5wXrNSVl1/Py87IpZf8N11l5C7E2B8qDMLP/1HqHo1DBWeh5mtsN70HbYD6yvr4c9HLxVIKtv3LgRUlRoRmP2DMHze71esHRpxmSR/PIBbcxzULP2MUMf1qN2ux2zSKUl2GUrlKbdT/JcyINMO0EeBFrosMBgEzB+o6l9q9VqWIjwGf63qEuZrKGIDSA483liWldLiCUdJtNgbfwsd8VlkWtYdWLyBgguCAYOaES/JB0m8pYhD7T7DZeNqYb1QQqfi0wFCYTGYDCITRDU//DwMEb3yq5NlisIfrssWJSqPPlFJpsEtC82Suyiquu7aipdkejmlRddFtgiUdO+3tDqxXoWlrn54DnKCynABA4ik7mFDQT6lOmAl71R4qBpzHOtPOI8anA7YrcdHm8ik4UJm3ccqBCQvL6+HkgpMF/Y9VEfqIbDYSQvTRag/DzGLeWUptzm4OG0oGbrQKUVgHyQ0kq5Reia01zpmCoc8317eztsbtC2mFP7+/uhjOg7/D6JBCZvoH5WWDJdv4fXQWzU0LaQ5yLRccXfHRwcRFzKUGadc4ZJDIpUiOn3amgqd6aV1jkRgUVcK4uAdYjncuMzfVDnMA4cpPC79fX18BnvL9JIW1ZRd2v/xQdEnSKF91SWe2+RZbZCZ6ycmfqQxZToaGvI4t3d3eDuB5c+yHyeR9aBH+/JS0LG4HdYByjUTbtct9vtmNs5H56sVB64WuE0ae60Wdx/3bXP4XA4HA6Hw+FwOHIiN/15GnUknyBxatWufdVqNZZFHaf8Wq1mWqQsak7r/yzgAGft4sH/J7l/ZH2vZQkCmOadXSTx/7JcDbTWlK1O6BNoCM7OzkxXOi7zMsFaUa3BhHaB24rbDOMJn0ELv7u7GzPXs6sFtLiMpODzSqWylGDg8TieyJE1x9oqNxgMYu4TrBlLsnwuE1rzzGQTHMTJ7gIidlLlIghmlgnWZnNQskiUGpdp80XibiMiy3PlsYK+9Vhh6zRfoZ1EneAG0uv1Yu5+r7zyiohM3EUgV0CuUSqVYu+Gd8D+/n5ugh2U++zsLDwXY4vJJyzXPm2R4qu2nLJLCbuViESTxloWqSLkuB7/g8Eg5kWwtbUVLFKwvsNNp9vthrLpOTjLRbvIAH9r/eR+sAgO0Ae8PxCZtDtcldjdT2TSJiAEYBdC7cKIZ6/CTd2C9qQo2hNlEWjPFYDJBDDHtra2YuszE7BYCdXxbL0HKmLfVSS010HaWLEs0EWPK5YnSRYpllN8hXxAvzG5GOQI7oE73/7+fsy6y66PGB/oM04XkxWQpeyhYtWNLVG4JlmkTk9Pw334HbvSM7U5Xxl5E0G7RcrhcDgcDofD4XA4ciJzjJS2nPB3WsvDSSY1vWqtVgunYg7cF7G1uxwjZWml85762X9Ua/v4PZa1Ko923LIwcRtqKw/fUyQlK2tTdGLbarUa6qzJNQaDQayeedu6KI2M1mBCo2C1Ld9nWaZA2cyWEZFJ/RHTgjHLliDcD81GrVabW+OctV0sWm+tuR2PxzEff53UWv+9aLnmgR5LnNwRsMb9RdDSZtHacxyG7iOLRp+1YMueVxizrPHlOB+RiR89xx2JRC0uoHLH3Hjw4EGoA7R+sEwdHR0FundYure3t+WFF14QkWk/49kPHz4M8VJZwfJK18myamSxSLFmXXtZWAkgmYDCSuWxDIsUJxTGd5ubm+H9iFOD7Ds5OQl9ZslKixBhGWBZqq1UvLayR4TuA943oC4YX/h9pVIJfYJ+4rmmZQzPiSIxK66p6PizopDkQQNwfJ1INDbIsj4lxX0xpTVbSrUMLTI+PiuS3pV1b7asftSpTESiXmC4ass504HDkot5U6/XY4RjkB2XLl0K1l08nz2VLEIwvc7NAsrFsprrIpJMdc4Jdfna6XRMq5x+D6/TSYnUs3oWFJJHSrvxdbvdWKOkBTynufZZh5oiGKw4D1BW1748759FXKHd5BZhe8qKNFKNJDc+xiqFmc5RwO/nA1XaeNS5HkSmAgRmbBYCGI88ufV4ZJefVeUgSdv4iORje1tlH/KBTi8CXGbdXxdhQ5EVPJf0AQrfcd61ImVZVvAiqDeNHCiMYHGLEQ8bKLiMdTqd4PbHOVhEJoscDlVw7VtfXw9zD8HNACvXsoLlg97I4VDB7KjMxqQVc7x+Ja0Jg8Egtih3Op3QPpaLX175kDbPWfZp15d2ux1bU5k5DX9nYaJaJrGBPkDx/xbxR5KbJbsQsYJWZOruyJ8xsxzAfbNst+GLemhipJWH9ypa4ZqWj5PJB3T/DgaDVLl/Xq7ci8jjZfcpH0p1u3JOPBwoWPmLz3AwAvlEq9WKHaCwN2JiG+yJmLDLOnzk7TesExbBFMtbfWjqdDox971ZhBIon5bxFqEJE5plORy6a5/D4XA4HA6Hw+Fw5ERmi5TlLiSS7NrHOS4YnANCU2PyyS/NlWERMG1n2ul5GZr8rFSey8qMrTVATEud5O7CmGUZse6bF6wZ0P3EWhg9vtiFRAcrs4ZM04CythbjkC2r2n2Otd1562RhGZT35wXL8mlRDCeRl1iEG6vCIv2Q5CbFAat5n1/EuOBM8Xp+s1sc+ogz12srD1um2HVEZEoeMRgMgnYQ3127di3MNbwHbibj8Ti39YY1hoCWZcPhMJSXP9OuHdzGmuSEZQ2vb7hqdz/LrWkeJBGPMPkOu0axtUbEzg+VRqu9SliWKcsrRMtxtmboVBxMUa2JXSqVSmQO6LKsKo8U46NkpbJCEtI8aCyXL+2mybl7rDyP50GStAhW0XdWTi195XZlbzDIBy2XNzc3zdQuIhNrNtYCzvGowyIWAeeJtFz6UGZtfWq32zHZy79PIpSwLO48rnUeM7a4psEtUg6Hw+FwOBwOh8ORE7nJJqyTt0V/jvt0Ql72h8epjyml9TP57yK0E2mny1VqhFatYRmNRpmSKWcN7ly2FcEiN7EsUyg37od2gu9HnRqNRqyMnNBRZ2avVquphAh5s18XiYtswbLi/ixNcJpMWVUQ/DzI2/bLmBfzYDgcJpKWnJ2dxYgTGo1G8JfXsrrZbIYYKWg3IeufPn1qxk0hqBmWKSYMwHvyolKphDrpWKlms2laqZLioESm7Yv72XqiE/+yRUq3Xb1ezx14nQaLvIi1rNo6nhQ8zcjqYbAscNtqKxW3t47BZuugtmrzs9giqGNdV1HfvFboiyrzeJ7o+YHPRab7v7Q9Isfy8N+4Z5X9Y2GWJfE8wQQfSTHtHLvNcUGQU5qwq9PpBC8tjpcVmfQBns+yzJI/uOYds5ZFSluamGyCP2NKc75aXgcAlw/1TCNMcYuUw+FwOBwOh8PhcCwJuZ24s1g1er1euE9bpKrVaoymNqtFqgifzDQtuIUi/afT/NUZRWpE2A/dsjZp1pd5rX7LsmqIxPvA0lpZ2jArJkxridk3FrFUbJnSrJNJZVoGimzTZWnZ0rSus2IC89TPYthZBizNdl7M29bLqhvHkSTNc/6OLbjQ1MGKBBldr9eD3AZ1ORiVhsNhYIcChsNh0CAiBcHGxkZ4ZhatH4NZ+7R2FnOcrWxWXKjWkuvyikT7Usd+cJ2wprGFKq9FKm2M87ql68v04fpZSc9Len7RyGKVmfVuy4Ko03akWb/5Pm2ZWgWyWNxn3X8esMqoZQTHf1peKlbsm/7uolmA8lgSz8OLib05NEtnuVw2U9nofuM0A9g7sSeCSHQ/zu/WsVRWXGNWwJuh1+uZbH24WtYn/K2TrlvykNtHy896vR5L/cHJv7OsTZkPUmkDxqIp1ea/8MJqNXQUOjWNLtOi7C0CWYM9z4Madd5npAnsWXmwzotudBayHKgYFgEEHxZ1MDa/hycPfqfHMb9zVfTnWXGeC3Cam9BF2RhcJKxSUWG5x2rXO5azfNXzBW4g5XI55u53eHgoIpPFURMzPHv2LOZWwjlN8h46LNdf3aZWndi9MS0/IbuRaVh5qrCooy16vV7uw6FVD4uYAZh1eLCep5+xKuQlKrLusdYy3S5JCi6LOGFWWZaJj5JMTDvwWOlJrPuzHhzzKrqXiYtQBkaacoQPBfogVa1WY6EbwHA4jKTH4Hs496g1L4voKyjfOE8frkyHrt33OKWBJaPZDVL/r4mKarWaSd0vkv0g5a59DofD4XA4HA6Hw5ETpYtmVnU4HA6Hw+FwOByOiw63SDkcDofD4XA4HA5HTvhByuFwOBwOh8PhcDhywg9SDofD4XA4HA6Hw5ETfpByOBwOh8PhcDgcjpzwg5TD4XA4HA6Hw+Fw5IQfpBwOh8PhcDgcDocjJ/wg5XA4HA6Hw+FwOBw5UU378u233/7IJJl68803M6VX/sM//MOxiMje3l7Iqoysx5ubmyIicvXqVbl+/bqIiFy5ckVERC5duiS1Wk1EphmgkWW50+lEMi6LTLMtj8djMwN0UjZo/jxrnd56663QT2nPtcqhs1kPBgMRmWS8xncAZ4TWGaA5ozx+xxnO8fc8dbLqkoSsGdSz/i5L1u6sdVrGfFpWHri33nrr3Oq0LGTpp7RxB2TN5J6lbxbJCr+scVfkmMpbv0XkwyJtOQ+ytlPWufT1r399LGLLasjXUqkUZG6lUglXLYexVlUqlch9fE8SsBZAjg+Hw3DF33/6p3+aqU5/9md/FlubrKtVRl1evi7a17w2AV//+tcvlMzjss1b36zz6c033wwvyyu3suxlikSWOqGP5pFl85Z7Xnl/nvuHZSFrnf76r/96LDLZQ2M/jiv20iJTudBsNkVEpNVqSaPRiHyHth2Px0F26b2o/jsL8Ny0OrlFyuFwOBwOh8PhcDhyItUitSpkPSEWoeGAhanf70u32xWR6QkYVqXBYBC0ckC5XJZLly6JyFTbx1pCXTa2TOn6lUql8Jn+HVuwigBr/aznohywRPEVbYB6wgrF2kLWhOo6sVVu3nKnaRJm1cn6PIv2bNY750WRmn7rWavWyC8TRbZ7USjSEpUXy7I8LvsdRWjV877rIoyVecAWGNRBW2qq1Wrss1qtFuSwZa3idUpDW53Ozs5i3gm49vv98HdWsGbY0g6jXJbVSa8x3D7aApe2FlvgdXEVc2senMc4ttY+/izJS0UkXl6rLyyvmGVinv6dV45Ye5ainv1xxfr6uohMZBjaRMukbrcb2o3lFO5bW1sTkehe1NpX43dZ+sn6bRpyH6TOU+gUMQhv3LghIpMGxWEHB6iTkxMRmXQcvmPBAaGxtbUlItOOW1tbSyxTv9/PdKBI2sjngWVu56t26RiNRmFgYoHE4bLf74dyoJ7szoe/cagUsc2oRdRJ/5b7RLt/8P3WQpBlg5420c5DELJrZJYxlMXt4rww78b647YAneeh7Lze83Hrw6JhuePpA1K1Wk39zJKHAG8mRKLyH+tdv9+PrYvsts7uNlkAV5zBYBDWGH1QY/kGlMvlUAfrMKnry/9bbZDmzujjcdqO1lqjxw3DUhQD1kHKOvAue93Ku3EGln2g8nEnwT2v0WhE5J9INIQG+1Len0J2oZ1brZaITOSoln+4t1wuh+fOOy4suGufw+FwOBwOh8PhcOREZovURTV/5wVIJETimjGcdk9OToLmTWvRROKWqXq9HjsBs7YhjYACKFpbq8uBUz6/azQahbJ1Oh0REWm32yIyqXeSa0Wj0QiaRn6u1VZ43yIWKa05gHZhNBoF7QJrZ7VGQwdP47n8zCTL1DxugkWBLXzaqmnVxXKP0fecFz7K8iPJPYUxy2p43u0/C6t0cboolqm87192+0CmJlmdRKJufJb7Hq48FiE7tPdBv98P1ibW+OJv/d08rn27u7uJ72IrmF47LMsXW6jYrZHbolarhc/Y1SfNFXCVyDOGVlk2eJgwLIuUtabq9TXNgpXmIVOpVBJd/4poi/OwTGVx83NMZB9c9DSJxNnZWZBdx8fHIjKRIZAn7O4nMnEXxDOYII3v4b+LWPvcIuVwOBwOh8PhcDgcOZHJInWedLhFY3t7W0SiAWlaC9btdkO8FJ96tWYC1+3t7aDRSQumnEVAITKfpSMtNkpTQ+r6whKFkz4sUqPRKEI1KRKlnkSQIE78FkFHlrieJHBbJ/m3j0ajGO08azbQJ2x51JadWe2eJV6qaGjqTiuWzbKQWlpaaGKA855/H2XMijvR/WYRvVy02CjGPDFri2CVlqk0GZkFs+hzi2gPyFe2OmnrSlIMEHsZ8HUwGMRinmAR6nQ6Qf7zFX9r2WrJ+Fm4detW+K1+P9YatoLhM47HYvp1PAvQGme25nHb6c8sa95FQ9aY6iLA4yvJasdW9yxrE39npUTBfWlrMO9fivbWSZrHaXHUy4iXOg9cFK8JyATet2G/CasS72EgE46OjmKWcz3W+BnWPhiYJduz4GJKEIfD4XA4HA6Hw+G4wMhkkZrnpKrjNtKQxvZWNGCl2N3djWnr2VKjmfwslhCgXC4HS5fla6yRxuS3iL8ma220NonZSphWEpaoo6MjEZlqJsvlctCQ4rqxsSEik9gwfMYaJq19YQ39vHViukpLq4jyg8K+0+mE+iGGjWMPoMXQ2otZWqdVaZZYI8ZaZa19YcYrjl3jMnLs3nnFBHyUkTSXKpWKaQFAn2BMsbY8KYbS0oBeNO2lhYtsWWOksZcm9S+DZZkVa1nk2sU0vlYcFMqIcrJ81ex7bP3R8a+c+FJ/x7EHOrbXinmZBbDksgVCl7HT6Zhlw2dcNvxOzzUus2Wl0pY9XkOYeXbZSJo35z1PMH5KpVIsNprbzNLs67gpiy5fx5wPh8OY9VQkbqXmFCxFr11WHXiea1hJovO+67z7+bzfr4H9db1eD/IP+0x4PbVarTAGUf5+vy8HBwciEo+5ZMu53gNa/cbeJEDedlpKHike9DrIUyTOE593kC3iEoJ3tlqtkFOKCRNEoiQMENDHx8cx4W1ROeNAhU1tEiwCCv2seZBEPCAyrTsfEjEYcUUd19fXw6EQ+bMuX74sIiI7Ozth8eHFzSKDEJlvAeYDmu5vlGttbS2UA+V+9uxZOFyhjUEwsra2FsYjFmw+kGicx4GKNxy88cBmAhsftPt4PA5toBcAa9N4kWhXdb9yoPx5knwAehPOskz3EW9AMd7T8q5ZLoEXbZETsQ8iSUiTi+cFqw+TSHQsYhteq9Lcay035rx1t+jPrUMT/uZNKrvriUQPTdis6GuSG5/lIoNyaeXjLHAAua4T2ord/lCe09PTIMdx5fKz4ozLz5soXofQVtr9mQ+t5wmLDGoR1/i8gCKVD5aQX9jLWIQAjUbD3OOJRNvdOuDrA3u/348dypbZBjw/ee2xcqvhniQX0axz/aIcqCycBwkQ5na5XA5tijGGQ9DGxkb4jJUeGCN7e3siIvL06VMRsQ0V2Jc3m81EanSRuMzL2k/u2udwOBwOh8PhcDgcObEUVQy7cumAUcvCYGV0z3Iqnkc7Da1WrVYLQW3Xrl2LlIPLi/K///77QWtjaez0KTfNMmVp3LMk7U0Ca/STXIjOzs6CdgjavMPDQ9nf3w9/i0zbYHNzUzY3N0VEguXu6tWroW6W5khbovikv4gpXFu28KxWqxWsZejLs7Mz+fnPfy4iEuoG7exLL70U7odmiZMw6+dzOazyFalVsp7FGnCMQ+3mcnZ2FqP6hCZxEZfKVUJbCFj7j/LPck0sWpvG1gntXiUyHePQiB8dHYW+QVkx1jY3N2PZ19kNRlu6s5RtFWCLZpIVRyROBsBpCZaNtPHN6wlr2bXGXbt9icS9JtiZhicuAAAgAElEQVTdm99tuSctivF4HOa75earrTedTifIdMt6g79xD8sQa33WFmK0S7PZzO0Gh3eLTF11tFWjWq2axE9sneK6HR4ehrUYV3bxRv3YSqWtpWxV5HVq1UAbM8EIypaXan4RPHv2TETsPQ3KVa/XQx/yVbtiwY2q0WiEdVmPY4sOnxOvWq6AeWRK2npg7Ze4ztryzGstxj/qBRlSr9dzyeXzstQvahEr2iMEc3U8Hsf2L2jjy5cvhzGm211k2k9PnjwRkYllSq9JGDs7OztB/vD41jKAx1qWtnKLlMPhcDgcDofD4XDkRKpFKu+plbVmmlYbmqnhcBhO9dBgQHPLMS/LCmZGLFC1Wo2dfGGZKpfLMQ3KcDiUu3fvishUCwbLh+UXz5YpbZVKo89d1IpgxUaJRAkL0Cf7+/uxgD2c/Dc2NoIlCgHDHGsETQKeNRwOI9oj1EVk0hZ5NdQWSYbWnpbL5VDel156SUSmfrUiIv/zP/8TuZ6ensprr70mItNEkWwNxZhNSyQ467NlgP22+bNZ5Tnv+JQ0sGYLcx4W0F6vF6HhF5lqoHQ847KQRtxydnYWtKmw5D558iTMIcg1WKU3NzdDfCHKz/IR49pKslx0H+ahVOZ7tXaaLRNWPM8qYgmTns9tx9p0kYns0jS7TDuO3+rYjna7HdpAxygxrD7MCstKorXiTMzAViesSfiM111Ncc5yVGvueV1kywL+h7zNip/+9KciMpkLkM2YF2yxxZzB86vVamwNZop0tk7pK9Y0tsTpmFi2Aq+CQCgJ3Od6n7DKeBq2DiXRSltWg7W1tQgJlci0f7e2toJMtyited6JRGOwrPipeSx0sywoWj6USqVYzDHPJTwLbYQxrJ9xXsgbo2lZIFcJi3xE7wvW1tbCXpTHk25v1P3hw4chXsriNdjZ2QnPEInGMGtk3bcW4tqnFzUOMtQmM3apwwTkCaU7s+hByS5selOAct24cSOWIZ4XNxyo8Cz8b6FUKgUBw4IyaSPAAZdZwRs+3V686LNLn8jkIMWuFyJTt4vd3d2QA+TmzZsiMnXtE4kL2V6vF2OUY8adeTfAHOCpF1RcRaYT7LXXXgvlRL/+y7/8i4iIfPe73w1C8Ytf/KKIiDz33HMiMhH6aDtsVNL6YVkMQjweWMhjbAI8lnhRE4mav/GMZW3M5wW3LeY/Duynp6fy+PFjEZkuYliwln2QsgKQdd/0+/0wl+A+ur+/H+aCPkjdunUrLASYGwiQPTk5ibkhiEiMHaqI/pu1IdPfMxsc5hoH6zOZBu5fFbIQdDBpA8t4yGOMKfQXu+egnyALIDP5O97cWQQBeTcmOAxZ5BHs3oa/2a1Ns5fimuS+JxKVrUweoNmzcGV376z43ve+F56B9sZGBtfd3d2gaOBDFrN24f0oP9pdtw+7/eFAxZ9pN8dOpxNz2VwF0BdwqXv8+HGYT1iTUF9W6iwLLF8xPrQLKbuJsvIH49xi90W/MlEVvrP2f1p5xYr1eTf6SW5+PP4x5jHm+G/ImtPT0zCOIBcssiqUeZUHk1myXbcr+g9yQyTucpv0nCLd6PEMiyCCD1QYI1Dmv/TSSzECCsj68XgsDx48EJGpDLDIy4C1tbXEfYWTTTgcDofD4XA4HA7HklCIRUq7kzWbzXBy1FqojY2NcNLUWt3j4+Og/UjK2bQooFFJy5fQarWCFcYiPUDZ4Np3eHgYs0pZwfFoi3q9nkhxylrgrGBttUUtKzLRTKLu7PoAzQS0L+inW7duyQsvvCAiU4sUyn96ehrKyG4j2hyv22Je6DxJ6IejoyP52c9+JiLTPtnc3JTPfe5zIhJ1RRQR+cY3viH/9V//JSJTDfuXvvSlUEetbe10OjHN97JpxNkdiQP9oZFB/7CGSRMAWGPvopFOcHA++ufOnTsiMpED3//+90VkOlaZijet3YvSlvHv9RjguQSNXqfTCeMTffTiiy+KiMgnP/nJYAWBBhr14qB6tAmTHpyHuwUHhGsrNstPaJRhRbAsO8vSpFvU4xa0tnx9fT30BbTkOteIyFQbDw20iMSsIN1uN9UdMu+cQ7B0u9023fdQHotQQpPQaCuUSFzLz2QAbH2CnGfXO1xZY58F7777rohEXbnwLt4bwNUa3gS7u7vhb7ZiiEz6EHMNn6GMu7u7sZxUR0dHYfxi3jG1Ou5bFiw5rKmXHz16FL7TLqe8X7CeWQSef/55EYkSPmB8sQcLXKZgUT84OIjIQJGpvKxUKkG2633g7u5u6HPMw0uXLoV+1G5/RXgiWBZ3lBUyd2trK+JJgM9EJm0OV1WWCyifltV5CSiWhVKpFAtjwZ773r17Yfzfvn1bRKLka8veN7C3EWQW5ijLeLQt5v2NGzdCefVYYc+s+/fvR54pEt9zX758OYxTK09YFiIht0g5HA6Hw+FwOBwOR06kWqSynqZ1AOKlS5fCaf7ll18Wkelpd2NjI2g4YE34v//7PxGJJmlbVqAl+0Mn0bxWq9Vwcoemhn1DOTmiyMQypeOlLCsRsLm5GUs+xqdkjv3JC11G9vWHFoX953ECh9YFcSovvvhisEhpYgameobWqt1uR2hCRaKn+kX8mzkQWmSqVRkOh0Ez9oMf/EBEJppYaC3eeOMNEZFIoOLf/d3fiYgEiwc0gm+88UYYs9wnuk66bPMijVbdGpeoE8rG2kpAx7NYVkKLuGKV4HGO8mIuwILT6/VCvXSMFAf3Lhu6nax4QGirarVa0Kx+4hOfEJGJJUpE5JVXXglzh+n2RSbaXsgO9DtncgdWodnUmrp+vx8saLC+v//++yIyme/QLkO2o967u7thfGbRJM9TNyuhsbaCWbKj0WjEguNRD7ZIae16p9OJ0aWnpZuYRzZAe2rJao7xgexlK5SVJBhl1OQRHHMECwDHjSXFkG1sbMRiNWcBmm+mr9br7fr6eigHWyxgkYKGHNcrV65ErBhcxnq9HpON6+vrwcqAtcyy8K0CqDvGIPZHb7zxhnzwwQciMl2zV5ko2EoBo1PYcIwQLFOPHj0KllTEteK7w8PDWAwb7mm1WqHP0Tc7OzsxKzFTq6fF7uQBexhoUhkuD8YK9gWXLl0KYwqWVp6LlhUtb8LeIsGxkJi32NNhH/HNb35TfvSjH0V+h/rjnmUCbXV2dhbxhBCZyg5ehzluHJ5SWH84jYVud8RMHR4exmQ17+0ty1SW/ZJbpBwOh8PhcDgcDocjJwpVeeDk1uv1gqUAp0tYnwaDQcxfGdqKVSTG4zJCu6JjvJjRT5/kReLJ5c7OzoKmFnWDBpd9Z3ECvnnzZtC0cPJUfua8QNlYey4yaWNoh/BZuVwOJ3DEE6Gen/jEJ8JnKCtrX3QixHa7Hes/rndejYwVa4BnoM22t7dDe3344YciIvLOO++EcgK//uu/LiIif/RHfxQ0mH/7t38rIlMNe7lcDs8Ca1K9Xo9Z9hax5mRpA2Y4hAbO0qiy1kjTtMKK8OzZs9BPHDO3SlpdwHqnTmaKuXbp0qXwt9ZSJZW56DpZ5dQJp0WmWv5msxms19CQYS7t7OzEYqqgmX306FGQfxZr0nnGu/E7UWeOa8WcgGYZ2mS2uM9KpCwyX7why0s9J5mGXX9WrVZjCXn5qrXwHH+o68IWKc1cOI/Me/jwoYhM2lizy1ksc2yF0vFPFt27tuoyJTk+Y8pqyH22gudNyIt5fHJyEmNbZcYzHQOxvr4eyqTjp65duxazUuGenZ2dGOU2s8HhM04ynJfSfRHoZN2/8iu/IiIir776qrzzzjsiIvKd73xHRKZyfJG4u6xA+zSbzdBGVuJky0oFywH2fND+P3z4MFir8B2z3uFZGNuj0SiS4FxEImMxb3xeEtiarVPCsBWNWZxFJnMDbYH5BQ+kbrcbS1lQrVaXzkKdFSgv6sLzBftw9BHkC1voGUXWgeWJ3gOjHM+ePTMZ/dC2WHfh0cKWQFyRAuf+/ftBtmJsWt5SPOazeFXkPkhZE5nzR4lMDkgwFz569EhEJJitDw4OQsHhcsX02kzIIFJ8sDUHeaIu2rWGF0gI71arFTZGFnU5/kY9IQjef/99kwQAm3UIB+3qNy80lTIvXtodqdlsxszXGIzPPfdczI0KB5T9/f0gPFFPFiSaLMGiZc+DpMNLo9EI/YP2v3v3rvznf/6niERdGEVEfvu3f1v+4A/+QESmQvIf//EfRWRyEIO5Hs+6cuVKjHo9LX/NImAzM8YLu6ZgkwpBiA1Eq9UK7Q6XCiAtU/x5wSIhwMKFjcPW1lbMhZGpTVcBa27zONTB7s1mM8gxTXLS6/XCwQkHd8iJx48fh+cz1W8ScYhF35oVWQ8zeHez2YykPMBnIpOxhrnBMhK/XzZJBrtXa/nAB3RWdolM5KLe8GBulEqliKJNJEreoPPjMZLy9+UB5m+73Y4QWnB5+NDEc4Ppy0WihA58SBKJ5vnRZA3r6+uxnD/sqpRXjmOTc3x8HNYKTVzCeZ6YrpjHoa4T9g7a/e/q1avhM3YT01Tb7Da3LBc6a55qWf3f//3fIjJpA2zsdD6dvLmB5gFkb6fTCWMOYwPjjd3xOMUGgPmEft3f3w+bc+wDcX3y5El4J5NVJCmSNYHVImBFC8qMMjx8+DCmeMAe7fr16/LZz35WROLul48ePYqtrSyrV9mXGpz3EPMMdfvc5z4XlNDYCwLLItRiWK6ker3tdrthrOiwGpFpO0LWPP/886ZxBFcc9HnfoV0BOR9ploOUu/Y5HA6Hw+FwOBwOR06kqmKyaj5Z2ycyOUFC+6Tpfnu9Xjjh4+TPJuQsriCLgDXb0H7gZAqw2ZAtUyg3gqr55Kw1DzjlHx4eyr1790Qk6iaC+9iyIDLR/s3rPsZuLlrbOhgMwnesaYRlDKd5WDx2dnZCW2mLwdOnT4NFSmeM5zYoyiIF6HY5OzuL0GHiXaAo/d///d9I+Y+OjuQ3f/M3RUTkd3/3d0Vk2iff+ta3gmsN+q5UKiUmgh2NRkt3s2B3JNQT44Rpi3XyUGgJ2bWA++Q8ySYApm1H/4B05vLly6Hc0J5Dk7xK14gk62O1Wo1ZzDY2NkJZMVaYphp1gysIxlq73Y64EYhM+k/T/i67z6xExLVaLWjyoeUHRX273Y4RA7GL3LLleBrYRUS7hvZ6vSCz0O5sEWRyCZFo0lvtksbac23Nm0c2MHkEJzPnsnLySP4MaxMsBmyFgnZVX5nOnNfgJMppXjOzAmQK7XY7zAdtmTo4OAifMckG+gDtgvWHqdQ1Wcbu7m6wVvFVJ/zF79bW1gojMcgCpjsXEfmP//gPEZnID3iFJLlULROwmNdqtUjyapRNZDKmdDLlnZ2dGDEE2v327dthrmiL49OnT4MFDta5Z8+ehTGB+yFj2IMoC7K4ejPJAOQDxhgDfXbjxo0wVtBXGK+lUimUnd179RpyHi7a4/E4zCGEnEA+XLlyJaSAYXfXVYHlJls3RaIhNJC9bJlKIn+7detW2Ne+/vrrsfegD7EGd7vdMC61N5VIeoJiwC1SDofD4XA4HA6Hw5EThSbkZTpTnGp1YttarRbRmPPv2d99Wad17TMpIqZlSlsFyuVy8CG1LFNJ5X306FHQWiAuolqtxp4PLc7a2tpCPts6Xs0KSEb5L126FCw5uEJzV6/XgzYI1idorfb29iKxUSKTvrP8UVHHvJrpNI2StrqhvKgHyvHee++JyNTS8fd///dBa/SVr3xFREQ+//nPi8ikfRBbBU0Zx/NBO7cKTbuu82g0ipGH4FqpVII2zUrGqefTRbBGiUQtUqgLCGmePn0a+hbaTtx7HhYpgOWctrq2Wq0w3qFNBZ11p9MJY5EprvF7jC3MSw7q1/VdlIwmC9gSCjkOiwXKxVpC1AXjjrWFyy6j/lskqk20SHeYcldkWv5qtRrxy8f9ItHErainZZFaJBExW5+gBbXo27UnB8dB6XgoJo/gOCiRyTjT1lBuO+1pMhgMchNCQXM/GAwiaRlEohTkmoDq4OAgljyXrRT4W1urHj58aNLbw4KC9Q3/b29vh3b5/d///Vx1mwfacok2Pjw8DH2nE6xbvy8aaEfLu4ZjdrWVant727RSiURJgzDn8N3GxkawcnPiX/Q5xgP3/TxpYdgqxJ/hqtuz3++HuC69L3z27FnoI6xPPNY0SQK/a9mYZYFDebG3QfsOh8NgvcFYzEsoUwSs2HDLIwRj4OnTpzGyKiaFYt4FEZFPf/rT4R4+i4hM2gRyDePNkodpcIuUw+FwOBwOh8PhcOREIQl5w8PIxx+aTGi/cG00GuGEqTVTnU4notUUKd4yZVl7tOat0+nEfGW5LbRl6oUXXoixQ/H74A+N0+79+/cjycMYnMwyK/jknnRKL5fLMcaiK1euxOhjoeUcDodBawFLFK7Pnj2LUdaXSqWYJk1r7eeBpVECmHUHqNfrwbqGNoZf8N7envzTP/2TiEx9m8HC8/zzz4dn/eQnPxGRiVYUGhAdqzCPlS0N3IcWhT3GDvzJcU+z2Qzl1lrdTqeTmKjzvMEWKcwZjK+jo6MgBzSL5aw2X6YGkDW0mlWPLYOw4HKMFGQAxhPHE+kYg0ajEYu1WbalnsHv1Ax3PLfxt7bwsCV0WeB2T7IccpmYrhn9iM+09Ye/g3a50+kErT0z6Gnt/SLjD5aRUqkU2hRlY8ugtjCxRUp/x0l0daJatqxyn6OvLSt4XqsA1khmRNReE91uN6wnbKVi6xRfj4+PI0xvIlErPGQ7vjs4OAiyRbcTU8AXDWss8NrL5RkMBrGUAasEewVp5l9O+8BJXkWiez2OpRKZWGm0hZStoXrvU6lUQr/gO8h/ZrLMiyRrDa9BwHg8jsVLcZwXLGroK/YM0TGXlnw4L6AcKC+nE0nzgFpl+bX1PQ0c14S4Y15/UE/sBREb+alPfSrUiS1g2FfpNB8Whb2FpaXORoEgeHlDrwOAWXCvyrWPO0tvXIfDYZi02BRZG2c+UIEaXZefNxwwGZ+cnAQKRiuwF5M1K3gR1IF3HDiuA4t3d3eDqwMWWzzr5OQkLGrYBHIuCDZfo576ILWIa59+NpeNoTdK4/E4bBRg1kUb379/P0w+0M5ic3T79u2wEIB4o1arhe91LqFlUubqzWun04kFsqJctVotNvl5A68p7xehzy4aul8x3nq9Xqi7djPgg/Uq3Sv5fSxY8fd4PA5tjTEGnJ6ehv7CnMCGoVarhc2GzqouYrtiLrv/rCBfTQvOG2OdX2sV44v7IMl1h4lVeC7ptYndOPRawC7Slrt00rvnAZRavDm1yGWswxJkl0UeAXmoFVxMTsSHJu0+zCk08h6k8PxqtRpLacLzH+9nN2XMGcgzzvUDeYhDE1Opo4xMV4/nYm6y66aer8uEJmZBP7H79rJSbKQB440PUmgzvmo38uPj45g8ZiUA6odxiXHKB3zcU6/XzTGKcmWhoU6Dnpucv4zXc52HDuvq2dlZ+FuTH1lkW+dxeEpTPIvYYysLMceyYK3l1oHKalOMQU6ZIBJVBuEeyNaNjY2Q4oeNAJiP2O/zGpFlr+eufQ6Hw+FwOBwOh8ORE4Wq1VmTqbV+luuSxiKkBHnvL5fLiRoOTtoIrZgF1OPy5ctB4wJrhqWdxcl2f38/aDZAwbhI0kPLIgWwS5pFGYty4z7WPuKkz+QLIhOtLlN8ovxWIt4ikaY5wWdM8w4tA9wKKpVK0IJBgwm3v36/H7QWqMf29naoA7Sz3NbL0jhxXfRnKAc0sZVKJWaV4ySeeMYqXcOyQrcf1+OiuERYsLRnrPXWbc7WW7YUiEzmjSZysNygitJSp8leDR7jmurceuYqNelZZAuXlb0gtJWKLSRJlLq8pi3LugtihrW1tZgmH3KLKcvZ+gTZrskjLOsmW9ct6xOvAfq7vIlR2XKO8a3d2pn6mD0jLCsVnqmt73yFbMe72+12zMWZ+3lel7FZSKO8Zm04Pi/SupkXGD/j8TiME3zGrpiWlUpbADn1CvoCbnKWtQrvaTabpvupSHEpVBg839kyhb+1O3y32w33o85p3gPnQXWehIu8nopEk//qsrILMkPvWTHWPvjgg9jaC1lw9erVMO5ASDEYDGJWMOyveF1Pg1ukHA6Hw+FwOBwOhyMnMluk8p6otXbS8vU/b1/SNJ9bHWjZbrdNH1tcEcwGjRq0i+xHj/fdvXs3Yt0RmVp9OJllVqT5vbJGB9og9lPG95r+sd/vBy2STr47HA5j/tC1Ws2MjeLrPHWyfjvLMqVj8FDHVqsV2haaL2gq9vf3wxiFxa5SqcSIP1ijuYxxy3Vi/3BNrWpp0S0a0POwFsyLi1DGrO+2gvT1b9kKiDmhfetZG8/WrSTa+mW1TdJzz1NLnoYsaQj4O4sII+0ZSZYp/XeRgIa01WrF4kc4Vkpbn+r1emJ6AKYs10naOR7KioPSCYj7/X6M3GcWOGgbZWRSKpGotYrvQf1wxbo1HA5jMRCcvFcTVzBRiLayDYfDpRPxWHML77xo80lEYiQyAMsly0plxVZpEi7+nfZa4tQ42nrJ+4sioeU4W76sfYa2aLL3Tdpau8o4pCLftcrxqfd8Fs8AEwNp+c0pLpBmRHsfdLvdGGHI1atXY1YnyKHT09NM8n5pZBN6MKZtiPM+syhkYZXjQOokNz82h+vA8Rs3bsSCSMvlcsgppRmGnj59mpvHP23icrZo7T5RrVbDb/B+XphwgMKCxIQOmrWsWq3GPiuiv9IOLEmmc+0+wQdZtC36CW3S7/dDG+D+ZrMZ2fDqci0Luj9LpVIs0N0SllkOIhf5IPVRhuWaw/2XxmjJhBUi0UPZReuvLOVZJcNT1ndZbZtlgbT6YVl9AtfiRqMRZLQmJeBDEzM7andSVgQm5Znrdrsx175erxdzUWW3uLx5pJj1VAf28zXL4Qr15fv1IWswGJiHQ8h2vc51u93ch8MicVHmk7V3AKzcm/w7rWzgsacZGi3loFUOvXaPRqOlHKQAXk/1ms8ywFKg8f9Z35PnN/PivPfXWZDm/prWJ7yv1d8xuyjYOvlAhbxZHPIBQ4iWb0+fPs3k+uuufQ6Hw+FwOBwOh8ORE5ktUnnMhUVYn1aJLK50swgotHsV3MPW1tbCCZjNwjg9wwQJdwS2BOUFk3VAY8dWMA5wx2ecI0EkSq8NS5SmsGdTK1uhirREMbK4F6WNT253TYQBN5lKpRKjOO/1ejGXmWVrlNKINJI+S2ufizbvzpNqtSjMo+lLkjEWjXdeK2PeshT5PAt5CC3mxbzPYsthnmesYrxizWg0GjHXJrZaalc9/kx/xxamrNYn/aw099VZYHdjTRXNlg62NuGqLVL8f5IbObuAQbYzdb3VFjqVR1FICgW4iGDyKD0/2HKr13he9wFYC9jNXu+PmGadZVySvJuHiGweWPThWazf87j6X7S1+TxhtR+PQz0mLZd4HpMs/0SmZCfj8TRPGNLjbG5uhjEMyzZ7XyHVQhrcIuVwOBwOh8PhcDgcOZE7RurjfIqeZZnSmjr4TlpBzdC8rK+vB/92nIDZNxjaMyS97XQ6C2nIkmJ6KpVKjJ7comzmxJU62Jifpf2mmba9iDGSheo8yTKVpPljjaoua61Wi7QL3qODghex9iyikUyKv0kLaP04zFVrHJxXvfLG42T97Xloqj8OlsFFsYy6L9Ku2vokEieQEbFpzLXFhf+3KKtxj17TLKKTReZemuWcy6/jldlKZVmrNCEC36vX8XK5HEtKzLFnq4qRyisDziPQP+0zyzIgEt838VqpPWP4f4tQJ4mwYZVyat45/HFad88DSe1nxaaxV5S+v1KphD203tceHh7G4vC63W6IScWzsGff2NjINA7cIuVwOBwOh8PhcDgcObE01r5FkXYKXPaJf5ZlSlMqcsyUZnMZDocxKtsrV65ENIAiU03Z3t5esATlBcdiaIpfS1M3Go1iiWbZt1Rr6vj32iK1jIR5IukWpiS/5CzWLP2/RadpMbGdF5Lq9FGLRwTS+nXW7z4OWMS6taxyLPNd591vHwVtMceP6PnOMSaaCY2Z+bQGluODdPwUW58smneA5WLe9uPYLj2+0t41HA7NeBwR21rFVivNHmtRWvP78rLkLgMXZVzOYny1ysnxVYysdbK8aM7TIqXL5Zap1SKNyc8C5jmszBy3x/IEV8T+A8PhMLA463Q3zWYzU3qEQg5SqxrkqxyYaYcp3bCj0SiRIpGDKnGQajQasru7KyJxusVyuRxyTC1S7qRFCGXCu/WBjhdb3a9WrolFFtmsWMTNL+vvsrqvnLeQzPLej4oAz1POVdUpjYZ1Fi7KoXteLMP98KMyFi8CeA3RBxt28dMHI3bt0656TFme5dDEsNaQeQPqWXGCq6aX1mXS5eNNkV7X+GoRIVlpB3QZHbOR1QXQ+jvpnjRchL5Z5EB1Ecr/UUXa+mu1LadX0IoTKJpYecTylkNxRKL06llo9921z+FwOBwOh8PhcDhyovRR16I6HA6Hw+FwOBwOx6rhFimHw+FwOBwOh8PhyAk/SDkcDofD4XA4HA5HTvhByuFwOBwOh8PhcDhywg9SDofD4XA4HA6Hw5ETfpByOBwOh8PhcDgcjpzwg5TD4XA4HA6Hw+Fw5IQfpBwOh8PhcDgcDocjJ/wg5XA4HA6Hw+FwOBw5UU378u233/7IZOt98803S1nue+utt2J10kmJy+WylMuTM2a1Wg1X/F0qTV41HA5FRKTb7Uq73Q5/i4j0+/3wvEqlIiIijUZDRETq9brUarXwLn7meDwO5fn6178+d50APHcW8iRmzvpMC1n76S//8i/HIpP2wfvQVnzFd2llOjs7E5FJHfG3deX7cNXtYrXTW2+9tXA/zcIibT4PsvbTm2++ObNOpVIpVn7rM0Zau8+bRDxLP/3VX/3VGO/AeBiNRiIyne/D4VAGg4GISLj2+33p9XoiMpUB+K7X6wV5gBgKEJAAACAASURBVCu+Gw6H4blcr6QxX61Wg+z453/+50x9NK8cn7edVyEfstSp6GTz89brPOvE8wxjyEKaHLSe9fbbby917Fmw6l6kXFxkD3HRgHbJO/aytnHaOMx6f57n8r1Z6vRx3Lv+zd/8zVgkuhfFWsD/68+q1Wpsn8lAm+t1bjAYxNY5Xvt4PcTvITu+9rWvLSwfeG+ny409Nd9n7RG0LMP/+v4sSNs/uEXK4XA4HA6Hw+FwOHIi1SL1cUcWrQpOvrVaLZzwAT7tsnVKZHqCx2/5ys+3NPWLIM/vs57IV20N4XeWSqXQB7hCu1KpVEwrlQZrI6B10daG0WhkfsfWqfPCebR/XmTVOLJmLElDfnZ2FtMyrar9rbGSpqmDFarX68UsUrA+9Xq98Bk/A//j+QzLEoX/Wav2/9j7siY5rvPKU11r7w00FgIgCZDiIlGLJZmyZ+zRhMPhUMREzA/yi205/OLwiyP8E/wT/ObwMtLMeBuvkihaFEkQBEmA2BqN3rvWeag4t05++WV2ZlVWNSjd85LdVVmZd/3uvd/5ljJ18vrD0+bZ77K+P+t9We/8oiKvHef9zrPusWXS8ZOljVYNstUue886i0WeF85T9n5RcR5t5u1pYt9VB4914rXVaoWr/U4ZKbvmKgPNua/3WCZH154i1kBlYJ+nz+Xer8gYU7lWxMpInzXtfvyX9iB11iGKHaf0KAcmf8vN0GAwCJsmu4mq1+vhWexU3UR6A7ss5mG+V+a584Cao9i28g63etjKKnfe5lhNrLzDFa95E7JqfBE2oUUOOjretZ/yDlL2UMu2GA6Hpc1KykAP0d4YAcbzXg9QwHje24MUr55pn441u1jpGNYDFO8pO+60j/IUOHkmEvb+omX4RT1UzRt57ZtncufNM9uvOq7teFQlhjVlV1lcJbyDoCLvsF/kcHvW88uirKnbLzpsH+jVrptElAXloQcpPTgBE7eRZrOZ+Ju/swcRot/vp9ZYT5mYp6CuYk+kMswz47Of6Tro7ens/kHHqDdO1VTQK8NZiKZ9ERERERERERERERERJfFLy0gpeFpV5kNZD2B84qdGwDqHd7tdHB8fA0AIOkFNn1KthMeyzFujVbUZ3zxZAX2+vscLAEKNjGprsmhgj8ZWZ0oNHMB7LN2tmo559dkXSVvnUf7WlMibT56WTNkgfsa+0PHgsbZVmchqGewYUVM9j33i35QFeo9lpKxpqZZ5OByG8ZzlNDtNnc4KZpEXlCCPeZyGndIyPC94XspTlI3ymCLOL51b7H8dv8B4nNr5tbS0FGSqtcrIY5GnQRHms+p3zev5RZ571jx53ueHB4+F0LFn2QLrMhFRHGqyZ5kovXqMlF2T1fqB65tdkzzzOe1rz3yurEVVEfNAXSO1jDboRZ65vK5zun8Exm0wq3yIjFRERERERERERERERERJLIyRKqK1XLQGJqtMemrVk79lj1TTd3h4CAA4ODgAkGStlpeXU8+3gRP0VO85n1dVN/ud1VSonWzWMxZhD662uVnacLV3VadLG/5TtahZjFS3201pbPUz6yeTFSRgVng2vGVDfy/SKd5jO1TbBSS13Ko5s4wU27bb7aZYYi/EqiLL57BsG6idtRfiHEgGj1AWikyU5yPFMZXlc6dlV5twyzTkBenIAp/l+WMR6suZx0Do77K0j8+L/9RZz8xzXD4Pn5eyMlsZeqtl1TnFcci1aX9/H8B4PLMPOT9XVlbCHO10OonvgOl8ePPqsmicR8AQYpF+XIuCWmbYkNy1Wi3hR67w/O1+mf3MiiAv2MRZjJSFzmPbN3kBl9RSw/NNmlY+eHscLYdln3RNtSlFtD52H99qtdw9QtY+uOicjIxURERERERERERERERESfzS+UjlaRxVC2zDSrbb7fC9PR0fHR0FLd+zZ88Sz1RGRSMpWW18FZqysn5QWg7LtmnUsvMIk07NhoaRt1p6T9Pi9Z0yU17kKmCs1aDmlr8/OTkJ7UOth2oq5hEJymMrlaXM85Wxny1Cy+nNJ9tPrVYraLdXV1cBAMvLyyk/IPb10dFRIooYMOmvXq+XsuHWfiVU61SmDbzEg16EPusPdXh4mGKiNIKnlRleGFmVCVX6ICpLYe3h9X+P3c3TbmYlt1ZM6z81T9jIdjoObfuct5bci4hm/Q01eqn67QJj9ml3dxfAZG3imK3VasFagvNzY2MDa2trACbyk8+cReNcJaqQa4tgpvK023lMb5XR0OYFXUdZdsoKtcChzzhlpzLsedEYqy6nhy8aA6jyyu5xVBZYWa0WDl44cMsw5fmNq5WO5+87bWoO/duzGlK/TiC5BttyeH6eOu44TnV/mGXlUXRsTn2QOo+wtlU7Y3pBJoBkEAMuMO12OzUI2bkHBwdhkaL5BDtwZWUlvE8ngnW2nGWBmuYABSTN4Gyd8hz2vHavegxwAnsOq3mb0GazmQrn6WX41s0BMG4LzwkxazGsqr72efV6PSUcgbSjuI7FIiZB85qjWo6sMPXtdjtszjY2NgCMD1SsH/uVQnIwGIQFmM/XQ4zXv/ZQPW0/6WJi21wPSHqAsp+pSR+QPEh5G/QspQqQlk31et1VIORBTbPY5iwb33V4eJgaW81mM2yKKMd41fliF8CsBfV52Qyyna2j9mg0SvXdPMx3y8BTHlmznnq9Htqb84aHp0ePHuHp06cAJvOLz9ra2sKFCxcAAFeuXAmfcbzYudftdt08U/OCF/JYr0D+mnSeUHMhzwTTbvAA31QKGMsi73BlsYj5ZWWUHq5ZJ8r60WiEJ0+eAJiMPdZ/eXk5JaOrnGtVtMXzdgjz8md6uTW9snkKSSB5MLLr1/HxcZAnXioP6+4wayAke6DT9Zdl0zLye4LysNPpBIUtxyKvy8vLqUOWlt3uMYsGFYumfRERERERERERERERESVRmpF6XrSKwPwS7SkjpTSgdWbjaX1vby8wUjTxI5M1GAzcsN08DS8yLKsyUbyqRhqYmH+cnp6G8rIu6kQ6b40MtaDARNvCz1h+pZ5Vm+eZw/A5al6pz/Yc/M9yDp5lLmQ9W0132O7qmOtpgcqE3q2637w2UCYKGLMYZKKoAV9fXw/jiX3IOh4dHQWNkHWUPz4+TmlA1cHWhqkvG5hBzflskm2PkcoLNqEmEB6byjp4oduzzFg99u0sKBNORon9xrK2Wq3AXFAG7O7uhnJwLG5uboYrtX5se51TnmbP4jzWEmUKrCOymvadN7L6X013+F2v1wvz49GjRwCABw8eAAAeP34cxiXZxatXrwIAXnrpJbz00ksAgO3tbQDJdY7PVM2w1QLPCxqOn1BHc4J9p+zPeQYM0TXHBoppt9thHtlAHktLSwkzc8DXviuzvehw6fp8DbSlDDYwZjWBJDPNsURZsbW1FeTFebO+0+A8gpboviRrj6IhyNWcz5rLKcPEfSz3gPq/TeVxenqaGWxiGiizadkytQSxFh2NRiNlUaBWL1yn1tfXAUxkn66dynx5qW/0fWchMlIRERERERERERERERElUVi1WdYPwzspAz5jMIudc1mtU55zvGp9vYAF9qSsLA5t0nnSV/tLzznY+upUrdnwtNwE33l0dBTKff/+fQAT2/pmsxns5nmaL+oMb9/jlecsWH8NfYbnOEjNyerqam5YTMuu6dhj/1NT0Wq1MsNVq5anKIoyR3aM1mq1FEOjDuNeEs7zgNXAsq3X1taChujixYsAxlojtre1wwaS/ofAZFweHx+HdlFfDjuHdf6VaQ8dM3YcebbjarttmSt12rW+UTrubL8pc2r99jSwQFFQu1av11N9w/64fPlyaGOyGffu3QsMx87OTuK7zc3NwGLwGRqkwDK+/X7/3P07+B6boFbXJk/u5JVvXmHbPSZK/wcmY293dxeff/45gIkcf/z4MYDx2KNW9saNGwCAN998EwDw6quvBhnP5x4cHISxzbnHq/onzhsaCIPQABoc06wbWRBvnTsveOsVGWH1FeV3bFv2K61b9vf3w16Dz1QmaN7+QLY+QNJ/zsrjS5cuhe+4bpLlVv8p6ye+KGYqb58KpP1YF+ETXgRe+9urylllVWwqD65RR0dHYWxZRuro6CiMRV0Xs6wrgPKJlr1kvnaNVH9cjp92ux3mDq1cuA5duHAhyAWuc2y7fr8f6kS5dnh4mGLxvCAYeZhL1D7PIZodp9GtuDioiYg9YMxTGFpBpwceG9mjXq+HAcTyU9Dt7u6m8kexw3Xzohtetk+VzrtnTW49QLHcn3zyCYDxpkmf8corr4RFlgNVA1JwQpYdcEWhFGsWzar5vjhhVlZWQttzMnHRWl9fT0SNA5A6hGg9dENjTQIbjcZcnGM1YzfH2Wg0CmZX7Ke9vT0A43pzE8F6qwnmvKGmLHbTp5H62Acs68bGRiqSENu62+2GucUNPDeGFIJ8LmEDV3hlLAJVlnhBJnjN+8w7wOeZ4VindI08adtUs9oXBcul5bAL0+XLl/Hiiy8CGM99APjss89w+/ZtAMBHH30EAGHD/uzZs3DI4oGK8uLixYuJDSKQzB5vF/9FRpcEJv1ic/+dnJyE8lJ2WJPReUIDztiDtJqs6gEKGMsEygU69xOXLl0KB6evfe1rAICvfOUrAMZ9zndynh0cHIS5xs90/JQ9xBeFnR/NZjP0gR7ygHEdKR+uXbsGYCLj2+22G202a22aZuwVXee84BFWPmnwBd04AknTLGvSrc85jwiTNhAJMJH3ly9fBjDeH3Gucf3SdZZ1103sIuvgre+DwSClCGM/6Ia+CKoOyKYHGGuqp/fYw8BgMEgpA9V8zx6keD0+Pk4pE/XdHhGiAbLKwFMoqrKbc4Lr1dbWVjiwc7xxHdrY2Aj320BWu7u7qai/uufyousWUR5F076IiIiIiIiIiIiIiIiSqFS9xJNpp9MJ2iR+RpOQhw8fBu0ZT5cvv/wygPHJ0ppXFQ0/OAu8ENo2BxGQzHMDTFiB/f398JnVPHjsluZQIGbJGVHUZIynbJ7Onz17FspNjd5rr70GAPjOd74THJGpxaA2WrWe8+obLzyndQRUbSL7qd1uB7aJddKrslPAhJlqt9spjYgXxtlzJq4S6vCubcA589577wGY9MXa2lpgEMgosI46ducdzETN0Wy29eXl5VQY7eXl5dCPaq4CjDXP1IaT9Xj48CGAJGvAvmm1WqkgClq+MnVXDZxlnbwcFuqEa5koj0m1ZsyeGZ+mJdDAMPa7otDxZOcS5Wyj0QhBCK5fvw4AeP311/HVr34VAPD+++8DAH76058CAH7+85+Hvrl79y6AifnOpUuXgpaQDKRq3G1bVC3jzzJDZ99xTWLddnZ2AsPxpS99CcBE2+nJ7KqhjKSVRezD4+PjIH/VnI/sFMcQ+/Ab3/gGfvVXfxXAhImiJrfX6wVTQF7v3r0b+lXNh4GkSfosKGI+02g0Uky7stO0pOCzXnjhBQATuQ6kzbEXAS8thQaPsI793ENsbm4GRodQq48q3CBmhb5TrXOsVQjH12g0CvKR9WRfKgOxCLY3C1b29nq9sNZQrrF8L7/8cpAPNkXAWdYpVbhweCwUn6vsmQ3l3e12Qz/Y8XdwcJBp2qdBHrw9l2WOms1m6bnmuVZYZnZ5eTm4BpB1unz5cliv+Bnnfr1eD+XmmqTpiciOUp7s7+8HWWctrYoy1pGRioiIiIiIiIiIiIiIKImZGSnPDnRtbS04tlJLwVPuvXv38B//8R8AJs5h1CZvb29Xmqj2LNiTtWrUrbZEnc9pq62nXGo5WV/VLttQp+ovYFF1ffU91pZ6eXkZr776KoAJE/Xd734XAPDVr3411OnHP/4xgKQ/CDUURTRk02hhNBSmZQaUNbCaoHq9HpgQ+mlQU7G5uZkI36zfra6uht+pba7VOM2bKR2NRilN6snJSRhz1JZ98MEHAJLJVlkXzidN3DcvqI25ZaSURfEYXhtAQ/2i6KfB+vLa6/VSoUzX19dd/zlepwk2oT5S1k5c2Sd+p6H4PT8GLxQ/62DDcGt7WTZbvyuL4XCYSmyomkn2w61btwCMGU6y0mQzvvnNbwIYy4Qf/ehHAIAPP/wQwMQP4vPPP09pPi9evBjGpfU7WqR2XRlfsjj0/7p//35oA+sfmsUCVhksSMeGDU+vfq1kosgcHR4eBnl28+ZNAMC3v/1tAMDbb78d+o4MD2XJp59+ip///OcAJn344MGDVMAknW/z8JHyrDCWlpaCPCPbxHofHx/j008/BTBhOL785S+H351H0B3r/9fv990wzpaF595ArSWsf+FwOEyFhl60L5GF+n2pJRIwsYjY29tLBebSVBeLZqLy6sHvjo6OcOfOHQDAD3/4QwATef69730Pb731FoAJ60YZsre3V6hvZpEXykRpsmZ9nu4fdI3ymChe+bcGmeCzbbJdZRI5Psv6Eyl0rtp1UAOzkHViu1+6dCnIZt7Hdx8eHqaCI1F2PHjwIOEPyvax6VK8fU0eIiMVERERERERERERERFREpWol2y4wk6nE06O1E589tlnAMYaAGouCWpHvehWCs+2etqy6vNsRDY9hWooSS9sIstvk4RqFDmP6fDCaXtlnKV+FlZztLa2Fmx+aUf/rW99K9TjZz/7GQAEBpGa2+FwGLQAyrIRVWoCVRvnRZ6hxks1J7aeqtmg5lajxwFjhoraTY3oZ7URan88r3CtXvhz1sVGE1Ntk9VOeZEIq4ZqbmzocdU4erbcLDeZXfWBICPFKzV/Ok80SZ9lejx/kyLwWCfLhHoJMs8KC+tFBuXV+kG12+1MRkqTDxeFRgi1ob8p0/b29oLvDZmOJ0+ehIhvZKbIDrzxxhv4xje+AWAiH+g/9cknn4S+pazv9/spnxeOaS8p8Txhx4gmdrQR0xYJ9RmjPFMmChjPB/5NXLt2Lfh0kYmiPH/99deDPOP8Igv1k5/8JPxNxrfb7YY2YP9o+8wrah+hVhN8F2U0LViWl5dTLDb/V1lwHvBC6at84xxjuSkzOp1O0LB7Uchs0mvvnYuAfZe2t/qA815l7BWe72qV9SiyV/RSIQyHw4RvDjDZ5124cAFvv/02gAlrT5/ld999N8i6efuNDwaDFJunljPWWkJDnHPvyvGnPlI2obyuF7qnsD7QGmK8LMuoe24b7Zf7Nt1D8/mnp6dhLpF1Yt0eP34cGCjL3j979iwRhRRIrsF2vS3qY12pVFRam4W1G+0rV66EQcgFlVS2bprnZdLn5RDwQlzb0Mynp6epwagbWN7PjlCneisE1SFwkbkgbJ6f1dXVRBZyAHjnnXcAjAXED37wAwCThZcL27Vr14KQsSZLVUH7xj5bM8DbQAC9Xi+0A9tb+0QPTsDkQLW1tRU+47hcWVlJmaSpoJjHGPUO+s1mM5SNc4f3HRwcBDNaLrysU6PRmDpTd1HoptSaaqkSQtMfAOP+ojC3h6adnZ2wKHGuqeO7J9yz8i41Go2pTPt0bFkTHQ3Jn2fqqXPDO0AByc07F5BOpxPml35m7y8KlTtZfaTmo1ygPvvss+BwTfOw119/HcBYBnznO98BMAkW9MYbbwAYyxCGTdd8Rux7m+ek0+lMHTa3LDRELzesDKhx8+bNRF4tIB2K2nteVVBzKXtQoLN+t9sNawvn+Ze+9CX8yq/8CgCEwy1N/Or1eghUw4MuD77vv/9+6B++e2VlJTzfpoooO5emgbeH4PzTYAbW5NIzNTtvaJmA8X5BzV+BSb/WarUg4+lET+XF1atXU2ZMnpKPWMRBUpXnVnHGep+enqZSW+g6uogDYNGUMJoLi0oJjjeOv6997WtBLpAo4Aa91Wql3ADKmpWfBa5NCvvOrMASlO0cb3qgsubeeqj03F6sIk/3z9PKcW8cabAWlpt1Go1GqTQQVAY9ePAgHK443/i7wWAQysi5tL6+ngqcoeUqIk+eD4kTERERERERERERERHxBUIljJRlbw4ODoIzKE991EZev349mI9R20dNer1eTyUYm5fWQrWz9qqMkYad9RI4EtZBjto8ZTVUg+QlpeS1bJ3LZiXX/uKJXZM7AsC//du/BdM+tgsDU6ytraWCapxVjrJ1UkdGm5TUmpABSS2YdfrkfV6oTw35yb+VmbIO8vruKrVNee1Tr9fDeCL7xP97vV7QjrF/+H+/3w9mJcoGVDmndM5YlkOZHGrWdbyzbGpKBozpdxuOlGg0Gq4pnO0fb4wUgZrqWYdeTYppmXOPSdTQ/DYAh5pFcIwp+2TNqjRgzbTBJlS75rHwNvzt/v5+0PLRAZvs9JtvvhnC7pMZIbOzvb0dQvFrIl+OActIeZrWWZBn1lOr1UL7UfNPc0XVtrJf1Zxm3tD5wj7gPGBdNjY2AjtBdvqtt94KJpgMksHfffrpp/jJT34CACE4CNnC3d3d0FbK1PNvjst5m/Op7NCk3FY+cJxcuXIlyDqyZRzHvV4vlHeRJm+EavDtXF9ZWQnl5VWtWixrz/mytraWCrCjbIfVmFdVb299s8ESVB7r/o/l5/1WxqllwTwDipWFht3nGqvWRmR1uU/SwAXW6sNjMmbZM5BpUpNEL7CEF0iIc0lN+ni1puu6B7dWTO12O5VyRoOiTNuXXpAMPktdZzTgG/cLykQBYysIZfCBiXxYXV115VuWaV8MNhERERERERERERERETEnFFY1ZWn59ITN746OjsIpkac5niTX19eDJs0m3lqU3SyRleROT8e8ajI9dWwFkiG3GQxAAxdYu0s9uWcxU9PUw9OKe9Cw0+psDkyS0D169CjUgdplhki/cuVK6FfV0lvM0pdq+04tlg0BqyFm1fnfYxB49T7j1QYQOD09DX1tNWqNRqM025GHs7TobA+bSHhpaSn4dVDDTo2aJtTTBKxZ/TLL2PMSAWoCa96nWi8bZILastPT0/As1lt9hjgudY55miSgvEzR9soKZ67zVzW0XrJdIKnxsj5Pyj5pHa2PlDr8z+JPZLWJnrMvy3pwcBBkHpklav1u374d5DiZKTI7nU4n+OiwHltbW2FNYL8rczwPxidLBlrfSVpEbG9vh/6k7xAZ+5OTk7mvTTr2OObYT5zTFy5cCPKYrMzNmzfDOGEbM2HtT3/6U7z77rsAJrKd2uhWqxXYd8qQzc3NFPtBzCvlA5BmcYfDYbCS4HikDNvY2Ah1t3sIDdRxnnuJRqMR+kTLwbHH9YTtfnJyEn5rfcdbrVaun0aVIfjznq/10HZn23P8kinY3d0N91kWQBmp82AO82CDjxEnJych7YgN/X18fOwGeaoSytRYNp/Xo6OjVFC0/f39RKoevR4dHYU9jmWCdN+h1j3z8Lf2AiGpVYDdp2qKFDLW6g/F9cTGLNBQ6irzdK4BycBwMSFvRERERERERERERETEHDAX4+d+vx80mQRPtI1GI2hciFkiv5X9jfcu+5kmbVStOk/FXlI9G56adWy3226oSutjUYV2pmhbqI+CZWF4cn/11VeDtvL69esAJskpl5aWUhFetNxVaJjy/EDy3qX29p7Nr7XDZT00ea0XttuyLbMyA2VhmQRlFPi3jRLF74H85KdVaQSt7wvbX8P9sxz9fj9ol3ilZmw0GoX+t0mGl5eXU6HrNZmyZVrKygdlobwkzFpPfX6e/5H63njsk2U7l5eX3Wh9fNYs485qrzVakbV573Q6mX6hd+7cCZrAjz/+GMDEf++FF14IsoNtocnWWXe1Y/cY7XnD9lOj0Uil8lgklJXj+KemlGP96tWroZ2pUe31eoFtIhPFsMwffvhhiBDH+cgxdfHixYRWFkiGOLcyT30zqoZldIbDYRh7ZNmIdrsd2HeWkXXKSiNSReoU+6w8eOtJu90O+wJqxblP0gh3lrVaXV0N9VNNeZnyVAUv1Q3HKseXhpq2jCrrBKST3D+vUJbUhggnhsNhSmZ4e8xZoFYl1tJEU8JY1ml/fz/1mfrD2si+hK5pHhtp6ztNkmVdU63lh9aN1ipkqXd3dwPLZhOIr6+vp/bjlHMXL14MY1GtezivLJtYVN5VepDSxs6bHLMuUlVlkc8L18zPNLw2BQUbl0JiZWUlCEguSJqdXBcHIJmDaJGOlnYRGY1Gqc2NmhBx8eaAY5scHx+n6Neq6Xlvs2j73Qt7raYG1olyMBikDiSE0uWaLyhvYz4PkwQ1kTvrPoLlpZDRXE1ad6D6A68+yzrAqnOszXHV6/VSoc01rwPnk5UVepDSuWYPUtP2U575nsJuwtUEwI5JDYZhTfZWV1fDZ17KBGuy2Gq1KjnAe+ZANq+SHgBZNg2CQBlAx2sejO7fv5/KI9jpdMK7WF9Cn7UI2AM/x6GagWq43EVB8/HopgCYKLEuXrwYxgI3F/fv38f9+/cBTIKCMNjTzs5OGMecL/osm5fOM9H1ch1WWd8sk3TKDG769B6W267F9nmLhqeo1c0Z5xH7Qk20bPuelaNvkQcowDdRVIUi11sepPb29sJ3lNk6989DeZKFsgftLBP8ecI7SLHNdZ9qU8Ko+R7XZD08eXsDILlHVnNHmwpGDyFlzRqVSLABfjSAhh0rrVYrpWTVHK7cP3D90cOT5gllPayMU7lfRO5F076IiIiIiIiIiIiIiIiSmG9cUwdFNe6LKAfhnUY1USWvNhSzasF5OrbBANRETZMN5pkLzQNZGhTrWKlOpPzMJkY8OTlJOfSepY0pq61RbYGnFeE9NsGpmkVZbY06NNoEgVpfQulme606/LnirMATiuFwGPqFmnU1qbNOqfN0GOeYtmVURspL0svfKTtqNZhqSmLNZzudjstEAeXr6zFShJof2fmif1sTuVarlTLV0/QInrmfhjvXZ04T5CQvCE3eGFtaWkqwU1p+DcRizYN3dnaCNlQd5/lbll/NvRe5Jtjw/GQ8lBWz5i6LKB/bRceLBlQBkikrWO7Hjx8HRorBQMiotVqtVAJfNbNipqltngAAIABJREFUv6r5kq3zeQUFsJpylYvWCX7R7EwReOyUstRAso2LmBBn/b9oeOwp5YGOTxuES+vtpX45b5x3u+ZBGRvreqIy2Aag0CBbZYIkNZvNVKoRtfix1hJ5SaKzoH2ftd5q4BYNY26ti3RttQFbdD31LNDYjrZ9iu4fIiMVERERERERERERERFREqUZqSqdNs8DeQ6A1kYTSNqUUmPEEzC1hLVaLZHEFZicgJeWllIBJdRHymrdqm7Xs56XpelS9sbajar9aJ4GZxbtjvokWd8T9UGx2pHj4+PQL1Zjrg691rHXS6Doaf+1n+Y9B4q2n9Vkerbnnk9eldo3bQv7/uFwmKsFIqhlXl1dTYXXV/8dath59cIDaz3L+HacxdAA43FhnXCVpbLhtdvtdso3SgNM2GAT7XY7FYZVmalZEqQWSV+h2kpbd2WoWF4vxD7HG1mTXq+XYreyWMRFwSZ57Ha7mXI4a65XWXbV8PJvTTTLspJtok/kzs5OcLy2CVBXV1fdlBz6bCAp2583psCbv7MEqPKeUzWK+tAoG2B9qfPWmvPoEy2Hssqcx5z/msaCc53jUZnE5zX8eRmU3V/NAl3D7V7Mm78Kb+8EJP3k7b0q49WP11pXeGxVWej4Z5uq75V9rq6DtoxqlaSplfhsa6Xj7cd1bBYZn1OvyPNwuj+vBdWaMOghgousbvqscGg0GsGpzTqyqSmjbiLtYD8PYeK1t+YQyHM2zot+WAW8BcYTBta0Tzem1rGy1+ulIsNo2W1EPHXstw6Wusl8XmCdxL3v5v1uhT0EAUnnUmuWo8JS84gBvnDXzaYVwmUFoQdr8qAbfy/6nY4bvXp5ofRA5eWMss/QsVllRLmzzP6yovwtLS2l5gbL6ilhhsNhYuHS300T7WlaeGMh78Bw1hyv0rTMixxlo3KdnJyEwyk3rCcnJ6ngFF4wE29T4UWPfV4OUPPEImS3135VBezIK/8i+k2VmxpASNHr9VLKElUC/SIcpM4jYuJZh1AvGqldTwk1q7YKa1Xo6CFF/waSB6oqDlJ5CgfdB1jFtyrqbHAwJUms6aPuC7NMIM9CNO2LiIiIiIiIiIiIiIgoiUqCTZQ9lZ+nJl81q1khD1VTRy2Lhs7WULHA+FRvndpU82KZHc98Yl5Qk6oy7V7WnKLqPvX6ycvTYx37+/1+psmR53TpsWzKfFmtuxdk4HnGeYRpte9ULZin7VYtE5BkOwida5aFVPNZa0LoObHmQRkXGzzCBirRsutY9JxxrfmemiN4oc7zxt28xl5Zsz97n5bVy49n+2ER+YmeF/PbMs/S4Cx2HTo5OQnsFNus1Wq56St4taagasZy3gElFo3z2Hvo3Ml6f14QrrJ9sog6qpxUdwAguc+xZmPKhj5vFh3PO3SO2r2Y7l3sekpZAKQDIqncLZr/0AuOxPeUNTvPs2jyxpiu/XZtVIsva3mkclRzRfI6qznzF2M3GBERERERERERERER8Rxh4eHPn0dY3xINAataFrUdBZK+AVYjqNpFz19g0RrAotqfvPJM6w81Sx09XyQvDDX7ot/vJ3w19HqWU2He8z0/rbKhPheNRbNRRfrZ0/h4if2yQqFqu3s21bP6hynraf3i8px4lSnzbLctE5XnD+Vp22ZJxDmtP+tZ/lNZ71F7d9VAlw3kUAXKBEc6bw25xxTxMxuOHUgG7bBsqI6fLN/J58UfKo+N+UVDVazTecObK3acjUajlIyeh2/9Lxu8IEBeAC7P6sMGaPAYKbXy8dYyj/W2909TJ/u3Xq3Pk1qNWSsJ3XN7jJQ3TouWLQuRkYqIiIiIiIiIiIiIiCiJX2pGKiu8NwA3ups9zfMkqwkUPS22tUP3NIHnpZ0p896yGtt51cnTbqkGnO1s7YDVNy0vIqEiK1ndIiONlcWsDOCiymHb1OtP+78X3cdjTvSzaRgptfX2/IOsX5AyUjZRYafTSWnvKC/UDt1jGDz2bZY+KsIsecjznyryLC131ET7UFnk+XACySTJOgYtc0no+lVFWPN5sXZlx8Z5jqUvAru5KOT5UUY/qGqh7L7nz8TvCC/CKmWHZ4lj1z5lt9Rawq5Xs6TmKDo+PDY9ay3z5Ke3984rR9lx+0t7kNJJ7pk+eLRh1iBR53Av79C02ZLnjbKLVlXPK4OzHHQt8kJhNxoN1wle/9fPvHfoIe55WyRmbf9FhwTOel+eMM5q97zNYZl20XdnmfRpyF89/HhZ4AHfHEIXNi+wRJZJzLyCugDVmf2VeWfZ906LeWy8q+6LvMXeU+DoNassnknl8xi8oKp3PS8yuQpzoS8airoFlMEvYjtNC12PuM/0lCNWQdloNAoF2fLMBG0wr2azmVqv9Fqlu4M3nlgPNQf2rlkKcm/dKhLw4iw8nyr1iIiIiIiIiIiIiIiI5xi154EZiYiIiIiIiIiIiIiI+CIhMlIRERERERERERERERElEQ9SERERERERERERERERJREPUhERERERERERERERESURD1IRERERERERERERERElEQ9SERERERERERERERERJREPUhERERERERERERERESURD1IREREREREREREREREl0cj78g//8A9HQH529FqtFjIbdzodAMDy8nL4m5mF9/f3AQCff/457t27BwDY29sDMMmofPHiRVy/fh0AcPXqVQDA6upqeNfJyQkA4PDwEABwenoaMh3/0R/9UaEUxKzTWfAyGttsyfq/zaCsYLbnIpnoFb//+79faZ3KZh6392uf55U/7z3f//73C9Xp+9///pl1OqsNi+RIm+UZ/O0f/MEflKpT0X6YNqv7tLnh9H1l6/RFQJGxN0t9qhhvZTDLXCpajmnqpP/b9eIsFK2TyrysZ3tZ7BuNRliveCX6/T5OT08BIFwHg0H4nnKcv+P/Z2GWucRy88o1RNHr9UJ5uR7y/mazieXlZQBAq9VK/G4wGIT77Zqmz/D+L1onb20quw7N+ruimKVOFovMz5lX97J1Klpu7512rOq+kfOI420wGITvOKabzSba7Xb4G5jMsdFoFJ7xu7/7u2fWSevD39mrvmdlZQUAsL6+Hv5mPTi39vb2cHBwAGCyF2Ud6vV6qszeXPVQ5bjzUMVYLDu/qtw/6H4zb23Jk2He7/PgtVne2hQZqYiIiIiIiIiIiIiIiJLIZaS8U5n3GU/e1NS1Wq3wd6/XS1yPjo4Co3R0dARgwmQtLS0FjQQ/a7VaQYvhnUCr1PycpQ3jiZdX1XDYcnjsUxFGSrU4VSLrmUVO6JZt81iT50UDB1THDFRdpyKa+ixtShmNkPeeIhiNRpUyJl4ZtN5Wk5QHzp0s7dQ8yp2HvH4rM/4WXYcy7zirHnnaviwLhqyyVFl3750qg7k2UYNM6HrCNYfrVtYctJ8tQg5S462adc4hllfvZRn5Oy0zn6FtNq9xeF5MVNV1KlLWIhYeVeGsuTXtMzx4LGXWu4bDYWoe6fjkeOQ8VEsmzlGWq9frhWdNC7veDAaDUHZ+VqvVQnl45dpzenoa9qyWadP7eJ3nXPplhbdm2P2D7i08Jr9In5Td1+YepGzhvP+XlpZSE6LZbIbPSIuSCj04OAhmfsfHxwAQDk+tViuYIXBCNZvNlLDn/2eZ1BVFEcE4HA6DEMijitWkAki2j15tR+kzzgPehsAeHPUeS1sX3XRVUTYPVZpVzctES02Bsg7l2u56eNC/y7y/7EavysVeN2e2vsPhMDV/8jYEOnfsglVWSM6KLFNnT6Bb2PKpUmXag3NRTKOAsJ/pwpRluqJ9q+YWdlGroo55Zc46SNHEjeuOymCWt9vtJq6NRiNhZmSfO+8DlM4DeyDSTSbXW6Jer4eycXOq/WYPXkB2n8+CaQ5DVRyg7N9V1KWIAuAsxcq8x8s8nu/V26s/5363203NI5ar2WyGPd76+joAYG1tLeyb+AzuG/VZs5Rbnz0cDsMz9ZCmBzsAib0s9672WaPRKMyrsqZ9EUnkrZseGWH3D965QE0w7TOrQOzpiIiIiIiIiIiIiIiIkijESOVpdjxTCXVq5UmflOje3l441Vumo9PpBEc/agOWlpaCli1Liz8tspxps5wkLT2tjrqWleP/rVYrtAfbqVarpZ4/L3PFs7R6WZolra9qkYCkVlRP/vPWgnmY1owqzzRrmnIUgfY/YVmZXq/njm+rkVGt9CLM/srAM6Hg32rqYeeRZ7phAwM0m80wDlXDbrWA8zZRtJ/pvLVOr3nOrx5T42kyz4PR1c9s2ZQZVPMbXq05tq4T8+ojb07b9m40GoGJ4hrD/tLgRTboRLPZTJkb5c29WedWnim2ZaRqtVpKg886NRqNFCOlJo1WI6/yfJFMlH2Xtw5WaVEwCzzLjKJWLXkmr4s0jy+DPCZK9zJ27pycnKSYKM69tbU1XLx4EQCwubkZvuMzbFCHo6OjqRipPHPjfr8f+o/P1r2cDdLS7XZD+flcllcZepUTnrx/HjAvq5tZkDU3vH2qWgjYc4TuN6x1D5A2cdYxbJH3nSIyUhERERERERERERERESUxtY8UsbS0FDRcGrqS2kme9MlCPXv2LGgbeNLXEJRra2uJZ2kgB88naVp4WhY9CStDAIy1LNbeV0+7lpGi/e/KykpKiwEgpbFVZmqRWgur/dZ6UxvEuqkvG+uiWqJ52aFnIUubl+WLodoF71rEmXwWqJ0ux4l1mNRQxrwqS2Xr1mg0UmzBvPynzoJtU88WndeTk5MwvnhVrbj1NeR86nQ6iUA0evXqVLb/8hg771k6f2wfeePTmyN8hueLOG+t4FkaccuAsq2XlpZC/3Kc0udV/XTUSsGOeX1vFb6uhGoj7ZxotVrB6mF1dRUAElpw1okWFBybnU4nyL+8fqpCdp/lI+Cl0+A6xT7g/61WK8FOAUnfMNbPe3eV8tyDZymgfWffX8Q/NE+zXBU8TXme32aer6i37nts1XnAk6Uew8KxpuwRMJYDrAPn3IULFwCM09tsb28DmMj2brebsFwCgN3d3fDsMu3hzUf7mVpAqHUE+06DoPEe6zelbDzvY5/a9ApVYtr9URFLnLz1p2pZkLdWevt8fqb7AGWpeI+1drHP1t/puC7i1+whMlIRERERERERERERERElUdhHytr/q++Ctb1uNBpB80wNw7NnzwCMNQzUmlG7qdFbqCWk1uzk5CTFRKlWp0o7bj0JWy3LyclJgiEAkNBcqO0vMLH7XVlZcUN5Wg2sp4mrok4e8iJvaXRF9iGj6lAbs7y8HE76lp3Le19VyNOiqw+B9UnScKx2LNVq5SPjle0ntq1GtWSbqraebcp5cnBwEOaRtTnvdrupcK2z+E9NO/Y8GaFltPLg4OAgMNOqwQTGWiSrPadGc21tzR1rli2oIpJf1jjIalcrR3ROW020h0VGeSqimVTmlLKaY6vX66VkO/+v1Wqhv5SZtzbt6oNZpczT8WfZo1arFdYYyjWOu3q9HsapTdExGo1CnQiVGXlsZJWo1+spTffS0lJ4v51L7XY7yDrL7ur9lhnnc+eBPNbGhssGfLmWJWs8VL3+qF+MfQevXnRFLaf1GR0MBpn7nEVaqeRZZXjse6/XS6xTABIsJ/dDV65cAQC8/PLLAMaMFNc+/v7p06d4/PgxAODhw4cAJvMQmMj4svXJsrzQNtfogNafi/NlMBiE+lAeeoyU7oez9hTT9Geer5pXP/3fW5Psd/aZyn577E2V8PYe2k8sr5ZHLaSApFxTyxcgaQHmWSzN2j+F8kh5phc6aFghXpeWlkLBORFI0e7t7QUhz2fowsa/KTyPj49TZnZKh89iumPr6Zm1caE5Pj5OhYplxy0vL2NrawsAcOnSJQCTg1Sn0wnP16AZnvmT/W5e8IQ9Bx6F4e7ubugfUvCsU7PZTAUM0UPtPA9OWZ+rCRLHIevGsXhychKENttdTZbsBMvrh2n6iGOpXq+HscT2Y9uurq4G8weW8fDwMMwfXtlPvV4vNT80uEnZUKxV9J2XZ41jn22wv7+fkAn63WAwCOXm5nVjYwPAuN2tuVm9Xg/v8hb9aeAJV30vF0s9tHsbJyAZDtwG1uj3+wvbOHnP9Ewd1JTXHqAoF58+fYpHjx4BmJhts322trbCeKZcbDQaiXkIVBc0KMtsRR3H2V+dTiccoFhGziUNbMQxSXmxtLQU7ldkmUbPiiKm9GrSwrbkestru90OcsEqbwBkmltqGbwxMg3y1gd7gO33+2F9tcFB1CRx1jJOM8/UdJX9b5VZ7XY79Z2aYduNrQbf8YLw2PunLXsW8syWPdNL7S/OH84V3r+1tYWXXnoJAPClL30JAHDjxg0AY7nOOfb06VMAwN27d3Hv3j0AE5nCZy0vL09tKpc17rIU5mx3vo+Hp9FoFNYha/an6XEoM3UdqwJaj7zARN7e0iqQdf9hD1J8pprM61jwgmbxvbOMSXuI0blhn7u8vBzaln2iZxKruLUHKlunWfspmvZFRERERERERERERESUROkjvj0JN5vNRJAJIKkxotkHtQ6a0Iynep4oNzc3U+YTXiLcqkK0ekwUMD698iTrOU5aM75Lly7h+vXr4W9gYjZSq9VcZ3prwuCFn52lTh68QAUEtUmk1nd2dgIdzzrxenp6GvpV+8ZqjKo0u/SgmhnVBLIc1ByS+Xj69Gn4zI49peEJL1ztLGBbqbkC5wM/u3LlSmh3hoe9cuVKGEM7OzsAJqYPT548Cc+wY0nZYmVQ5uU87jECgK/5Ozg4SGkk2Qa9Xi/Vh4THgLfb7cwEfFVo0C2r0Wq1UlrylZWVlAZdHZItG8P5dnx8nDLbVO10FQ7oZzFRrKs1p1StOvvmwYMHAIB79+6FfqPm8tq1awCAl156CVevXgWQtCxgX2o9WZYqzMg88xWbDH15eTmx3uj9AFLO7uwnTQxP6Fyad1AQQvtJAxyxDiwvy9/pdEJ7836O09FoFPpOtcFsxypN+zyGl+j1eikmrV6vB+uUy5cvA5iMM8/UmWg0GjMFpSgCjmMNhGVZ8k6nE2QD66EywqYC0D2BDczT7XZTbNU8g1PkMTjWsmBvby+MOdadFhWvvvoqvvzlLwMAbt26BWBiYfD06VN8/vnnAID33nsPAPDRRx+FtZrtwrm6vLwc2rFsXfICJlgro+Pj49SYUvZJLUe0zt6eTseHV66y/cVyq2uA3Y+PRqOUnFKrFRsQSNkeNX9mnazrQaPRSJnaEmp5URae2aKa+9o5oaHyWUZ1QbEWcbzqfsJzcZnWxC8yUhERERERERERERERESVR2EeKsKEGG41Gyo7+9PQ0aCyUDQDGmgye5nmlHf3GxkbQhqrjedWsDetkHT41kZw9uavNNrUk1LrevHkzMFJkEXhqPzk5SZU/6/nA/Jz5+Gwg2XfUkD958gQAgo3ycDgMmqWbN28m6nb//v1QfmoIqnZMLqIJ8ELvNxqNMPaoPf/ss88AjMce+4514VV9CTSARpV26Cyrhnnl/CAT+Pjx4/AZtXgvvvhiGF/U+tPW/P79+6HP6LPCZ2tQE/WbWlRiVGUGrI+Qhnm3/ogabML6dWiyVy+Yw6z95WljLYOrIbSV3aC2kpoxDc9qE5NrOgiyu/zs6OgotInHxlcxJj3neMuoARNm49NPPwUA3LlzB8CYGWUbUD587WtfC/9zvLFuOzs7oX6sm767St88byyw75SR4lX9bWwADX63traW0raqJtMLiT4L8nykbHCnZrMZ3svyKiNl21v71zJS+m4buGWauuX5XvH5agHCz7a3t8O4osyjVvnJkyeBmaes5lhUPyT7Pvv3tOA40CA6Viapry73ORsbGykZoUlfbXADPvv09NRlc6tkrQndf9h+Oj09Df5QnMvHx8dhPJI5fOONNwAAX//61/Hqq68m6sk16sMPP8S//du/AQB+9rOfARjvEfksrsu0+llfX0/49pWtE5BOxAqkU+ocHh6m/Ki1X7gnYv9pKgH2DeeU+rZVYSGh813Xc62bloPQxMjsPw0MYgM5KMNjQ8F7FmiEWo8VhcdEWXkzGAyCDGOfLC0thXOD9TPn51pPykMNGqeMvrVcKItCBykvko86JFuH1V6vFyYaD1BcmLrdbhiMXMh0cOoBhPdnCatpNu9aJ0uXq+CyQqrT6YQO4qaWQuLWrVvhUMVBqLmA1JwJGAuhLNMEXSinrZsHNYPT57NM3IzTZOzGjRuhfrx6po/8rN1uL8zMRelsGxHx2bNn4eD00Ucfhc+AsXCm8+vrr78OYCIQNaCDdcwE8qMZFQUXe6X1OTZ4kLp//z7u3r0LAOH65ptvBhMJbi7YJ9euXQuHKt7P+u/s7KQOvLoR9w5UVfSdF/DBC9hghZeOSz3sZ5XRO+wsAt5c6nQ6YcNEga4RnmxUNY5Jz6RUlTzzNt/x5DjH/bNnz/Dxxx8DAG7fvg1gonDZ2toKY/I3fuM3AEw2UI1GI5jtcFw/ePAg5YyuwYmqMNG2/+u6xX5aWVkJc579o/PeLryaR9BuOLTcVcq8vI2/OkZrREW+X3NiAeP1iO3OZ+nhSU12eM+8gx3ZqI26BnLuvPLKK3jzzTcT5eWYev/994OMYx9qbjm2j26Sq4zqp5stazKl8pbvZBuvrq6GPQQPChrIifLDRiFrNpvhGbqv0AiaWpZplC3eOLZ54g4PD1PKkFarFfY+X/nKVwAAv/IrvwJgvMayDtxf/OQnPwEA/N3f/V34mzKi3W6HZ1lFp0b9LAtbt7yD1NHRUZg7Vkm8srKSUPoDSbM/G0hIowJmBSIqA0+RZw9U6laj8s8G0aEiYn9/P9zHMUb5OBqNUpESm81m6t1Ev9+fqY9s26ic5RjXvuHcf/HFF8N9wNgFhe2hwdP4P9uHbaIyIy/3aB6iaV9ERERERERERERERERJTB1sQrVhlkE5OTlJBZngyXA0muTjoLaBp/yVlZVEFmkg6WhpTStUM1wUnrmR1YwpPckT+cbGRmCiXnvtNQCTkJ4vvvhiOMVbDdXBwUFoA2oBnj17lgrfWoXGIg+ek3K32w1UO013eEq/ceMGvvGNbwCYMHAffvghgHGf0sxCT+7zNkm0/9fr9aD9YXvfv38/lJNjkFqu3/iN38Cv/dqvAZhoAqlh393ddU2PskJ9TlNX1TB6miRgrHUlK0gzqvfeew8///nPAQDf+ta3AIzNJoDx2CO7RtMK1vfu3btBi6uMsGVblV2ZhdmxbaLPtVrW1dXVTKdeNe2zJnRq4qFtWJWZoqd9suYKKneUVbNloKzpdDrhO81nASTNw7xnTashy4JlorQNWU9q7z7++OPARPEzBpz59V//dfz2b/82AOCtt95KlPX27dvhd7weHByk+rTqACh5rJ3mUKLmn+NI+0bznAHpfD9APuM6L3ipHtTUh21p5eHBwUHKVEllGvtfx1nV7KetgzXBrNVqQbvMtebWrVthX0Cm/Z//+Z8BjNkM1oVrlO4lOI5tvauC5hCy4cCVeeYYUgd3jn0yb5TZGmSIFjqaCsauQyo37J5JmZCiUHM+NV0EJiaVBwcH4R2U1deuXQvz/5vf/CaAibVHu90OffdP//RPAID/9b/+FwDg3//93wMTxXl49epVvPDCC+FvYMI4Li0tzdyP1opA2RPWS/tN03GwPjZQjQad8HKDVWVyDkzmuwbesMEgNOgX+08DnpGR4r7v2bNnobwc1xyvzWYz1FOtWKwJuFqiVQEvbQDBOb2/vx8+55ihlc6NGzfCZ2oODIzXMWvhprk4pzVnjoxURERERERERERERERESRTykQLSvlGqDbM2yYeHh4GFoSaTJ+JGoxHYG8tIaRhjz1/JBpmYRguoIc+tA7yeRnnqpkbk6tWr4cRLJsoGYQAmDByvDx48CEEPqIE5PDxMaQdn0agXDXmuDonA+FSv/jTAREP2zW9+M9g8U1PBU/3jx4+D1oIakbO0ytNqZDxnRKLf74dysGwPHz4M76LPxn//7/8dAPDbv/3bQVPBepOx+fjjjwMjpY7pVfpAqG8ItTnUUPKqvmZkCe/fv4/3338fwMTG/Fd/9VcBAL/2a7+Gr371qwAmfUeN4NbWVtBu0kb9yZMnKcdu1aTNmvQQQGqceRnpG41GGDuc/8rS8nma9BoYawCtNk5tnL1M7GWg2ng7ZjVYjLW9fvToUehDygwNe2ztyTn/1d9QQ7R6SXpnhfrXWA336elpqAvH3ccffxzK9vLLLwMAfvM3fxMA8L3vfS8El2BZ33nnHQDAv/7rvwYHcg16wPZRZpZlmKV+WWH3R6NRqr469+xYPz09DX2giXj5rCxn6KLlKoOs32o5dC2264iyMqyLBjSyv8vzbaiKmcpiutrtdpgrZDzb7Tbu378PAPi///f/AgD+8i//EgDwwQcfBJnHtZiyHpj4+XKO9vt9l0UEZrMs8JhjQh3kua7s7++HOrG9uRfa3t4OQTV4pTy/ePFigp1iua01wyx10n0R917W72swGIQ5zDK+9dZbgYliX7Bcd+7cwf/+3/8bAPDXf/3XACas4pMnT0KdyMTdvHkz+PvaJKuauLws7Frg+elq4BPKLPYb9xhLS0spP1gNLKTBknjNk99l+0kT5aplBz/TeuhnXrAjTT3C/tZxzTryO7WcUms0rUetVivNSmkQjiy52ul0Eiwwy8+60gKJwbleeumlMKbIcHMP/ujRIzdJL8udl6A8D5GRioiIiIiIiIiIiIiIKInC6mfLSNmoWsCERdrf3w/aTZ7qqU1YW1sLWnIyOTzVa+hqjU5jGalZooxpklCr9dVQj9R2U0N28+bNcOJllBCWv9FohBM+T77U6t69ezewAfRT8cI7q2Zr2sgnedAIU2zPnZ2dYCvL76jZ+/a3vx1O9fTV+eSTTwCMtRhsM9WElk1iloe8sLmaqM2Ol5WVlcAU0h/qt37rtwCM+41RyP7f//t/ACa22xqc0omIAAAgAElEQVTOmeNzVp8hC9UI27DtfPf6+npgaDgvPvjggzCe/vEf/xEAgs/Uj3/8Y/z6r/86AODtt98GMLEV3tjYwCuvvAJgorlaW1sLfe7Z8M+SWsBq/DRxn9p3s2w2YhKvqnVX7Tmf5UX0y0qoVxY6xlRWAMnQ7dbOWkPd2qh0Kk80uhjrYMuqtvVZ1zLw/CpYVvb9/v5+YGep0QcQIqeRifqd3/kdAOMIXdToMYzxD37wAwBjZorykJrl1dXVVIQ1omrGg9D1wWNvCI3MZ/uV407lsudPNG+clYrEW4+B8ZpsQ2drlC67Dnlh0Kssvy03MG5Pzg9+9/DhwxB1lazGBx98AGAsFynbv/vd7wKYMCSffPJJKp3CaDRKhWquInqayjUvSbj1gx0Oh6EPNC0AMLaMoIy32vRr164FdopMyMrKSqqvZ9lDqL8428/6ca+uroZ2prXK17/+9bAvIphg9wc/+EFgEf/1X/8VwMRyZHNzM6zT3HO8/PLLKSZK/dbVT3Ea2PWp0Wik2klZafYR/x8Oh6F/uTYrI+WxktYndpYw6Gp1oRZhwGQ9GQwGqYS5KqdsXADdX1s2expGbZb9kt1TakRcGymw3+8HCy8yUozIfPPmzVR0RY7b+/fvh7OJMpx2rS8bs6D0QcrmsKjX66lQznt7e2EQUpixQOvr68HRX0Nb8h5LK6uZCzFLgANvYFizoHa7HTqCHXD9+vXgAMnJQ+zt7aVCbtPJ+pNPPgnCkguaLnz23brZmQVeyE/WmX2ys7MT+ox1U4dRCgEepDQghXVyzCtz1ZsNO+iBiTnVjRs3wuaPBwt+98477+Bv/uZvAAD/5//8HwATp8utra0wLpUuzws/XbZenmmC3XRfvnw5jD0NHsHFiQcobnYfPXoUNhg0rfrOd74DYGx2QVNGtsG1a9dCn3FRUxOGaZ2UFd6hxgt17o193m8d0/Uw4x3Aqg4T7uWZ41w5PDwMiysPDHt7e4ncHFr2RqOROCgDkw3RxsZGKu9Uu93ONPmdZgHW39oDGeuheZ5YjldffTW1YaX5zrNnz4IygnPqxz/+MYCxfLHKsosXLybyagHJg/O8DiRWAahjy8sfaDdruqjbcaqosvy6rtnxrEGSCM1ZZHM6al4Z1pMbJT3EZ5mozQN2LOuBgPuGBw8e4D//8z8BTGQd16j/8l/+C/7n//yfACbBd7g5evLkSbif61yn05naZCev/KrU0WAmQDLMPuf65uZmULSyjCz38fFxyiRRcwyy7rxeuHAhbBLZ97MErPKCe/E56t5As3GmPrh27VoYV1yHfvjDHwIA/uqv/iooWejqQHnw+uuvhyAVPIhtbm4mTI1ZHpZv1mATdrx5ORVVOcuxSBl/enqa6F9g0jZqvs0y67pURRh0lQF5ira8lAkaQh1IHgCtDFH5oPWwYd55T7/fn/qwq8pTQvfjdi49efIk7F9oLsu90c2bNwMBwqsGd+E8s2HQAT8QTpG+iqZ9ERERERERERERERERJVGIkfJC9OpJXpOZAeOTPE/xNtvz1tZW6pSotCRPiZrYLouRsn+XhTUb4nVtbS2wE+rwSRaG5dGAEmSiGBSALM6jR49SmeVbrVaKklUtSZVaQW0faguoeT48PAwaFmqaqCVaXV0NLBvrRGatVquF36nT+ry0ylkJN4F0MIIXXnghaO2o2fv7v/97AGOzOJrGkYliP7/wwgvBpILPHI1GKWo+q0xl6qGUuWVIlcamtmt7ezs44ZK+JkP10UcfpUxHaYL5/vvvB6dsBgtYX18Pz7eh9w8ODhLambLwnHmBZDZ07S8vaAR/b4POUB5o5nmVEV5SSq3jLPBYAbYTx9jOzk4q+TjnPTDR9lHmUTN76dKlMAbJRK6traVMAL0ksNPUw0uyCYzbkFo/zoOvf/3r+Pa3vx3KCSRDUVPz/NOf/jRR38uXLwcmn89iHwN+H1UpO1R+WkZvNBql0l1ocnRrXqKmWtY8jM/L+78q5GmjNYw5x43KMBvOmletzyxWHkXK7UH7xJbt2bNnYX7bhK+/8zu/E9I/EFx/f/7znwcTVbaJJnO1pq2z9NdwOHSTIwPJMPsaXIv7Ca4/1I4rI2yTj2r7aFh76xpBud5sNkv3obIMbCPr3vDKK68Es3G+e29vL1jfMCjI3/7t3wIAfvSjH4V9IGUcmayvfe1rCSaK9bRmhWpqW6avPBM6z7TP7r/UtJFl12SuvJ9X9vHq6mrC7Iyoch1SCwm1btLvdG1SxsiWl2sN66x10vFkZZ6+m1CXEZvS5Cx4Fj6275rNZig3LR22trZC/3CecG167733gsyw80BdJzjf8srlMWUeIiMVERERERERERERERFREoUYKQ1NaH17VMPHk+He3l7C0RNAIgmv1aTwWb1eL2hcqBXo9XopB2vVeE+rPVtaWko55VGLt7m5mXL4bzab4STOMlID/emnnwatDJkoapoODw9DGVXzbu1RtSxVagQ9rZ86kfLkTodP+tTs7e0Fm1MyHPy9hhCed9jcPCdHdZbWxHh0QmSfkL159913U0l6qWG7fv16GKOqtZ9HckovkaPnA6TJaDkOqdGko+4HH3wQbNNpf0+GSu3u6dty69atoB20jtKDwWDqsaeabI+RsukENjc3g40/rxpK3ya2pvZJ0y14gSGq8GVjfQjLwmt9WOaVlZWU7PLC4No5eHJykrLVVvaD7WA16WWgbIb1l2G51tfXg1zmWHnttddCOSgLfvSjHwEYs7tkqllPzqmXX345l91V36hZ66Tw/EItu9/v91PhwMnK9Xq90Ncabp//W38KZdLmHXRC+9D6KGgwBdWQs07sY/UFA8Zrj7JaQJLxtLKgqHb2LHjPtXXq9/tB5lFmkFW/detWqAO10AxmcOfOnbAf0eAmNjDDLPJBg1NxLHt+X9ZvamNjI2jUOT9oafDkyZNg8UFZp76WbBfusVRGWoZ1eXk5lW6hTJ049ikPWEZdI1nWO3fuhIBNf/d3fwdgwlAfHx8HZppMlPpFsX818I36xgPpBOZl4Y1Zr490btv9LBmpvb29xD4DSMp/rqOez43nw1t2LmmACLsGaih8tdQgWDautWzXTqeTCqyjgTTsONI9uvWR0tD508Cz/ACSPqBkL7e3txPWIMBkP37nzp0w7uzv6vV6IvAW65Tn21Vk7EVGKiIiIiIiIiIiIiIioiQK+0h5kbWA8amRmhOeEA8ODhIJeIFk4jlqZXia16h/XrIsLYe+exbtmPp9qS01rzzJ8h0nJycpvwgyAHfv3g2sDW2fqeUcjUbhWaq9sEkpZ4nmoshqG9VGs01XVlaC1okh3fm7u3fvhrCSZHE0UW2VUZA8FLGt13FJ7cXe3l5gYXglQ9NoNEI4cIaWJQOnmhlN0DxLOPC88mdpXzQqDjVQKysrKS0h59PVq1eDrbmNrnhwcBDGKJ+1t7cX6k5mSqNmTpuQl7/XqzJTXrQg60PAcjQajdAGNtm3hnPmGDw9Pc2UDWU1mTqebVtoYmEb5azdbgcNF+Wb+t5YWcN719fXUz5iykpXMb804pJN9aDl4FzguOh2u4HN5ZUJoT/99NPQ/hxP1Fxfvnw5yDdlWi0jVTWyxh8waYNutxvkN+WhMlLqJ6tXT+Z5jFRVzFTW+FV2QtOCcJ4oiw2MWQH1/+BnwHi8WU2sx+JVhayx7DHKzWYzWIVwLHFeHR8fB4aUMo9X9fWjFloTq2eFoy4Dldn2uWqhYaOSesy8MlQaARSY+HAcHR2lIukpG8a9kvZb2XVLrXLYbmTN1IKB1h7c7/z7v/87/uVf/gXAJGof3/3SSy+FCLpkpLjPWF9fTyTBBcbzMI+JmsU3VH+vbWh9C09OTkK5KL/JSO3u7oZ5xXv4++Xl5fAMzi+NoFeFfLBRRoHJnNZxZ60OdA9qw8uvra2FcaThxvmdjbSqPmRWdngRRYtC28X6gC4tLaUsjy5duhT6x0bxffLkSUhzQ1nAtW04HKbqqeu6V64i4y531+RtWO3mYjAYJBwggfEAZCOwkBQY29vbYaJyYWKHHB8fp/ICacd4m6Wyk0sPLPybk8HLeK8mhvxbg0wA4/CLpBdtYIl2u504oAFJ6l2DNfBatRkZkBzkbMfNzc1gjsMBSqHx6NGj1CZcHZmtSd+splRloH1uhfFgMEgdxrloqVkpF2l1ELUhV8+qRxWBTryNkl1Mut1uqAvHEPvi0qVLoX5c+BiQ4vPPPw/9yTrt7OyENuO85XxcXV2d6SA1LeY9XqaByhar7FBTA/bH1tZWpqN0r9dzHWiBZJZ6Few2rcAsMk83qZorT69bW1vhQMf58/Dhw7BhojM/5ZwG5OEiRRnfbDZTZkeeiXZVsO2hh1z+rZtOblB1AweM20fNsID8vD16AFhU3VQhpmY0HJuU4yy/KjF0nQXG48xuWKsONlEWOj/susw+fPjwYegzBpbgdxsbG6k0FqqYqfLAqwdp22aDwcBNcZIVanplZSVx+AUm4/L4+DhlrjUcDlPuFkS/3y+dR4rlWVtbS7k1EI8ePQqhphma/p133gmKSr6Tir3XXnsNr732GoCJsoXycjgcJuoHJNMPZLVrFfBM+zSojN1T8GD79OnT0DZWPnc6nZRyXA8aVRyovCAWHA/aTja4jJr+cq/AMaMyxOZ/1HVIFQZWeaB1rEIO2rQjev7gfNnY2AhuDqwvzx+9Xi8c+Bkwjeh0OqmDo5o4W3PFooimfRERERERERERERERESVRiJFSut+e1LrdrqtB4X02bOGFCxfCZ4RmIqc2lJpM1aJ6Jhtl4WX/tqzQaDRKsQL9fj/l3MZT7+7ubrjfBpZYXl4OWhjW29M4VwHtG4/pIKh9aTabQevEUzpNEz///PPQFzbkp2rAFsEm5JmEWMd11ZJYM5fl5eXQL2x39psmo9W2ynr3NJoyj4XyHK9tXQaDQcLRFEgyChxLZNs0bC3HKpkp9imQDK8LjOccnzsNypgrnp6ehnnP8qvjrNWeqxOyZl7ne/KCTZSB169e8AxCQ8lbrZaaHGSFwVVmXN9jTQerMPWr1WqpVA86Hyi/KdceP34czGM57jiXNI0FZYgyH14fnVW2quA9i+U4OjoKGmY7toCJjGZ5VXZYLf8iTH8tBoNBSuOsASLYn2TSlpaWUoyOphhRhoPv9spzVrmK1CkLnjxUZswy6JoCgXXSwBIcj1yv1BqjCrNSjy1R81l+Z8f+YDBIzXWd89bEl7JFzZmVjbSMgD6z7HxSB3yWg+XmGvLo0aMQwIlm/0+fPg33k3ViIKRbt26l0h/oPPSsj7KYqFnN+jyoyZiynzYAFNfJp0+fhjWW7aWmqJZl1HJXwYTqXseaaHtWOjo+rDmbhri3ba4Mqg1/rsHl7N51Vllo20bnlF3/Op1OYAdtsAx1N2LSXg3t7gWzyGJwi467yEhFRERERERERERERESURGEfKS/IBDDWMFOzwGu/30+F/iQjtbGxEU7u6gAMJJ0NlZGyTNQs2lmPkbLPUXt+tZelbT2DL1CD2+/3U5oN1SpRG6NMUBYTpYxEFfDCbWrwC5bb+hXt7e2F39o6TcOizRJWOw9W06Nad+vz1mw2E6FWgSR74LEFs5bfQx5z6L1HtUBWG31ycpKqJ68616hZ10AwVmM6SzJehWVflFHTIDTWf4VaZg3taxPHHh4eJvwW+ft5+Kpk+d6wjPqZatA9LaTViKtWbFE+hR4Lz3crO0E5t7+/H74nw+EFyeDz1SfM1rNI+WYF+0I1jYQynLzP+rTVarXAAthgHO12OxVyuGpnckVem1h2V8cl11v1b6Hc1qBOQFL7royUree86lEkoJCWTcvK39pATq1WK4xtnXN2PFYZxMV7ns55ZQ9sUArPn8/zzbTJXjVksyf7ytZP1xA+l77gvN67dy8EMqI8Xl1dDcwAGSkNZsRy24TCKm+0b/KYqKr9pTS4kjJSdi7rnoh7P0L9eCwjNRgMcvd5s/i6WkYq6z5erT9dXjqNs/b9dt229aoKHiOl9VD/ZC2jBndi37HftC2UPZ41UXfpgxShGx0b+x9Ix29XB8Ys51edXCrwqjZv4dVueDwzFI10ZA8b6rSmm3Wtf6fTSeWK8gb/LAOw6GJlJ1Oz2Qx1JX2tm1R70DwrsmCVk6hIH3sLmW6e7HhRE7M8U7B5Cm8LbwHOe2feIcWOQXU054aw1Wq5wRD4zGn70Gs/FVRqhsTP7AFO50dW3qXj42M36709QFW9sdVnZZn/5ckpu9lRcx+7IFV9uFI57inCAD/YSr1eDxtymzdLzVc8M75FHqBse3vmLrrW2A0S66uLs5037XY7dVDTvxcVMEXN1OycAib9QtOjWq2WMtfVOVXGnLkqFD1AZd2vmyGr3KvX6ylZ4CnJznpnWeQpxLwNoZUlOje9/YFdu1VhaPtwGjnOdbPf76eCLNA86smTJ2Gua64hOv3zqoFO1HQeSM45K/fy1t15BZ2w5toabMIqiA4ODsKG3NuM2/W31+ulZJOn5CkKL6BXXj/n7Y+KHKSy2jzLDLgqGei5pVgFhI5/G/1b83/aPcbh4WFKsaTRN6cdZ9G0LyIiIiIiIiIiIiIioiQKB5uwmhTPaVxNDXhKVOdkYHJ65G+BiVnZ8fFxQjtu310lM6Xv8MxQbPje09PTFFum4U1teEZloSyd6pUh6/8q4ZXDtrfWMSt32HnjrDbK0pSoprKISV1Rs8Iq4Wkyz2Icrdmf5pbwTEioobbMsMeOTAMv2ATLRAyHw1ReGy2r/hZIsmeWScsL5lBFPTwtstdOeQ7AeSZglunIM/2cBnlO8eqYzM9US2uDU3DMKDNS1qxyXnLE02Jbx2tlYawZuTr8q0UBMK6/ff48zTLz2khzcwHjcqvTOzBhpDRXDp+p+Wg82bgINmAaeHsCQudo3lxbVN2yNP2eKTqQrxXPYqgsu6EsQ9lxqWOC+zEyUhqUyOb8u3DhQtjb6ZjjsywT5QX9yNvPzZsttCG/vdxqLKsGqrF7Kc3lprIyL4hLFdYfZZ9RZvyfx/4n6/l23fJYeELnhmUOu91ueJZnYTAtIiMVERERERERERERERFREoUZKcJqilXrwO80FCS1FeqjYROeqY+Vl5CtaiaKsEyUalizQhkDvqOodeJWP5Widt9VomjgBMtIeSf+IozUPG3QZ/W3KOsvU9Y/a16wTIh+5pXDsjLKGnj2954D6jS2215ZFDp3VH6oL44to+cLxqsXVnheTv/es1R7rOUqIqds+TyWdJ5jK8830MowZTRtfdXhucp5NQ2ynquf63plgzUoE0cGinVSJ/ws/xb9bN4YjUYpRkr7gv2llh82vYcm+iY8hnXe/ZUn1xRl1pai2vrzYNm8+nrlzavTLAxCHrgXU0ZKg7AAYxaK80ODzlgfPPW1tP6TXl3mxURlIc93qNVqZQYGOj09DUE2NHAYkExUq3I0b/09TzwvLHNRWIZJ103LKgLZaQ7U30r7Imu/XFSuPx+9GhERERERERERERER8QVCYUbKaobVptbalLZarVQYVtrU1uv1lEaMjFS3203ZK3qMVBU4S5Pv2f1naZw1Ypdqc3nPtFqzKpGlHc/SgnvlPg+U9Yea5hlFnlNFPxXVLFrkab7PYjutRizPFl/n2izIY1uV9c3yffR+q3PUi3KX9e55QOdN2b7x7l2Un+RZ8z0v8bnH+FUxr+zzq0CeT5iGZrdsfL1eD5pm4qxIq1nlrqo+RXyltBw2mt1oNEpYTgB+wk6dX3nMW5WYReY+D2vTLMjyofK+m3bdKAONrmc19hqpk3/zmpdSRP0ui+4vFsFEedY5yiJx7lA+KJOrSaEBpMLSA+lky/adEeXgyST9jNA9uJV16j84jyTqUx+kOMh0YWJhO51OcDzkVR3CbEhjnYDWOU/DglZp2udtZPI2CbXaJLylRb1eT02evA3WWYvsLItwWTOILOfXvN9N+76qUcXhZ5EOlZ5DdNFyZN2XtyB793kCaBEO11nhyYu+f1EHjyrLpSjSb/NGXt2yNjZZB69FKTjKoMihQ+tpzY2WlpYS5iFAUjGWZ45VBYqak3gbAasw0aAgWTkgPZNbrzxfNHxRD2BllWRVQnN0cbzY/IStVit8phtVPTjxM16zyjvvQ1RZJYBuwi0xoHW1e1dV9KlCJutZEbOhyPjPSyVQ1hxbzz657zzzjoiIiIiIiIiIiIiIiIgEauehGY2IiIiIiIiIiIiIiPgiIzJSERERERERERERERERJREPUhERERERERERERERESURD1IRERERERERERERERElEQ9SERERERERERERERERJREPUhERERERERERERERESURD1IRERERERERERERERElEQ9SERERERERERERERERJREPUhERERERERERERERESXRyPvy+9//fsjWW6vVCj+0aJLfMs88C3/wB39Q6GF/+Id/WHkG4nnVd5Y6sUx65fuXlpbCtV6vJ343GAwAAP1+P/w9HA4BINxbr9fDM/jM0WiUeqeH73//+4Xq9Md//McjAGi1Wmi1WgCARqORKP9gMMDJyQkA4ODgAADw7Nkz7O3tJT7jPQDQbrcBAGtrawCA9fV1AMDW1lb4rNPphHqyLv1+HwDQ7XbDtdfrAQB+7/d+r1CddD7lwY6TWq0WPrPfLS0thc/YX7yenp7i6OgIAHB4eBiubA/2K9t1ZWUFW1tbAIA/+7M/O7f5NC8UmU9V1ofjtF6vh7nDzziuBoNBap4VlSdF5cPv/u7vjrLexXE9GAzC33pVeaDX4XAYnsErMRwOU/JhaWkp0R72yjH453/+56Xnkp0bKpNYNjs3AKDZbCauKgttvfV3WifvnQT/Lirzqhh7RcdOEeStV9OsTXlly3tXlb+rok5/9Ed/NMp6Ft+p80PHnn6vz6jVaol12V6z5L/37mnqNO3Yq2K8zWNfVHStfR5QVD5Qjne73bCGcz+i8on7pdXVVQDjvc2FCxcAIFw3NzcBjPc6bH8+a39/HwCwu7uLnZ0dAON9FTDeU52enibeSbnZbDbD/upP//RPC9XpT/7kT0bAeA9i93eE7vO4j9nb20vt81iu4XAYysTyrKysAACWl5fD/o7fNRqNcP+08iEyUhERERERERERERERESWRy0ippjFL6+dBv8vTWNjvqmSopkFZDZbeU0Qzw3vOo57KGBHKLFkN8mAwyNQ4q/ZsWk1iUdRqtYTGQ8tar9eDVoTajFqtFspLxkgZKcvCUDuhGh0+n/coVJNfZT96z9K5ZtlEvZ9lt/U9PDwM2iVqck5OTkIdqJGh5mp7extXrlyprE6/aJhWPuh9lpEajUah/zxWowqo1tIyLfodxw+v/X7fZal4v2XQ+L9q0D1WjvOK12azOXWd89habVuWezQapZgxZaTsXNL68vkqa2x/RmQjb3wvam2s4j15jKS+h2NJNew6DvV/vc9jbq3G3GrtbRkWNR7P451F8LyWaxZ4VgyWMdf9D1Gr1YKM45rPfY8yUoTKN0LfR9no7Sftu8+CZ7Fg37+0tBSeS9ZpaWkpNYf4Xb/fD/PFY37tOqRy3JarKHIPUkTegUqFiQdPwGRBv1vkYaNImc4qT5lNkJrZVQnvmWpewLLpQLKbCTVD4MDkZksHmzUJnJfgUvNDDnz+r4uV0sL2IMXy68ZQzdl4L8udd5Di7/UQOgvyDlB57a3lYf14WCLVvb+/n6K9a7UalpeXASCY8V29ehUA8MILL4S/F4kic+E8F8MyyiAFx6aamNlFQmXrvOqo41//BpA4PKnZKq/2QOGZ9nmw5ntqukFZQxOUWertHaT0YGfLvbS0FN5vTTxGo1GqXThvtNx2o6soYt48D/yibBY92H7V9fM8lZNAeiyoosua9tXr9dQc0/WWY4918dZpziFVCOStIYvEeSvCszDPci1y3ul4yjtI2X2Lmk5T1vG6vLycUoTpXsqaROseyirS1BWiKPIOODq3+C7K4EajkVpD7dwCJnJc91Rcd1SBNqsciaZ9ERERERERERERERERJZHLSFFzrdpKpaKB5AlYNSRZDM00Zn/Pg6ajKItUlJmalybNC1TA91lNQr1eD9/zlE4Mh8MQqMA6pgNpdkjNYqo2UbJaP9Ugs2wsv2qJLeXb7XZTjBTN2vr9fooG9jTO1GL0+/2ZGKmsfjrLjM/S2ScnJwkGCpg4hh4eHoZ5y7qsra3h8uXLAIDr168DAG7cuAFgzEiRpZoXtC5ZbaCw88Rz5n9eYDV7XoADj12dl0kfwfGfxTrxHv5N01CPwcpjpHQMW/O9VqsV5o6dZ0A245oFb74Qykiz7mzbTqcTmCiy0ZQdJycn4X6yu6x/s9lMaEN5tfPxvBipKjHv9bboeM+yZlEzdc8kJ09m2GdNU1cd95aJ8jTmOkY4vjjHuMaenJyk2F/+r2yurt3evmvaOkVMUMZCYpFtrYGCPFNrIGnyRigLr0wUMJaHajII+LJYTZ6zTPsajUZp0z5Czes89pWgPFaWlt+ra4Nl7PTZbAOdq9Z0tmy/RkYqIiIiIiIiIiIiIiKiJHIZKWrrR6NROAkeHx8nrnpCVX8bq6lRZJ3mszRU8w5KMQ8W6TyYKc9fQO1YrSZBtRf2lF6r1UIf2zDiw+Ew5eegvnKedrashlbbxWr7tIyWkeJ3wESLwnKfnJykmDSGPO92uwnmgHXi/Vbz0+v1pmakPFZGr3kBJVgOajIPDg6wu7sLACEcKLXpvV4vtMvGxgaAMev08ssvAwBefPFFAMC1a9cAjEOien5hVcCrJ1GkHZXFsGPpedH+W988zp+jo6OEdhmYaARXVlZcNpWoQi5oqFxqxO31+Pg4wU7xarXjqhW1skt9Cy0jpfexnnzWNMEmvPniBZmx7d7pdELoX6Y+YDn29vYCm8s5pbJHHbT5bitTPT+eafC8+w3OC7o2Wf7pD8gAACAASURBVLnghRb3HMc9/8MqoX6yhMdI5VlJ2HDOBwcHiYBAem+v10utPzpnrD+ix9IuEjo3n3eG1luPyrSdZyExr7oqc5TFSHkBH+r1em6wCetjpOPIylTd7xMacKdKRkr3eewTLbf1N1YLJMvu8p5GoxHaQPeMWaHXiyIyUhERERERERERERERESWRq36mZnJtbS2lvdPEWPTNoCbl9PQ0xVjoiS+LiTpv/6lZWKQ8n7BFhkb3EuUSNuTxaDQKrCO1AGQuWq1W0KgzKZv6Wtjw4a1WK6WZLptgVKG/sVH0lAXzGDVrO2u1gPosMjuqfdf3WpZAGa1p/Tr0b3v1fGY0gqLOO2CsOacW3fq0LS8vY3t7G8CEfXrllVdw8+ZNAGN2Cpj0ubKQVcJjSllX/cyb/9YXwtN4FZ1j84SyrjaK4s7OThh7HD9kRYD0nFWtmFevsjJCGVlloOx3NsmjF7VPIxHa8qsm0Za73++n/DxmqZOGirY+nNYPBUgmp7x48SKAicygfNvd3cXjx48BTOYSGet2ux2ewd8NBgM3+hrrU7ZOefJB4TGyZbThi/SlKbqu5fnN8aqMqWVIvUiKKjOqlA86J+xao5pvro1kn9vtdigTn8FxpmyotSw4PT1N+YGo9t/6HjYajUoiypaFlV86N63/6HkizxrCCzXvMWw2NYyypLNY4uRB9wN5CcM93yXumTxGyvqNa5vYeiobRuStzWXgWTYAyQjJHP+dTiexD1RowmKNuspn2mit7XY75R+m87mInMw9SN2/fx/AeKN16dIlAAiLEDdo3W43LESPHj0CMF6QaA7GgmnhlbLTq62A/p+FeWygssyHskwMvVDYOqnKOJNPYxLiHSztJl9DWWpIbDXfBCYbjrW1tTAYHz58CCC5gNjw4Uq1ZgmbMvBC7lvKV82GdHxZ8zQ19WHZeA8VBGoGpIu6FapqslT2IKX18QQ4v/OcJ7mo0uTo6dOnAMaLrj38sA9feOEF3Lp1CwDwpS99CQBw69atEOKcm0S+b39/Pzy3auQpGPIUKXbslN00VoGi89eWVc1A2Uc2YIoGOSlan7L11kMT53TeQcoLzuKZ62aFAdcNlH5mN8ZeaPRpYA+wahpFuUBlweXLl8MaxjbgnPrss8/Cmsfy8N6trS1cuHABwGQ87O/vp0wfrblVGeSZ9+rcsHJVx5A96Op6YuVoloJjUVATPFunWq2WUtZR7ne73bCGWdmhZjpq1pPnNlC27nadAJBSQmjeMW74VldXg2y2ZTw6OgrjkPspT8ZbxUYWpl2bZoEdXxpW2oahPm/FF+DnLlIzOC8Nig3M4IUFV/PnWZTJFl74c3v1UqbU6/XUQUqvWSH8R6N0Hj41MyVUQTZLPb3xAySV43z38vJyQomvUMWzRavVCooNDabHZ9h2LCobomlfRERERERERERERERESeSqAWmy9/Tp08BK0ByIDuvXrl0Lzuq8//79+/j0008BAE+ePAEwCcncaDQSLAbgO5V5WKQWw2pORqNRSjurWjCe8C09OhgMUmYL82TZsk71LB8w0Z4dHByEPqDGi/dtbm6Gen7++ecAxhpbYNzPrB81bCsrK4kEZ0DSzGXaYBOeCZEXYlbNJyzjyXKohp1lpGmFOtt74aqtdmoaRkq1HFkaj+FwmDL72N/fd5koIBlAg6HLGc781VdfxRtvvAEAgZm6cuVKQhOjz3z48GHo61mQFwzC+7sMc6mmwXpdhEY97x21Wi0R6ARIBjOwjAvnmZpyzqsOGjxCGSggadpqA1Co9jEr1DnroJ9paGZ16LXm3vq/1SqeBTUnUeYWmLACtVotsK5XrlwJV7Y917S7d+8CAG7fvh3mFdc0Wl5cu3YtsFpkQ5RptEnLtV+LQtvPS/BKqDxjG2QlerXPBZKJKK3D9iKZKY9lU0d2tY4AJm3R7XaDCSaZetZXTX5Yz16vV6lJmTrnW6aWY+Pw8DAVNKJWqyXYKWBi4nvhwoXAeFKO08LnyZMnQf7z+d1uNyU/bRCA88LzwDZ5yDMv51VlkXVL0d95ibut+ZkyN1UwU7pOWvaLV11ndM9iZa8GXNB9rNbTY6SUebP7q1ldOIgsecW6A+P9pu75tO4aWM0GEDs8PAznD7XAsMHWsvYsWYiMVEREREREREREREREREnkMlLUqO7u7gbtHW3I79y5A2Cs9f7qV78KYMJS3bx5MzBRt2/fBgB89NFHAIDHjx8H7QpPxzwhLi8vuxqyLIfVWU/ARbRveg9PuTYceLvdDlokai21HlarW7VzvOdPYjUtnU4nkUwWGDMR1FrQLpvP2NraCnVnn7MPHz16FNqA183NzVRgAGWmytbXYym8xLzWjl41kpYx0gSd/I4azePj4/CdahmtFstLpFoU6kxpf6taZnVABsb9RNaIrC81z51OJ2jNOf/IQr3xxhuBiaKPowYR4TPZv5999lmY50WR16+qhfNsrW17e+wH+9xjNlSznqfBXwSWlpaCVosygG3e6/XCPGHbq6O4p/GsEuo7pP5PQLI/rBbPm7c6hlluT9tpEz8uLy8nQr7rd51OJ8GYF4HKB+sbpVpL9gEtKTY3N4N1xCeffAIA+M///E8AwMcffxzKxDnFwCw3btwIz9WE1zbAC+vh+UGeBZVvNk2DPov9xHr3er1QDptIeDgchmd5juZEEauQWdYsT5bqWOKzlRXlOOGVa+xoNAoyiww667u6uhruV9+NPK35tPXyxp5aYVC+egnSCSZHX1tbC8wb9116JTvFdXp/fz/1Ti3XvGRJXlvZtA9Aes32ynUe/nlEHiNiy55ngaL+UOpnU9YaKQ/6fPsuj/HyGCnrI9VqtVL7Nq9OHiNlAzPMwvp6MQi0/LZsKysrgdW1zJS2u03I3mq1EkmwAT+9gLJbMweboDnE2tpaoNIpwN5///1wfffddwEA3/rWtwAAb7/9Nl555RUA44MWgGDq97Of/QwffPABgLTZ38nJSRCCStdlHaBmnYB5z7Ebsnq9norGde/ePQDjjmBbceHlQqwOl54DcJVOiHpAsxtQYDLg+O6Dg4NQJ9aFG/V2ux3MWxjxjY7Xn3zySSKPETA2EeLAts6a05he6UbJtpHnhOgdpGw51AzIOtsfHx8nJpaWQd+pG5uyDvLaHtZpVaPyWTO+p0+fpkxY2NZXrlwJgSS+/OUvA5gcpG7evJlykD84OAiHJZpqcm4+fPgwvHsa2HGuJic2D93h4WHCDEa/6/f7oa0oB9TMR81J9R7Fog5Uam7KcnHucxPf6XTCfOGGSE2TZjGNKAI9oGblH8kKWGMXMF3c8iJB2U3w8vKye4Di78ua9qkTux4agMm839raCnKZfVGr1cIa9tOf/hTAeE0CxusQZd7rr78OYDKXtre3w7xRBQfHLt/Juk0TOU03cNasxXMAZ31PTk7CGkqZwXINh8OUORkP+howRA9SWfmb7N+zQscZ/9aoknZe8zC8vLwcZNaHH34IYLIOra2tBXM5jUirpvazguXS9YTtops0vuvBgwcAxvKVex6OId5/48aNIKt5gFJlhJ0zOzs7qWfMW45kPddGcuZh7/DwMKWYsME27HOrktd5beCNZ1Uo2cOxKux0HgLJYBN5h5oq93mqGPAiBXrKX7snUhcFa6qn7/NMCO2BadYDFK9ZQaSWlpZSZod6kLKuQjq2rHLWO0hpFFDvMFxkTEbTvoiIiIiIiIiIiIiIiJLIVanzZHfhwoWgJSG9To3Q7du38c///M8AgB//+McAgH/6p3/Cd7/7XQDAf/tv/w0A8OabbwIYh2Gmud8777wTngGMtWnUrGkOBmuqVXUITY+ZsqFL1VyFmiBqwW7fvh0clqlVJztw8eLFFFXsOQLPajYB+CYMqoFgH7Jtu91uYCBYfppK9Pv9oMUlI0Vt7Ycffhi0T3qlJtAG3PCybZ+FvBCinlO7jhdqwbw8A1b7ooyU57Bt36ka+WnzSGn4Ug38AYzNaKlVZt8cHx+H39qAEq+99hq+8pWvAJhoz1966SUAY80z247PunfvXuhrZaKA8bjOChtaBtYcQE2PVJtP7ax1pNY8ZZr/BxhrNvl8zVfihW4FFmc2Uq/Xg2aMLAiZwu3t7SAXaBLN+j148CDUu4i2fJpwzXlmsjpHPfbD3q/mfFmmYuoIrCyUNcHQ8LU2UMdZ0NDydk5zzFy6dCn0BWXB48ePgynfT37yEwATNn57ezswUd/4xjcATCwqTk9Pw9pEGbmzs5My6VOz02lNf/VvK3eUoWe9Dw8PAwtA9oNzSkPAcw5pzhQ17wOSTJrVutdqtUq0z7ZOyu6rvLKmlFy/rly5EmQX9xBkeJ88eRLWLY43L6DLLOutmm/avtDgI5R1/O7+/fthrHEMacoYmmbT3I/l39jYSJmWa1AEvkdDpC8qX5MG4eKYo7XS559/HvqCa5QXZGdR8HIiWQbCY1y8/Ya95uVHtX9XUX47N73yahlteZVl85goPtvLV6XyYFYoC5UVkENTIXCdX15eTgWj4f+dTiczl6gXcEkZKd7nBZ3IQ2SkIiIiIiIiIiIiIiIiSiKXkdJgCtQkkJ2g1uTatWt47733AExszf/mb/4msFQ//OEPAQDf+973AIwZqrfeegvAxJ+IGox3330XH3/8MYCJlmUwGATNiw2XXnX2bk+LzZPwxsZGOPHySg3MRx99FDTNhNrK834vgAZRlTOitZ3lczudTmCMlDmiTxQdr9n+Ozs7oa+ZwJX/b29vBw2o2rTreAGq8ZFSDYjHTNkwy+12O2VPrsyUp6EAkglJ1Yk7iw3TZH5FoVp0vovtr35R/JvlaDQawX7eBpR46623ghadjCFZAA0TTA3u3bt3w9/UhrIMs4TPVRtnL2GoDVF9cHAQ5jjHkmpwbWAUTQDN+aT2z/bdqlVflObT+puwHzY2NsIYtKywMptFQuROUxcviIHnd2jZbPWX0eS5LL8XUIJX+1mn00lllNfwwmX9DW3YX30u5dv29nboAzKit2/fDkwULSH4jFdeeQVvv/02AODrX/86AIR59+GHHwafQvpY7e3tBW2oXaMajUZpViDPX0DnEse9+h1yDnMuke3tdruhTPydJinmc7V/rTa3Sv8ihefDwXGgdeLaRNnxyiuvBIuPf/mXf0ncs7e3F37HcaC+tFWEofbmrjKGwLjdbRL1k5OTwBhyDJGhunfvXpDp9C+nT9j6+noqgbz2hZ2jx8fHCw2FzrJwjrFOd+7cCWOUVhJVj6Ei8OYQkFyHNVgL+836nmn4esoVZUMs4151egGPvbHwZLYXGMgLYuOt317i3yzZNE399Bl23+BZUOh+1usDYNw31hqJ88Hzget2u6lASyonYvjziIiIiIiIiIiIiIiIOSBXDehFe7K272+88UYiASgA/Md//EeIiPQXf/EXAIB/+Id/AAD85m/+Jv7H//gfAID/+l//KwAEhur69euJaIDAWHND219eeWrU0MFVQk/8vDYajcDMkEljGxwfH+Pv//7vAUx8huh3sr29nWJN8jBLaHTVINhEgc1mM0RrYvS9jY2N4C/D8lJL++mnnwYNGbVgZDyuXr0atE4a/c6Gsy6aaDmrLnyW1RJ40fT4LtV8W0ZK/Rb+P3tv8iTHdV0Pn+oau3puoAGQIAECpCRS1kiF5JB2jrA2Dof9tzjCK0dIIm2v7K1XXnrv8Mp2KOxwWDbDmi1ZJiWSskgRIAliavRY3TV1fYv6zquTN29mZ9YAUPq9s8nuGrLyze/dc++5NomhynFrQtIsJaRp5I2VvfOYKGDMDrH+2L8uXrwYZMwZa0if8+effz4VB8I2uXv3bmhfMqYffPBBYKKsxU3VceYBzwqnVmgrycq5ZTgcplgdtfZZ67X6eds2mdYCeN4YtAxyv98PY9+ygJq4U63TwHSpAcqCdamyyHbcqEXQi12xEtqNRiMREwUkGSk7BrXdPPn6adnd0WiU8JsHJrFAq6ur4XOc337xi1/g7bffBjCJyeO89vLLL+PLX/4ygIkFnSzprVu3gkIcWQWVvKc11JPgLVumpaWlRDJPvsbPePLnNr5T/f/5HLTcqsqhZVGbzWaKXfES584Ca9FeWloKfYj1uLS0FNg1qvxyPH36058OazD3HGxTZRRYB/NOeq1y/1ksq8bPsi09dUXOxXfv3g1xU2SrGGP59NNPp+KPa7VaqDOPSWbZHweyUoRoHFee/PkioYyCZVc01Yiuw5y/rSri2dlZKsUFGeuLFy+GeYf7JbYPkGaApqmHLFU7hcYLe+rGNjZWkSd1nsfQzOIZdh77pZ/RMjUajTDf27QByg5qUm7eU/d8wHiOzErBUnRtzj2FaAdUtyRgMhm32+0wyCl/fuPGjZBbitQ7D1Z///d/j+9///sAEAQpvv71rwMAvvCFL4TNO4MU33333UDbc2Llb+dRnFko6kKn0rLAeIJm2bnIstyj0ShMqDyIsAE1kM2jU/OesSw08NN2FmAysFWemR3OulG88847+MxnPgNgPJEDkwPY5cuXwwSiHdTmqCkrxqDQQZSXZ8huoHVxs+5FjUYjTPJW7tLbjGgguxeAWraduHE7PDwMEzcXVk7WwGRCoGvHzZs3gysLrzxYbW9vh7Jz4udC/N5774UDFA++u7u7KYOE0v5lZagJrQvrGqRB7VyA+HtaXo610WiUOkhpThW7UDUajdQCsegF2y7OvV4vlZ+Ldb65uRkWYI4RtrtudBd1oFI3B7tIqWuFrUPN2eVJndtxpocnm69EjV42cHiWTUWlUgm/YV08lpaWEu7XwNhAR7c39kW68X31q18Nhgo+I9353nzzzeD2zI369vZ26IvWxW8wGEx96FD3J+tSrBsBPYhYAQ+ODX3Pk0C2h9p6vZ46SBFnZ2czzem2f+v9+ftsk7W1tVR6BoYOfP7znw/1znmQxtzbt2+n3Ii99AizuNKr8Iq6GgFJo4I9ZKnR17pgHh0dhb7K13jIunHjRigf191ms5lyy+TvPA7jDFGpVMLv8yDxwgsvABiPDz4v31t0zrwy8NzRe71eyu2eV3U5Zx9TUTJvLM1TBCnvMKO/4+W/yjpAaToFe3BR4Y28NWqWcAevTN6Byhp1arVaGF+c73UutpLomr/NnmWycijy+aJrX0RERERERERERERExAKQy0jpqdmTXAXGFlVaWWlNunDhAr72ta8BmCQ2ZNLeH//4x4GG/4d/+AcAwE9+8hMAY7c/fo9WjevXr4f70sJLN43Dw8OprX7nudBZ16/9/f1g6efJl4Ibn/70p4M1mhYYsg+tVitFyc47AN5rJ57A2TbD4TCczvmMly9fDiwTn5e0tkq62wSBFy9eDN8jk1KpVFJs2CyiIB4b6iUTVdYDGFsqsqyzmqzXWlhUEEGZKf5tgxenaUOyEHt7e8HKResX77uxsREYQE20y3Gk0uYsB9uMFlyyUO+9915wF7EuZQBctmEW1z5PIp6vW5n61dXVFGuqVicrbqDufLYt1DL8uCydnuwx25dty367urqacKflM9t7LQrqApQV7O25hDQajRSz5DFS1jVTXXqU/chiDafxLCC0P6jADzBuE1r+OSbu3r0b3udY+spXvgJgzEyxfcgGcN166623AlPAMm1sbARLu012rq4qRaF14LkxA751ttVqhefmfM8ynp6ehvrhZ3jVoGxlCbPcY6dh4T1YFkAFpVS6nusO1ya6+7/11lvBc4X1zznz8PAwPL+uR/MUplL5eMtCqIsin5+eK2tra4G5pOeHullzX8P5kHusg4ODwHLTDXVrayvV55ShXETIg7fPACZzM72I2L+03u188Ligz2znH507lN3g87P/qGCBdSNW18V5uO8VhV1rdYzaedxjinQOydtf2X1SngBE0eS1HjzXPs/FUNd+O+9zbK2vr4c25L5H98GeqEaea19kpCIiIiIiIiIiIiIiIhaAQoyUZ31X5sMmo1tdXQ0nQgo0kL158cUXg5WPCXzJfPzzP/9zSJb48ssvAxhbCRkrwnvRArq7uxviQqZBnp+0FSXodDqBkSJoea7X68EaQ59tWkKHw6FrHZpnwlC1RtiAQRVQYL1p4lDWLS1eZCzu3LkTrLhsO5ZDLewq1W1/exapU7VWZsV9qRgEUa1WU5YKFUhRP3IgKVtrf0dlMfmejf8pA9bV8fFxSoqYVsurV68GJopW1+effz4lbc52ffDgQUq6XgVEOD7Up5v1Y+Ne5iXeYgUNqtVqKk5BxTo8piJrXHgyqZ5c9LQo+n1r1To9PQ1jnjEdZKja7XawmDPWgeOn1Wq51vJ5WjPZZ7RsXhtZiVwViPDEI7zEuvy+J7Nr51svkXhR6PPbZLgq7ME5m9b+4XAY5jwm3WWM1KVLl8KczpQejO394IMPwn01xpSsA3+bDLaK5BSF1ofGRCnUZ19ZEDIzrG8+V6/XC/2LFlt6JLTb7dR491ixWRKLensIT46af7NM29vbYb2nuAfZm7fffjshTMPPA+M24dyoa8g80osQmgDainXo2kN2jXuhjY2NUPe8cq64e/du6Ht8fpZXX6MHyM7OTooNtRLvi4QXE2sTpFar1USMOYBUfN/jhPWUyBJOsPG8rPPBYBDKbUVmND2OsrweYzQrPJbNS1/gxUXZsTcajdx9Fctr5wC9lyezPi3zq+u6t9+ze0pdr2ys1Pr6eip2VcV3vITjWYJmMUYqIiIiIiIiIiIiIiJiQShkfvZO0Wrh4YlNZaPp18yTIU/3V65cCewNLe70fX777beDFea1114DMLayU0mJkqe03m9ubs7F59azVlkLwnA4DFYVxmrx/5WVlXBitgpSqhbi1eM8mCnvuzxRq+S2jSHY2toKTAfjbDSJIK1lVjGoVqslrGxA0jddLYHTlk0tJx5TxP+tTHClUklIoQMTi3y73U5JxrIuVK7YU3Oxv1PUUqEgYzsajYL1hHXKZMfPP/98iA8ku3nx4sVg5aLVkhb2W7duBSaKMVLaltbPW5kEGx+hil1Fkde26jvtSbLa+AJtC2s5y2sTL/ZnWovntJZrVT+yqmGj0ShYNW2KAGUfsmIQvOcrA85FyvRZ66zGC2g8lBcbxf8ts6nt6CnyWSZKfeHL9ru8BLKqusW4Jr62traWiG0FJvE1Z2dnYSyRiaIKa6fTCfXIdAPb29thTlUZfJZpWkY+jwFSZkfjNaylnOuu1q2NQ2q1WinPC7W623l8mjmvSDlViZB9aHV1NTBSNnbi/fffD+uOncvW19fDGpbHPBDTpBvxWBUv/kbXHZaJz62y2cB47uacTiZb2W56jGj8F/s012Jlpp6EKp6XIsGOSZuW5XHAzq9ePJEyiWwj3c8CfhJknQO9dXURsu/63Fa5UWO1vN+28UdnZ2eJ/ZRelSXS386KdZ0mRkrXhKwYKV3z1bOGv8U5Q2OlOCY4Z3PvpXXn1Uuet0seSvvxnHeo4kPYTqiHDivvTFr+xo0bwS2Jm/jDw0O8/vrrACabR27sL168GBb2eSDvQKUbbW6KWLajo6NUgCtRrVYLNcQsBypdWLM2oCcnJ6EzqYsfNxVsC7pRdLvdUN/coBODwSBFp9py6zPMMmmq20+eGIS6qHiTI5+Vi5q6ZwDJ9tXfs5OMPte0bi6rq6thAeUBivlQbt68GV6j6wYwcRWleIS68/E1foaL1tnZWUqsQQU3rAz1vAKyvYOB3cB7hyud4OymO29cLMKV5bxDjS1Pq9UKC7DN66WGB816z/ssetPDxSTrQMurJyyRJTbhCUqc14/sQklMIzahbiWsP+vOfHh4GOY8PuPOzk5KMptlunfvXshZROMe3XEbjUYYs5wzV1dXw3PY9W4wGMw07xVavGXOsy5mnJe1Xq3rpn5fN7j2IOXJIZdF3oFlOByGeVbljW2KDV1v6bLJccU+1Ww23QPsPDfuugn13FQJe7hdXV1NiO0Akzn+woULYR6nIYwHKhVt0L5t9yusw1artRCxifNgx5+mRMnKx7goFDHw6aZaja+eexev9vk96W+9ztOlTw8u3sGdVzVIEt7ehv/btC9eaIZd7+xv8r2yewgdN1mufb1eL/QjFZuwQmNqOLe5pdSITXipHLyDVJE5L7r2RURERERERERERERElEShhLxFTveKarWaOtnxRNjtdgM7ZanvS5cuBasu3S3u3bsXLO1kgmiNPzw8DFareUKtZ2pRsNYInpw7nY6b6EzvZ1/LwizS6J51m1aF09PThFQ5MLYk0CJGK7qKMNA9k+6Wak1XSzwwblfryucFT5eF5zKl0u58Ju+3LOWrrn3qcsm6IPT3PEqZv1fWOsu63tnZCawTreN0W71y5UrKLfTg4CC4k9oklffu3Uskd1Uoa6BuW1kJUadxc/HgWe3y3D2tm6U+h5UjVZcpL3HpIiyeeSy8yt+qWxIwma9Go1GCFQUmffNxuODwNz1BCQ2Sz2OkbD/S5Nae7G+WG5++VsSVMQteALVmqgeSUv9qoeTawnpRd2a68pEVIDY3N8McyTWqXq+nfpNjdhahnTx464MGtVs3R/28dQnUOvQSj3tsyzzGlyc6oomt+RmuLZw3lWmniI71elDXbs9FMm8sF0WRJKKenPPy8nIYM2TSOJ7a7XboV/TQoTvf4eFhar0CkqkXbDkep8y49X7heFpaWkq5xT0JkYksaP8vyhzZMTGLEEtZeK7yhDJTnvy6bSNln+zc5aWXsXOH/u0l/p0Gdo/A51DPIz6r7nXtfq/dbqdSD3CMKKtuPSn0GXRcFxlLkZGKiIiIiIiIiIiIiIgoiUKOtB674sGTZSSUoeLpkKdMWm7VAkqrzOrqavBJp4VGA7et5XBeyIuXsihqqZunBKt3X/WdtYxgv98PFj1lImgpZ32rdYIWAVr/WP+tVitYDVQq2bI2xCwsm1or1UIBJJNNKoNhLRSe76xNwOYFrWsQmPHTMAAAIABJREFUtPXhB8rH5ly7dg3AODaDyUDJTDH+otFoBIse6/ujjz4KTBSvZGmPjo5S9a7sU15iVGvRWZRFzWPvtF1Z757V1fNTz/Jhf5zwAv5pZWZbqu+5ldv3pGkXBRWZsUyUMk4e+2Rf8wQlvDJ4bWPjSNQCOa38Ob+v91NWyMZJbm1thTmA3+Ma8tFHH4W4UN5DRWHo/cD5ROcHGwtin3ER0PHrxTAU+V5ewk1iUWyv14aEWt1Z37puaeyvvZeVN14URqNRisnTPu3JSrMsVi59Y2Mj5UHB+eTg4CCsCeyXZ2dnKVbCem48LmR5D+h7Hycm6jwUSajryYh7wjDzRB4jpeyKnZe1n9r5qt/vpxh8rx1tLJb+rTFSs4hN2DrVZ+YzspxaBzZWqtFohHmbzBTHz2AwCHWQF9tVlmksHZGYFWxnYV/P07JnA/Z6vTAx6sLNhY+LOj9zcnLibr7miaKbzDJiEfNyofLum3WA1cBPVbzS3FDARE2o0+mEz6kKFu9lXbRqtVruhnZaYQYtgz1IdbvdlDubbrStsk673Q4DzC5yjUYjNTlpRm2bR6pSqZTe/N24cQPA+CBFcQ9Sz8T+/n5KWOLOnTtBBISHK6Wqvfw/LFOeEMDjOEDx6rl7Et7CZZ8pb3F+Eou09ntgXOfcJPE19pnT09PQXnmbjSK/Nw1082Y3cHrNe80umurG4blqWTcNzQdnF3UdZ2WhB3L7m5oTRvO+8Lm5uNIw9+DBg9T6w+9tbW0Ft2AVt/BUGInH4bZpf2vajUzW/0XfK4Ii8423hmiAOT9j3Tl101hkAzxL23jlsO3v9fder5fKx8ayqUsiD1CaJ4d9lf2z3++H3/IO0U9iTvTceD/O8NYl4MkY5orAO0hZo7EauAh1M7X7ZTWwe6p9tm/pvG9du2dx7fPWDF0nPNc+jh27F200GilXejWgcwypQM+sglvRtS8iIiIiIiIiIiIiIqIkchmpIsHA07j92dfUSm1zxOgJ21L99Xp94YyUPmtRsQh+/rz76eft69PAC8BTS52lddWyZ/Nf6b144lc3Cvv8S0tLibwds5ZFYRkpPn+3200ElNvPW0ngVquVEptQ+XQVO2A5rLuEumSVtVzRne/ixYspGXayfbu7u4GJopvRgwcPgnuldSGq1+sptyu2pZfHYpYA/1lg2SOPcSz6bB9XNxE75jxJWk+QZdHMhfYPy0ipq18e6+S5PnjumkCSsVarvLV4amqBad2RPJcQQt1YVSjHjn2OPTJTwMSSqZZN24b63Pa3p3FzycPjcFN7kshjoD2RjDyGe9Hw2tVzqc9Lp8F5nP1Sc/hZF+2VlZVUSo9ut+uyoFnPNy/Mi5X8uMArT5n9y+MUm1BWiHMR217nbs8rydv7AUlGygrlaHn09+z65sm9l4U3j3vjRueALDa9Wq26qW94LztWm82mK5hUBpGRioiIiIiIiIiIiIiIKInCMVKegIDFtGyMJ7+sPtA2UFstvzx5Pg6UiSkpWxfzgrWKq7XKSmB63yPb5wloKCNkM2t7Qhfzkjf24i2AZKI27UM23kLjWMgEeQGHGshIWMt6nkXkPFDGt1arBXaPVnDGRd2/fz/IzTMeyhOUUFbWEwLgMz5pJioLefPHbwKs9UwtXTZmR+ewJwGPGbMsvwbc5sUn2nEPpGMj1Cdf/dxtbJReyzJSniVY2XFebTlHo1EqyTbH4tnZWULOHkjK1du4HBUR8dayj5v1nfi4PpfCmwvKzmWLFnfyoGugJ4rD/uIxUnZs6u9ZSXdd57ISXX8ckdeuHwfkMUxPeg1VZpZ9SuPd+X8RRsrbQ1n589FolEqroIyXjc2eVf48S4xIvRl0PrdzrnoiWaExZaTs55XhKxKv7SEyUhERERERERERERERESVRWrWPyDuxTRs3lRUvYC2eeqJ8EtaMsszUk7S4eO2k9ZgV19FsNlNMoFoIPN/0aZWj8p77PPU+q9q3tLSUsKgASVlMWihofVELimWkstTH+N60SoTHx8cpifOHDx+GKxPs0nd5OBymLE9e3MuTUOabBb9pz+SNJY1TsLF5hCp4Wbnpx4Gicr62r/N1vUdeEuQ8xTJV5rO++LOo9insXOapmOqz2XjcpaWlRHwhkFRVs2XS5I52vvo4M1JPGnlz0rzja7MwL/U+T7GSsLFLmuDUY63zElzbuUVlqL1kzIuaXz7O68mi8aTLrGyMFw/K92yf9tI0eHsomzwZSPctIK1Ya+OwyyBvHHqpBDyPILs/HY1G4XOczzUFDsE6qFQqKUaqLKY+SCmKTIz2s3n3ybqXfe/jckh50gNMUUT61dswETpRZ90rL9fIec9QFHkUqyeLqZsou0ipRCgHlCebaw8kuoBZ1ybrflEEDGo/OjrC3t4egMlBiv8fHR2FiU0Pgjb/j5cXyk4CRQVSFIv+/G8y8uY3ddvJc0F60vVlN3J54+zs7Cyx2OhVN2v2np7YRNbhyr43bXkUeYcZNQLZ+c9zW1GjnXU58ea8eHhaHD4OBzD7G1m/6wliAOm1U8VK9EAPJPugd6+sTd8iD1LzRBwr5aDrvB6k9T11r9N5zh6k+BnvIKXzm9cXFyF/rs/rGfyt8Uv7js0n5bkk6oHKumhrWTz32iL9NLr2RURERERERERERERElETlN8FyERERERERERERERER8XFCZKQiIiIiIiIiIiIiIiJKIh6kIiIiIiIiIiIiIiIiSiIepCIiIiIiIiIiIiIiIkoiHqQiIiIiIiIiIiIiIiJKIh6kIiIiIiIiIiIiIiIiSiIepCIiIiIiIiIiIiIiIkoiHqQiIiIiIiIiIiIiIiJKopb35quvvrqQJFNlc1cVySz8rW99q1Ca7FdeeSXzx4s+l32eRWXoLlqmv/3bvx3Z52B2al4Hg0HIDq1X+xo/z6zSQLpe9HeYQVpf49/2CgCvvPJKoTJp37MZr/UZ+Zx8rVKppLJZr66uAgDW1tawtrYGAGi324nn7/V62N/fBwDcv38fAHDv3j08ePAAAHB0dARgUk+1Wi3c9+/+7u9KlalsP9PM9oTWia0f+/3zXvNQtO8tao5YBIqU6U/+5E9GwDgD/MnJCYBJ2/N6eHiI4+NjAECn0wE/z77IPtVoNACMs6mvr68DQLiyH66uroZ+1Gq1wveYYd0bX8Q3vvGN/yfbCAD+9E//dASMxy3HPutseXkZALCyshLqm+O9Wq2GMcz21bbs9XoAkvMJv2fbZGlpKXNcTlOmb37zm2F+sHOd/l/ktaw5QctUqVRS/WtpaSlRvqzP/+Vf/uXM6y2hv8kxwzkcAPr9PgDg4OAAALC3t4fDw0MA43EHTNp+c3MTFy5cAABsbGwAmIwrYDJ/83u9Xi+M27Jr03nzuF3/tJz2efr9fign78vP1uv1UB/6/aw21v+LlqlIOyny1hFvL1Dke0B+Wfh3kfFUdq19kpil33lrvvY3vsa/7f6u3++HPuj1u3q9DmAyvvRzvAev+iyvvvpqqXmcz6Xg/bL2m3ae0jFi3/Pm7Ly+6NXxn/3Zn2V+ITJSERERERERERERERERJZHLSH1c4J1M53lf+3/WiT/LuqJWAO8zi7aK8CReq9VSFi9C2Rtavvr9frDA6mv289bioOVRS0LWb49Go6nbzrPOKgtlLRmVSiVYUWiFpsV/fX09/E0LC60xp6engZF6+PAhAODBgwd49OgRgLTls9lsBsarTFnOe82zEnt1p4yjVwf276L1/5tgwVskitaT7YvD4TD0JVvntVotNc6UAfYYhoh8cIyMRqNQp6xj1i0wYTg4VlutVsrKynYajUapOc+zttrv6d96r1nKZNc8/d9al/U5sth775lGo1F4397Te66s96eF1hnrlGtZtVpNeFMAk/Y9OTkJLCLfUw8D2+bNZjPVnoTW9aKgrCbLZ+txOByG8hGsk1qt5s7jj2uuPo99KsI6eXuDvL7kMatlyjuPuvm4roXenlLryfYVZdP5mrJQyooqtH34Pc6d3m97e5Hz4K2D9prFqnvrLJAcZ941j6Uiys55Ux+k8g4Y52GWxWYRsIvO2dlZYdcIIN8dwjtEzLvcXBxqtVriUKXPo7+rA4eTN6/q8mA3fdrpzztU6W/PegC2VLJuYj06mq49eoACxu5UdPPgPeiadXBwENz47t27B2B8kOKCbQdrs9kMi/csZSK8vsS2rFQqqU0F62IwGKQ2XUpxl1mAPy7j8eMGb/yWOUjV6/XUGNLv2U1evV6PbXEOdNFkW3Du4nU4HIY24OZ6eXk5jFvOBepGZhdx73Cm0DGqmMaAps9h4Rn3dKORtfnwDuqEZwQ7zyg4T+jveBseO+dxrj48PAxutrwH5/x6vR7ala+pWxIx7Qb9PHhGX29Daw90uhZbNBqNlLvW2dlZah81j3KUddnLc/P37pW3b9B9xSKNS3n1VMTYWRRF63IesHskhe4peBDifLi0tBS+w3lTjerW0KJ7TFsG3YuUxdnZWWJPo2XxQjg8eIcllpfvqZusGio890CWsUhbRde+iIiIiIiIiIiIiIiIkijNSOWd2BfNTM3Txc8L0lfLiLUS57k8qKXJWtayrDjztILRUqf3zDt1azlt8C2vp6enqdfUOuu5vtj2KeL2l4U8i6r+pmWKWq1WCOS3Af5kqICJcIAKTHz00UcAgLt374b3WD8rKyvh/vyfr5WFx+Yqo0krirYX64DWIrbJYDBItXVecHNeUGdEEmXmGbWa2e9rQK/nQusJBWS1yeNwFf5NAMfhcDjE6ekpgLQLWLfbTQlRtFqtFCOl1lnCzm/ahoRnrdR7lF2n1IvACxjPu2feWua5RPNaRJxCMU9Lus7ddg7T5+Rcxzn74OAgiE2wDVlPrVYrMFH6nh2bOuYWMZ5Go1HCig+MreGWHeNv93q90I8Jry9pf/DYh2lRRCAii30q4oJuXWQ9Jt6bC7Oe8TwUZZbyxC1sGTx4+5o8b6RZxo/XRvbZPBc5YDLHcW+hzJSuU4AvxEIsLS2lxhz7tM4nReGNd95X5yvPoyOrr3gMtzcGtS4sc6VzcZ6nABEZqYiIiIiIiIiIiIiIiJIozEgVOWkuShRiEb+jll17HQ6HqQBmz09TT69ZJ361tulvzzNOTAURyJJ48Up8JgbhLi0tZQb0np6eBgsZZYL5f7fbTTAigG+RV5T1cVbLal7gN+uWVpLV1dUge7u5uQlgwkjVarVQFlo0GQ/1wQcf4MMPPwSAECvV7XbDfa2U+sbGRrhv2TIBPhMFjC1ELJP2R9Y9Y7ZY/1p22/c0MNSzwC4iNuC3BecxC3kstq2LWq2WijdUf3A7r3jxMIueU3/ToLGOKkIATBj6TqcTxgnrUWMoyUzxWq/XM2WCNQbO6+uWDZ6mvdQqmuXhoIHUXrC0x0zlxVd68QhZLMK82BsvxtiWV9dgznmUPz84OAjzIdddXldWVsIczXbWWLmsgPZZYetd13iNz2Ab2zo+PT1NxePq/G3rR+ebeewliggUVavVQvFPXnoS3UcBSYZXmV4732kfL8IMZD2T/dv7X59dkcc65dVbHsuX9VoReCygPrd6OwDjumcZLBtfr9fD3sYywCcnJ4EFVrZI2V8g2b/Lgs8zGAzCGLbMmMY8aXltzL83pu3+qlarhbGke3YbO6b7dy/G0iIyUhERERERERERERERESWxEPnzPN/QPPWwshYV73fOg+e/au+h1kdavnq9XkINSqGneuuf3Ww2Uz6ZnrV7FmsSWZXl5eXASDFOSK82Ga0+N6FqVWqZACaW3pOTk/CaxlF51s1p4fn422utVgvPz3Jvbm4GJorMFD/T6/VSTNT7778PALh9+3aIkaJlUJlG1t3W1haApJR6WahFySaiVKlbWvE6nQ729vYAIGUharVawSJkLewaG6CKUFmM1DQWsjJMddbfZfp+lpVv0Qpj593TU07j573E18pQ5cWulH2O/1fAMa2xIpyrOcbVys/6rlQq4bt2vKytraXkqZW94fyn8YpZ/c6T1D0PykhZpkXVQq18e1bCVj6rZaTU28J6XvR6vRR7oH13HgyOZWrU6quMFNcWtifnQMa16r1UqZXzMtu52+26DDIwHctW9PM2flf3ApahPj4+DuVim6sqrI3dGAwGuZL1ZVFWhc/zGPH6l42v1hhRL/7GMrA6DmaNkcpbI7Stspgl/byNgT8vVsx7vlnUALPYOR2j3KPp2mT3Mzpe8lLCkA0G0glwdd4qWybu0bx+5M1JnONPT09dpWkg2bfseNe9Pa+1Wi2Ugf3Ti5/Kw8LzSNkNo9LDVjxA5awX/Txe0LYOAE961bpV8bmr1Wo4OOmiDIw3+JpZHcjP9zQN7t+/D2A8SNTFDZi4tW1sbISBxc67trYWDiBcdDjQWq1WKkcHr5rHg/c8OTlx5Yd5LTvZ50lfcgA3m83w/OrOx7+5uPJ7R0dH4QB1+/ZtAMB7770HAPjwww/DQk202+1Qf9vb24nrxsZGuH9RaN+zk5C6BnEw89D08OFD7O7uApjULdt5Y2MjlPfixYsAJm2omz8vyHcWNyQPWYYRXTSKBLp7LpDeBjXvNfv9ovAyp+fdU5/Zbr6JwWCQ6drniQEsyv1yFpQJ/vbab97g+NExaF3BDg8Pwyac40DFWfhdziEXLlwIRhhvjbIbFHU/yxKHKAPP/YRXPmuz2QxjX8UyOOY9kSPrAqOuMyouxKsaD+01Swb+PHiGyzxJZZ27uJmjC/vR0VFKKERdrvk379nr9VxXTV5nWYuz5i5vjlejF/sQ6/bo6CgloMG+qG75WXmoZoV3gCJ0DHh9SfuOvVohGO0/Vqyg2Wym6kxzgbGti0APGlkHIi/ViHeY00NWVpqbrDUh6wA/zZ7Im1ftPAEgVedHR0cpAyz3ctvb28E4bNO5qACKCr3YOtODWNmxxL2LV3/qBmoNPnmhJyqUlrXu6u+cnZ2lcmh563oeomtfRERERERERERERERESRRmpIq4oHluO5aSVnrbJj3sdruZAdtFfrMI8qhrQk+onoVMXUf4DNYypuwPWQ0+a6vVSrkyzGK5VVcHK75AK8PGxkawPCi7YgUZaJ1VdktZKmBsHaWFlNbfTqcT6kdFKQBfRvM8eK59Nsna8vJyeG6WY3NzM5SBdUpryv3793Hr1i0AwDvvvANgwkzdv38/WC1UPp0sD6+sw9XV1dLBr2oJy3LFGQwG4XkpenH37t3Q51h2tuHly5dx/fr18LzAxOqyv7+fcu3r9XqpsVk2+ZyHPJc9z+3NY108YQU7RtWKOK1bRR7y7plXT571kVAWMC/ZYJ4VbNGiE7PKDc/yW9P8jq4r1kqvctlkmemacnJyEn7fulC12+3UHKnWURvUfHp6mrCaalny3G+yUMTdTOcODZq2HgUq3+tZeIGkxZnrVaPRCHMM39N5IitpbBY88QXr2qdl0j0B5zwyUWzLTqeTWt/UnZuv6bjyksoT82Z3WEbrntZqtVJzF/vq/v5+KB/3EHz+LDGORY1Pjz0BkkmD2Tc6nU7CK0Wv6u7PfsDyN5vNBMsKJIVC2Ib8TKPRKBT0T2hKgywpbGV+1TPEeolo3WftGb017jyX7rLsrnUZ956xXq+H9lIPKu4p+BrLsb6+Hua8nZ2dRF0MBoPQzspi8x6WBV9eXi7NSHGvpe7J3rzpiaLZ0BNej4+PE/0TSIboWDEOb/zreafIGSMyUhERERERERERERERESUxlxgpT/aSr1mpweXl5VSQvjI9PFVO64t9Hry4Ci+hqWXLPB9UMkHdbjecxMmGqFXGY9msyMMsrIBaDdSKBUysCxrvQwvEhQsXAtNy4cKFxHtq2WPb8ZlVhEF9mPm3ilLw+cpaMtU66zFRwNiaoUwUkGSK+Bxkdm7fvh2YKMZGUWDi5OQklJf1tLOzE6w0rCdaUJrNZmlLplpkrWVLY/EYD8XEwPwfmLQTWagXX3wRV69eTdyL5e31esESxetwOHQT986KvH6r5SXUn9qTc856Jk98RP3N5xFMbsuTx3ZlBWArPMukXrMCY/We+v9vm9jENGVinTUajTAfWFbj5OQksBpkpB49ehQsmfxNZTe8uCn+nvW3V+l1yzhOIzbB+49GI5el5G96fd2yB554jSctbS3yXrL1WWJdFVnrrcrOs/5OTk7C+sr5j204HA5D+axHwvr6emhPzv/KJs5DCMmDF9OosbwAUrHSwIQh2NvbC+VlvfAZdb1lHXriQbNA5yCPuQSSIlN87uPj41DPNi4FSCZKBpKx24yP0ZhtT56b9ylTTt5HhVtsWhDds6iohWWkPO8Ry/LqHG/lu4E0m6RjvCh0TrDro7J6fG622+7uLu7cuQNgEk/PZ2s2m6k91OXLl8MzWyGHe/fuhdfYBzR+r6wEurK1XlsAfgohTdJrY/M1ht9elUEtylIVmcdLH6Q8Fz/bqTQQzDb41tZWmPxYcdzk6T3mnefBQql3616nNDJf6/f7oQE4obPcJycnoSE4qdgFVu/lbdLUFaMs2HnVVcN2DFW442Fgc3MzHBB4YNCDA91b2F7cZNTr9QR1zvvbAaBX1l1R5C1IGliskzCfTScQYKLM93//93949913ASDkjGJb1uv1cN9Lly4BAK5cuYIrV64AQCogczQapQIUz4NuYGzQrrp4PHz4MPFsw+EwtNMnPvEJAMAXvvAFAOODFDd9PECxD96/fz81cdbr9fAcmk9Mr2XgHX5swLC6ifK6srKSWjT5PCpIw/6rQfH2oH5ycpJyJ9X+X2bB8pScirgXAv6ml9cim9M8IY5ZMIv4g53v2V8rlUrKtUM3q/MWMrFg+3qbIZ2zdaMKjMcUxxfLpAYaznE0VLCPXrhwIaU8NhwOE2NUr9MYAtmv1R2JfVw3d3a8qACFrYt6vZ5aWzzFNXX9zdpUzNoX7UHKc+VRoR22Ga9sy1arlQiWByYH3rW1tVBXfF4tk5cLbJr8RESeAqp17Ws2m6l+onsKHvo5n6sB0ZbJO6jPMs41L6TnvserFZk6PT1N9XU1mtuDroYV2LW73W6HcvL5VSGzjDHWcwm0oQqqgOlt2j0FzCyFwm63m1KRUwOyvWoeraLwjADWpVjdI1kOFdmicVb3sLqfAoDnnnsOAPDUU0+l+kCv1wvftfn7dG9RFJ4IhG2vVquVOlirgci6/XW73VTeTRUg8g5ZVoWaZVPDUh6ia19ERERERERERERERERJTO3a5wVjaU4EBojyZMhT7PLycqAOaXnxGBU98S9CAlitfpbyXVpaCs+mLAxhWQSVW7TMi2apV6uHtRJ6bFVR0OoDJC04wORkfXx8HOqRFtl2ux1c22jRIyN1+fLlwMxYoYW1tbVgIdBgR9aVZSaKZof2UK1WU7mi1MpFa5ZKftOC+cEHHwAAfvWrXwEYC0xQXIL9k1hdXQ3lffrpp8OV9cLfVkndsowUoSyrjhlgzEjxb+LixYv41Kc+BQD40pe+BAD44he/CGDcTnQJYbv++te/DuVlXbB+NjY2Ui4LapEtO9byMoazP6hlUuX4NUUAkGTINKBf6+fg4CDVl9Ttahb5aUWe2ESW4AVhrdSe2ITn2ufJn9t7LtKtz/6mihjQa4AWzaWlJXzyk58EMJk7yH7ev38/5dJT1jXnPKj1V5kZYGJZBZCS7z08PAzzAuc+ZWhtkDvngtXV1VBOtS7bwG61jpZleHmPvHrSvqeucdayroyUXd/UAyNP5j2vrxaFt67ZeUf7hu4XOEdz78Axvr6+HhgOuza12203b5Zl2RY9njz583q9Hn7Xk+pXiX4gyUhZga5KJZ2+ZRaoRd4KkCj7ZFObNJvN1DzO8be9vZ1yjffSh6isud1bsX7KupV664DtF6PRKJGrkfDc9oBxm1nGQt3KPPYpS3Z/Gug+2/YR1uXm5mZCEIu/yX0A52/ug3T+tHlGL1++HDxyyJbq/tZ6P52enpZmd3VsWyEYHaN5cvjWe0y9hey+/Pj4OBXucHh4GP5W9pVlKsKERkYqIiIiIiIiIiIiIiKiJGYWm1BLkwb5Wp9MWiZHo1FCGABIClIoK8T7E/NmpryEcHwOvsZTurIwXvJD/m2tit1uNxWguby8nPL5zPLLLQJaedRyZaFSljx9azwOrclsr48++igwh2Rq+L8mrlQ2wTJRKqhR1vKn1jgVlwCSwanar4CxdYHxTxSWICP13nvvhTgiWix4r52dHTzzzDMAEMQbLl26FBgUm/la2dNpoNnDgWSCRpad7Xr9+vUQE/X5z38eAHDt2rXwPLSwv/HGGwCAn/3sZwDGjBzrndb0er0e2sX2vVmtZTY2iHVVrVZTFvtutxusZDZAVS1KnnU0L1jUxkCUFZvwLOheEkY7TrMk0Xm18SZqfbNWchUPmPecl2eJtwzrhQsXwph4++23AQA/+MEPwjN++ctfBgB85StfSbz3zjvvpOYAZRnnUSZaGmu1WiJwGpisNdvb24m4XSCZnJJzHcdPrVZzZZeBsUWd849aoy3ToXNC2fGkjISNwVDruFePto8qQ2WtucpaWXZaRWDyJP7LQtdIu05UKpMk5KyDg4ODVGwUsbKyEuYzMh2cxxuNRkr8wGunvFijojiPOfTkti1roRZwa/n2ZLpVkGSe0BhT6xVEeJLl7XY7FafG/cLOzk5oH7tfUOZC64LMh53/lUkoAtar17Y6z9pxpgmGbayYJrC27aheB5quxfZ1ZSnLeulo3LCNLeK9NGUL2aRmsxmem/sfTa3y05/+FEByr8tnZXuxTQ8PD0Ndce+obFtZLx3uOzXOk7/J69raWjgr6DNarzEVQ7NxVpzXV1dXw56O84quCVYmXsUp8hAZqYiIiIiIiIiIiIiIiJKYCyPlqX7xFEerH0/EZ2dnwXrE0yItGXqaVcvwImKkgLR1VpPZWsZoOByGk6z1JW232+HEzJM+y69WB89nm1ctiMeIAAAgAElEQVRlB8payOiHrPK9ViVNLY2aUNgmGaZf+oMHDwKryPurmh1fU2U/1odV3lGFr6LQtqDlwVollpeXw2/QgnD37t0gbU4mikp9Kt2palwA8Oyzz+LZZ58N5QPGVjRaOSzLMo2ke54ljP9Xq9WU//+LL76Il156CcBYSQeYWIHeffdd/PCHPwQAfO973wMA/OIXvwAwtpbxHiyvWnKsXLSmLSgKtUaxPrwYIU2kx3Jb2VIvgbMdoxrz4flLe/EgZfy2iyTk1cSMamXPGreePLUXk6J1OU/VvjyoX7mNiVleXg4KTpzHOaaOj4/D87JPcl7Xey3q+TluTk5OUrF5ai3nnKWy2tYfnnPe7du3E3M6gIS0OsvHeWhzczNlvdcYmLJl13Gg8bd6VcZA1xAbP6LeFna8eInVVfXPMtbKjEybKkH3CZaZ0lgVjRW17ASfZ3NzM6w/NoZ1aWkpFR+hjNTjGk9AmoWoVCquCimQlDO3kvRZamjznCO0/3jy0/xfFX+B8Rpl9wfKQtkUKhr7asfh3t5eGIuM+2UfKMoMEGQ6BoNBKl5c696q0ql0th176vngxfHYdtOxpGOO//PvotB+ZD1a+DytVivESLEdrl27FvoP65z1fHR0FDx4yExxnms2m7h582aiTNvb2+EelkXW5ygK7jFVOt3Wme6vlZGyDJoyVMpOAcm5hq+x/r14Rh0DRfauM4tNeDKfOkHbnD4ffvhhWIzZ4Ozg1Wo1tRnzfnNeE4cNKtRBYbPeNxqNVMC8Ni5fY6dkR+31eqns03o49KSPyy5WGmjL57X06MrKSooC3d/fD4PCUtadTieRewWYULkPHjwIbn56oOLkyo6th7iyh0PdDPF+Voa9UqmEyZUT561bt1IHKAaVdzqdMFD0AMUrXfr08GGDg3Vy1TwRReDJDvM1jhOVL+WzXb9+PbQxf5+Hxe9973t47bXXAAD/8z//A2DSXltbW6FNNE8Y28XmStPnKQp1MbCBwmybo6OjsCCqpLFKUgNJ1yYr0a75R1gXmjuGfYP9n5glmNwaiPKk3vUglZciwh6atC94+aMW5eLnwdZVt9sNGxqWk/L7BwcHIb0AXUr52bW1tVAmdfueZxlUtpv9xlsE2W942Ov1eqFf2lQVx8fHQajFHqgajUaQRFdXY7sR1nxwZeWNtW/YTZ/KTnsS1Pb31XXNuq6reI+3TthDpH5vWnekLIMry8t61LxfduOsub24aeccoAYv6w6sByl1u7LPOE+osUXHgF1H2L66wctLB+G5/84Dunm140jnXutSubOzE4ypbAv2n1qtlhINUoMt5w/uKx49ehTWAu5LdHyVKS8NP95hidfj4+OUFLa6jttUGvr7XliIPSzpvscestTltij0YG37j+bGY3txnXzuuefw/PPPJz7Hufro6Ai//OUvAUz2rq+//jqA8YGK5eQ+r16vh7XWjs9pxLfYBzw3Za0z66Kn+yR7oFpdXQ1zhT3Ia846wkuRomeaIv0uuvZFRERERERERERERESUxMyufQBS1uP19fXAWNDqrEGwmjBUv9dqtVyJyqzfm8bC6UkS20zeGtCrLmY8AfOqVksr/amJz3h/DcC21qpZrLX8baWLrTucWu15cn/06FGKSmfb9Pv9YD2yVlGVpqU1aWdnJ1iraKFSF0gVnigCLQfLYOXVe71eeA4GjL/77rtBZILZvGndqlar4dnIPtF16dq1a8Hqom4ill0pK4up8FwxWBZ1S7LUfLvdTo0ZsgCvvfZaYKJIk6t8KVktWuTX19dTUsNeItiyZVJ3RSsb6wXiAmlREh0LmiQVSPZjjjFlhm1yXxWtmca1TxmmPEZKr9ZlSdmkPAY67zVC+848Leja3lZ85PDwMIhMcAxRWELdz+gSwj66vLyccsn0koXOMuepFDD7seeeoXL7APDMM8+kLNQsx61bt8KcR8ZX3UZoIeVY0mBsK0ShzEhRqCuYJwIBZMs5e4kkCStAwfGm1npPxpnrIcfUcDgs7aLtJbG20GT3GuztufQBYxcyzo2cF3hvL2F3r9fL7GuziE14yEuHoO7MluVQF0xrRVehFm8enQdYt41GI+EGDkzGztbWVop9Wl9fTzAwwKQPapJhrtPKQtm9x9HRUcptddokw2S2lGGy/ULdBT3my87nyu5aN2JNEq2MrhVEULaxLCOl7pFWrERDG3hfdUHmnMU0KmyXw8PDUF7uWXl9++23w/Oz37Xb7VAvLKc+S9k5nfWv8ud5SbOVAWSdqpAEr3l7ddt2OgdYL7Ver1fIsyAyUhERERERERERERERESWRy0jlSeXqe5ZdWV1dDQH7PNnRujEYDMLfPAnzVK3W1iKBlNMIUehzWyZKgxDtqVUD2nm6VQsirQBWwvHRo0ehfMpMeRLq00J9Z/m8lpnSOC5ak3Z3d4OFiFcNQqS1gM+t5bBMzeHhYbACkYVUIQpaBopCn99avGghODo6CvFPtCD/+te/DkwULV2EWmaUiQLG7A3rR6Vmrb+9Wq7KxkB4sBYuZT7Zrp1OJ1hqybyRBXjzzTdDm7GeyEK98MILoXxkC5eWlkJZrAVoGkZK/ZmtPzjLtLKyEvoc5wW1QFn/ZLX82Xupb7knKJGXKLcIiopNeEmNPZl0+wweM+UxUnnz3yLipTRYmvfv9XqBAeVrjE3RNmP/07icxwWNO7ECP/V6PdEHgbFVnWPCBpMPBoMwn3DuUGZKLZjAeH6z1lm1qJdlDZSZzep7GpPsldNa9LWdPPEDa4FVCWPLCA0Gg9IJN/PSCWiMprWsK5unsVHAuA+StbfxnicnJynmQdvCq895IG++UaEdG1PHz3veJGxT3asoI5U1R0xTJq7VGmetaUZ4tUJFygDa5OkqHsGrxsVyTfNYVC958zSeBbrXsvHIGkPpsSD2GVSy3MaxNRqN1Gte0lhds8rOk/rbNt2Cioa9//77iWfUNDFsUzJTe3t7YZzQy4X3evDgAW7duhXKB4y9ZOw8wvJqnHRZ6DzuseuejoH1QOD4USbQMlMaA8qrtpO3jyiy3kZGKiIiIiIiIiIiIiIioiQKxUjl+eWPRqOUT2m9Xg8nX4Inwl6vl5I3VKvYtBbkorAWYb0HT8AnJyepU7daD/jcqrRGi45VBVpeXg5MjUrAW+v9LMyU1r89pWtda5wJMLZO0LLH51dmis9NC5P6/1vFlsFg4CYZBMZMEH+zKDTmhXVkrTD3798P1hdaTj788MNg9WK90KJ25cqVwERRgYsM1ebmZrBKqLSoJmbT3+73+6UTbno+v7YfNJvNhLWP5aSFnEqEtJQfHR0F6wvjBqisdvPmzYTaDpCMgbCWwGn87j3/ceI8didLDtlLbkvofJPH6swqDeypjOnzWlbAY8XyrN55yXe9xKePQ7WP0OfNUjNS6/Cs8RrTzHnquWAlpZUltfPr8vJyGCc24abG0lgL+q1btxLJx/nbNqk8raLdbre0dVaZd1XA1bKtrq66SaptrJOObds+2netJ4WX+qOIxP958Ma0WqDtmjEYDFKxHpzLLl68GF7js6nyomW1NJ2AfYa8uWYa6Dxn4701Jo19Vstored8T/v4LN4DedBYEpuMmmXy1A+73W5K+Y5r1f7+fkqFT+PWrLKn54mg+5kyjJSmSPHWC70qvHlcx4FNs6HP6zG+RbwTioLf1ThFT02Yc5YqkHJMU72P9fOJT3witBfr4/bt2+H+vBfjryuVSpgHCV0Xy5ZJFZgJy5JrgvIi85rnmaVqf1apVOuHV2USi/S7mcUmdNFnwZeWlkJH4wZaN6maEwaYVMC0gYXTPred6PibXr4CzY1i8yWdnZ2FAcX36MoETMrnBb96rgZly+5R4nYSUAlJDeDXQFJg4j7x6NGjMIg40Dgpnp6epjYJ3W43vG9zLnW73VI5IIDJZqVer4e64j24yblz504Y9Co7b9uJC/C1a9fCAerpp59OlLvZbCYWB2C8qHsHKCCd9b0ItF2zhAwqlUriwMrnoagHXa34PKurq0HY5ZlnngEwcVvc2dkJ9ajuT9oPgeRmeRGucCrE4LlqeHWQJc6gz1p00p5mw+G5IuXJn3sLqXfQtgc8T4giL4/UNGIT80wbMU/MMsd7BznWN/u3bmQ0nwjnRM4L6tLNe3ATwnvt7e2FOUYPT7yHNa41m83SYjQakO7lFgOSLrE6v1p3PN1wWLcldcG09aOHKyuDra5NReHND7Zsuj5onbE+aOTjAXhrayvM7VY45/j4OCVrrwbaLAn2WWH7su4v2L9UFITvqUCXzYdjDYi8h31tHtCcguxDKvxh39P65ufs5zudTupgr7CHJc9te9ocZlzXFXZ9UvcwL0egChbZ94ockLy5fRb5en5e93LsMzoXcN9Go/g777wTPs/npov92tpa2C+w3VjnvA8wadtWqxXKoPtf1k/ZNYbPr/Lx7FscG7pn0QOj3YupYI51M1V3S5veQd1ZPVGQInNedO2LiIiIiIiIiIiIiIgoicLmpSLCE4SetK3Lg+dSN+/AzzxoOay1QCU37XvqusbTsQYfZyVY1RMwUa1WU58npmGklMFQOVW9qiCGuv158tLAmFGz4hGabdwmrVN3RVoIlIUqa31R+pq/QasIaeb3338/CEuQsel2u6FdyAqSqbl27VpgojS41v4OLZoquOGxN9PCY28IFfLQoGm2hWXb1D2Tboq03DYajdCn1UqowfVZzzUN8uYBbzwVcX2zVy+Rdt7np0VRsQm9egIUfJY8V0VvLph3ebQci8bj+B3NVG/rSF2AOWcoI8U5jvMEWSW1cvJelALu9/thHuSc02q1wnNwrtG2LysVnic2QWQxmJa5UiEZy2J4oib6O3mJqMuKTRB5660mN+drtVotWKutt8Ta2lrKpc+bs/MEBKYVo7FlIrx6tGJWKn9O0PLtJRXnvYbDYcp7xnPtm6UsyhxxrVDZdr5nRaaOj49d0Ra9KnS+VAEhvma9lKZ1K+V+5jwXbc+9vAjrROjc47mXe+sXr2X3RCpWxnoie6ljip+jxPmDBw9CSIANX1hbWwt1xb0R27jZbCYSRgPjNrZMlM7FZcExriI3Nhm5usQqM2XdmZWhss+icuZ2LOm45P3V1a9I6p7ISEVERERERERERERERJRE6Rgpz/JiT93eyV1P+UUsKXn3mge807OeVD2rn5XZ5UlVfSitRRBIJ4pU9mYeifU0ANSzOvIZvSSP6p8MTE7iq6urwVpAa6smzrP+0F4gqlrkrSXuPLB+VIL8wYMHABAkiu/duxfipfiZer0erDRkaCh3fPXq1WB9tnLsaonj9eTkJOHfrmUDFiPz3O/3U9LFp6enoT9aidV2ux3ah1dNjKgB6bzasswSn0d4bIrXx+d5/0XASjPra57YRB5LpWMxi33T38mzZOYJUcwLRdrmcbFa50FZQtuPdR4nU6FtyO9af/idnZ2UVZ3tvLu7G9qT7PD9+/dT1krOPRp/URQ6P1tLuYrSeKxKluVb2SovYba3XmQlg54G3hxpmZperxf+JjRmQmOjgEm7AZN5X9cjO2cDvsiE9/q08JhDtYLzNZaT9aLsE9ckG2+nMZPeOjSPMrD+9Llt3J0KFSkLkCVW1Gg0XMEGvmdf0zioWb2UeO88RkrZJ+93vL1Z1tjIEjzKE0Equ/djPSszzDmD846OaaLf74d9EkW5WO5Lly6lvMY43kajUegX6jVh+/C0LDUw2Ydp/VlGUxkjFQjSmCi+xs/bPZTHSuft2zWmr4gX0tRiE2Vc/fRzZYOlpwmuLgvPJclbmGxQmwZEWnpTJ6MsdZG8ZygDXSA1aFTfq9fr4Zm8AE51feHnuUmwKiedTid16NAs4V4Ok2kFNPr9fjjA8SBFwYXd3d2wUVKxD04EV69eBTChrHd2dlJqT+qGaJWjVHnLG0yzKFhZeG5wuhGwE6aWl6+x7TTQ3LpdaH+c16KVhXm6pT1ueAuwupvYQ5OqStmD1HA4LFTH3mHpN7HuHgc8pS8rGqSLvh6o7FytCk80tFhX3mq1msoHeHh4GFyKbQ6uZrM5tSqXHsJsn/JETbRMFrpB8dz+7FytuWDy8ptNA3s/3ajbtWl5eTmV91DV7Oy8rMYva9AD8ue6RewvVJxKXe9VkAuYHJpqtVoqfxShht2skIBZoX3b9gl1mbJ9o1KpJA4tgC8oZOdLPQx4AiCztolnePMEH4r8XhGXaz0YeffP+n4Z6Pxm+7GqP1qX1sPDw/CadU8+OztLGZXV3ZT314OF51qvz1IGnvuz56rtHXSsK6Ae8q0RQPutbRc1IHtKpUUQXfsiIiIiIiIiIiIiIiJKYmb587JQN4SPG/QkbCWD1ZqkAbGAn6Xa+55njSjK6OVBrUPWWqDW8SIB8mp9t66LPK2rXCTd/5SRskGA6ppQFCowQVqa1l/+r2IWtOZtbGwEBkqZKGBsrbHWa/6OyuYqe5Mlc16tVqeWoVbkuZgSS0tLiUB0ICkYwjazFtB+v5/4m/fOC6YtW6aP61ieFloXtn68oHtlpe340r6TZxEvY938bavvecBawgm1PqoogZ2rVc6c8xqFDdTljPOOzmucM8iaq0dAWalwz03Iusfq+NXy5wXGWyZIWQLbV/v9fkq+X6/TuqJrn85yHQOSUutMzcGruvTZHGDqYu6J6BCLlj0nvP2CvsY6Zn8bDoehfJo/iu/lCRnMA6xHde2zzEalUnFzBdq+p3sK+5rOpWU9k8pA2ZKsNs8TAPKQ1/ez2mOebWS9jIB0ndfr9bAn03az+csoRFGr1UL/5B7Dk1lnHWoqgXl4TWh/KCM+5bFUOod5aSB4te7MnreRulQXcV2MjFRERERERERERERERERJ5JrM7MnTwzQxTEXu+6SRFzdlLXVqXSkiV3uer/m0rIC2hYo1AMmTOE/neZLNak2ipUAZKlrNVCbSBv1pQKoNJj4PDHI8ODgIlmD695KJGo1GiYzVwDhQksnmyESp3LH1z/divPKkzuchzJAHj61Ui4iNaatUKq7lGEj6tBParvOUAv5thMdEAUkG2pPztTEG2lfKxEoB8xGj+W3GeWyDteSrqIxdh5aXl1MiAEyToPGntOZq3KxlRoDJ3FgURWTwvZgnjXXNYuey7k9o/7Trle270yIrmHw0GrlrDOdtzu0q1mTrW5PwejEQHou3aORJlrN92EfOzs5SIhPazrYfLxJeMH7WZ3Tv44k5ZK0tHiPvYdo9oifi4+3NimDen5sVymzaRMeacJzjZjQapZhnfr/T6aT2ijp32NhPL7bwPA+rPHhxwd58k+fJYceGxnl6V7sPzhIKKVOmyEhFRERERERERERERESURCEn7vPimvIU/GbFk7aSe9ZBexIvahVdFPJ8c9UiZBVM9OTuMVI2bkrvZZV61CJPq6KqqVjLyXkgI7W/vx/iD8gY0aKgPryUxr18+XKIb7CJN0ejUYo106S3lok6T/Vpnn0zzwKiv2XfU19hwvP99SxJkYlKo0g9aUJE9U23r3kW3SwpXqCYxPm8YyN+G2D7rzcHqzcBx7myR8B43HAO4z0Zt7K5uZmKMdK0BJaZmkYSWOWN7RhWNtRajj0FtLyx7bFbyg5lxfTO0vd0LrXMuTJSmt7ByoFrLKiNkdJYCC/GNIsJXtTc58U5aqywTTsCTBg323+VkVq0mmdeTIjHMHlrk1enRdigeZap7P1/E+ZU3Xeqt4PCU2JeXl4On7NpaIbDYeq1vHWrWq3OtR51zstLnOylavHWUD6DncN0zvE8eLLSBhWRPgdKiE0UdfPTz85yz4/b5q7IYSXrc3n3mscA1nq099Nn9Nz+yhyksjoukMxvYiVPG43G1K59h4eHqdwuvG+r1QqBlTw8XbhwIQQn2xwveqDTAxTfswNMy7qow0dRF0/7u3nuP+cdyrLeWyQ+buP5PKiLk5U/9/J4qJssN0TnBbHq1SJrHEdkI+9ApW2R5RajC7Dd1OpcQ2igNn9bBQbKHqa8/DO2LN4Gwgv4L+pC6rkOZrnMTHOQ0g1QlvtMpVJJiEwA481flvhCr9dLHVy9lBuPS+rcg9eGWneaY5HPZecGr00WNQ8UcePTv8vW6aIPTo/z3k8KXj3nhR8QKhxm5ykNDeAYytvHz3v86EEqy0VU04d4bqPefpSvcQx6svt5rrN6ECtChETXvoiIiIiIiIiIiIiIiJKo/Dae3CMiIiIiIiIiIiIiIhaJyEhFRERERERERERERESURDxIRURERERERERERERElEQ8SEVERERERERERERERJREPEhFRERERERERERERESURDxIRURERERERERERERElEQ8SEVERERERERERERERJREPEhFRERERERERERERESURDxIRURERERERERERERElEQt781XX311BADnJe2tVCqp/5eWkme04XAIAOh0Ojg8PAQAnJycAADq9ToA4OLFi7h8+TIAYHV1FQBwdnaGo6MjAMDx8TEAoNfrpX771VdfTT5EBr75zW+GwrBcvJ6dnYX/7Xvea/x8HpaWlsIz6pV/23rSz//FX/xFoTK98sorI72/B68N9fP8W8vG8tlnrVar4TV+5uzsLHzX6w/Et771rUJl+ta3vnVupmitR69uPXjtat8ri1deeaVQmf78z/88tFO1WgUA1Gq11JX1zOtgMMDp6SkAYG9vDwCwu7sLALh79y4++ugjAMCDBw8AIIyvs7MzLC8vAwB2dnYAANeuXcPNmzcBAM8991x4DQC2t7exsrICAPjiF79YqEycI86DV7dZ9Z3Vrlnf17GZhyLtxLE0DfL6XdZnZkmIXnQsFW0jouw8Ms1nsn5vnmXK619lv1P0+x6KlilvHvf6Oj9Xq9XC/MHXuEaenJyg3+8DQJhzOMaXl5fDHNPtdsPnB4NB4l5cn/kbAPCNb3yjUJn+5m/+ZgQA7XYb7XY78ftc41dWVsI81Ww2w7NybdFnA8bz2/7+PoDJfMj/j46O0Ol0ACDMmYPBINWuupaxXv76r/96ruOpTD8rOocVube+v6g54kmiSJnyxhL3ooPBILT9+vo6AGBjYyP0s1/96lcAgDt37oT3XnrpJQCT9fTg4AAAcO/evdR+ttFohH7mtbc8a6E2+qu/+qsRMO6zHIvePoKv8VqpVFJ7Vo7x09PTME64v+Z+++DgIOwlWM6jo6PwOR1fvDfr+8033yzV76Y5Y1jo/t3uzXVPdd78moW8doqMVEREREREREREREREREnkMlLTIs8KcHp6Gk60tJTRCtVut7G2tgYAaLVaAMYMFr/Lq54ay1oH1UJgWRh9z2OdpmUzirAmlpmaF8qe9LXcrG9r4VBrYd5JvmzbePCYQO831OLAv7NYPyDNJnrs4ixsgQdtf7WI6lWfX61HtHZx7NAS++jRo/A3LUm0Rtfr9WDp3dzcBDBmfS9dugQA4cr3VldXE1bnIshiIbPKnsfw6mdtG3r3t6yovX+R5yoDb7x7r3l9yfbBvLlgns9cBtP+7rzHyawoMhdPgyLfnWVtKsJgqNWXc0a9Xg/9i2Of1uKTk5PweTJCZIIajUb4nL0CkzVYrd9FvDDOK5/n4WCZ+Wq1mhpjtHzX63X383nIYgTKMkHnIW+eyps/zpsPbd3p/qXIM0SkMRqNwh5H2V32JfZ1rr2tVit8jnvWRqMR7sd76Ro6Tw8E3StkebToe3msDffe/X4/jHkyudxjHB4eBkZKvcJYH2SKOS71ORYFbz+gXlG88m9v3bUs4TzGf26pp3XR0Idl52Kla+Ow0jlhb2xshIMU73V8fBwayh6ozps8PdgNmvf8HvIOTXmT4CxuLov6jreJs5tADjRgMlmQsq5Wq6E9tfPmbXrLwlt87OFNF3VdnO3kQqhLYhblbu9LzGOw6QbIO5zyyt/SscPJjS4sjx49ClfS7pzgiEajEcbTxYsXAYwPTzxAXbhwAcDEraHZbIbfnCey+gPr2TOQ2IXCcyvN6xtE3oajKLx7epO35yLM/7MOhnpw1s8UcW2cJzw3XyB7sZnn5nMebcT7ZKHsIajs98u4rpaB7WfAZGxwXq7VagnXeWDi3jscDrGxsQEA2NraAjA5SHW7XffzNL7w/rzqBqUsPHd2vXobQ/tbaiCyByh7VXiuPjqHzHI4tPfL+p+w7cm9jXeg8/ZT0+5fPm4oa+BdxG/rvKNurNrfgcmY4rgA/INUmZCPaeC5o3pXe3jQAyP3dWpw8Q5QwPjw5B2k+F3dI+rzlUFRV2rPKJ7lrjgcDl1jDTCeV/ie7jtmNcBG176IiIiIiIiIiIiIiIiSmJmH8yyZemrkKVEtX7Sc01JGi/iFCxeCtYyfGQwG4R5KIU4LtXDnWcjKiBjkCVGoFU/fy7Jez8vSW+Q+2k58Dlober1eImgSmFhkhsNhuL9aJWzA8yxQy5tlSZSx4XsqjMHvWibNs2Rqm3uWpCzr0jTtlGdRymuLTqcTWCcyURSb2NvbC5Ykjg8yvKurqwkmCgCuXLkSXqNLH9u1UqkkhFzKwGMVPDZF3fEss8S+pAwO29Bj8/Sedm7whGOmhceAeXNdniUyK/jVgxcQuwhXxSx4TJ/H+GWxZY/bMj5tkL7nXlX22RflRpi1PlSrVZcp4vpKN1+662xsbITxzivvubu7GwRquN6qKIRa4IHx+JwHY+2xslmuSgqyAKenpykBDM+1Ow/zWm+L9H1vvbJ7Gk+syVrT9b0sBvm3BfOc77z5m//b36nX66k+zrGhHh+WkdJ9yqIYKc+1z9vHWJydnYV+xjVW3fmsyARZqMPDw5TQm4rXWPe5RfVDj5EFkFmm0WiU8J4Ckuy9nVOHw2FmmxUtU2SkIiIiIiIiIiIiIiIiSmIukWEee2Njo2hR39/fDydJWrxoKbtw4UJCZAIYW+VpJbfWgzyWKAt6UrWnen3P88E+79SvV43nstanwWCQisWlMZ0AACAASURBVPfS66IsGh4DlyUxe3Z2FmRqrQDI0dFRyk9WfU/nEWCpdWzbSS0i1udXmQnLajSbzVAGWpTUommDNM8TF5i2TN5v6W9aC8vh4WFK9pz/Hx4ehrZjWWhR3t7eDkzUU089BQC4fPlyGG8adA4kx9o0yLIiqkXJq1uWl23X6/VclgpIxsCpNY735efzYhrzUCT2wJt3zhM0yWKen2SsgMKrL7Wge8yv7cN5QdZPCnbOq1TSUsDaNt7ns7AokQ2N2+Fv8Hnq9XqYu/ja8fExHj58CGBiTeYccPnyZVy9ehXAZJx/+OGHAIAPPvggMFKcF9fW1oKnCNtXvUNsXMQ8oCySZaYURcQmvJhDDzqfTNuO57FCViRjMBgkPD6A9PymZeF+xBtrXhyl/d1FYFEM7JOAF2PdaDRSY0/ZG77GMchrpVJxY36z2LBpUCRGyiufjlsVoQHGc4eVOOdVGSndj1uBDr3OU2zCY6z5mo4lloVlq1aroV04r3E+VK8bXnXPPS3jGxmpiIiIiIiIiIiIiIiIkpj6+Oid2PTUyBMefSsZ23F4eBiYDqoIXblyJfxvT4unp6cJZRv9vWksIOpb7cXQAGMrg/VD9+Jr9PetNUL9N22Z1PKvMpT83iyxYEUsRmq9429Zee1WqxWYKLaT+tbzc3xNGbs8RqcovFg2Qi2TViq82+0Gy4S1MjQajcCC0kLBa7PZTPnbs1wA3NiAsmXK83EmhsNhYJhoDdrf30+o9PE1YNxuLCetMLQo7+zsBCaKY2xnZye8T2uNKjVa5b9p4DFT1tKsVlb+Ptut1+uFOmBbcHzo97w6tG0ybUyHZ/HV32M5dO7IitvQ57J+3f1+PzUHKBNUlsGaFsqCKDOYZTn3YnUIZacXjfPmO6+PeBZJYNxebENvLpuV2TwPypTZuYvPtby8HPoXrcQPHjwITDXLyfF+8+ZNbG9vA0BI3P3OO+8AAG7duhXKqfMD12eb2JZjclZ4rJ9tJ68P6ZjLUu3LSrhJ2LlpHjGUHrLiUqz1XBl0lskyjvq3V85FKUY+jns+TnjMnfX+qdfrqXKyzZrNZvi8erkA4/bw1Gftb89Sh57Euce6WtXffr+f8jjyJM7tVZPvqtS5xmtq2XRdnAVejCB/S9dRqzLI8ba6uhr2ddzrcN+n+3E7PrVM9lnOw1zEJryDDScKK9d8enoaskJz8uZmb21tLbga6CRuM63PknOJDd1oNFKDgRvLVquV+JufsQcvXQjsQYqN0+12QyfUXB02bwc/0+v1FpZTyk7Go9EoDCy2E59ne3s7tA9lsu/fvw9g3HHZibUubCecx8RbrVZTG1T2Az10cKDU6/VUXiV1kdMNCTBxb9PBp4GJdhOttHZZF0zPTVSpamDc/laS+NGjRymXPs3Fxv7LstB176mnnsLTTz8NYDLWtre3Qzmtq6TmeCuL8xZzG/SpCxbf4wSngjTWJUFFKnQs24lWr/NyldX5R38b8OcMHRv2IKVuCXaR08OVBqPzOsu4yvqubvy8QGQ+I79fr9fDhpvw8vDlLUTzEGPIu6/OHXy2brcb6pnjjPdqt9updvXcHBctMKEuQTZFSL1eD32H7nz3798Prz333HMAgBdffBEA8Oyzz4a196233gIA/OIXvwAw7m83b94MnwPGB6msvDLD4TB1aJ4FOp48t3ObokLXARtMrldvP5JliJhmLOW58ek+wI5r3ZiyjjnmqtVqat5QFz+791AX1UXLbv+2wqsvzz2ZbXV8fBy+Y0MENEyiyDwxDfL2DwpvD+odoHi1Ln1ezig1pNkDlOd2PAs8w6XNk9fpdMKelc+romg0HvGswe/v7e2lcu31er1ckiS69kVERERERERERERERCwAc2Gk7Cmu3++Hk6+1pFer1cBwXLt2DcA4IJbv6ekfGJ+medK3jMQ0YhN5SQBV7psWBzIXy8vLKclLpVezXHfU1WzaLOxFkfc9LS/r4PT0NJzq2T4apMz24ffeffddAGMLKNuHbn/KCmTJlZeBWuoIto+13AETS8XBwUHCUgtMLLf7+/spOU+V/qQMP5md5eXllEVbUbbveW4Z1op1cnISnpGW5IcPHyZcY4EJQ1CpVAIzwHFF9unpp58ObC9ZqvX19dB/LQNxfHw8NSOlZbGWUrWesj5XV1fD3+xzRKfTCfMGy6sMnLXWr6+vp8aW1muZdspzR1XXN2vV6nQ6qXQBakG3z6AuwNZtblbWKa9MWe95jNTR0VGYH2y/WFlZCXXNefE8i/jjcvfjWK3VaqFfaBoOzge0tqqruRVaUFbB9u+8gP9p4DG4nOvYp4bDYRgbdNU7Pj4O4/x3fud3AACf/OQnQ7nffPNNAMAPf/hDAGORCWDMXvFzZLJGo1GYN/k77A+NRmNq152ioirqNWHnXBWYsGu2JzZRpG3mNdY8t1jrWXBwcJDykiDa7XYqETLnxdXV1dAPlKWzYQRPmpEqIgZ2noBT1ucf19xRq9VSYiWcA6rVaqhzuxepVqu5qSLmgbyku4SKm+ncxX7Hq7JQWYxUp9Nx3Z/t8+hYnIWR8uYAXnV/BIz3q9wTqUsfMGahyLAzxQvHYK/XSyUZ1t/yBDSKIDJSERERERERERERERERJVHavOSd2OyprdfrBUsmrX+0zly6dAnPPPMMAOD69esAJqzGo0ePUqdFlWOeh/VPLdV5EuR5suQacG2fzVoz1HqgVnNaNGiN9ixq84QXw9TpdMKpnid9xtS88MILQTb3/fffBzCRzb13717K6t5sNsNzz8NH2JOxtvECy8vLwZrM5xgOh6EP3bt3L/Hcd+7cCa9ZRkoD62nJ0bgpK5c+TR/0EizaNAHHx8eBHWTb7O3thfHEccQ+uLKyEqzoVur86tWrge3lGGPdsczApO1V7rQsNC7Gs5RaS3ar1QrPzbrUhM9WkpX/9/v9lDxwrVYL7WSt0dVqtVQ/9GKrrPR3r9fLFY2wlmFPnEKFGqyUs5cQfFHwGCkvOJ5XPqOyzl4g/KLiPPPgSWizfBzn9+7dC3MAP8dx88wzzwTfepaX7Iy2uTeO5wGVOs8S8jg4OAhMFOeEjY2NwER97nOfAzBh2X7wgx/gO9/5DoBJbBTL+9nPfhaf+cxnEp9/7733UvfXPjtLjFQRwRRP8pjQdvXEKfi9vPgR+9vKlpcth/5t41KUBWA97u/vp+Zv9XKhRZ19kB4Gyt7z97y0MHa+ehzw2CQVSLGWfj6bymirsMo84uDLPLvtk17qG9ZzpVJJCF0Bk/GpXkl5yctngRe/QygjauPvNdbVrqcHBwcprw/20W63mxI+03FpWblWqzVXRkr7gHocAWO2nONKmSgAuHHjRvCm4j25p1Imi3P88vKyG5dFFGF6Z1bt04mLA0Ndc/jQfJhLly6FAFdu1Fn5nU4nFJiNORwOXZc+vZaBTj6243v5HpQetW4W6vZlVVk8xRS9WuUQnVRmmdgtvAMdB9je3l5oJ5ZFg5Wp2seNB9We9vb2wmZdcxFlKY1NAxXfyFIO0w00n3V1dTWU88aNGwAmm6Hbt2/jvffeAzBxb2H5O51OapFTmpybfHUrLDvZa3+1C6+6gXAM0Aixt7cXFmU7ka+traUOUKS1r1y5EhZlbpRqtVoql4TS/tMepIBs5Uo1hrAeR6NReCa6VPKwp8/oTfKcU3Q8si3sRD6N+y/LYo0pOhfYhWl/fz/lGsHP60GS5WeZNzY2wt/swysrKykhnKKqZPOAJ6rB5+bzbG5uhvbigdgLvH4cgfB2PVD3J/Yjihh99NFHoe242FKY4bOf/Wz4Luc69r/9/f3wnrrzFFGIK1sOVZTla3zmu3fvhvmBz/GpT30KX/ziFwFMXHh//vOfAwD+5V/+Bd///vcBTOaML3zhCwCAr371q8Goefv2bQDjg9Tdu3cTz8V+2W63E+7URZC3FuSpm1UqldT8qoemrDxSXiD+osaL517nzRG8npycpOZvFQjifojGTM7drVYr1BXv3+l0MvP5PA7onklzcgFIrMnsO2wf1oUG/asia9Zebx7IO1irEcP2KTUIWsO3hnlYQ/u8kSei4imtck9xdHSUUuTLyxWlipJWEEpJAE+sTQ21ZctmDVQqxOWFCrGeOU6ef/55AGO3Zu6JuHflXurOnTthLeDvqBKqVdwt2pbRtS8iIiIiIiIiIiIiIqIkCjNS9jTvUbBKv/HkyJMkra7Xrl0LJ0daz2hl2dvbC9Y2nopVCjaP2iwKlTy0Lnd69QLHbb4ptVxY65laYi37oIyXl0dqntnjbd0BE8vDw4cPQ33QGkZXj+vXrwfWhsHKZHMqlUpKmKFWq6UYo1kCRdXSZ91zaEE5OTlJ0O7A2CrCfkXRBTI0zz33XGCpKJzBMn300UeBKmY58qToNe9HUahEN8ungf1AknrmWDg4OEiISwBICExYJooWzUuXLgW2QIPV7W8qk8K+URSelUxd4IBkf2d9bmxshM+xL6nLJi1sas0FxswC/+Zzt9vtlMuRdYUpWx4vB5RKY7OPaIZ7a8nk9/r9fioXHuGJ3uh84gXBLsrybK2sKysrqbmRbXXx4sWUu6hazZVR5nMvIg+NJ1Orz8E+wjHV6XRCADLd4L72ta8BGI8fzgu0ZHJ+OD09Dd8jO6eM1DxYeO1fNtCdVlSWA5gw7l/60pfC2L9z5w6AMRMFAP/2b/8WrNC/93u/BwD4+te/DgB46aWXwn1/+ctfAhjPixxfdC3T8Tmttd1zo8q7l+fmlZeHz3MrVWaqiOhBmbLw+e3arp4smnuHz2EZac7V169fD94gXLfI5lQqldSc561NWr+Lyvmk+RqB8Xji31Yk48qVKyF8g/Mx2c533nknrD+sO08Gf9Esm7dXsfs7zbOo7BmQFjvRz8+bmcpjolTczKYtUEaKexwVmLBrLPvw2dmZ6y6tKT8AJHJzWuGoMmWzba75JdU9luXk3obj5qWXXgr/a85TYDKPv//++6G8ujeyoRtlx09kpCIiIiIiIiIiIiIiIkpiarEJ/V9PjkCSWeJ7ZAmef/75YKXgSZb+iw8ePAgnZbVSzIOJIsrGgHgJAu3zaPBrUWtYlnVuXnKsHotnA/b29/fDSfwTn/gEgIl8bqvVCnECr7/+OoBJO127di34pbINz87OFiL7eXZ2lmLvVIyBz6Ty4LSQ0f+fz7q1tRXEF8jA8TO//vWvAwOn8sg2TmYebOFwOAxlsqzQ7u5uKAtfOzk5CXVKKxCt45cvXw5l4ZUWza2trdA+7A+9Xs9NysdnsbK858ELDreBxScnJynmtdFoBIs3GTX6Nbfb7fBdGwB7dnYW/tb4MlrCLEs4bRybpnXwZNq9+ErPKs3ntGytjk/LdCv7bX22522h9RhrotFohOewgiaXLl0KFnOWSWX7aTlUa+6irORZ8andbjchm89y0HJJJoosfKfTCXPef//3fwOYxEqtra2FMcc5s16vZwrrTFNWZSRpabYJ7QeDQRjnn//85wEAN2/eDGP43//93wEA//RP/wRgLLTz8ssvAwD+8A//EADwu7/7u+Fe9DbQOd4TOyA03rEIPJbEWuqzLPe2r3upS+y663mHzDOOTb/jCdLYK5AUJqAnAedosoo3b94MMXusd/YHnZM5xtSrwZPdnudY0/pjv1RBJ67Hlm3b3t7Gpz71qcR7vO7u7obYZeJJyLd7fdJ6CBD9fj/V/72UNoua5/T+XtJdIBmbx76iSXetmFun00l4aQFIxN5Zr61msxnmP9umy8vLpWOkPE8LO48fHx8n9kJ8Du7dOJ8zlcPGxkZgoDh/k3G/e/duKrar3W6n0gvovF6kPSMjFRERERERERERERERURJTM1J6AqeVQi2SPBXzpEcf7hdeeCHIFPLUp4wUrc15SQ9nscryRKuKbNbPdDAYuGp61mKSl9xX5Y695IHWkqH1Og+rs2XGRqNRKLvGAtnYKP6/u7uLn/zkJwAmp3lC4yNYpuPj48w4EC1fUWiMC9tFVSGBcT+jzzUlzj/44IPALL3wwgsAJmouTz31VLAIkhWlVX17ezuwppR7f/jwYUJ226KszKxakaxinrJs/Fut6V6MCjBuL1pm6G+vlmR+T5V8rHKPxpyVZaS0f1krMdu83++nlIFGo1GwdPN5lTnkfGFZs36/H9pcrcG0yKlynD5LUXgMm8auAGPLmybL5NVK5WtyYNa/VfI6ODhIqSV1u103SS/rbZ7Q8lq//3q9HlgYWtBpNb9y5UooJ8tC2ex+v5+ycg4Gg5TFcR7P7d1Pxxnf05hCqtaRhSdef/11/Ou//isABKU73uvChQuhLpShUWVG71nKQBOas09wLuDvbG9vBwssn384HOJ73/seAOAf//EfAQBvv/02gHF7/dEf/REA4Pd///cTz//d734XP/jBDwBM5rzV1dWwPts5XpnlovAYKe+aF2PmySJ7aUbse0U9WaaNkcp77mq1GvY+asHnvM31h2vTc889F5h5ziMaq0Jo37YMuGWoZoVlwbW87J93794Nay+fm+uQrluWYffi0DUe3iLvvbI4T73PsjDKUti0LJYRtfeaJ5Q9s23P/cTx8XGCiQJ8RVmNi+LcYtl19ZbQWGDOpVbJeBrVvrwYa43D43rCet7a2gr7O7KenLdOT0/xq1/9CgDwxhtvAJjESB0dHaViEFUl1yp4F2WkCh2k8g4zo9EoNCYbbm9vLzSKuvQB4wmDA47uCtwYPXr0KBVUr25z8xhIGgTNv63u/unpaWoj0Ov1Uht6hT1AacfTjsarvg8k6f9ps8cD2YdNlZDktd1uh3bhoszv/fznPw8HKbYTJ8irV6+GxVhdd+YhMkFofgYLL1cH3QQ+/PDDFK3Lsr3wwgsp9wn+zqVLl1JSz2tra+GQz77NfjHNYqUuR9alTwUm+Fvsn0tLS2HM8LChbcHDL92u1AWJz6m5orIymZ+enqbyRhSFGgA86W4rHtHtdlOHQ17r9XoYK5z0GFB6dHQUfofPrbmirGvNPMQZrPGoXq+n3FguXLgQ2ob1zzbzyq8S9zZVhHe4UsPOIlxg1JWR7bKyshLGCduBh/bLly+Hz6tbLZAUS3ic8PK46OEXGB8suGHlPPKzn/0MAPDtb38b//mf/wlgYphhqo6nn346uAWzX5+cnMw1sFxzBNn5hvPtjRs3wpzNsr3xxhv49re/DQD46U9/CmByCPqDP/iD4NLHNqQ0+n/913+FAxf7+JUrV8LnWGeatmOWg1SWJL4aKYscSLMEJex73rif52Fe29zOEa1WK5VnZ3NzM8zbnM/YllevXg1zCaEuwnbtVpEHz51wljkvK53A2dmZu6+waS7Yd+/cuRM2tOxLFENhOYCk0dTLIbQoeJt3LaM9/I1Go5TRnW1bq9UKPfMs/U83+XbvmneQUolzT1jCGsD1IGmFJdrtdkJcAkDiYDWPPHNWiOv09DSUnYefZ599Nowdzlf8zHvvvYf//d//BTARSuMa2263w9zIdXplZSVhxNJr0XaKrn0RERERERERERERERElMT318f/j7OwsJc15cnISTqa0lpOGu3z5cjg5kkUgI3V4eJhItgr4CfZmgVKi9jSvspH8m1elQK3bDTA5xXvZnu3Jvd1up+hRXgeDwUyn+iyZV5XFJHZ2dkK70JpOi9GPf/zjwOiwTLRG7+zshPbhPTUx3zxcMLX9PXlo3p+/Sav4w4cPg6QvXfx+/etfAxi7KLK86qIEjNtEpbmBcftaSWhNtlqWvfHc6zTjNjAeA+yPLFuz2Uy5WKlYBl+zAiAqMKKuZJ5L37RlIlQ2llDLFX+T99/d3Q39g+OD16WlpcCusc1ZtqeeeiqMQ743GAxSkuO0KKmFugjUWp7FcqnrmrpmUjKb7AHL02g0Em6OQNKCqCwdf2fRgdd51npl3qz7jbpyWku0XjWJJT+fZd2blwuM515l+9b6+np4TrIxtF5+97vfDWsRrZZ0G3n++edDH9R2yrJcTjP3ad9g/yL7xfFw/fr1sHaQef/Od76DH/3oRwAmczWlzv/4j/84MPJk2f7jP/4DAPCTn/wk/A5FD5599tnAjFi3oV6vV7pf5olN5DFSOv48b5girn2eK6Bdo2aBJp6260S9Xg+v0YruJd0l46tCNtatc3d3N1jU6ZZ/fHwc2s56yCxKMlyT1fJ5L126lNr7sA7u3r0bREzs+qleSzp3L1ruHPDrR+d4L90Fv2e9kpTFsX1s3q59eUl3PalzXeeta73uZe0403Lb/anuXdkH1MVvWtc+IC3opa6tvC/3Zs8++2zwLODz0rX8jTfeCP2O+1lie3s7uAByT6WiQbZdo9hERERERERERERERETEgpDLSHnJDq11t9/vp+QWh8NhOO3RF5gMwMrKSjgx8wTJOBQNdFf24XElZdPgdesLqwyWBlAT1q9WhSs8K57n283rtP7BeZYWtWLwdH/16tVgGbNW2tdffz20J2MDyEitrq4m4n1YzjLPdR60fmzAqsaX2RgzldBnv6IV7969eyGomv1RmSlaYjVGjXWlAeZ8vrJSwMpi8JksI9XpdEJdskxra2vBiuIl32UcoiZHBpJjUyXv+bdlQqZlo4CklZhtQvT7/ZTlbG9vL1hZyXzS0lWv10Ndsf7Vuku2wIqPAOn5qawUsMdIcfyqBLtnQbfPoHGTNobyvCBla2WeR7LNsuNQRTI4F5Dt1ZhItiM9DA4ODkL7KXu/KFngLDZI4xbYJ4fDYbBSchzQerm7uxvGGRkapoO4fPlyuJf67nuWafscRaExMewfHNMc9xsbG6G+f/zjH4crv/ulL30JwETq/HOf+1yYW1577TUACMIUjx49CvM/y0uGBJgwUSrQNO3apDFS3nrrSXnzb2VBCW/d5NVL6urFds8Ddqyr4A7nLq4rW1tbqfhJPs/p6WkqvQfZ0Tt37oRxx/dOTk5SsS2ecExR6D2yUrNo+dgvn3766VAm1gXLe3JyErxC+D3dV9l90eNgo7KgCW6tV5TG+up+CpisT7r+LWqe85Lu8sr5WRkplTpXrxO9l7KAnqiSFw/lMVHAuJ7KelNpXVmhB2V72ac0/QZ/l3upW7duARjP5/xb014A43ncY4EtGxZjpCIiIiIiIiIiIiIiIhaM0qp9hEoUWiWQRqMRTo5kpPj/2dlZsK6QkeKJUmMdPIvtPMBT93A4TDEcPIUOBoOUhUxP7ta6okovntynLct5CQJnsWh4qjpA0sqp8Ta0Kqh/KTCOL+J7ZD9ora1Wqyl2zlMwmgVqjfCSwgHJ+DNayNbW1kL/YtyU+mXTIsM+Ryv6U089FcpH60Wz2UxZMK3VpgxoPTo8PAyWRfV5B8btxPKqUp/HRAHjcaXPC0zq7vT0NCGBCoyt8KrSByTbcBYpYMLKxiqzoewX5wvWBa1Iy8vLod/SeqT3pyWKDBaQjhOYxXLOq7WQaQyQxk4CybhKj+GzipAau2PjJTURrjd3lB1fZT+vVlfLRLEO7t+/H6x3Vnlyf38/wWIAi4t/yJPLViVCfu74+DiMCZaJZVRVNcYVcdxVq9WUcprGDM0jjlcV8dgnyDbTItvpdPDuu+8CmKgNHhwchOf9+te/DmDCTA0GA/zwhz8EMGGkyMhtbW0lUkMA435qGWs+l1rdi0LjDD0miv/bGAUv3UhZaXSPoZkHI+Xd1zJjtVotFZ+3vLwc3rdj5/DwMMwf9KRgzOX9+/fDHKleP5YFnUdssiKvjtRTgDFghKrccR6w9a77nKJtMm+mR9uP9+73+6nYLZZVY2kss6NjQ/vtPBSMCc69p6enbmwUkFToU+XXvPh+G9/H8i4vL4d5SON+2Z+tGrWuW2XheXmwzlqtVlgb6Y3SbrfD/oVj46233gIwjolnvdgE2Op5xHJrKgEvvq1I200tNqEShTY4fnV1NbiB8coCHR8fh4mcE4W65thN2DzkixUaOEjYgNV6ve7KPtqgaktB6r28TNDaQdkxrGuaHryKwqsfu1jpbzBoemNjI3RGUvBcpPv9fjj8cnPBNuz3+ynpVe85Zmk3XYDtfVR8QrNTA+MNBw+KKkABjCcZDhhONuyLJycn4bDBwbq+vp5yLdPnK1s+lTy3mcbZDqPRKJRJ6WiVOweQEJhQcQm9l7oQ6kEqa8M/TZm0nWwdaWCypc4Hg0GoA/ZVPuOHH34Yvmtd/HSzqcHNWTnMZjl02E0Sn+ns7CzMD1oum5dOn0kNGnpPzVeV54r0ONxerCtPr9cLCxKfn22mQibWzaTb7aY2wfMWDSoCdVNSlw0bzMzx88wzz4SxT3dmts3R0VFCTAkY10lWmaYpI5+10Wgk8pPxuYHxPM28fnTxu3z5Mr7yla8AAF5++eVwD2BsGPvud78LYCK6w7nyxo0bwTDD8aUHTfZVQoV/ypZJ/7Zrk7r26dixaUA8o40n1Z0nTpH1vWngjVP+jmcMGY1Gqc0f1wSVvFeRCWA8L3Js6YYvqy3mtWfKy4ek5cyac1UMah6Y17zh9RVN48I6Zv3qXs3mONI0G1ZCe95QcTQ14AHJ/FB2Pla3UXtI0VxRutcFkm58+pp16eNcM83e1TNcEmq05mGdz3F2dhbGBw1iNMTu7e2FMlmRrs3NTXft9g6YZRBd+yIiIiIiIiIiIiIiIkqiNCOlJ3cgKWLAE+TGxkawnFvXnIcPH4YgSlpeaIVSi9c8k/AqNHDQCkPwpN3r9cIJWClRT5YRyE/Qq7/Dk7BaqzxGah5Jzax0MzBhlFi2arUaTvW3b98GMGFxNAs7rbS0Qmmbq4Vjnm2l981iGzSIX60qLCetEWTgVGhBhU2AcTuzPyrbynuxnfh7au0uCpUl5d/WBapWqwUrNOv/qaeeCuOJLjgqMKHiEsDEErW/v59goviex0SxTGVdd7SdVHKcrwHjtlE2k99jm9m2ODo6ClYmPhu/v7S0lEoKqqzOvCygH+copgAAIABJREFUamFUphoY9wVaxjxGSlk3/YxCWVWb+FH7tee2syhGxzIGGnhthVWGw2HKXdOzlqubzyKe1cN5DL2uN8BkPlQmiO+pVVdTPRDzdKvibzabzYTbKjCZl2/fvh3GBj/zwgsv4HOf+xyAiQsgpdF/9KMf4f/+7/8ATNqCXiLPPfdcKC/bUNMvWHfmaYSfPIuzdeNTV3q9WvGbPFnpPGl0zwVvlnnCq4OsBMEsC5Cc56wXz+npaUoYSNNT2PHnybwrG/A4Wd8nJVleFh5zZgUidJ/H31TXTMtIabssKhyFYP/pdDouE8X/PYlzuwbp/KyeUkCSfeL8oO7nnksfkJT8nwVWTr9er4f9F9vk6OgozA8MS+EcCUz2fty7cg/YbrcTwiLAuA1nTWMRGamIiIiIiIiIiIiIiIiSKCw2QdjTnPrD80R78eLF4GPO0y0tMPfu3QsWNZ6ceU9lpBblT2+ZBSAZ4Mr/bUxHVkAsr3l+wtZi5DFvynRY3/Ay8CRLgWTcF+tA/bIpusDvbW1tBTaRn/dO8B7+P/a+rMexLKt6Oeyww5ERGTlnDT0VPTJDt4SE4IXpD/BDPl6QEEhNVQMSD/wN/gaDQAgxdwM9FD3QdFdVZ1ZWjjF6Cn8P1jped999j++1ryOzYa+XG2Ff33vGfc7Zaw9t22dblk3raMNKq52u9Z86OjoqaXA0qSHLzXqqBpGfsQ3V56MuNAS5OqwDRcdK66fx+uuvJx8pBsSg5rnf76c+4xzTABM57abXh+tq03R+WO28srLU/s/n8/QutoWOWbY962JD0tryt+VL5PlIeX4QVk55vhmE50jrOdV7/iQvAzq/bMCNHANnAy8oXlZoY9uO6geoGk9e2a+Wcdckw4QyNG3UTxlPtiHXSFoOPHnyJN1Hu//Pfe5zSePKtfVb3/oWAOA73/lOKjfZbAaAOjo6KgU9OD09LfXjJpp2byx5663nX1jlI5ULiuMxUvxcr/Y36yL3Wxsqez6fl/zOdB9lA9jYFAIKj5FqYyxeVVLcumhzL+H5MXrBJuyarElpbQoE9qeuZ95+uQ1wXJydnZUCSuQCS+g6afedg8Eg1c8GlvB8pJSRUt8oXjfxkbKsscppDQzBOqnlDbCcS/v7+6ls3MOyTmrhpLEONu2n2nmkCGvap5H2NNY7N4N8Bs2mNAINK8R7tCPqTqCmDWAXz6pnepv3qvwK3nde+eps0oDtUMPdbrdkMnh2dlYKdsDDx3A4LAw+YNnn6+SA2GSgWjPF3OKsY4hXCoHd3d0kNFg3jVzn5S+wigN1Tm0qNNjWal6nDubAYg7ZnFFvvvlmOlRxXmmACQ0uAaAQYEJN+oCF4NccElqndXKYab/ag5k33jUABcG5aBcwYDnmWMfd3d3S4ue9c5sHEW0nzxwvlyPKc6q3hxQvwpl9zlWgrszTAzNx1YElVr3Lk8N2rVHzVCtrdGxvKxAS54Gar2qkT4KbA+bAu337dlJGMHgOc7Odn5+n+2kezEMXUDYN0gAadjwDzcefZ9pn29Q7SE0mk+xBqsrMzwsA0XagkzrPuLy8LJlO60HcBkFRc3kvEq5nxleldL5KU7u6kfbqlOmqD3DeQUr7wR6k9vf302dcv3nV/cC23FL00KSHKqB4+PYUpXasUNZoZD7v6uWMUlM+oEgCtFFnT0HgBfmwJowsx8HBQcE8Ub9ThW8ux2HTeoRpXyAQCAQCgUAgEAg0RG0bsiqN6nw+TydUhmu+detWov/UiRVYmCZYkz51rN6Wox6RM8XJhR/OYZX5mWduV3X/prDPUU2EDc95dnZWCD0PFPPb2Pu9cO8e67At2Hb0GCkNw221MN1utxBsBFgyQepkak1P9Bm5cJ2roHS8MmjAUuNz+/btgkkfsDDxIxNlNSyaj8nLGWVNGNVMxI77TeafjjvLWs/nczc0umaFB5YarsvLy1I5PEYghzaYqarfahAGNX3zzP20LHq/N4arWKirQpO20mAcdm7oONJ7tiUfmj7XM/EhbNt7eQTryrymY8/Lu0b5zPF/cHCQGCU6VE+n05TigUGDNI8KGW4yU2pS6+WKsvJzE9QNNuEFarEmbboHqRN4Ireea0jyNselltGuV1ofazKrbWBZnF6v5wbQeBlM1P8GaHvZMT6dTgummECRkWKbW0ZKTfs8BreN9UhZqJwZqGXTVfbaIGfD4bBkvqdXL9S5ZaK03uuOQU+m6jpv92Rqgkmo2w7La4MdqVypmzOqTp2CkQoEAoFAIBAIBAKBhqjNSFU5HXc6nYIzP7BwKOdpklp4Osu+ePGiFF5SNWBNmaCmWJUB3X6n91Ql9fPYCc+eO6eFruNIuw48x1tP62cZGvWnskxUUy1eW/XxtDpe29ow3J5W3GpodnZ2kvZCNaZWq7iJrb0m8tTgEsBSu3z37t3ERNGZ/M6dO2lusV80bK5long9OTlJ71S7aasl83xc6kL7pCrQiTpzarvZMce29YJIeJrtOk69nU6zMPXevTmtt5Vl+ve6fp5XGXSi6fM9vxPb31646VVt0YYm00Oufva3Te6t8+6mUBlmE35STl27di35Iqv/MYNMUBZwTh0eHiY226YbODs7K6UeyPkp6xyvC2/eWmbKC1zi+UgROUbKY5+qkvRuA7m1Sb/PsdBV+wyg6H9TVZd16rbJ/NvUv+RlwWPJlelgvTRRraaAAYrBqnKWCBZN1yVgyTKfn5+n96qPN8uhTBSvmtxW63RwcFBK/k2rl/39/XSfpump8gXetN9zc9MG+lGrEBvvQINb2TXK8z/O7Wfr1ikYqUAgEAgEAoFAIBBoiFqMlKdtVv8mG9p4MBgkzRI14poItUq7v23/KIs6YTHrarU8H5qqZ3nQNlnXRyJn66mRTyy7CCxP9bmIY001ttuCx4IQyvZZhkNtor32sd9pX3ht0LTOak9NzZBNvnv//v3kI0Xfhhs3bpT8iaiBOj09LYRVB4rRAamx0r72GFjbBk3hadiqGCoLGyVsZ2enUsu5DkPT1tj0tM36XZP50dTfpm2sy0R5cy+nQd8Wk7OJxcKm1g7bspZQO37KLC+Vgw2NfnJykrTVNlLp0dFRwQ8UWK7JGopbrUJsf27ix+tZWnhpRGwS68lkUimLtH3WTdK7iRz3UIfJ9uSH7hOq9j9Ve4g2mKg28OPCQHlrim1zz0dK/YlsegSN2pfbx7ZhWaAslA1xrlZD6lvH8lgmSqPa2Wh9/G5vby/d76WIuKrIrFXzxrazWiBVWUu0EaHPQ+2DlDfxgUXDatZjfsdOp9BWp9YqkyIVGNuCR6F7Gz0vGIQtmzdhvI7LCfttwzN/0qtdrPT/3CGiDjapb52Nc65uQLkv9DBZN2BB1QF5HWguJApnNekDFqkD7t27BwCFABMaXAJYzqvnz58XgksAxRxZucAZ3nWT+ZczlfLM8ap+7x2kvHdUKUK2BR2T3vjMjdmmgRxedTSV1a/yIbGt3276e2+ucgOj+eu4eeJm6vz8PP1GHeP5OxvswAsCs+0cODnTPi/YhHeQYtk0z6O3RnkKz9yhYxtjs6kMyM2nq1BM/F+FbbvZbFYKP885uL+/X1qH9V7PjaJN6EHKyxEFLOqj4chZfj0MAn6I8zqhzj33m7ZkRm7/4O2/qkwpcyRAXfPkpnMqTPsCgUAgEAgEAoFAoCE6L4MlCQQCgUAgEAgEAoEfZwQjFQgEAoFAIBAIBAINEQepQCAQCAQCgUAgEGiIOEgFAoFAIBAIBAKBQEPEQSoQCAQCgUAgEAgEGiIOUoFAIBAIBAKBQCDQEHGQCgQCgUAgEAgEAoGGiINUIBAIBAKBQCAQCDREL/flO++8k5JM2Uy/XiZ0ZoI+Pz/H8fExAODs7Kzwu8PDQ9y5cwcAcOPGDQDLrO2TyaSQvZmfMdeVl0lZylorFfFXvvKVH5vEWW+//XajOq3KCZbL1txGtmf7DO/+unX6gz/4gzmw6H9mD7fZvOfzeRqHHEP7+/s4ODgAAFy/fh3AYswBi4zdzNBNMEP5xcUFTk9PASzH7NnZWWEc6ruBRZZvAPizP/uzWnXifFrVjrnM4Tl4Wbxz960oa6M65VBV/rYyjNcd93XG3pe//OXKuUT51gY0+zrh1TX32Ve+8pXGfcTfbpo/UMuVG6deRvmcnGhj3Hll03ezH21/9no99Hq99Lf+bjabuTKA/Wiv+tumctzDtvM91pUxRN06/emf/mnlHoLQuunftn+q7vP+r/osh6ZjT5/v7Y/svNCxYcfgdDpNaxE/030Pf8v1q9vtumOOv+dvv/zlL/9Y74u8PqzTT69qfTxcpXyw47TT6dSaS3WepahbJ5XjfK8d/8By3A+HQwDAwcEB9vb2Cvdx//bkyRM8ffoUQPn8MRwOsb+/DwDp95T1+ixvrcrVKRipQCAQCAQCgUAgEGiILCPloYqZApYnydlsllgEavSJvb299AyeMgeDQXo2f/cqoonWbtsaxLZRR1NtmcFVaHq/99vZbJY0wNTYqebOauVUi8nPqHEYDAZpzPE7apkvLy/T2CPTpOX2NBSqmW4LnU7H1WRWaf1V0+8xJi9zHK7T7y+7DNqnbWq9bTnYVx57orDaZk+DWBdt9IeOwyqNu45D1bzXYazbKFvu+ZeXl0l+EMpC6VoELOXDdDpN8oH12NnZSbLCWmhsOu+uYt5exfzUdqnTP56ctRpqZRVzv/PQRrvmmDFvPusY4WfKRNlnWWYKQGnd2tnZKa19Oh+3sTa9DLwKa8j/RnhyvI5Fyzb7w77X288oM0srJIKyutPppL9Ho1Hhnl6vl7UsWVd+Nz5I2Rd6DauLjj1I6QRnQ3DxApZCh9CNYlUZtolVG51Vv8sJ3baxapO1ycGm7vv1Pfrepu/USWUPUhxbl5eXabzwqguTNYcYDAaJzrWLXNVByk5q76DWFLn2UMGmC6U93Glbe2Yi3jtfdax7UG8T2r+5hcW+u67Zn3cw8jaYdi5tMmc9hcC6z9CxmdvI2c2gHqTqmjA2LZv3vypkgMXcYJmsfFDTX5afC/L5+Xn6m3NRTQE9Bce6qPvbdU1jX8bmVM3TPNPlOocqPVBZmWf72ft92/DMVXV+828dL/Ygpb+z8ptXXYf4ezVHqpqHTevSBHHAeXXhjXs7NnJ7F117rvowBfimrQTn0u7ubjLRI7h/0/XHnj96vV4yD9S5x3dQfjQ9UIVpXyAQCAQCgUAgEAg0xNqMFOFpky4vLxOlRmcvNaXiqZKMlDqNWVMJfs53XRU8xi1n1khYzXQVS7QtLVnTk/Q6gQBWMUxtsHGqhbSMlDp9W0ZqNpuVtINq2sexZr+7vLxM2gt+5o1B1Za02Yfanp4m09ZTy2U1mdYsyd7/qiCnMc5pV7dZh1xwBI+t8v7Plc+TD3Uc1Vdp7+tgnXarMt9TNsaa9OmcVdNZ+yzVqreBHFurWn5+T0sIBqfZ399P5ea6dXJykq6sJzWh/X6/MniNZ362Ck2ZqNz9rwoTpQxR1VjS8Z7TlOcYKXUraMpSbbI2VfWx1km16GoBASzbQq0I+Df3UPP5PI0znTvcP9n1Qt/dBrz2qTO2NxmDVzVWt21ufFXwWKScaZwdM0AxiBev9hltjy1FlZWH7qE1uBiZJZaHMttjpPj7fr9fMnv1rICamsYGIxUIBAKBQCAQCAQCDbF2sImq0JvA4jTHkyBDElL7OJ1O02/IDvA6m81KWkpPc/SybLwJLxiBbZdVjrFtOSWvAz3dV2kAVbNncZXtP5/PS0wUbWE9RmoymVT6QAwGg6TF4P181nQ6TRo+j5FSjec2ob4EqslkHWzZcu2j3+k4exljz2Otq9q02+26zDTQPhO4qpyrUEfD7bW9907tlyr2e5saQQ9WrnEc9vv9kqzWNAXUpquzrw0tbt+xbvm89gMWY8zOCWAZQpdpEY6OjgAsxt3z588BAM+ePQMAfPTRRwAWY1TTKAALZkrljn33Nsapx5R648tjMF+G3y77v9vtpn5nm/Hdyrh7Pni23J7WnTJE1y1+1u12KxmsdervMVK2L3RMe8GOrIZ9MpmU2CnuoWazWYn53N3dLa1z1lphXVTJL2/c5Fh6RR3W3buvDTTp41XWNuu+46r80nW/6aWJUSsXYCHHrQWLjmlvv5PzSV0X3tjy2pTlHwwGyTKA71f/d/Vt1Wft7e2VmDdPRuq1zvgJRioQCAQCgUAgEAgEGqKVqH32VDydTpM2hTbm1PZPp9PCqRJYavj0Oz3l8oTchsZlEw2crWcdrZ++z9PebIsd8J7rMUzUTFiN12g0qkxcqSxBU1+puvC0fpZ5UXaT9VCNpLVRV7tay3hMJpM0Huv6SLUJz0dKtUbUtnAeqVbXhvrUZ3l2x9vWQnsaK4+ptf3paaNtiFONuraK6VkH6jNH8D3a5nY81PWfyqFOHTaZS02h/Wb9WQeDQfqO446sz9nZWZL71P71er1akaKalK0KrO94PC6w1yw3E3Xfvn0bwNLn6fj4ODFQ77//fvoMWPhRXbt2DcCSwRoOh2nscr3jmJ7NZlvxU/H8gwCUmHllfzw2mNdtyTOCFinKMts1x2Pcd3d3K61fPPmmWnhlp6o+89qgLvSdNjqlltHKDbWIYB00SiTZUD6LY2o8Hpf2PqqRJ3JWQqtQhxXyWIOdnR3XF63qfsKbHznf0Fy5cnhVfILb9sXKsUIcP+pLbuccx9Pe3l76ThlQYCHXPb8pu6/SMmzS3lU+yVU+Uhz/1sKt2+2WGCnWYzgclqIae/uTptj4IOVNWj1IsSLq7KudqNfRaOQ603t/twlv4+O9q0qwe2YIOeQ2utuC1kkFnm7W7ZWbCPZlLvT3tqjr3EFqMpmUTI7UtI/wDiTWzGQymaS6a84Oz1xI/18XVWaqOpbUJMRm49aDr25g9ZkezX+V8A5GWh5uwG2Qj93d3XSoZX213a0ZlffOdccj36fwTKnqfJYLpW4/t39Xlf8qzPp0oeSc4AaQh4l+v5/6gZtlyosnT56kPrUBGrz3tGXap4o8YDGn+TfH1vXr13Hv3j0AwK1btwAsD4KPHj3C9773PQDLgxTH4euvv55+xwOYjmE1ayTaMrVS6BjR9UdlhV7VjNIL2mMPAqvkWlO5xzGh/aQmy7za9WcwGJTksR62vDWYVxvQYTqduocrXpsepPQQpgdn1pNXK3MHg0EKbGL7azKZpDlGcEydnp6W1ltdEzgnNzHx8/YvVtmYS3mgUFnnHVyBYlCobR/mX0Wsa0IIrDbXZZtz/IzH49I+iX177dq1kszg709PT135UDX3tDxN6mLL762fBN+lSgnOJQ0kxnLbg9RoNCq5O3jt2RRh2hcIBAKBQCAQCAQCDbF2sAnvBOeZ9lFbydOix0jxZHl+fl7SvHimSFXa/Kao0oh4DqueCYBqgDyTCt6T0x5sG9pGVlMxm81SHWjuQodq1ew9fvwYQNFxz9ZzVRma1tkzAfOCKngmEl7wAmDRN9S6WBO50WhUCjahdbOMwrYYHqWZNUgGtY/UaGoSa5tImJjNZiWN6WQyubLxl2OkJpNJMv8ik0Y5cOPGjVRPalup+VfGkXVrygjnwPG/yqQkx2J7zFSVKaCyhqsYr6p3twUvsIQNzKDMEvvt6dOnAIAHDx6k/1kn9t9wOCwxresmtNayAuU5qewQ7+N4un//fmKW+H6yT++++y7effddAMux9elPfxoA8PGPfxwf+9jHACzn5dOnT1MbUDay3pp8dRN4/e+ZLFv5wHbv9XqpTCwjy+w93xtbm4w3MlLeOq7miCrrgMXewFqsqFmptaRQlwAv8W9VQtKdnZ21Zfl0Oi0liSfm83mJ3d7d3U39Yvc+0+k0zSM1UwcW/Wb3Hvv7+yWzVWKTeaW/t/NVTTCVLawKhASUk8SrNYllcZUhtUxWlZXQVaCO/L9qVFmEqRmrutdYBlTlIvd+lA/sl+fPn7tpLOy40DJt0i5VgVv0b12bKPMsI9XtdksBW5ShygXgCkYqEAgEAoFAIBAIBK4IrfhI2VOo5yNF6InW2mZqwjrvZGgdOjeB5zPE54/H41LY3NFolP62J2dPo6ZXT2PTZgjJHEPnfca6HR8fp/7h6Z5a15s3b6bPbIJA1fTqOKgTeKIpvH5SDZYN3ekFI1DWSm3w9Tu1ydd+8sJv87oNVkq1p57G2TIDOzs7hRDDWkbV+nkJSW2dtlEXlot/s2/Ozs6SBpZjUJ1G6YdCDTsdsY+Pj0u+Hp5D/bpgIAHPH0C12nWCHXisk5U1qkHMfbaJc3xdsE6q4eN4o9aSsuz4+BhPnjwBAPzwhz8EALz33nsAFn1r/Te8BL5tMfTWuVr9lKjxv3PnDoAFI8Wy/ehHPwIAfOMb3wAAfO1rX8PDhw8BLBgoAPjMZz4DAPj85z+fxiTH7fHxMV68eAGg7Oen9WwDHruiCYVZNl7Zb91uN5WNId35rOl06ibtJtqQC5zb6rhuxzZQDo3vMVIcS/v7+6lflaUCinsIb7627bdmA/3oPFUrHJaH5aac0YAAnE8axhkoBk0h9vf3E7No9yU6RurCOuDr+3WNt/3U7/dL/m2637F9oUmEbYAU/cxaoWxD7lX52Fq2x7NMaSOM/rrw9gjEzs5OiYE+Pj5O5WP7a/AFygy75/3oo48KgXuARX1tQKa2LMSIOsEmdnd3SwG4lJFSnygt/3g8Lvl9eT5S1oJmFTZOLV9lYkHhzas6gFYFOKgyh2izo3QjbAeC0s80SdQM9/zM0oU7OzupDhT23AAeHByUAgVoDpZNIu00gQpB1vf09BSPHj0q3MeD1Kc//emCUzVQNOXRugOrN5ebwE4s71CgmygvTwBQzGVio8HpgqAOmVURrzZxFl0FzymbY8ea7uzu7pai9WkkMY38BBQF7baQW4jYdycnJ8lklGW7ceMGgMWm/fXXXwdQNH0BFu2uB3pg0XdtbZC4wdGNvzX1VFNeIheYRP+2h0A1v1RlgPcZr9s+wOsG3R7c2fZPnjzB97//fQDAd7/7XQDLnEu9Xi/1mwYKaMOkz0JNf20QksFgkGQYx9PR0VE6lPMA9Y//+I8AgO985zu4efMmAOAnf/InAQBf/OIXASzkIeUff//RRx+lg5TdKOqGfhN4wWj4DsqCu3fv4o033gAAvPbaa6mewKIteIDiuKFJrW5QcqZ9m0BltjUdUiWPldW9Xq+0QdLDOeWfvQ6Hw9IGy8tT5QXtqAuN8FW1YdPgRfxuPp+X9gmq/KI8ZL9y7lxeXhbysQGLtdvKdl33mq5NarpVlZdQlcme0oLwDlmeeWbOJNCizXGZMxf0xh3l4c7OTilKp0a6s+tqG0EMqlAV+EzXBvbVs2fPUp+ybix3v99PMk/3hcBijPK5evhgv2lEVluuTZAL5ESom4a9drvd0gFQ52cT07665oph2hcIBAKBQCAQCAQCDVGbkaoyRasKNmGdMHkSns/nlfkkthEutg480zGWm9q7p0+fJs2eDQsOoKQlpHb95s2b6W/V7qopgmITZsfTRGk/WUfRyWSSzFtYN5rAfOELX8Bbb72VngssNbFnZ2elnANq4tmGVsIbVx6DqGYqLI9nOsIy2rFHqMZcmYcqTUVbzq85jbAyU+w7y0z1+/00liylf3JyUnLG9piTtlBFj6tDNzVDz58/TyZSBMt67949vPnmm4VnkO2YTCbu2ONvNx172q45kxXLVnlmoIRn2qdaX6vdVVMeqxVWs+M2oH1lQ51r7iSCffa9730P3/rWtwAA//3f/10o6507d0osguYraWP8qcy2JmN8z+HhYQosQa3raDTCd77zHQDAP/zDPwAAvv71rwNYzJ/Pf/7zAIBf+ZVfAQD8/M//fHrmBx98AGBpwvjhhx+mftRxw/vblIPK1HC+cz25desW7t+/D2DJvLE8o9GoZF6v5mhewII2teialsKGJddcL9YE2XNqV1aD9WMb6P+Wpdrb2yutt8pQNa2n/lbdAYDlnkDzEpLJVFN0zjENOc0xSjZRneltIJWLi4uC2SSfz2fZ9a0uVFZZ9uXk5CTtfbgXePHiRfrMMo4su9aX/XR0dFQKcHV4eOha7wC+FUBTWHM8Zfd1rLEMNk1Cr9dLbA3XI1r0XFxcpHrruu2ZmbYBa7XC62w2K6R0ARb9ZvO5ss/m83lJdpFlPzg4KJnxXV5euoFAtgF9rpcb1LrTqNmotV7S9dSzWNrU1SYYqUAgEAgEAoFAIBBoiI2DTXhQO1vPsSsXKtxmGN6W1rzK0VDrABRD6lKzxBM7T/mqAeI96rzpaQ+qEtttqrGwrJAGxOC7VGNHbRMdxnm6/+xnP4tPfvKTAJDYAWpfnj59mv5WTYXtu6vymQKKmn4bQtUbS9Z/R1kGbzxeZQjUOiGP1S5YQ7gDRW1nLhz/tuCNZfYVy3h6eprmig2k8dprryVtoIbcB4p+X4SXRHdd1kPbtcoGu9/vZ5OEeppTL6AE4IcBHo1GqZ28q63/OvCYDuvUPxwO0/dkrMk+ffOb38S3v/1tAEhO8tSkHxwcpL81ga+VD5tAZQDbUpNMAgtmjFp+tvsPfvCD5BP11a9+FcBSjv/Mz/wMfu3Xfg3AkpEi0/O9730vJev9wQ9+AGCh1bXhrFWDvokvYpWG1GOnh8NhmvNq+QEs5g/7jlp0+uI8f/68pEVX1r4NLTq13crWWvk9mUxKPkaaOJNQPzQ7VpXV0L95D8vhBadoyt7Y9gGW81nnpgZmARZ7Aw2QAyxl3+XlZRqr1oJlb2+vFIRhPB6XEporq9e0z1SGsn/4fpVVfJf6jnP+sJ78X0NNW0ZB91O5scFrv9/fWG54aRIsI7W/v5+YMvqLcx+0t7eXZB3rQWZuMpmUgiapH3Yb+ztvP+AFprLj+eLiIvUN5z5lwvn5efqtsoX8X1kewE9urfuVbewtqvbqlrH20tZ4Cbhtufk8vTZm+SdQAAAgAElEQVRFMFKBQCAQCAQCgUAg0BAbR+1TqDahilHSk6Sn8fK0eNvQ/HthLvWEa/0jVENto81oxBYbDnU0GpV8IDREt9VQb5MtsBrb27dvJ60TI2/927/9GwDgrbfeSskoGcGKLMGdO3eS1kk1cNvwkfLsV72oO17iZNu2ORayKtx127bNVdB6eOWvskfWaIzWl0eTJXpaVM/vq00oK+TNC9aJ2lDaot+6dStpx6jl02SifIYXLagtRtd7phcGOBeVzvOZ8hgp6wel/WZljUYgawMaTlaTofI7znMy1vSL+ta3vpVChbM8lCW3b99OWnWbNLEt6Bxhv3D8U6N8dHSU6vfhhx8CAP793/89yTgyNGTcf/3Xfx2/8Ru/AQDJP5TM+3/913+luvOzwWCQmCDW0zJCTeCNXW8Mekk4OT+oMScT8ODBgyTbyaix3y4uLkra88Fg0GpURfaF+hxan4aqiI7W/0gT1FoWhMzAtWvXSozU9evXS75U6oujyc3rIBcWW9d4zl2W9eTkJPWTjXo7HA5TGckIsO2uXbuWyqhhqD3/SZahaR+qb19VKhcNSa/+1hybnu8bWScbBfn8/DzJcctaAWXGxRv3dWHnYs73ptPplOQII39qMnKOI/VH0si4vLYt91h+L8olYfcBwHKfxvlCX9eTk5NS1F/1b2WdNYJklc/6VSBnraPzsiptjXc2aaP8rfRyrkBNK2k/02e0CW9i6sDzBgnLwft4ILm4uCjF6edEU/Oqq9qU23IDxbZlGe/cuZNoa5qr0KH6n/7pn/CFL3wBQDEnCbAQ9Ky7hpKsMitcp77eQcoTrl49PTqX11z2bO9gXfVu3cC1DS8bvF0sddNt66JlzS1I2w6DrodDa+oLLBcmmrRo7iiWjZsQmtOquYiaHbS1+fMUA96YsQciNe/NHaiqTFeA/KFezYI3WZzteNADoQ3YcX5+njbdNOP7r//6LwCLDTrrzn5j6O179+4VNtB8X27uNYW2m5XHlL29Xi9tsFn+f//3f091Yrl/9Vd/FQDwW7/1W/jpn/5pAMvN4LvvvgtgkWOKh0m+++bNmwXzK9YTKCrL2oQXcptzA1geGLlheu+995I55vvvv1/4bmdnJ81BDblt8zVuIuc4DobDYSm3mKYI0b9ZJ26+bdqR8XhcMhX2TGU1RDU38LzqgYqH4bpQ5RT/tvJnOp0WzN+AxWFPzfx4H3/PMWQPVBqyn22hIZ49h/qmyhZvo0lowAiWiYqSGzduuGa8wGLcsGzWLeLZs2fJvIxX7XMbSGOTtA9Va7iX863T6aR2ZFmpcBkOh0lRwT7V/mvbTcMiJy/1QGVNf/f29lLZrMx4+vRpGlvsR0JNaDUoStX+fZsHKm/d9EgaYD3z5E3LHqZ9gUAgEAgEAoFAINAQrfKOnna1KrAEUE6E6yU1axveydSeXlXry5O4Uu8MEa7aE0vVKx1uHV3VMd1qSbYFZWqosTg4OMAnPvEJAIvgEsBSc/Tw4UP8y7/8C4ClwzXvVe0ZNUca2rUN6LOqTDA15DqxKtS0x4wA1RqOqnevEzbXg1d+1a4CC02jdfL1HHU1/C3rdFXw2sILBsL67u3tJa3m3bt3ASw1sZeXlyUHeWrNxuOxy9JYLeC6GiZqjEejkWuCxLLXMaNUZqrKjNIL3+2Z+7UR/txjdzXps9Vanp6eJqaaZmEPHjxIZWX/MRksTeRu3bqVtPzKfm5DY+mFbWc/XFxcpPKSWfrggw/SfT/7sz8LAPjN3/xNAIvku+wzJuv953/+5/R7zjkyWbdu3UpjVs28Wd82559qZG1qjtlsluYLv+O8ee+991K4dprzsIzqTL4q+NK6IEsxm80SI2WDyxwdHZXYp+Pj45L5npqHVZmFKQtCmalhynNsf12oKbU1wdUEu5aNOT4+LrAvwJLZ0aTiHjPFvwmVKV6o56astSb81XDnwHLcaGJ4ziEN5GGTxXspD1jG0WiUxpzutarWrjbWWyvz9G9dN9g3ZKDZDru7u6kvOb/UzNwym9qnm4bXVugex7L8apqobDP/1qBNwKJvGYCC7LEXMIXPnE6nlabrbQWbyD0jZ+WibZALaGef1ca6FIxUIBAIBAKBQCAQCDTE2oyUnua8E511gKd2VzUl1Kzy1OsFYVB4rM0mJ2D7PLUzVSYKWGiHNKkjUEy+x7rkEoepFtvaVueCK2wC7Rt7gu/3+0m7+rnPfQ7AkmF6/Phx0ubSyZpQh3fVxFad7NfRVGj72aRznnZB0ST5KeGxoV5glG37uam2SbV31t6eY0kT8Hl25TmH0E3Zm1wdWDbCJktVLRmDTGi4YM4t+rNoAkEbCEYZqU1B5kttzb3AD95nVWFYPV87wguYoiyVjl3+35SRyrG7qjHluziOHj58mNgMBljgPUdHR8knin6WDEZzcHDg+mi0qQFU+aCO8lrG58+fJ60yZVmn00myjr5RX/ziF1O5v//97wNY+IgCy2S9z549Sxp3jtcbN26UkmFrH7YZ5p2YzWap/1W7zDpTPlBj/qMf/Sj9zTmlPix2HLTpbwiU5w6wXFN1PVJ/JqAYqMD6FWnqBC/0N6F1s4ErdI42lR269lUF0NB3KsNL+UKWhyzAwcFBZWj0w8PD5L+i40HbFCj6j1iLi1VQZs9jyHm1n+V8yJWxs+kBlK3JBeXR9WtThtfzF7aYz+cFqxxg2VfdbreUpFj3sLYeGg+g7f1CFcOq6xDn2dHRUWI+lXkEFnOLfpU2+br62rH/NLS+12+byLyq/bhC10WbNoRt0Ol0KgNwefNd1+B1yx+MVCAQCAQCgUAgEAg0xMY+Up6mQH2MbNQPZaRU4w4UNR5ELiRsW/D8BuqEaFftTFUC4qqocG0yHHWYBe0nnuDVv4DaZWqj33///dRX1EZTe3b9+vXC6Z/PymmM1j7pSwQWy4L1er2CJoblsRp+9TfhWLMhb6vYm6qIP22GoFaoj5TOD/oHsNwsh2qNqKHhvZrUsk6oUi8K4rp14PP03cBSM3R4eFhKBMh6P378OP2GY09t0dWvByhqmTYtP+3jvXHnRc7Tz6oY06Zh9HMh/FVjvA6qtIkaQpsMwMOHD5P9POeQJm38+Mc/DgB4/fXX02dAMSSy+satkk9NoJG32Bd8BlmZR48epfHDcnzsYx9LvlG/8Au/AGDJMD18+DCFRv/a174GYBkFbzAYJN9Y+vSpT0SV/G8L6iPlvYtzn32nvn5sK8+/xSbyzWnRN4m+6rGyyubZKLAqqy37dHZ2Vgijrd8pO6d9YCO1qfxu2ldeygC2n/oO23KcnZ0lRorR3zTprWWa+UwN6a5skfaZvkf9R5rWCShHSNN+t4yMJkj3/I9tu3uh1HWPaNnlXLTndbEqqp5lN70owVY+VzG527BcqbJisO9ku16/fj1ZHnHesB8uLi7SWOQcZNtzbgFlXylge9Y5XoRkQpllaxmmvlKWkdKw/XbvtmptqoOtmPZ1u92S0Oa11+uVaHZCM00rriJcuIXn0F61edbNjRUmXl4goN2cS8SqjbAN7qEUKM0I6Dje6/XSRGK56SgLLNvHO3S04rznbELtBlqDduSyzXtBG2yo5/F47B46coEu2kCVeYGWfzwelza5xHg8LmW9182FDUBxlTkftB118wEsNuRW2FEwPn78OP3NjYcGSrG5b9o0MeAmXPvFOgx7B6OccsQLhrHKlLcq18UmQj/3nslkktpcHeI5figfqEy5e/duUr7Q5JmLc6fTcbPeV2Gd+thDK1A0oWI9+BlNW95880381E/9VKoD6wkA//3f/43/+I//ALBMA8G+vH37dgq6ozlkrFnJVaQUsG2rm3C+X83D7KaUa/PBwUEpZLW3Yd1kjdLNeB2llJrUs54cc9wvjEajkimgXj2Tn6pQyZukE1Czfc4P7nNGo1Epr9B0Oi2MTaAYYIfg73RDzDGn+wurWCTWUbao7LJy2ctn6JnLWzPkKnN5oNjuOt7sXkn3FFcVPMmuv3Vym171HtWWUQ+v/I79d3R0lOaH3Y9fXl6mNdYqVU5PT9Pzde/F57d5kPLMzz2ln54duM/hOFKzRTsv1Z3FCzBStd7WRZj2BQKBQCAQCAQCgUBDbMxIVSVws4yUUmvWCVNPmTnN+VWd+lX7oadiyyJ5rIm9aiK5XDIxffe2YGlp1dSxTtRQ3rlzJ534rZnO+fl5IdP1NqBaCU0aqtfBYFAy7csxUqrJtME+RqORy95UaU83Ma/KwaPtx+NxKdy5ziHW3c6r8/PzpN30wjJva6x5Id3Zjmq6YTVDyoCy3GpewN9bc5G6TGwdWGfcKnjmIVWskxf+PBdG33vmtuCxntSaT6fTkpO4BlwgE2WT0WqghZyGb5Pxp+1i5znLP5lMSqG233rrrcREsa/pVP7Nb34zBdfgHNEQ/WRGNKhFjvHdZkCaqndZCwNdtzjf1NyljjP2JtB20dDgCo/hVZbFBvTQdle3AP5vUwZ4waDa6KdOp1MyeWK7q8m1mp5y/SELSrOqy8vLdD/vYRl3d3fTPkrrVGWuuA57o+tmlembJ8f0fy/IkGWYtP1XmZnnynKVuEorjhxybe0xUhwPw+EwyTHOJY7bTqeT5D6ZKY5l3Y/rvORnbafsqdPnuT2RnidskBNlpLyw7ZvuiYKRCgQCgUAgEAgEAoGGqMVIeRpf1Yp5wSbUDhsoOrJZzbk61V+lL0fVO6q0OepYqFd9lpcgrY4Wx/tuHTTxU8qFmN/f3y85sarGOVfONnylVJtvfaNUC5hLzmqDa1xcXCTti9XmqSbTJniz5eF7tsXGecwhy0YtjLK4VtOr86mpj1TT8Vf3fqtpvry8LNn2q3bZ2ttbHyv9rE1tpafZq5J9q1CHrdJ7clrhtjWzVkM8mUxKTru9Xi8xORokhFcv6S7RZqhzD8qSc2xbdqLb7ZaSPjOwBLAMJEEW6v3330/P4LpFJ+2bN2+WfEZ0nFb5grSNKksN6zdImTAYDEo+DRqsxzL5bZdbQ3rbcqg/l2fRUeX/qv411LCr75CV46pZt8zUOomita+1nYFiaHfPj5JlImtKZgpYzjEvnLN1mlfZmUs2Whd12CFlzbRuXgqXqud74cy9vlhX5v5fg8cCEp6PnbXE2dnZKTH5nD9eGP1VzGUb/aR+dEBxv6lnB5aXZeL6pYwUGWL+bjgcFtg4fmfHXVOGaiumfXqQ4gFKg02w01lxNoQXbMLruLbhNZY3yT3BWPUs/d22zMDWhda3iqbViH5e9B7vs21AD1LWCXY2m5UW4F6vVzrI6cGCBynrrD4ej0sL8OXlZamvdZK3TW1b6EHKCi3dzHkR2Pg7z7TvZSxKOXNYlkedrK05rBe4YZvtn3NArTpA19mMePA2Its6SFVFnZpMJiWFyXA4TAsRN4r8f29vz41+xGvbwSVyz7DmLWyj/f39UpCMbrebTFjo8M8cU+fn52nd4oFRTWKsPFGzbQ9tyMa6Y8qLclaFbeWM8qAbPeu4rofhOpEu9X/vfqCY403HhQZ/st+te5BSk2VrSqRrkx4YrRJZg9tYc3kNxmUPbDs7O4Xn2vbZBFWHmU6nU5LH3rvqlEOfvc0gErlD3ctA2/ul3JrE79TVxsqF3d3dkiJKla5eFO02g9F4z7FXLbNniu4dpGzUcP5O1y3vALjuWAzTvkAgEAgEAoFAIBBoiMaMVC4cr5rf8CSolBpQn5GyQRAUV+HEa0/FqlHLnci9k61HU29bK1LHvE7r6TFMm2q4NjHx80z7bNAJT5OpIdGtBlnDn1tN5mw2K5maKntjtSPb7ENvvKgmhmVjWT3nSaCYT8QL5XqVmrlccAbPPMFzSL8K5OSNjgVvntvfah1y8swyQZ788diqdWDltzcuNACBDVBgTce8Z1aNqzbHm77Lak01cILNjXJxcZHmOR39NYwu7ycjxXWs0+m4qS0s2lqbmrSVvtMz87L3XaUDv7emelYnXnCnqgBOHmNLKFvlrSE2L5sXonsVvH6380TNkXi/WktwDOl6pGbLQNEM0ZplAmWZ0oZc2PQei6sYY01xVWXa5ntsX+TGsIa09yyPCM+loc3gLE3hmYx74c8JzqXZbJbqq7n+gAWja0379LkRbCIQCAQCgUAgEAgErghr+0ipBslqaNRHilAbzSY+Uoqr1G5Y7eq6DnXevS+DCaj7zqaah5ymXZ/TtM65YBPqu+WF57SaDM9HynNotIkcVROS04puG15AF2UUrEZS2RKrgb0KNtSWcZ372g7CUhc5B1qPYco5eK8TlML+3yaL4JVfP/N8LSwb7DFRVf/X/W4d5BhBlRM2WbWGzeX6oz5VXKc0uTB/b/1rcrJy2+yARZ33vwx2oA4r68m3VT5STedFFaO9ztrkaf91/QEWY88yUjqfrF/ozs5Oae/jscW5YEee78dVYJ15/yoyVZvgZddnlY+PTZFCeOucZxniWWO0DTvPdY21n00mk7SX42c5HyliVULedZmpYKQCgUAgEAgEAoFAoCHW9pHymA7VCFqNnsdIUfNPjMfjKwsj2xSeZo141SLDNEFdRknvvWrYSFQa3YiaZvXPq4piN5lMkn+EZaQuLy9LPlKaWNSWpdfrXSmzYzUl6ldT1Xfe766SkWqKbZSr6TNzjEsuMtIm7/TQJsNRB57G3vNTWZeZbxveumP9ADQZrbLNnOf8TtMqcN2yPjXKfr9KTFQdvMw1tI5Fh/pP6WceS8Vn5XwI65SHWKdtlGGq8qH10jTYvwE/ambOd9Tzo7R1uer+flX2aIHiuNCxaeW3fpfb370MGZ+b07qXs4mrNUIx60t5TmhUT8KTNU2xtmkf4RWg2+0m8ytbIaWwNbwnsJ7jZ1PkBsa6AuFV3ZgqtknJAr5gt+9fB7qZ40ZJNzQ2nGev1yt95h2kCN0weeHPbfmVfr7Kfq9616r5sioAwI8ztrGA19moKLx2bVOG5YIGrIOq8aAHci+wxbrKlKsYd97cJKx5lG5YrYmHmn3YPvTSBrQ9/rahsHpVNrlendY5XNnfEbk0KavmbRumffZdugapOV/VQUqVdra8VQq9V32c/G9cc34c0GSP+yqSAFaOaxoaYjqdlhRi6pLhKTSA4v4wF8Cq6b4pTPsCgUAgEAgEAoFAoCE6L/v0GQgEAoFAIBAIBAI/bghGKhAIBAKBQCAQCAQaIg5SgUAgEAgEAoFAINAQcZAKBAKBQCAQCAQCgYaIg1QgEAgEAoFAIBAINEQcpAKBQCAQCAQCgUCgIeIgFQgEAoFAIBAIBAINEQepQCAQCAQCgUAgEGiIOEgFAoFAIBAIBAKBQEP0cl++/fbbcwDQpL25BL6dTidd9W+92r8V3rPrJgx+++23/YcavPPOO6U61X2XLXeuvlW/se/JlaNunX77t397DgB7e3u4du0aAODg4AAAcHh4CAC4fv06rl+/Xvjs4OAA+/v7AIDhcAgA6Pf7AIBut4udncU5+/LyEgAwm80AAJPJBOPxGAAwGo3S9eLiovQZr5PJBADwO7/zO7Xq9P/+3/9LDcM2ZHn0f++zqvub9lNd1O2nr3zlK6XOtu+9vLxM7cw2ZtsBSP118+bNdN3b2yvc/+TJEwDAo0eP8Pz5cwDLMTUYDFJf83fdbjc9n/d9+ctfXrtOq+poYefAfD6vPe/rPJ945513Vt74+7//++nFbJfBYABg2fYHBwdpnvG72WyG4+NjAMDDhw8BAB988AEA4P333099wjnCZ92+fRsf+9jHACBd7969m57PunEunZyc4OTkBADwu7/7u41k3jpjfN2E7evOp03mkkWbyeavQj6wn3Joukate88q1K3Tn/zJn8yBhVyz64he+Tfv0fu9Ols5rrKe85afeWuC3s/v6sgHrdN4PMaLFy8AAGdnZwCW6+jdu3dx69atQp1OTk5wfn5e+Mwrh4d1x3LdOnljr41xQrQpR+qMvTpz6WVC61V3Lv3RH/3RVvsohzr9p/e0KceBcj03ke3bmEvBSAUCgUAgEAgEAoFAQ2QZKZ7cVENMTcoqUCtUxQ7Yv+3/fJ/32Sbw6mTr5tU31wY5FsRjTdpmRk5PTwEsNHu2TloO9kmv10vX3d1dAEhX/Y7l5u9U0+f1p4UtSxOQXVF4Wkjb7sqkVV21Ll6f2PddNTyNre0DZUmUFdHraDQqtePu7m7l2GsLddvRjgtvruWez+t8Ps/WpUk9dd7Y93Bu9Pv9AnPLslsmkVrqs7Oz9LfVvPd6vdR/vO7t7aXnszxkpObzeW0ZTKzbz6tY+6rnXiXztcmzXtb8rkJuratrQWE/89bbHMOzTVQxUpPJJH03nU7TvZaR8saeXYd6vV5p7ev1eoV5qt+tAz5rb2+vNNefPXuW7iHrTEsQfX8VM1VVtlzftY1XgYmyv7/KuVqnzFfF/Co2Kdema8Aqy6pN3lH129zzdL7k2qXNM0MO2YOU0uzewUL/V3Q6nSQk7WZcN+G5zXjuULVJ49RZWLS+vHrmB/zfg9bXmhroZp9l0I190wGpmzRbRn2W3YzrQYqbRP6vm9PcQcqDbbumplr6W2/sKbwDe+4AyL/t+FSTkKs4XFU9RzcQ3FRMJpNUTvaPmpmx3DxQ0xTw4uIimZKxf7Uf7DxsukFfVafcgU3LoXIGKCoEvHd4yooqgd+0v/Q5ts31yr95z3g8Tv3FNmd/nJycpDlq540epGgWNBgM0kFKzTpZvpzcaQOe6XGTg+0m72sDr9oBqS7qKAM8WdpU8aCfX9XhylNEcmxPp9M0d/Rq5YJXNru2Xl5eluatgvdvskHnb3u9XjKh58GI5r0PHjxI85pmunqgUmWXLbeto/fZtg5Ur9IhCni1TNeAdl0CmsKT+7k5rZ/lxntTJWSTw9UqePtx77l15kauHCpDckqqdeVgmPYFAoFAIBAIBAKBQENkGSlCtaBKvfNqNUdqcuWZk1mNkWd65ZnttMFMqWN9nZOmatFyzrK2DbyyeSwR66wMSY7t8UANuGr26rA3vV6v0C9A0cSPn9myeuXzGMRNGClq5LVOhLa1/c5jLFiPbrdbYqlyzGEVS2Xruwn4HB03rBPNRi4vL9N91HJSE3pwcFDqa2o5z87O0thgYAmgrMXV/lyX7VilWfJYLzufWG9lVu3vtZ9Uu9y2ZlDHkZ0b/X6/NDfm83nJzIeMlPYD+4/P7vf7qW80CAifb9vBa5u2kJu3nhlHlXlV7pned4EFvPliUWV2XsdKwj7bM1/Vv9tkqXQP4Zn2UWYpC+8FoGD5q6wOlC324MnxpnVSGca5e+PGDQBLRurRo0f4n//5HwBLRupTn/pUuo91e/r0KYCiKbvuUa4KrxoTdVWow+Tq/3XW/1UMx7qo4+6gyM3zOkzQOmNiGwxdletMk/17HZce7377d2UZV94RCAQCgUAgEAgEAoECavlIqcaLV56OlTGglsXzr1H/ArINvJ/fKWPgwWOm1rXJVD8ly5p1u93C37zak7vHjKhGjf/b9vF8sDYBtd07OztuX/BqT/XqhGuZKa8NtP7sQ8/pz7s29b9hiHYNtc421avVbnrIsRms487OTmEc8ur5UvG7dbUvOW3KbDYrjSUtJ1kL2tsfHByk/mdZlRGhppd1U5atTsCQpvXSqz7fs1m2/ar/W/bZ9pd93zZs1+07OeZ3d3dLjNF0Ok39wPandvr09DTV0Qap2NvbK6UgGAwGqfxsE48ZbxMe0+EFr1HZYWWGymc7H7elpX1V0AZ7o/OmCdunLKV3tWXjdx4DVtfaoC68cWsZd02dobKAf9sxqPPdyuzBYOBahdg1e1Vwhxy0bTn2uV7dvn0bwIJpevDgAYDlnD86OkopDgjW8fnz56V+WeVD/jLmUW4c5qxx7O9XtflV+R7lWCcvWFVVuVR+quyzsnqTPqMfXg5VrFku+FvVeKvLZG2CnP+jZ5Wm91TFWlhlGWHH687OTul809TqLRipQCAQCAQCgUAgEGiILCOlfg1V/gyj0ShpvalhUi2Y9TNQnwB7HQwGJRbE0wLkTqqroFqDqlNnp9NJmi4NTcy/rRZMtUNq923bR9vJauO1XZtqLTxGyvpKaVupBqKKkdKIfutG7fMYzbp47bXXAPiJfvV/tqMypLnoijn/KT5D26DKp8qLsrQJdPxoXfhOq/k8OjoCsGCkdKwBSAlbT05OUt1pp+/5gm0CT3uV06RqxC72o70qI6W+RLza9zT1e6wDZce9qH38Thloagy1/YGFJtH68rE+w+EwMVKUg/1+vzRfVD7YZ20C1dTlfD/t+N/b20vy0PqLTafT0hjWd/04YZMyb/Jbu26qnLbztirSJ692jfGYAx1vbfpM6Fpgy6by3MoAjYJprStUG61+i3yPt55bmWfH7Dp1mk6n6TmcC3fu3AGwYJg++ugjAMB3v/tdAAtZzUTqTNar+wUy2Ky3WktUsVJanm3DY/417YPnn23HUm5fp/dtEx6romuJZ53De7y5BxT3HXbc6n2b9BnHh/d7L5Ke1i2XEsauo57Vlq7pTZigVcj59Hvwym2vXlTsVWOtql/r1ikrTbQQ9kXsOHUUpUnLaDRKDWQ3RHt7e8mEhZs7/Z+bCd20tGmCpOYCLLetr242VVBTWOvBj9+p0FN0u930O29g8z0s187OTmNncm1ru4HRgWonX87UzTPt8yhu3cRy8OmixmvTOr3xxhsAFguqPUBxw6pO/Hq1B3u2rZebRE337OFKzZdy7dMG9NBnBXKv1yuZ9PEgNRwO8eTJEwDL+ff8+XMAi428NZXVwyH7sw2zq5zzqh6k2RdnZ2cpGAMXCJZfnWptaHBVcijqmEA1qcfOzk4pyIQGYrHBM8bjcSHcuV7Pz89Lwp4y5Nq1a0kO8kC1u7tbCDQCFA83bRykrLmUZ1KqyibOaQY5uX79eqFP2AbAoh+tWVbOhOOqUbUJWWWStO3yqoy0Gy49OKiJKVq4S78AACAASURBVFA8FNg+VEWUHlJ4jxfQoU0FkSfXrIn2xcVFkum8qpLMO0hRhtk0AV4bqqzW9B72vqaYzWbpvXwuFV0f+9jH0kHq29/+NgDga1/7WjpA/dIv/RIA4P79+wCKylX2k7eZexkHKm8zqnLDUxQT9qCrz9yGOXadZ3kyXg/ENq+fN89yCnN9dxsHKILrie6ncgETvP27p0D23BxYb0+RbJUR3uGmLnTeWkVezsRc35vbt3kuOjkz5nURpn2BQCAQCAQCgUAg0BC1TPu63W6BztbvgHJyudPT06RZsgkld3d3kyaT2htex+Nx0njynsvLS9eUTq9NoFouz8md/2uwCL1qOVTbkjNXtBoN7ySsTElT9saadXjl9kKQe+ZYuVDhOh5s6Hr9zGpJ1nGQp2nf5eWlawoCFBkpDTVNZoNj0DMFVJZKr/r3dDp1mSj+35SR8szg7Pun02lp7HW73cRWMHwumaler5fup8bqxYsXqf6cR16QABt6fx3k6HHVWrKMav727NkzAEhX9uF0Ok3PsqwHtYT6mUfl2zI0rY/HSFGr6jEAFxcXJYaNdR2PxwX2WuuljBRlhvapnduaqHQdVIV+9RipTqeTykQn+rt37wJYmCaxLpxf2o+WdZjNZpWawLY00bm+1npbcxLPvMTTutqgGm0zVMoE2rmpzJRlSIfDYRpfNuGsmpzasPzn5+elIA9qzklswt5448uT5ywjy3ZxcVGyrlDncBsARtM7eGkLrJZb67NuP+pYYlnVxO8nfuInAAAffvghAOCHP/wh/vEf/xHAch797M/+LADgzTffTH3B+3UevoyQ6B50XAGLMUR5xyvbYmdnp7TX8yxZts30VpkX9nq9kjze398vWQhoygobbE0TrXvuL22ssQTXdzXv9vYxHntj28CzrLH7VE0loFfPDYTXpuNU9zpWLuh+3HOF8SysbLnZv8oy2nW83++XZIa3V8shGKlAIBAIBAKBQCAQaIisSt1zdrS+JYPBIGlSeM90Oi1pwdQHiKdDnrA9LRQ17rPZrKCpBYqhnJtqM6xvg9ZJ/TdYNmpZTk5OUjk9R2qWjWWlNuPg4KDEvKkvmDqYs3xNmQ7tE6txyyU5VdtZzx/KsjGqrbeaDdWa8bNNfKTIvCgbau2Sx+Nxybb+9PS05KvisVU2gMV4PHZDqVuN8LZ8VfhcZUOJ3d3dNHbYLvxffSDICNBH6uLiwp07lmH0wvK3Aa2bZQ6fPXuWfAjo46WMlGqYgeV8ms/npTHracK8EM914PlVeHPDjsWzs7OCrOBnvMfOc2o9Dw4OUt1UBlgLANXcravd9HzhdDzbNhsOh0lz/vGPfxzAQnMOLHz0KAcfPXoEAKk/VX6y3MqEtsHo1B2nnuywvpaUAbPZrBBMAyiGpPeCm7QJ1S5bPwe23dnZWcna4/LyspQegeXXAESst/rw2bGqa3AVi9MEyvrZsayBgqwf19nZWSlJr7YJ6+v5Ylv/KWVxPauMdX0lOp1OQW4Dy7F0cHCAT3ziEwCAx48fAwAePnyI//zP/wSwDDZx7949AMAnPvGJFBqdbcBkveqruCokulfHdeGx+2xvjsEnT56U5j/bot/vJ/mh7CnrYeeRZzXTRh2q2JjBYJDKo76fuk/jfYRaXQFFf7CcJY7HEq0bVEz9xi3zr+uD3btoG6h1gJfeg1frL9bv90uB2PR3uWTYOagllpVX5+fnST6pnGIbWKsetY6yPtYa3EmDPNm4B3VTMhHZHbuadlVF+tLJpUKQ99mJp3Sn3dTqJtKjKu3myotgtApsUC/uv9L01jzs+Pi4tFFSEwkbPc6LTsZnHRwclOhjzxSwLlSA2knE77xDln7vRT6pCjahplSEHv68bPNNN39KzXoHOaBo9qeOuuw76/SvGwfvkGWdscfjsWv6B/jU8jrIbWiJvb29UpAJjpuLi4tUFx6k+P9oNCoFC9CDlC1DW7AbsNFolMY+D3m6ANtgGWomwXnCeqizvQpyu4lQpU4TqDLAmgeoOas1Q9DgGWx/dRrnGFYFC+tHmcTne5GwdBPadC55i7dd4C8vL0sb0Hv37uFTn/oUAOAzn/kMAOD1118HsGhf5slhfdmfDx8+TH2pB5Oq6FD277agQU48E0ydJ4Q98K4yH22z3HrYs4cZleccJxxLR0dHKRoco8Zxo354eFjaDHlmpbq2adAolgdYT9Hi5Vq0MtsLiKGR/GzgEm2DXDCOOuXe5CClsPucwWCQZPbnP/95AMCDBw/wD//wDwCAv//7vwewNGG/detW+pvjUzftfL7uDarGXqfTTo4p+4zLy8tUJo6XR48e4Qc/+AGAxbwHlu1+8+bNNNZ4YOQYVHmg60WdXFRN4QUjABZtaRUm+/v7JZM+3UNZkz7dT9h+W3WAbwpPKWEDfKgZnCrRq8rhBVbTqz1gaLRW+906e1c1m6wyy9d2176w7gK699b9gpZ1b28vrb16YK7aj+vBMYcw7QsEAoFAIBAIBAKBhqjFSCk9ak+tHjuh2icbGlMd/m28/XVMCJqawWl4dZsDQjXPlo1Rtod18czJlKUCivkwvPCtNk9Ot9td21xRTYI8k7RcxnfriKmUb908Upbp0JxLTfuJ7aimXLafdOypKZQNI6tO1tYxVjWx1sxFzUvU/IfXdU1eVGPo5X9Rs1lgoS0jE0UtJ+ffaDRKTBSZHdZjPp+7rIpn3toG7PhSFsCayj579iyZrrD8bON+v580QxxD2hY2bYIX/IFQdqsO6uQTAYqhm4FFm9sw7ryn0+mk8qtJH6+USTpfqkJFbzLugOrQ35qmgezGxz/+8cRE0XGe/fL48ePkFM88Oe+++y6AhUkS5Qm1fhr+eJthjy08DSzLwrmkrJkN/KHaSM9kZhuac2A5l6wMu7i4KI1xZT8YFIQMwL1799JnvEdlAfvTS/3Bca/M0LqBkLzwxsq6WoZXw0lbKxWd09bMdzKZlIJTeHmNdM3cxFTTMuFce05PT9OcJ4v78z//8/jggw8AAN/85jcBAH/1V38FYJHu41d/9VcBIJn4qfmYDe/eZuqNVfBS3VDWffTRR4mZpjxg2x4eHqbxRYaUY3Fvb89lVeqkIqgDz3zYfua5rEwmk5KllJpvc61iQCdez87OUt97IbotC+8xMKtAWaRzyT7XY+F1Tti9tu7t7bzXlD/KQlUFVtOgN3WhJvt10iNoQKcq6yLPPUL3JOzX3LzXcVhnLAYjFQgEAoFAIBAIBAINUTv8eVVCST2halhBa0+u//N06YVNtyEY1UfGsjibaDLVzprlV4dDMgC8Hh4elpwP1V7TOvJqaGdqLTRRqg3Nrb4QTbUx2j62TVTrl8tsbzUnno/UKkbKhkT3tJx1QX+La9eupX6xToKqAeHY43da91WaDV49lkp9qIAi02i1HqvgjVerNVXtKdtfA5Zo/ViPKmZHkwuqht0yUk21Lx70d7mgIOqfYtlb9XewDA616devXy+lSNDgD5bpW5fdVR8pGy5effM8VtrO6cFgUJIx2p82dPVoNKpMzbBJ+HOvb7W+LBPZjDfffDNp0znuKN++853v4F/+5V8AAP/0T/8EAMlXYjqdJg00+09lRhvyuw68ADga6IeBW6glv3HjRsm/Rn36KMdVU90mI6Usgw2zTIzH41Qm1cBqgBBgySq+9tpryfeGV/pRHRwclBKlKmOXs2Coi7qMlPeZl1SeZbQ+2Pr7HKvhMVJNfaRyQR2USWT/sC8+85nP4Etf+hKApT/R17/+dQDAX/zFX6T++cIXvgBgGeDl7OwsrYde4uRc4IlN4PlTWmsPDU5CUMa99tpricn+9Kc/DWA59ubzecFyAticba8Lj53ge8/Ozgq+vUBxT6d7OL1nPp+XfEw11LYNub2O3GC7eglnvcBLul+rGg/qP+jtRbw5a+elXpv6JHN98HxQdb319nI2AIVahVXtrzW1hPZX1d41GKlAIBAIBAKBQCAQ2BJqGdpquFGrnfXCCQ6Hw0IUFH7GKzXnVhMNFCPn8R4bklCZkqbaJI1IZCOvUNvw7NmzpJ0lI3Xjxo2kweRn1BAoK0fNOTWyp6en6bl6tZoNL/xsXbB9JpOJazMLrPaR8iLzWc2Gx0ip3bH6W+iz7N91QFtyTZDHPlH/Ei/aitUCKbth7bI1LDeZKGWrLEulDBXH7zqo8pHSULfKYnBcsS68//nz5ym8LstIrY1GhOPvVOtdFcFtnXro3150Ls9XUsOV6vXw8LAUhYyswc2bN0t+YsoQaRLLdaAMRhUDPp1OS9pKL9oZoT5fGq0PWIxb6++gfn4eI9UGC2K1choZ0iZ9BpYMMf2h/u7v/g5/8zd/AwD4xje+AQAFDTz7y0uEaJPG2r+bIhe9zFpQHB0dJZbtk5/8JACkMNVHR0dp/NDv4/vf/z6A4nqxLSZN52hVMvT5fJ7GgmpgOQ45XjimDg8P0xxivd944w0AC+aR65SNVAaUI792u93GjIGXZsTKHe871QR7fn258eL5wlRpu+uGN656j40Sqr427B+26fXr1/FzP/dzAIAf/ehHAIC//Mu/BLCI4kffKM4dXl9//fVCInNgIQdsNLFtJ7b2LFgGg0GSF8pEAcAv/MIv4Bd/8RcBAJ/97GcBLMfZ8fFxep5NQ9C0XKvuVcsh/U7T9CgLZa2K6Hv85MmTUthzjp3hcJj2Jyo31e9Vr+tEiuSaqHtEu49Rqxv9zkb388Kl5yL65Xyw9NrUSkf3aDa6qFq62bUDKEbGBlBIuZRLgeMl97X90pSxbuyxaEMl6iZAHal1swugkEuJA1Pz3QBF53h2nLdJ0mtTIaiO4FUDwstwr6EgKQy0vtYBXs11vFwmdmB7DrF1oQepKtpVTSvqBp2wpn16iPbMCvg8S2OvUycuNHt7e6WDuo6tXChL2xea58Dm/bp27VoSgGquZR0aPbO/ptCNgBWwGlxDD1JqIqXlefr0aTLt49gmvPwIKhS8zcu6UAHrzSs79jSrvK3vnTt3cP/+fQBLMzNuBm/cuJHGAX+nTvCbbiZUYeQFnGF9vEAmmuJByzIYDApmw8ByvO7t7ZXyrmn4axuYZ5NcX57jtc4Da6I9Go3SPKQp0r/+678CAP72b/82/c38MWpyqSbR/KzKQX6d+tTpZ1UAsk7D4bC0NvG72WxW2kTRnO/k5KQU/KDttAF6eGKZbHhmlW9qXm9TCagyiIoWHg7fe+89AIsNL+cX8/1cv349zS+bdmId09+ckkZlUe6A421CPcUfr95myK5hXmqXNjGfz0uBGQaDQTpk/NIv/RKAZZ989atfxV//9V8DWAab+LVf+zUAi37iM7zUHHajt638bDqfOB5v3bpVCqtPc74vfelL6eDIw7tu2rlu2YBRTcu1qj7eGsv/bTjz58+fJ3lm82M9f/489SnHDGXIzZs3Szno2kqRQvDAqgcWG6SlSmnpfcZn2b2i7gdy+0KP2FgXqvSybhq6z1Nixu4f1BzautpQjntpjLzUN7pvDtO+QCAQCAQCgUAgENgCsoyUlxTXUtnqlM3P1BzLmmVdv349nfSp9eMJkadCPhcoJhC1zI46odWFOr96YcyB6sStNkminqC9DNm82kzZepq2ppLraJPUlI1lZJ/kGCl9n9XsacAQT5uXC/xh2ZZ1aGxqVr0ErGo26oWTtu2tmnIb1lg1kzYxqoZDtrS9slXrIBdkwguCwrrzPs6Zx48fl4JMKMvA8qv2pooNWwcqF6o0f3yvLRtZC44d9tP9+/eTGRI15jRrODw8LJj0AUWn/5yJUB3kkpDr+9SMACgyFsq6AYtxqow8gEK/2OTBqlX0GKlNUDXfNVAN6/bw4cM0xr/97W8DQAow8fWvfz1pavkMmiK99tprieFgHw8Gg8okyW0zOwrLjp6fn6f1h237wx/+EMBCRnJeWauJs7OzEhPVdrk9cxJeqYk9PDwsBcm4f/9+6guGoPa06OxX1l/Nz9jPt27dKiX9VuuKNszH7BhU9lfTq1iWWdeTqmTZanWgGvMqM/V13AO8uth9EbDcJ1BGvHjxIjHrDL7wy7/8ywAWcpxmpGSmyF791E/9VClZ7+PHj0vtsy0miuh0Oqm9Kcd6vV76LcclUyZ85jOfSZYFlHccZxq0QMPbW/m26RzzrD/0vWxPMhYfffRRYt85TzyLD+4V1J3BG5NVAbs07HhdsH29hO1q7eQFKrJsun5XZfHlJUjWMntzqWlCXjUFtG4muu+0DL0GpMqlqtBAdsBi32RD17948aJkAtg0qFgwUoFAIBAIBAKBQCDQELUZKXsCVrt+m6y33++7tt1A0XHehm0+PT0tORx2u92So/wmGiQ9vXrJxni1AS46nU6JpVLHT4L3s96Hh4clNkNZKg2SABTDvdcF36X2rl7YSu8zaiZyNuoee2OdEBXUXrBOym7VBbU/qp21Wst+v18Kk13FUvFq/ae8dleWjWPEjvHBYJCe0RQ5Hyl9p9oDa2hsoOgIS82KTeR7cHBQYtn4fn2n/bxpXWydPKdVvp/tP5/P099sd86P+/fvJ0aDzvCcL8psqL19FcPX1KfICzZBqJbLstjn5+elIDHsh/39fdc3iu+xQTqUkbLawk01tFZ7rRp1Gwp4Mpkk7SwZqf/5n/8BsJifnFdkRt566y0Ai7DN1LxrwldrPbBNJorP5zs1ZDlZJkLbnffZsnp+OZusQx5ySTI9p3bOjfv37xd8JgEkv6gnT54U1letW7fbTXXn7zXZLcce+3CdtYlQHwhr4aBWLcq8sw0sE6jyxPqAalATZaSqUqiskxi1qn5aRn0m2/j4+DiVjezCz/zMzwBYsB8MPPGf//mfABYBXXgv5SHnlSY591I9tBkQRceileMa3InjkWUdDoepbFyjNC2MDZCigXTaYKIIuyZw/I/H41I49/F4XPJx1Trzb8o+1vnWrVuloBvD4bC0d9qEPdTUJ1UWGBo4QfeCdh1RHyv7mWfF5FkzWayTSkDlsg0a4fmqcxyp35SXRL3K767X66X7PCsPbx9cp07BSAUCgUAgEAgEAoFAQ2TVS2qDa09qPD16YbL7/X4li6CafOt/cnx8XIiqBxSjmFWFYG8Cvls1ZFY7oJpMjYpiI3VpklarQVYtkY0c1e/3S9pu1ZY0rZdGianSvnjhz6sSnQF+dBZlqKyGxTu5832DwaCxJlO19PybbazaAj6XWmZNfmqj/WnEKxs2XROjKhtZNUaa2gJbVPknKQNrE0ADS60yfTiePn1a6DMABX89toUXNrQNHykPng+EsmTAov1slEdq9O7evZtYDhtZrdPpuFEBNZTpJnXykhhaxkiTAWo4XNX0A8t56THQ7CMNKa0hbb0QrSzLutpmleNeuGb+rYw7o4qR6SBu3bqV6kB/NkYbu3//fuo3jgEvUWpb4c+roCypjgvrC2BlN1COTmsT124DWlbbxzqnrH/t4eFhgZ0CluPy+fPnJV9kmzgaKI57y0gp07puP+UsCwaDgcu42iheykjZqKtqYWCTtOd8VdbRonusE+El6+Xf4/E4adRZNvp+fvGLX0ws4le/+lUAywiZb7zxRvKloow8OTkpRfbUdBJtzicde7YdO51OyXeZODk5SYw2y8Z1+sMPP0zjUX1L25YDHjOlsKyT+u5aS4lOp1NipNgfh4eH6T5lcKsSva4DXQPrPEf3e95+EMhHr1YLJy+xdhtRf9n3nU4nySMbmbjKT95aFWmUZtvu2iZWrmk4eS8U/Mbhz+0GoglsRXQhsgJVG0fzKfHddgJ4QQ/qwnOM8/IOWWGs7/LCmWscf6CYr8ou1OpoabHO4ZADqSoTNb+zBymdREp3s75V2bP1IKjfeQdSXpsePDT0bVVY7clk4lKx3sEV8POb6VVznQHFRdlbQJrCC8zgBW+xjpW7u7sl2lud4fmdFfLXrl0rOGfyfZseNqrghUplufTgACza2IY950J0dHRUCsGsssgKQjXHsON+k2AThDV90IOUDZvK+gJFRZHNgabzwYaw1bwfVjEDNB97OfNbNWGz7XpyclI6pHPDfufOnbThoCmPHn5t6GpvAbZlWQd1f5szQfUcwD35ti2TPkKVb3YDk9usaGoOXjnebt686QZTAhZrlIZB5vPt+uwFEqoLbTPPNBsoKvkIXZ/tWqnP8sLEewepqrxc6zj914V97uXlZeoLHm45Z9544w186UtfArA88DKX4r/+678mkz7mY7px40YhZDefD2ymbFlVHy8fl53rHGedTieVjX2oTv/8W2Vc7pC6KWzQIFVa6nu59ljZq/dbZW3VXqGNQCAW2g9V+dHsO6sOPbpn9A5bXgCKqvt1X1MXdX9r66vywV71AFtl0qttoGuTXetze/VC+VbeEQgEAoFAIBAIBAKBAmoxUkCelfIc53Phva2jKKFmCxp+sEqDvg4t74Xa9E7W+g5gcdq1mi7V2Fm2RLXL1nnOyzTtOfjVBdtR2Qbv6oWltiYVatZBbbQXmtYz+8uZSqp5Wh142kqPZVN2jVeWw2rTj4+PS2NPrx4jZe/Tvl/X8drT6qqJgX0XsBxP1qn85OQktY+GSweKzrEaQjgXprwNeIyUTQCrf2tSZP5v2V819bUMzmg0KjFS65obeGPYmt7pnFbmnL+x9VFGSoNM5OqTMzXYRphjZf5ZjtlslsaPFyyD48yGy1bzMNVo1mFXNq3HKqiptTXrUXga3ybtviljXRWMxtMSK4ttLUHUzMWm6NB1SJkpu/6otrvpeuuZhdm1Q9+nbBjrZNtArUM8RsrKT2Wk2jCxInLMT6fTyYZEJxuj84uJbMlWUS68//77+I//+A8Ay/l3+/btNCdtePttBnHxGBY1XQRQMNnzUjvwO8v4bKPcXgAOtZLy0nJUWYvkWJDc/kexSR3rMDbKKOdYKs/01DP5z7mI5Kye6kLfnZN59n6de7lAaZ47UI6Vtv1T19w0GKlAIBAIBAKBQCAQaIjajBRhGQy1bfTCLdpABaqt9LQBhGqwrbZ5E98OZS4sVPNgT7Sa6M/zn7Kafz1de9pyq7XfREurjJQ9xa/S9thQ0oT2ITVetMnWcLXavzmtX9M+U20k28/aYquW29OieD5VVnuntrQ22ITaPdswu/1+f20HdM9vxwvMwLLN5/PU9ho+Flholb2kncBCO2t9jDz/rLbgacAIq0HudDrpM9vu6ixtQ7J6zqIawtVjpJrU07OhttrUi4uLQthW3ms17dT8Hx4elgKHaBAGG4I35/zalk+HJ2+sDNAk1do3/N9+p8+xNueq2dumxrwKnibdG6e5tt2WL42HnE+DtePv9XppvFgNrJdEV5NzW3+lyWTi+hmuC2X2bAAPfa4XsMoyb/rMqmAgGo7bsx7w+rwNZrRO4AllqTQkOlCca/SD4nfvvvtuSjtAf0S1kKFssbJyG/Dq6e0dABRS2di12PPZrnr+prDrklpnVAU08X5XxWZUoenaswpsOy9hdy6Zt9bTk4NePfk760fq+Uh5e6+60PlozwUKK4u8fZ4+02Op+H8u4IzXr3XGZC3bJB0QntmWt3lXIa9XdeK2VJ5+r+YWtlE22QhqWe37tfw5EyHb6CqovehA9tCk8Nqgab30IOU9j/97dWHZPKd2G71JzRWtaYIXGWmTg5TmKbMHKF57vV6Wes5NdLtI7+zspI2s1sku1JscpHImfTp+dKPDMnJRtRG4ptNpybFSN+02n4Jn4tmGsF+1QfXGflUUTjV3s+NGN+m6cWjinF+3HnbB8IJB6KZFg5oAKASYsPm89KBoA9Vo8Axbf3U0bhNV5sxedE77HaEy01PktLmpqDLFWOcZV3lAWhcaiMJ+Np1OSxsGvdYJkqF9aZ+1SR/qs6rmpCpVdHxVKU51DniBhTRID+/JmZ23HXSnDjxzOJaRkeA+97nPAVjInUePHgFY5nE7OjrCG2+8AaBspn52draVOuWC1gBlUy/P/C83lrY9D+1813Gn91SZjOnfTcdRG7JP9ypVhx8vEAVQnccqp5irKnOVHFlHyaf18BQP/M7u/XNRYL1y67iz+0J9vl3n6tYpTPsCgUAgEAgEAoFAoCFqmfat0izkHGJzGjLvmR5N52kN9H1NoCdOak6s1l6f64V9zAWDsKxMFVtltX51NARVUDM4r39snfRvq9nw8nlYZuri4qJkPqFZ770AI02htKtn3sJ76jpI8vdVjIW2nTIeVU6LylY1hacxUZMWG8RCgw8wDwlN/ebzecnsUPNY2Lmi43hbqDKlUHhaIG1/awKj/eQFUmmLXfMYKc0fBSzMQm3ulk6nk+YCGUGa9nn5vFQjbR3+2w6w4yHHjmq/WFMWT9tpTYlU27xtcz41l/K++9+CnJM4ULaq8LS5OfOeXD9t0o5aDjv2ve8o+7yww/o7y0h5ctkLBGBxeXnZqqnsKhM/z/QfWMx9BhKi/GDI87feeivdx3vee++9EvNN+T8ej13XhXWxqn2azPFtm/E1gbfX8hgpwjP7JjyLom2a9lWxZlp+/Yy/zQWgqIscE7SuBYgnx3VfbufL7u5u5V5uVRm8tvMYxiYIRioQCAQCgUAgEAgEGqK2jxRhNSqqZdH7reNY3UzilmFYpTltenJUrVhVoAe18fd8S+rY/+e0fh6T5tm41oX6XVSdzqveaTUU1sldoTb5NmjDqiRo69rONtVUeKycF57TG2eelsmyVOro3bSfckwUv+v1eqXPNLw3faOocex0Om5yQD5L66LXqvJsgqo+rmKk7Oc6vuz88VhrjxUnNq2bOvVr4l+gGNxC/fXY3uwHMlL7+/uu3xuvno+UF2SC100YqVy71NHOevLM/l/FmmwLL1uzfZWoav8qbawyLrm+XOf9TZAL7KHjLJeIXVGVYFcZqdz6o+3Vpj/RKmbKfq/rC9dSfkeZ8dprryXZwyS9z58/x4cffgignDx6MBg0rpPHaJp/AgAAIABJREFUeLY5r65CDlShTj1y/l85C6icrGu7znX3j03keNX9dcrh/b8uI+WdIzxZZ/dG+rfH0NeBx87pu8NHKhAIBAKBQCAQCAS2gMYZRT3mJec3RXjaodxJb9vRntY5iRMe69PUXrOqDdbRAmmI65z9aq4cljmcTCaVp3pPW39xcVGyTc+F4F0FTyNQpc3T8nsslUYArPId877z2szz41kHVTbOvV4vfUZWQqPEaQJYYNG2mowSKIbY9pjJq4pS1bTP64Rb9qJPboMB0ffYqJUaVU/D53Kc0Wchl2BYE3d7SVG9SGW8rstI1W2bnDYuNyfWeVdgfeTYQf28iiVpqnXNvacKHPez2aw0bnVM6318T86X0/p9KUPlWURYqG/jNsaqp2Hn+/i9/d/6YvK7wWCAe/fuAVjKjRcvXqQIrpT7jPanbdAUbbO729i7tX0vUOyPdZmlbcs8b72ze4Wqelf5K+dkwLZkgodV72riw6TWZt53m77bw3qzTaACwzP349U6uwF5Z/S6NF0bE6bK9Ei/8w5e3nNzJnX63aqB0ASeCZfN7bLqmd6Byjr6a1tYU7fRaJRMERgIwQs/uwm8iV73cMVr7sDrHbJWHUQ3hefE7x2kaPbBRVadLtnO1qRP2yc3Hq8Sq+Y6UN+EYhsHKK/vPdM+a7qsYZd5gKKJ32AwKBzm9Vmj0aiUk0oPUlaOrqOUWLdt6si7tt7342Cel1sv2kCdg1Gd39aFN3/arpuOW8ozG2BpZ2enNN4BZA8Ddr3K5dHx2lXn+asw9lRWq9k2sJAflCUMQAGgFIBI14GqjeRV4mUdojbBq6wAqlO2KtPMVQctD9tIs9EWcvXIydFtjaNXt6UCgUAgEAgEAoFA4BVF51U+gQcCgUAgEAgEAoHAq4hgpAKBQCAQCAQCgUCgIeIgFQgEAoFAIBAIBAINEQepQCAQCAQCgUAgEGiIOEgFAoFAIBAIBAKBQEPEQSoQCAQCgUAgEAgEGiIOUoFAIBAIBAKBQCDQEHGQCgQCgUAgEAgEAoGGqE4dDuArX/lKSjJl801pZnBmTeZns9ksZSq3VwWzDGv2c2bk1uzk9j57BYB33nmnVsrid955p5Q4q2nGaItV2ZLXzaZct05vv/32HFiUsardZ7NZ6qfpdJqu+r1eqzJkA4uM8+wnvfJvZqT3ss3/yZ/8Sa066dgjNu0nRZsZrjcZe1eVsV1Rp43q1unP//zP5wBwcnKCZ8+eAQAeP35cuD558gRPnz4FADx//hwAcHp6ivF4DGA55jhGdnd3sbe3BwAYDocAgGvXrqUr/97f30/3DAYDAEC/3wewHIPdbjc994/+6I9W1skbd3Xg9WOdvvX6ou4YfvvttzeeS7zu7Oyk+UuMRqPUR2zXw8NDAIt2PT4+BrDoe2DZ5gcHB9jd3QWA9Hte+Vu+k2VgOdaZS3wvy8ixs7Ozg4uLCwDAo0eP0pWfcczcuHEDAHD9+vX0GcGxqetXUxmzST/ZZym0HLY/665X9rl15dE6dVo3Z+VVycg2+ikH3ctYXF5ert0+ObQhI+rC3u+NM875qvGcG79NZATr47U55/JkMkmy4PT0FADS/8BCjgHAvXv3AABvvvkmXnvtNQDLtWc0GgEAPvzwQ7z33nsAgAcPHgAAXrx4kd5FuaJrF+XVH/7hH25l/7DunrWN39WV43/8x388BxYynGODoOy9uLjA+fk5gGV7X15epjWG/XT9+vX0P7/jXpdr1IsXL9LfXJN2dnZS/3Dt4P98DgD83u/9XmWdgpEKBAKBQCAQCAQCgYbIMlKqHbCaAtXU8dSnjEeO4VCmAlhqFKtOwlZT2gY8bd6q7zxWjbCn6bpavza0bcoq2f5R9mkymRQ+m0wm6VRumalV/cU+44l9d3e31I68p9PpZNvOg21PW6bcZ5v+7ipZojrlb7s8bT6PWqCdnZ3Uxzq+gIXmh5q+s7MzAIs5zbrzfv4/mUxcJsCWXbWbOdZ6G+2Xm9Pe2LVgvTqdTnYMtK2lrtL4djqdVG7tR/YhNXXUovJ7YKnZo5ze3d1Nc19Zx5w2ehOwvKwTn69lJbOpLBXrRhk2HA7T36yLjiP7/G0wCERufHnrlW0Dzh+Fbf8647RNvAz2/VVHHQbGw6vUlnXKacee7unUuqnJs3Oo0z6z2aywP+JnLCvLqGwSmSh+Rhkym82SrKN8GY/HlbJi03WpCaM0n8+z1lxNWexV72sC/a1njQYs+obv1zWHf/N37JtOp5NkP68cWxcXF+m5do+sz9K1o46crH2QqjIBm0wm7sbJmpZ5JiRcbL0C6wTMDYKm8AaN/Uxp9tz9iqqFTyeMt5Hw6tS0frrp1H4BlhsZPTSRHh2Px+k+FQisoxV6enjiQKtjCtjpdBofhpVSzR10rfDN9av3rNzvFC9z4VolqF5m2WiqoHPXHqj0IKVXNe0ClmMQKJtUeW2gm107t9psE288e3O6zru9zXiujtuCfZfKZZUhLBvnPg8k4/E4yRH2Kb/r9/upfp5pt22nTRfiqo1Yr9dLcoRl7Pf7qX56qAcWCzEPjGoaSniHk21g1fpAaL2tMkLHlG1n75lXfaj6vwgdn96cbyK7tF/bRpP5qPOP0HJ5LgDAYrx587ZKFrZ5oFKZZPeuk8kkHZKszDs4OEjrHetBk0A1E6RcnEwmJYWM57LSRp2Iqv6oUmJdXl5mlZXbOkDp+wlLrOh6xL/5Tl1/WEYepI6OjgoKfsVoNEp9RozH4/Rcaya+u7tbq59CegYCgUAgEAgEAoFAQ9RipJTpsFToaDRyT/VV5haetoKnRjUZUw1Gm1pmz1zRlrUqaEMTClQ1EJaqzLFU69TRM8Wx7NPFxYXLCihjBRQZJqsh4Cl9MBiUmCjVelhq3NOSrIJqEqrapIp98vpT6+Z9V4e12hQ585xN8DLMAwmroQPKZqLj8dgdj/YzNfWjTMlpbnXu2LHnzbVNUXeO5sx0PJlTR/u6LRM/T06xbGpZwLlPrd94PC45aHMM7O3tlSwXptNpekbbrKFnbs46UbtME9TDw8NUT5afv9/f30/1Y1nVDKQpg9a0z5qao6rc90yUCCvH1ZS+ibnlVTKmV4VtzSsPl5eXJQsQZXw55iyLcZVoOrZzjFS32y3tHbRu1nJB1+5NUYdJmc1mbn/wt5QdDGZwcHCQ5IPdH2pABDUdtkyvF4CrzTp5DI8GAiPUzUOtxfQ9dfZddctXBd0r8Pfc++nz2Kb8bDKZpH0DZR2tCW7evJnqYi0MxuNxCpLEqwbHs6Z9/X6/ZDnnIRipQCAQCAQCgUAgEGiI7FFLT91VPlJqZ+ppE6wWrN/vF5gNfgYsTqLW4czDttgDPdXb+nqf5aCaB6th8kI9EusE1vCCR/AETy3J+fl50sDys7Ozs3Sf1WiynEA5rLDWX/2n+NtVwUPqQMdBlVbHY3hy9tbKrHo+fLZfVdvWls02y221N6tYiCbvy/lTNP3dKqjGx45dZZioAcsxpBratMrH0itnFevL66b+H3V89LyxotcmMiPnb7WpltqWzdNasqzn5+dJO0hNLBnIJ0+epDCy6n/Ee9V3APAZKa9cm9TJ03DznWSkbt68mcYsy8aw/fv7+zg6OirUV8PpW7ZHA1C0iZzvklpGqC+b+r0CyzbodDolOa6MQS7whB0r26rvjzPTVafsKge59nJ+qDadzAf3RdsIsrUpqph1oGwpsLu7m/yLvDpx/tWxGGmz7MqSW4uc+XxeYNaBJSN1eHiY6sN+VMss+lxSHs5msxKzrfuaNi2sPCZKZRfvs/vCy8vLUuAwz7okxxRuUg/dM7KMlhXqdrtJvmnwCGsRwe9u3bqV+pPjjv02nU4TE0W5DxRDoevv9vb2ao3BYKQCgUAgEAgEAoFAoCFWG/8h7+Oys7NT8HEirP8TT3iDwaDwt/6uKiSmZRGqQiPXgXd6zmmsNUxxFYuwyi7avmc6nZa0TTaCWRMoI2UjaVFLcnJykk7w1CQrI2Vttnd2dlK/UDOj3/H0n2MjFU21FtruhB0nykTktNzeWPKuTVjIdfy+cj4Q3hj0koB61zps2bZ8IHQOV9n2qy26+kVZJkqjHVntf07zqQyvd23CSNX1b7LjQkO227nkzQ31AbWsfVViclv/dWA1mPpuvoN9pIwUGR0yUqPRKCVZtuFnr127lmSN2rF7vpNAkQVvo046dmwI49u3b6cEvGxHaib7/T5u3rxZqC9/5/mQtc2keEyUty6o7yFQtDZQbTh/b5MMs0/VWkLnrscQ2DLUxbptlGPjc+y099nLjGoKFJkQzgeuwcqeWgsd68d4FWVcdY+dayrbOK6Umaa8sHs9nfMarbVqnWvaBquiXPK91kdKI32y7ExCfnBwkPZCGuIcWOylbNJYLYd3Xbdfc3Oj2+26ob81IS2wbP/hcJjYGrvPy8U6sH+vC7Z7t9stMP1A8czA8nKN2dnZKewX+AxgYXXw+uuvp/uAJasILOfekydPACzkv/VvY9sNh8OS/PRQ6yCl5jF2gdfDky7K7BR2kl7tpNJQuV4odUu/KpoeprzDmv3fExi60fY23FWHKi+wxKoM500pfW0zS93yIHV6epomERdd7yBF6IRUqt7W13NW90J+NjWvYhk1AImXu8rbhFY5TWq/egcpG1BF80zkDll1kQuY4B0OtR52fHkh770AKbl3twHPZNeO36p57QU/4Xc255nX1t5hyYbqX2fsAcWxYsugJiFqSmsPhPo7NesFioFbrGJJc1gQm/SZN/4Jndusn8qO27dvA0A6fFCOn56epoWI93DDsb+/X3DCJuymXTdTbRxK+AzdHGkgCQC4c+cO7t69W6jLj370IwDARx99lA5St27dKvzOkyvbOkjlFETz+TzVj/304sWLJNv5GWXC7u5u2kTYcdXtdl0lqN3QbHrQXYUqU9mq1BbzeTn0t7adZxb7sg9TFmpeyf+rNt3e764S2u7e2mL3gpxX169fTwoJu0m/uLhI41j3f7nw5+vUXfMbWkWLmpyr4tYGmWAdDg4O0nxR82dgIQ+51+KaoKGz7T5lHdO+VQcoYLGG2NQ0T58+xUcffVQoG+X53bt3kzkz24Kmb6PRKD3DC/62qox1wHfu7OyUTD3twRxYHgSHw2EqGz/j/4eHh3jzzTcL9eUzjo6O0t7y8ePH6crDlXWNubi4SGM3hzDtCwQCgUAgEAgEAoGGyDJSqjWxWgfVAGtmeKBI6VJLyf/39vZKTJQ6olsm5ezsrJJOXse0z9NiewyGd+q22hLPLMy71innJuGaveTIufDnGoDChpAkdnd3S2EoVatitQXKSNjvcsE1qkANipo52SRru7u7JS2+lsOaAmo5PNbEC9lcFfZfGay6UMqf8JgUW89+v18wxwGKWvGqMmpY5Drs6TpQuWCdVXUcW22gJtSzjvJqcmHLr9nitS08ZpL3rGPaN5/PS0yUls9jfq25h2rybThWla11GKi2TEJsn2u7WXPg8XicZDoZGrbrkydPEiN17949AEhsznA4LGn2+v1+ZSChtpgdu04os8l6qtkH6/S9730v1enDDz8EANy/fx8ACsEncuGB22Sncmbk0+k0tSm1qE+fPk1mljbZ5P7+fqo75xD/HwwGqX/VhNDKES8FSNtoEgxHLWRsX7RlAtsmdK5zH2TZ+/39/VIwkG0EXNgEykipRYplojhnbt++nf5m3TSgkDJRQHEf5Vn2bApvDbJjvNvtpnpw78rrcDgsmL0BRdcJ/s1navA0b13aBF5gD76Hspcy4cGDB0lmUK597nOfAwC88cYb6bv33nsPwNLkTZMT2/0H0E4ALpZVTVs1UA6wmBt8P+Xb9evXS8nWed3f309y/JOf/GThWQcHB0nu8/rhhx8m825r4nd+fp6sEnIIRioQCAQCgUAgEAgEGiLLSKnW3rI3Gh6QJzbakh4dHSVNhHVSVu2rtfU+Pj4uBGQAFifWKg3mOidgPblbbYF+Z0/gvV4vqyW0mgq9ekyBTWibCx6wCsqkeMmRgaL2RbX81tdJQ0/a0JHqTM7+5GfD4TBp260WY5VdrQdqFBQeM2YZqb29vVQOWx6tU05DpIyK9evQENFNGSmPOfQSIdt66hyz18FgUArooho+Ow48lmqTscf7NTiJbVvPgd0L1a/MlGV1tE68T9k8L5E3y1InoV5VvTyoRly1+1Y2Esra21QCatOu88ULMsF3bwLLjnvpC6j1m06nSX7TD4raykePHuH58+cAUGKtdnd3S6GANbFhm0Ebcv6Do9GolOz54OAgMVJvvPFGofyPHz/Gw4cPASDdc+fOnXSPHVvrzJcccoFzlJFl27L9nzx5khh8fqdlZB/a4EGaYFTXXfaZ54/ZFHXGq+fX5PnG6hy3rI23BipTX2XFsmn/1fGXU+d563dDX5XBYJDmHbXjZBy3yQTm4M0r+1m32y0lvaasuHfvXvqM0GSoXnAY2z/bCBHuWWwQu7u7aU7Yvtrb2yvJNfbR6elpKdCLt39okgA7B88qg+WiXKAsu7i4SD5DX/rSlwAAn/3sZ1P5v/vd7wIAvvGNbxTqduPGjZKPm1rAtMGY6vqullL8DFisHewTyvM7d+4kppDvp69Ur9fDBx98AGDpB/WJT3wCwKIvOefU/5f3WasSXUNyqHWQ6nQ6pY0AF5+Dg4N0aKJpx40bN9KiqrQoUHQq46Bkg3lmfOoQ6DnVNxXuemiy+ax0A+5txr04+yyHNalTutHShdo5nglT0w16jhr3ggyoqZydiNq/7Dsr9I+OjgoOmLzfO0Dps5uAwsA7iOrhz1Lb3gGQfXjt2rVS8BOvf70Fm/BMSOqCzwdQMsfTiIoUzmp2yffqvAMWfcJ+sUqLvb09NyoXy+4F3Fj3EK/vsIcMbUPvIGVN+0ajUekg5UXH4++8yHdeQJIm0P71IqhRsOtBkvXMmWZ6beJtBquiS26yedff2rLu7OykNudYnM/npSh2XKAePHiQ5Bq/+//svcuTJNdVP/7p6uqqflR3T/eMZjSj0Wsk2ZYs2xhjIILHiu+aBcGaINiwZ8MKy8YRbPk72BBBBN4QgQMwERA8DALLspAtaUaPefVMv7v6Vf1bVHxuffLkyezMqqxu2b/z2WR3VVbmfZ5773l8DmV+v9/PbTiuXLni1p3vaYpMA8i69lkmrbW1tXQ4ev755wGMDkt3795NB0UqcnigWllZyeXC0XmpdWkSdvN3eHiY23BvbGzkNgJK9mRlhyo8+RnR7/dzxDpNucgVkSmoO7bKaso4VdYBwzlk3W2VVEnJlICsPCHGORRWqVvZd3Nzc0lWv/zyywCAO3fuABi2AV2r3n//fQCjvUG/379U9z6P5EDXXa43nP909b1x40bqM84/zZ9lCXtUwTypAslzQbNrrq4lqgTjuOO+lvVTZRPHFjfvu7u7GTc1oJiRlfUZt091DSdUdtOlj3jllVfwa7/2awCA119/HcBof/Vv//Zv+P73v5+pC93hrl+/nvpUyTXsQWoSUhedx6yTZXydmZlJfUBZfePGjXQQosygzH78+HGaS1yvOM+uXbuWG6/r6+vptzzo6z5eCZOKEK59gUAgEAgEAoFAIFATlcgm1HrD05+aP6nhUsuFWiqA0Yl8MBi4Ln3A8ESspl9geNK35jYvcL4qVLtsXaJYVtWGqVaM39tAUQ3QLdOQqRmY31uNqQbaj4Oi4NtOp5MzY6ubpboosd6qudTr8vJyhuqYv7OuO6opHpcq/Pj4OGfRU02WtVJqbhT2r2pnqY3wrlbzOT8/nyOuUK16Xe2L5jKwVjbVcKn7FDDUsFDLxDGkgePsC1oPqKl55plnchaFhYUFN3CU/9ftJ7UWqyaOZeNzvcBim1tKLVJFZBM619QyZS1RbE914a0Cz8XTEoIoycl5MgPIuv2x/pzvBwcHqU81v5ul0rUumuNALVLeeLZkE91uN40lzhNqMu/fv5/an1pCyofd3d0kv5WG25LXqPW8SWIAdbm27iJnZ2fJKkB3D1qm3n333TT36BbDeffMM89kckrx2rRlw9bB5ozq9/tpnLCNt7a2cvlhdA6y79g/1MSura0l2ejl9VGNsC3XOLBrk1pu1RIFZNcYm4toZmYmZ7HW9iojBrpMy06r1UrygvOKY3B+fj6V9/79+wBGbrQXDS/cgFfr1bKwsJDGlVoLgGEdLaEY66ieOrqvs1bluqlgLHSP6JEyqXxifawnjnpTsax2Du7t7aU6qkeO9UTwUppUhc4f2066nnDPcvv2bQDA17/+dXzpS18CMJJnf/M3fwMA+Ou//utkzf6lX/qlzPWll15K9eVeRCnRy8h3qsJaloHs3h8Yjh3WibLr5s2bePbZZwGM5Brfv7W1hU8++QTAiECDFqdbt27lwo7W19fTZ2wfpcW31mwPYZEKBAKBQCAQCAQCgZqoFCOlWn4vANTGwmjAqrUYqAaWPt7UvDx58iRzwgeyids86s0mNZmqbbGJM9WaQQ2FaljtyZralqLYoaLT/LhJ5/hca41RH3ibVXwwGOQCkL1kemqJArJBymqxKYpVUM1PVWiAtLWcaFI/pXcHsjFVhPpzFxFo9Hq9TP2ALKmGjalSK21VKKmAJclQzRvHEOfCxsZGShpKn19eHz9+nLTRnE/UxiwvLycNDjWga2trOd9vrVPd2C+1mHgJP3n1xoaXpBcY9qW1xHhBqWrdsrGJaqHS2LTzoJbcIsvm4uJiLm5wfX09tTU/Y/vOzc2lemsSVWCoAWNZ1ZJi663lqjuXCNWAWmvbYDDIWcHW1tbSuGEZSWrw+PHj1N+MieAcOTg4SGOXfaSxah6t9iR0wFZ2qgaa44Hl6ff7qU6Mf3rppZcADDXqrB+1tNTE3rx5MxMrAWSp9cftEw9qOdTYQJbfpgjRNZJg3ywtLeWCq3ldX19PdVFr/ySxrefVS6EJOK1lfmNjI2e5VHlhrdiexalqqpOLggbqc93SOHH2gbWyXRbsOg7kY6mVTpoWKf7f6/VyseDqneNZpJrYD1l4JBN6BUYyfnFxMbcPUBInK79VrrBvdZ238eKT0p4DvnzgtdvtJnn86quvAhjKZ6Z4+N73vgcA+Ku/+isAQ0vNb/7mbwIAfu/3fg/AyCK1s7ODd999F8BI7h8fHzcSA0/wGV7b0vuBcwQY9cmNGzeSxY0WUNZxe3s7yW9apLgnevHFF3PecleuXEmeO/yd0vRX8QIJi1QgEAgEAoFAIBAI1ESlGCnPR1rpvvXECAxP58psBIxOeLu7u+mkSQ26Mp/wVKraKo8aFRiPVls1vNSE2BgIteyUvYtt4LGCedYt1ZIXUbseHx/X1lqoxcVaAJXO3GpNNRmoR/npWaKA4Unes6R4Ce9Yp7qxHfR/VQYwarM8hjuNP/NYEoGRNQBAzuKoFOPUPPd6vVzci1qoLOPVeVAqZrabxqQBQ+ufZbqcm5tL7ce5Qk35J598gnv37gEYWan43d7eXobtCxjOOdVua500JqxunZR5y6Pz9uZOkUVKY6Tsd+pHr+1px5xaqCa1SHljxcaKnhdDaS1mXiJHjZe0mtxJ4kLLYhzUSsT38129Xi9ZM2z8xvb2dqLUpQaU7by9vZ3qpDGaXmwUUVeOe7TTnmXKMhHu7u5mLDLAiEHt+eefx4cffpjuA0ZzaXNzM91v4x288o9jTVDNv1ongWyMnBcfpHIeyPr/P/PMMwCQrqy/UlNrjGlRQthJ0iPoO2zdTk5O0njXGGnGK/BK2acsdpSfGidK7bJa3q0XiVoIpm2V0vpyXFFDrvEXjMvjHFNrVZV2b6oeRe9S9mZNWksZYS3xGndprQw7OztJ3niJy5tM+2CtNmoRV/nEstv4b44VjU9kPSzDLuAzxpaxtdaFzkNe1WuC8ph1eu+99/CDH/wAAPC3f/u3AEZeYP/v//0//PEf/zEA4Dd+4zcy37399tt47733AIzWJvVGsvFr49RH985WBvB8sLm5mWF/BYZyjesPLVOUa48ePUrPoCcPLVMPHjzIJI5nnfhc9j37VVlMS+tR9qUemmzQKwfE6elpamRtWEsowYJtb2/nBiEFxvHxcS5gXV2oLF054B9iyqBugp7LAOvIjuMCvL297ZIRsIx28dENrHXFODw8LM0eXxfeRtG60XibqG63mztAaTZvLkTWFNrpdHKC7uTkJEdnrffUrRcXfSUlsAei/f391D/qEqqHKt4HZF3GrPvE0dFRLhdYv9/PEYXo5Kt7kNKDHcukRCu8cqLrBojCkUGj2r+cT9z0qfsfF2earPf3912aVv5f10WJddJ5aum/NehWKcSt25JHf25d/LxNxcnJSW7e6bPqHKQIfY912+33+5l68DNu+Cypgua+8pQBlir86Ogoo0jSMuhn49SJsG4ZShXOz5Q0iOOfm7zj4+PkysMFjP2pC58ePi3hxrSIGgg9rCuZC+vJDR8X4jt37uDHP/4xgNFGVzfzfAblvh62m8ipQig5TxENPt8PDOU4+4zynLLjxo0bSXbwIMgD1OLiYhpnusGz/aPXJjZ/dr1VV1C296NHj5I8o+xSAhPOMa5R/F835aoUKUpjcZEYDAa50AWOt62trfQZx5QquMZJ4TAOPKpzQuU454CSgnhU+krRDyBDmkR5qod4YlLXPi9FjnWXVgWE5lajzONnWh9dp1kPPtOSqGiOQI+AaxKlBGEVYouLi6m+d+/eBTAcY//+7/+eygQAv//7vw8A+KM/+iP89m//NoDRQf4f//EfAQD/9E//lOpHGdLr9VK7eHK8bp20fTQNEjAaKxryQ7nW6/WSsp2ELcwL+Omnn+bChijPP/vss/Q7VZByDFOesH+rrlHh2hcIBAKBQCAQCAQCNVGq5vC001aLDOStMKrJtybd7e3tnDlUKVt5mqc2ZnFxMf2tgWl8b90TsGolrHXNC1BXa5ilgFdAqNa8AAAgAElEQVQNvA0m9OhY1bJiNe7qumTJEs6Dmo2VZt7CWvYWFxdz2bv1ammcVXtQZnkjOFaUXKMqaGoFijOTq5uL0hxbrb9elcQE8JMBEpr4zqO3Hzd5rWrJlFAC8N0tV1dXM5TmQDawl/fR1M177ty5k7Q6GkRPbY2ar4Fhe9a1ErDdz7NIWc3Z/Px8GmueRbjIInVycpIro5ckUPurjlup9ql1q1MNOtvVs7p6891a3VSbZ1MVaHtZuTKOK5Ln/mbno8okai3X19dTH1pa8FarlYJ82Y8cC5ubm6kN+J26jNq+msS9SqmAvdQPmkgSyKbYsEkeX3755WSd4nzkHHn69Gn6m9pL9UTwLB6TuGBaba8+SwPjgaxFlmWj1vXGjRuZ4H8AGRp3T1tvx30TyaAV1pW+0+lk3MFYRlrmrRdBq9XKkQaVpSnxEs9fhEXKtpW6mnI/RLfsjz76KNWPJChMjOoRel0ErAfL7Oxsand1aVYPISDrhaQpPICRu9b+/n5OLqsLeJNuijbcQdcPO5eUYIrf8f7d3d2cRUpJ1awLeKfTcd2AWa5J4K0ZwHCOsK3Z9vfv308yjtan3/3d3wUAfPOb30yWK1Ki/93f/R2A4d6EqSGUatxSrk9ijedeutvtpr0Z5wjbeGNjI60/LMf6+nqSD9bF76OPPsq5y6u3Du/ju2dmZnLpFyhPjo6OKu3HwyIVCAQCgUAgEAgEAjVRKUbKS2inml9L5ekRSmhcFE/xlhBhfn4+nQTVF9eedFVrMS7ZhJcktiz42dOqexTwngaZ0PdZLYlnragKakA8mlKP+lu1L9QYU5NJS1Cv18slQtS6WBKDmZmZnNVGtYB1+8kj/ijzM9ZAUhurpdYqG6+mxBQ2wN+zfrAM7Xa7tt+6LT+Qt2KoX7kX06K+6cBQQ8Q+s7TmGjvBa6/XS+Xgs7wYsqrQGCmPVIX/e8QN7DuOQbXasC94VcuUjW+bmZkp1I5pfFIVeP7enkXUWsz29/cLx5Ymjtb5CAz7wFLxa8oEa+XTZ1TFebTnQDbRIsuxsrKSfkuNHrWES0tLSTvIslLG88r6AcN+t2O9qaSbFjrmrTVxZ2cnzS8bHP/8888nKnRqaTW4nHVX0omi2JtxtLMeqYO1tmnyWsoATRFBLa3GRVlLFJ95fHyc5q9erQXIs4rVha4BVove7XZTXfR+u6aqfPHWApbVWtJ0TW2iLmUoe65aRygbaPm8f/9+am/2L+eXxqZdhkVKPXasV0u73c6ldqBl4cmTJ7kYXU2ySqhMatpyWDQe+D5NbwNkY4BYFiWssfH9nDdANjYKON8iNel8svUEhn2gsfjAMIb1q1/9KgDgV37lVwCMrJ7//d//jb//+78HAHz/+98HMPKSeeWVV1JMNi1aJycnqX+9dbgu2Nbz8/Op/ex54smTJxnSH2Ao+7hO0TOCsVIffPBBus9atx48eJDGpCb8Zj9xLeD14OAg08dFCItUIBAIBAKBQCAQCNREqUrdi0WyGj6PgWxrayunndTEZRoTBWR9FT0/U6uVVUryutpZT0vF8qjmosyvllCrk9XGqxZNrRi837NOjAtlOCyiN1bKZmXm82KjgOGJXFkJFZoAVTXtRX0xjvbF80u1dVPWLO/dVhOlMVWWGr3f77ufWXZFL/FjVWgZrVaW/aS+1h6LpKVlbrVabsJYXqlpo5ZMx6M3tutaBzQBrrVEeTFSOmdsLJgX+2YtUmrdUfC51u++roXXi1PxZJ61PikVv43D0/Jan3xthzIqb/18XJmhsUiaPB0YtqtaLYGhDGD7P3z4EMBI67y2tpasHvwd48b29vZyNMmzs7Olc2camnYvxnF/fz+XdoOW3GeeeSbFpVBjS8vUwcFBup9toEyEdk6NA88iZWXe3NxcalPes7i4mNpb6YGBoYy3Hgs6Lu2YPTg4KLVI1ZV7Xr96SVft2l627muMrmUTPo/x8rJhmd2o+V5dXU3tbRM/TzLnJykjofsXu14B2dQawGh8PX78OK1T3Afq2POSJDeRsBbI9r2V41ovrosak68JeLV+W1tbqY6cL3ymjmEvdt5LjzDuuPQo1HV/YuMll5eXU1wQy/P2228DAH74wx/iP//zPwGM5tDrr78OAHjzzTdTvLXGoluPskk8xDTW0XrIqDVJE8EDQzmnMeTAiLXv9u3bufvZh0+fPk1rGWWkxrPadWt+fn5y+nMVoHYjqRvSMvcAHWgsqEd6AAw38dbVzHMxU8E67sTTgVzmHqabqKJDlQoAz+2vjA66iWBytqO6Q9hJvbCw4OaKsu2teZLY3p77hF2klCTDM6XXpdVWN7uinFu6eVeXKdsXiqLNsea60s27JTvQa906ab9aNxeW9ezsLAkUbceinEt66Lcm/e3t7dzY63Q67sbElq8q+C5ValhlgneQ0kO/JweKXPs0+FM35nyWPbxoQP24KNv4a51t0LUSLNg8P3ropdDWQ6/NRdVU3hsvbQGQzV+nrmDcaNM1h2157dq1HBkAD1KHh4c5MgB1s7N0x5NuEq188p7H7w4PD9OBiJsipT7mhoNX3nN6eppLp9Dr9TKy15alic2vHWedTifNEyUWYnvblBWdTifj9gNkXZfZv1R06kGqyJ1/GrByWRUmlhRKy+LRw5eRZEyzDudB12fOC7rvaT/ZPFgqK+3zpl1eIKv0s2vq0dFRGjuEygzOH5ujThWv+vymXPrKwlI8N1nOqfn5+VwOVCVO03kCZHOJqpsaMOzTolxL44zDMrmmz7Nu4b1eL8n5Dz74AMCI5OSDDz5I5b1z5w4A4LXXXgMwlPF6iASGcsK6ZE8ix3U9tEpfzblIsgkegq5evZrLxUlCrlu3bmXSdGjZ9vb20rN41X7y1ukqZFXh2hcIBAKBQCAQCAQCNVE5IS9RFrSpGmYbsMcT/2AwyLibAVnKQRvsNT8/nzPxF2W/rgN1D7AaUnUZ0+9snbXutl1U+2rvV62Od7qv616l5mNrieJpvdvt5jQmqvm2FjI1d3pundZioPTJ1npzcnJSm9Kd2ojZ2dn0HKs1UCtIGbGB9qsdOxo0a60FWm6bzE9JD5qAp4nTcVBGfGDHXlm51PRvXWzHsXawz9XqZMeSWo51ztr5rNnlrWufN86s65G+05JPjIMiq6G+R131ioLz1WJtLYSaasEb103SAXuuF2rd0/ZnOSxpENtgdXU13UcLjVpvLAW1ejV4Fv1pwVqrNFia5VWCIwZV0yJFzebW1lYuqfLR0VFOQ6/9NUnCTS/QHxjKbE3ES1irriYT5XyhpUCD6Nl3SjhT5sbcRF95RBpWdlV9j7cWn0f4cJmw+yH2q6YaUDds4qLK7XlNeGNaXWXt2shxtrm5meaK1errPqcqtXudsee5ydrnqBVJrSH8nvNGQ1b4tyUw6nQ6mb0Wn19Eez4p2URRnXTtUEp0ehTYdETLy8vJnZmucbSEqhs066379yYo+fks9ZhiX+heS6nQgWFoA9uZ5aBX1fXr15Ol18o3tcLTg0LfTZmnYQrW08RDWKQCgUAgEAgEAoFAoCbq8TfD95u1msx2u51OlVarpfdbP3olRFBLQdnJt+6pXv1fiyw/arnQU73VqJYF6+vv62qXxw3o9WjYPYp2LY8XH8bvbN9pfI496WsQok12O06iV7Xo2XbzLExlBBQeOUmZVZP1VRIRj8SjboxUGc4LwLflVIuI1cp6hAlV31N37CnVve0Lz8LitbftL03QSe1YmUVKrWy2n+rSuXvaVztftc3LSGh0vHqB1WUo8qVvioLa8yywVMCnp6c5ul/K5/X19XQ/tZW8zszM5IhqvDjJJq1t+hztN48mWGMIAWTo0GmdokaTV421UFIaqxVtGnZOAX57sRxK3AQM5wjjOSxdsdKfa4C3va/svZOgbrxIlfsukpSh7P1FZbVkE7rfKaLd1oTeF2lRs+stkI+R11hApQnnVe+zz7TPb5JUQ+Wa9RDQdUb3nkA2TQPnDeXa9vZ2xrKhz1KPH927eiQTWr5xUDYG9H1aD+stpOQaXGNZbo2bZF+qN5X19JlkTHqxn7zqOs++oBVpY2MjQ4rEsgFDOU6SDCvjZ2dnk8yz65ZCveuq7CFKD1Jl7kY6MSzT3uLiYq5xdQPq8e0D2Vw0ZRtcdZ+rO/F0o1W0+VLmNA1ctW57ZSxLKiS8w1VZvqm6dfJYb8oOnV4+HDspVAjwfj1IaW4mYLgQq3sI7+Pv6rrBlS2yHkuMN0a9Q1PRQapu240jPOqylXnuKmX3V5mvReUYFxrM6QUP8/8yZYIN2PeUM3qgqpPvq9/vj3XgLVvUvXFXdkj3nuWxSum1ygF4kjpZBQqQdwc+PT1NiwznMvvjypUrqX6W+U3ZsNRFuijoe5rwNrYcNxpEDmSDjhm4zBwlu7u7OQZPLz9Y0+W2z1XCAk/hY+X48fFxksv2d8qOqZuWqhu1KpjWxv+yD0znoaqbmrpsqjsmMJIHyqh5EQepIgXH2dlZTpmgSlKPEdfKMVUIWAV5lbWtKjz5attc3fGU3MfmyKR82NnZyZFmKOGBJUMrc823f9epkwdPGWrJfYB8XsL5+fn0W5v/UN0XtU5Fsm6SsalkTTxIaR5Q6zb69OnT5Mpn23ZhYSEx8vEA5Y0H1nN3dzdnePBkaxnCtS8QCAQCgUAgEAgEaqKSa5+nBVNNLE+reiK1WlklA/DowPVefZaXB0C1dXVNpJ450n7mne61HHXNs1WsH5OYt8s0OqqdUE2qvpPfF33nWaQ01xIwPN17xAD83STEDGXuTV6d7Tgps9R4rgbe/UUWhUlR112lKctEU1BX0KIxfZ5FyiNhUU0t4FOjq8WzyNrRarUq0ZcSXttUGUee5bmsrp4125MrTWqgPbcP1dZaynXNX8b2pTtFr9dLn1FLyHbWFBf6vmm7inmwfaCuPtbFQ7XKHG+0TD19+jRpplUDb4lw9L1NEJ0Qnju2fmffr2W08lDXBEsM5PVTUZkuGpf9/mlA9zbWhUhdLC+DbIJQWeG5fXr7AyBr7fb2OU2lP/DgWYDKrIAqr+zehvJhd3c310dqxbcWKc8DoOmcZlU9WrxQD97DelqLO+CTkNnnN0Ga0Wq1cq7l7AcdR2olpJufR3KlnhPAaGz2+/007ljPfr+fS8nknQ/KEBapQCAQCAQCgUAgEKiJSjFS+rcN2PPuVw1ZlSSqZf6d3mlXT/fjnobPq5tnBWlKq+DRTFfxEy6CRy5grXgaD6X15am8TPNgiSjUt75K8tqTk5OJiBnK/MOrfOb1dZHVyv7txShcNM4b45epqdV2LIoR8uL/vDmvFhF+xvGoqRLUBx/IWga8WCn6fk8KT7vpyaIqFmLP0q33NKHts2VVWDnRarVyMuDw8DC1NZ+h9NpWg6nUsXwWoTGmRbKvKXjywhtvHDMcH7SsASN5yNi8tbW1XIC5WvltCg37zknrov9748zep+unlb069qyFwbN+lFnmP4/4eSij3Ut4lkM7ry4bOl60TF5SZEI9l/T/qp434/alJz89UiNrhVfLoJes2qYM0VQ+lrZe95FejHUTe1eLojhsuyZ58bhWhnlEafqOJtYmHfPWC0VJjyiref/+/n4mtlXv1wTljKPSdDp2D6geVoSuIWGRCgQCgUAgEAgEAoEpoHKMlP3b09qr9sGe2JUK2Won9ITraTfKNB51T8VVmGHOzs5qn/rrlKdJdhr7bmvR0/6yWpHj4+PSODXCtvvJyUnO6qQaNaup9qiPx0GZhr8MVZhyirSuth3LynIemo51qvOsaWlptX2Uwc9ePR95wo5LpeonlB2J/s8ai2c1VjreJmVUK7N6jstA1wSL0zgoijf02kgTb/N7av3a7XZqc97D/pubmyuM2VFcpOWgbLxpol07PmmBW11dzcXmeevVtOpU1SrkeXQUMY2qFVXvsevyJHX6ebAOXSZ0LbZxxGUeMFUZ3KqiytqqaSaIojFU9NyqnjeTjhu1slgWWU22apPCDwaDnIWa7J79fj8Xz6sMgGWJasvivKti3D3peeUo8qQo+l2TY09ZT/lby+p9cnKSK9PR0VHqF97nxTWpJ4t9p1ohuZZZL5qq/VTZta/oO90keXTHFue5GljKxqq0402iiUl+UcGhQFbQlpXNtq1Hf1624dB+8DaudlOhv5tWezTVF56gKBNAkwr6ix5D0zps8bkq7LwDVRUCBo6bhYWFHOWoBgpbQoDl5eWcW6nnXtIUmjj8XKR8IMrGsyezlcTD5lNTEg9L5uFR5F5kwDyhyiMP1sXv4OAgs8kCRvXu9Xq53HkzMzM5WdfE4aMuyurppQipun7GIWj6mPZepknoodz7rMoaeRljyirxdKNu1xmlc+dGnfNd5Zx1Q+t2u8nFzCNNm1bfjjt/qxx2m3xfETwFO88RbE9tdx1rVGyxfzRvqD3w8kCl7th6WLKf6bioEsoTrn2BQCAQCAQCgUAgUBMzn3ctSCAQCAQCgUAgEAh83hAWqUAgEAgEAoFAIBCoiThIBQKBQCAQCAQCgUBNxEEqEAgEAoFAIBAIBGoiDlKBQCAQCAQCgUAgUBNxkAoEAoFAIBAIBAKBmoiDVCAQCAQCgUAgEAjURBykAoFAIBAIBAKBQKAm4iAVCAQCgUAgEAgEAjXRLvvy29/+dsrWW5S4Vz/n3969MzMz6ap/67XouVXwrW99K/8QB6xT1edr2YrKe3Z2lp53enoKABgMBpkrAMzOzqZrq9XKPMtrx7p1smWqA9t3g8EgVxd+12q1UvlZp1ar5fajxVtvvTWVfqqLKmWtiqr99NZbb9WqTJNlrItJxt40UHcceG1XpU5l9SkrgycndE7Z33r3131n1bn0F3/xF2fAUDbZuWz/tygq2yRjs+y3Vcfdn//5n58BwMHBAfb29jLPvXbtGgDghRdewPz8PADg3r17AIC3334bDx8+BADcuHEDAPDmm28CAG7duoV+vw8A+PTTTwEAm5ubAIbttLi4CADodDoAhjLPtp/XjnVlnsI+zxtL+r+3ttq15rznn3cPUL1O3/3ud9OP2VYnJycAgKOjIwDA4eEh9vf3ASD15c7ODnZ2dtLfwLCvAaDf76dnEO32cCuzsLCAXq8HAFhZWQEArK6upr955T0LCwupP//kT/6kMZk3zv5i0ueNK/OA+muTvtOOL/aFtyfgGDg9PcXx8TEApOvJyYm71+CVe43vfve759bJq08T6+m4+5EmZN5F7x/GqSvfOc7+oc4apHLQk2+6767yrCr3ldUpLFKBQCAQCAQCgUAgUBOlFqmqKNJyKlSzUFfLOQ2rhL6r7Pll2j49CfM+fkeN2WAwcLWWasmx5ZlEkzBuW9m+Ozk5SRpDT0s0NzeXe0aZ5nNcaNtWRRXNRpmF4LIxblmqalZ+HuFZbstg5+NFoMjSPhgMCi0WF1G+hYUFAEMtMK3MlE9qdfbkVJV2rFuHJtqAv5mdnU1/U17RunF8fIy1tTUAwNWrVwEAy8vL+OSTTwAAGxsbAEZWp2effRZLS0sARhYLWkNOTk6S5lxlX91xWRVFliLtk/M8P4Bs+1A+E4PBIDNGzyvDJNByW28NbVv24dHRUeZvYGi54v8ct7a+3nrdarWSlYRXzzukqXpWQZ0xPy2vjEmgbattCWQtUoT1bjk+Ps70JzAcB9bK4D2rTvkmwaTt/ouy9tbBRY1VTw7qGLFybdp9MfZByhPsOllsg+pBygqz81z8prVYEWXudfq//UwFB+tHNwEKh36/nxEUQHbTUtQWFwU7GNmHupBxkeM9LDOQP1ROA1X6/7y+0+fo3/rsz4Pga7oMn9cDo7fhqYK6B+tp9atXBqscUSFuN5E6b8o2g02AhwJ111V3Gv7Pzzw57s0pW95xlUHj1NeTvSw3D1L7+/vpvvX1dQBDtz9+9vTpUwDAo0ePAAAvv/xycv1aXl4GADx58gTA0K3Mto8eUprsO0+W6SHXO/TYsacHB6vg0jFoDyTeOtcUvAMUrzoOgeGhiRttu+E+OjpKz2C99XCrew0g2wZ2068HgUlwmQeoy1AWaTsWHVKBrCsfkFV20I1WFbb2MKb7oib6qQhNjPnPy9p6GS59Tb27Duxaqmtqmcv6NMoYrn2BQCAQCAQCgUAgUBOVLVJFGrezs7OkbVC3Eas1o0Zobm4upzHyTohVXe+ahFdHq1GxfwND7QktUdSkMMh5bm4uaUgZLHt6elpYp6qkDU3DWqQ80zvv6XQ6Oc3RYDCYimufoorWV7XoViuh5bJjsNVqXYo7GHFR7pyXZXmrYk2sWq5x3fyagmcVUG2pWmyBrAa9yCVJMY47axlokdLnWgvA0dGRq/n3XACJOm4TTY851YzTGsG6Ud7u7Oykcq+urgLIuu89ePAAAPDZZ58BALa2thIBBe/nvVtbW7k2m5ubK3TnHKf/yixRrIfnbjk7O5vGH9chXrWMnozX59rnW0wqo6q49ukYpMXCWqZ4r5ZJ28Ra5XSMeNaTSbwp6vRzk8QSdZ7XFNQqxPabm5tLbWvXVCWU4N5nd3c3Xdm/auG1+yh9X9MWqarEKkRT4RcXjbJyl3nyfB6h893uw+nCPjs7m3Nht7+3n01a97BIBQKBQCAQCAQCgUBNTEw2oZS6SmfJkyBPetQm6CnSaoJU41BGXDHtk3NRrBY1Yny/alRYdlqiSJW7sLCAbrcLYFS//f39nKaXUH/uJsp+XlsVaQk9elJCT/yXocXw/PlV22q1uLaNgWqayYvQOtl3eNqjKvFfvwgos0yVBZNfhsXajinV1lKr6gXycy5pHb34SNsWk9SRGuNut5t7l8apUL5Re3xwcJCzCpRRFWuZq/RlE1BvAM5fln9zczPRadPSdOvWLVy/fh0A8N577wEYWaTu37+PV155BcAoRooxU48fP07P0lgpyo8m66QWT89iRPCdc3Nzad2hVpZrTrvdzlkh2Zca3O9ZHJvsO69O3thTYglLNqFjz8bqEBrzpLK9KPZmEovUOJajIstl3di0y4qLYvup5dMSQii9PecMCV22trYADC1SvI/Pn5+fz4xbfc/c3FzO0l8VVdq1bH7pte7+quy+afehF7/uEc6UxcHaZ10WPA8OygPKFdZtfn4+jS2uBdZaeh7qesmERSoQCAQCgUAgEAgEamJi1j4g63MN+Ex11CZ0u92cNokaUz3x64nQsyjYMoxT7iJrgHeC17gmq5nc2dlJmluCdLu9Xi+nZWm32+kZ1nJXlEhsXBRZ1+z3XsxQ0Sle/dAv029Y36facavBVM2FHXvsm06nk8ahajkvqk6e1kvZ36zW6BfJEmWhcVzeOPPaoKn2KGOg87THKpt4H8eUxu4wNsDGGxbF5jVpbaNWbm5uLmex0DJSFlGW7e/vJznFK+OPPBlfZqUui80bZ46pp4NqrQFge3sbwFD7TU0433Hjxg3cvn0bwMh68/jxYwDDpL387ZUrVwAg0acvLi6mNtB6Wy15EzFSnqVdr1Z2LS4upjg4xnTxu5mZmQyDrF41NknXoaI1YRzoulZkkVLGSLVMFVmk1APEzh1dt9SqYWV73UTy48BjEyuCMmra33u0zuehSRY63aexHdUiZVkz2Yfb29spxQCvtEj1+/30XHrv6FymhVXX52kwHtr7dG9jx4pa2q0Ft2681bTg7R/m5uZynghaD8vKrHWqY5WedB5VkZ36DsoF+93S0lKSLUxf4TGtNolKB6nzGtO69vX7/UwuD2DUqVy8AN98W2Z6LBu048AKYR2ARXSyQDaYmf+TQpefsZOfffbZJCjoJqLCns+yQXHTRBnpgreZY93ZXu12O7cwTZP+3JbnvE01xwk3DNxIUsADo00XBfbS0lKGIESv9p1NoOgQr24oKlissPM28F77nPfei0KZkPT6sMjtV6lNPXekJhevMrdLS+er76WM47wHRlTbHIMq2LlZ0Do3eWCmbDo+Ps7RRrOsCwsLuXl+eHiYk3U8aOzs7KTDoZ1fZW5/Rag7LlV227nMdtzZ2UmHJJbx2WefxUsvvQRgSIUOAHfv3gUAfPjhh3j48CEA4MUXXwQwOkitrKwkKnRV0OiBxV7r9p22VZFCTccLD02rq6tpbeFnbJPj4+OcApD9pBTUSoJi3Z6ryJU6dSo7SOmBynPpA7IKMbvZ17VJ62E/U3lSd+2q0q/ehrbdbqfP7KHj8PAw56Kk7V+njJPKDK9NgeyBVMMVWBd1qQWGZC4kdLHzcGZmJo1VPVDRpZZXndNNK5m1rtrmlrBFFZpWfhOfJ8WmTcXT7XZzddHxZ9M6qFLFU7Bf9B6iqBw2vxzLv7Kykv7WtQ+YPHSmCOHaFwgEAoFAIBAIBAI1Udu1zzuNWovU/v5+0mBalzdqIQDkzMTdbtc9LVqLlGeRGAf2t6qtVVdEYHjKZdltUPOTJ0/SyZcmbGpuDw4O8NxzzwHIElBYlz7V5k4bnuXNSyZqg8+VdOIiNRVFFhd9J8uhpCDUSlATu7u7m6EuBkbj8eTkJN2v/WyDmZuoY1nwsY49JQSwwZPaF0WUsZfpdlkEtUxZ65oGn2vgKJC1ElrNpD6rSZc4W2aFF7jPz1hmWjNarRbu378PICsjgWFfUS7oWLCybpL63Lt3D8DQrUat6ADwzDPPABi6IpPyW11trLaZv1e3Obrr6LOtpUNdo5voGx0DXsoJlotymRbBF198MVmkXnjhBQDAD3/4QwDAp59+io8++ggA8OabbwIYacbX19cTKYVHD6/u6byOW0/vd5wP3W43ufGxv9bX19PftDCyfXZ2dlJ52T9si+3t7VzAv1rhm0xUq65rdr6rG59aaIosUgorP9X6pNeipLHTWrfUiqTeG+wX1pNz5+DgIOe1o2X13IstmnLn8yxRrIcNUzg9PU2yhBZbzpOPP/44WXi5HyI05IHW1LW1teRSqzKI72lKpnseOWrVphxhHRdRHDQAACAASURBVD1PK/VuYTnrpH9pasx5rq2sC8fR0tJSak+WkeVXOWrnoLoR6x5jEgv1pPAsUpxDLDfHE4Akz9mHSo7SaLkaf2IgEAgEAoFAIBAI/IKj9GhWptH2rEIaN6CJ1/QetVBZX+8ianQNzAaai5UqI3jQhHPAMPiY5aUWl+UeDAb4yU9+AmCo1QRGGpi9vb2kzb1161b6nbV4eYkupwXV3mnAMpDVhvEUrxYdYNiHRQQg04Tnu221C51OJ7UftUfs5/39/VQHgvXWwEXPytYENXpVTZXVPh4eHqbxZGNt5ubm0jikplr91z8vligLtbooaQuvNpEq55wGzmrMhW2zJi1TZVZ4yrOZmZmkMaf2bn19PZWZfWOtpO12O9WR0LiNJmTBJ598AmAYp0ANMclwaEG/efMmnn32WQBI9OBra2vJIkNNMeOK9vb2kkWKY5Ia6c3NzZzlS33x68ZPedB0DTZugxrlp0+fpvoxVuPk5CTJ4ddeey1Tt48//hg/+9nPMu3CdlpfX09twbppndSSMy68drCETEtLS0njyvF19erVTNJlABmSENaFVlHGq7BvgCxxha2LR4RTt05qkVJLFDCc/x6xhBcbBWTlsrWenGeRsp4XTVuktK2sFezs7Cz1C8cj5+PJyUnqV0sIo2uaxoU2aeH1YnQ9YgmbxmZvby+NJ8oZxhx+8sknSUaw/Byni4uLafxS3jzzzDOpDdhm/J1af8etm/e5HUdKzkJLB+Xa06dPM+suMNoDLiws5NJelL17UngkGawHxw3bWuW4xo8CQxnA+qoXFZ9JWUro2nQZlikdmxwb7B/WSa2d7BPWsdvt5uJam5g/lckmbGN5TDK6MbKuIJrhmr/lJpadvLS05JoqPZe+ceE1ng1a10nLCb26upoWVQYi02VvfX09ddiPfvQjAKPO/fDDDzPPBYbMURSWyj6lZZkGrNDQDR6FGt2RlIufwlCZdyxJhrpXTavcHhuTdec5OzvLHU55eNrY2MgxWOkByrrIKfmJdd0pYyGbBIPBILfRePr0aVqkeFDn/Or1emkDbBduNcNPOxi2as4JT/hyzHOcffTRR0moc1wyv8/MzEwas1UwiYuVhW6+rIvOyclJ6hPOL27QFxYW0mHJbnRnZ2dz+em8xWoScEMwGAxS2bip1nHFA8bzzz8PALh9+3bKv0S5wLbv9XqpfpSLPFBtbGxkDlXAcB2wbjF6sKrbRzbvHTDaeFK2tlqttP5w3mxtbSXXvi984QupngDw05/+FB988AGAkTskx93a2lpqAw1gtodD3TSP23e6CbekIL1eL40lXnu9XpJPNuD/008/xYcffghgtMHVzS3lp27iPRdqvdaB9pPnwgsM29HmkdK2teuzzg/rejQ3N5cjC1CFmz1INSXDPfdzqwzZ29tLbm8cZzyE9Hq9zKEdGM2rs7OzTG43ftakTNf2tAdRzRPFPuNc3tjYwMcffwwAuXH2+PHjdD/lBseZsmdyH7W2tpb6zCqqTk9Pa+2N6vYrx9/e3l6SY5SNvB4cHKR6cM1VMoymx1QdqHKcZaJ8uHbtWpLVHnEb11rKNa5NnU4n7c3V9bcJl99x4bkg2/1pp9NJc0hDN4As+U6T/RSufYFAIBAIBAKBQCBQE2NHXal1w2pjlKiAmgvNP0INB0+7PDkrbaFH/VnmXjhO+e3vNY+KuuYR1KZQc0vL1O3bt5PrEU/+//M//wNgaJniSZkaU2Ck4dXPmqhXGayGUQOXqf26efMmgOFJnhpBajjUsmY1sWUuSE0HiSq9J62arMfc3FzSRij9NDDsV2r0bE6Vg4OD1Nf83fz8fI7mvYlgcg98lrovaBAvtX50PeJ3165dS/2jrmRaZn3+ea5i41I2nwdv7ClBiF4fPHiQtJuUESz3/Px8zko4bXjEKgQ16EqwY0lLVlZW0nxXWmpgKF88Cuoi94lxxhx/e3BwkMrL9tTAcLY5ZcBLL72UrDe0UvG7tbW1ZCXh+FN5TjlI2ffkyZOMdQrIzsG6LozqTq5pGYCRLJifn0+WMVrg7t+/jzt37gBAutIy9a//+q9J+/zTn/4UAPDLv/zLAIZzy8qVzc3NnNVE+62uHPesGdTQK6U+368uKpRr1CqzL9977z28//77mTbg2tztdtO4JDz6Zy+PTlWoS5pHew5kPUCUBr0oV49HiKBuaGWufV66j0nkeNGexLNaP3z4MPULr8Rzzz2XrJ9f+tKXAIz6d3NzM5czp2kPAyWdKqK/V6s75/Unn3ySrGsM7Kfb4uHhYZKBnDuUI3fu3En7J+6dFhYWUpvxPUpQogRLTUDTirCPnjx5kqzR7CPKq+Xl5bT345VlV/dL64o6TXjeOpQVSpRDecxxREvo3t5eci+l7OPeQvdPlPFNkn7UgbUiqeXUussOBoPUL9yza65br/xF62tVz4KwSAUCgUAgEAgEAoFATdS2SFm/Xw1O9GiXlTqS/1PTZQOS+/1+OgXztOnFYtmkYnVQFjhLTcLp6WmKK1D6XNaB5acl7ZVXXkmaPZ78qYF55513ks+tBvWxDtQaWO1P0/ACK+fm5lJ722Dy5eXlVF/V1vB3dfzlm66T1sP6A6+urqb60cqmSaBtvB3HnpIFqJbZxso17QftaUA4rtn+e3t7yUJKrT6/6/V6ubHEtpidnc1offn8Io3StBJd699KecsxZ8v4/vvvJ4sA60sN2ubmZqqn0oZXzYZepw5l2mYrB/v9ftKMKbU5MOwPa81Q8h0vyWOTc4YWmrOzs1yMg2ooqZGkJvZnP/tZogh/+eWXM9cXXnghWac43ti36+vrmUTXLAPLofTbwDCG0abJOA8eiQHnqGpkKbM4fu7du5fqzjiHN954A8AwboPjzlpxrl27lvqQWs7t7e0cRfckVlIdXzb2h23b7XZzgfg7OzuZ+EIAePfddwEAP/7xj3Oadf7+6tWrOep4pX+2wfNliYKLUGaRUnnLdtTveL8XN11mkdJ4KV6L9iiTWKTK5uhgMEhjQvcS3E+wXWih+dVf/VX81m/9FoDRuOQ82dnZySUsVvnklaOu/NAYKbu2q9WGZWLM4UcffZSzRNGaND8/n4gkKDdeffXVdGU9KSPOzs7S3LSWoknIJghvrbX704ODg3Qfy/7FL34RwNByzb8pCzSOnPJMPQu8dzaBojhGtSirFZvyw9Z3Y2Mj45UAjNp8fX099Q33t14y7IuA9VpRojT2gcZ4cU3SFCSAn5S+CYRFKhAIBAKBQCAQCARqYuwYKfU1tlohZcnhqVV9XamxoPZB41bUKqS/bxqen7X6Alvqy48//jid3K1V4Jvf/GbSXnzta18DMDrt9nq9pOWkRpDvAPKJ3aaZ2JZQi46n8QSGmj2W8TLZaBQe5SfbmVrUK1euJIsFGcfU6mfja5SBy9PAFr27adY+1bjY2AC1vFEbTk3RzZs3k9WA2k1aFU9OTtKY8zT404ZqkpVVCBhaMRh/YynO+/1+0pwpqxVhE3teFIuQzhtLu398fJyhnOZnwHAuaRwoMBp/mozU862fxPpOaHyWjRGhnNvd3U1jhW2ujG//93//B2AUF3rnzp0UY8TxRxm4srKS6sf6Ki2vpSnvdDqZWNQ60PHM8cbnLy8vp79Zt3v37qU5T+0yY1JeeeWVJKupZWf9X3vttVQXWlIfPnyYs0h5FN1VoX1jGdPUksJ3aRwvLQTsp3feeQfAMNaL9WX7KDOrtWIvLy8nTbZNMzAYDMa2SCkbqbWuHB8f56xUp6enuXd58RHeuuWx9jXJ1lf2W5WzNqF9v99PY54y+td//dcBAL/zO7+Dr371qwBG7cJ+29nZScyzHG/K7NhE7LhtHyC/R9na2koWWlovPvnkk7RH4n0cPzdv3kwpBmj15Zx77rnn0nzS9CR8hvWGOTw8HMsiVdUCxPG0vr6e1iFa3F9//XUAwJe//OU097kHZMzyzs6Om9Zh2vFEnmXKWhQHg0EuKTdj3B4+fJj61FpLlblZ52LReBunrmXeK2VJp1utVvLu4DxQ7xV+xv7S2GSuF03GWNc+SHk06DY4Ud0DKOC0IpYOXM23/ExpJYs6aByzvN7vZbUGhgKYjU0B9vDhw7RY2YG3sbGBb3zjGwBGm0EGIx4cHCQhxYPY/v5+LtC+KIfWNKGbdiXaYBlYd25y1D1z2oGUOsEsUYKW2Tt02HxKmtXb5iTjd3rI1TxMZeWaFizFp1KcW4r2l19+OQl6uk2w/pqPSRcmK6imLezVHUBN8xRy3JDz4KsBoVyo2BfLy8u5fpkWFX0RVOaxP1qtVmpjdVkDsjTT3Lhys6FjWBetorxl4/QVN8mdTid3iFH5bMkgnjx5kjZJlF08WLz//vvpIMz+4//PPfdccqtlfWdnZ9Ncs1Thc3NzLulOFehByrpsLC0tJYWD0qBbanOW+4033sC//Mu/ABjl9+H4e/LkSY5QaHFxMUflrrnEmiCbsP1+dHSU6st3P378ONMvwOgg+OjRo3Qf24Lj4fr16+nwq/1FudNE8LzKbI9kgs+3BymPEl8Vn5ZQQg9P1rVPFWjeQWoapEHeAV/HI+fMb/7mbwIA3nzzzSS3OeZ4WPnss8+STLEun4omDofq/mvz+z1+/DiX/2praytHcc4x9dprr6UDFNcoKl00d54q1K17tKaXqKNMqtKnMzMzufFz7dq1tA6RhIaKlvX19aR4Yv0pSx48eJChpgcuRiluoXs6zi91neaeVfeumhcPyB6qbcoZj1yOaJqAy9YLyMogrqGcU5ozkHXnmOS9HtlEE+UO175AIBAIBAKBQCAQqInaFimr0VftLLWci4uLmcSNQJbq1mqUVZtnNVNlp/pJTImq8WJdNEiZ2lOW9ejoCD/5yU8AjLSy1E5sbW2lE/5XvvIVACOt5fz8fNJkauJRS2c6Sb3K6Bz1Hmv9Ojw8TBogBpGyvt1uN0O/DYw0U6oVnbZVw3OvU42L5ybK8WQTPj/77LOpvtS+sO8fP36c+0yDlKcdYOkltKW2bHl5OZWJQa4cqy+88ELOpU+tvx4BzEVZovQ97BP2087OTtKyUjZQfty+fTtpMGmpYD8rvbFXp2m4W3ouRpR5atHR4H9gNG92d3dTuSgPOSaPjo5c9+cmwbGiyUotGcTS0lKaL5pMl1Y1Wqs0eaOl5Kfb30svvVRKl26pvVmGcWHbjX2zuLiY3IforrixsZHkN+tEa8wbb7yRyk2yBlI7f/rpp+k+yvaVlZXUHnbdmpubG9sipdZIjkF1HeQ7+O779+9nrBf63dnZWc5SwASot2/fTpZuTcdh32nLUgce2YS96rqv7lFW5ipJUpFLerfbzVntlRDLWxebhMo8S7Bz7dq1NB5p5aDnyunpaRqXTJ3y3nvvARhZP4DRvNW6NCHzdG21hDTqMqUyjb9jnTg/SCzx+uuvJ1c+ygYN/udazGdtb2+nvy0ZzjRot9XyyzVF5SDHJ62777zzTpIHlHmUK2dnZznZel4KhGm4l56enqZ9DNchtbjQokjrzcHBQXqWEs4Aw7WKslnnVJG1/CKgrsKcVxxT3MM+evQo/W29zTwXzCbmT1ikAoFAIBAIBAKBQKAmSi1SnpbcfleUPJBaMPrCKj2sDaTVgGqr2VM6zirJX8+DPY3yHcDo1LqwsJALDl9aWkr1+/GPfwxgdAJ+++23U/2ovaEP9PLyciZ4DxhqSm0Q+bQ0YwobmzYzM5M0TLyfWqK5ubkMXTsw0hxp4OdFaCOsZYDvPjo6SporWgeV6pPQxJLsT1pvlP6c9dPkml4QbpPw2s/6JS8sLOQCI6k1W1tbS/WzRC1K2qDjrMk+q6KV0ngBXh8+fJi0evwt67S9vZ36kNp/1vHs7Kw0YHyaMWxKJGCt8AsLC5mgaSBrBeFcUvp3YNhHNl5SY6SaiEVUzby1pClFriUe0GTiNkH57u5ushJSDlLbee/evWTZuX37NoCh5p1zjnXXhLKWvOM8eJTcGp/Eq6XK39/fT3ENjHllHMerr76aguM5NkkJf/fu3RRTxWetrKyk/qdVVS0rk5CgFMUnKUW0Wgr4N8cZ5cXa2lqaQ+wLxoTdvn07WRE0+aZSbNtr3fGo897G3nhU555FyloNNNbPI5vwiDqqyIxJUCbHNSie7U1NP9ecn/zkJ8mqSGsorYuHh4e5tDBqGWgCah20xARcW7e3tzPrJZBNY8E5zzn0hS98IVmi6EnBOXFwcOBau63HiI6LcetbxSqkMYi0AFL2sR0+++yz1CcsO2XN+vp6Jl7WvnfasVLafzZW9/DwMH3PNYnln5mZSXt165l17dq1JD8p5zRG6jKg8kRlHDCaZ0+fPk19SHliiSmaRlikAoFAIBAIBAKBQKAmKh/PrFVAtW2eBp0nWWoteZLsdrvpRGtPiTMzMzlmNo0XaFJz5LE9sR7dbjed0unDvLKyktPYkmpWaUGpGaNG5caNG+k0rzFZ9mR8ESx41vp1dHSUtBfUUFBjoVYdpSAFsswnF+kf68V42USL2q4sr/o828SZ1AxynOrvgLx2qSm/9CrtpppYa71l/5yeniaNmbW2Km2uavg81ppJcR7zjZ3Xm5ubyfecWk72xdHRUYZFERj1a9V50qRlytPMsx801oiaXF5p7X306FFOxlC+7O3t5SyoZTTT4zAMeWxwGm8CDMcT54l6E1j/c9UeK60zMGIz3dvbS9pcfnbz5s0Uj8NYHdUkeixkVerkxX5qrJSNSdvb20uWs7t37wIYxXTcunUrxa78x3/8R6onMIyTYJ0Y86oWKUthf3p6OrZFSlkubZzS8fFxmi8aT8I6azwc/2d5aZFijNQzzzyT5hzHhVqHvGvdsefFSHlrvBe3YPcVZRYptUJ6Hi9F1oxJLfRljMKWnlxjbml54RhUCnuOT/Z9t9vNJUlu2kPC8/KwrL3Hx8eZ9BVAllGW84iW29u3b6f72AaUGVtbW5lYTGC4XikzsEUdWV71Xitn9/b2ctZ3zvsnT56k8lnPAo2rL6KlvwioRUo9JCwDo8oLymPKMMqQq1ev5rwHymTaRXonnZycpPalRZTX/f393H7cpkRourxj27m8jYq6jXABs6QK8/Pz6beWgtcLsm36gKGB3Xy25/5kN+br6+s5Om1uBO7evZsmHevLA8nMzExaxNU9ie+2G/NpufjpwVFzn1gqYnX5sUH903IPqwutE4WGwgbLKv25PRQSGsBM6CH+Ms3ZGrRqXUIPDw+ToNcAYGC4wbWZ4svyQTRRTn2/ltnmpDk5OcllgtcDhXX/0XdUpbadFPYA5Y0HlQmcQ7xfqXI5l/gdF6ter5c7rOtBqknlkbaJpYNWSmk9HHIhpazTg5TmoAKyeYF48NIFXA+WwMi9dm1tLcnISWBp5NvtdoZACBhuilhubmIpq5eXl5NbEt2UGPD/6aefpsWZbbG0tJSey3mm47uuG4n2tSUcUbdspYQGhn3IA5E9RKyurqaDFDe8bHcde7oWeq53vKfueNTDkn1u2QFNcwRaimollLAHKi90wHNHmsRd0T7DgyezW61WWns5j9gGe3t7aVza/ZGmk1FX87L31+0n9s3h4WGOelwVE9ZV9urVq+lgTjc+jjMlkeH+SPMY2XQL6opuMW0qcT3k2zxnmpOIfytJDzDsI+uiPa19UhlxlB4wNBerTZnAcbSyspL+5j1KNmFdSr09+kVC68myWLKTwWCQlBF0KVVlTB1XT/t3EcK1LxAIBAKBQCAQCARqopLKrIy4QE+o6opETSBPi0Sn00nPU1dA/k61srwWWW3GOfGra4u1SHmZ1nlKv3btWjqpU1vJ8q+srKTgNp74WVale+ez1Dw6DTcrD+raR63YwcFBzmJITd/i4mLql7IgysuAWqRsIuGzs1FCQboRsN/a7Xbqc97P+us4u2yti4eiJLpK/GETAp6cnLjW1mn3n2eZ8pLo2r5gPdTq5LmQXjTtqn2PtqFqKC0xCTW7T58+TRpz9ofOM3X55fO9dzZVfsB3VbWa/E6nk0t6SFed3d3dpEm2rjD7+/s5+bm7u5tLDk1L1tbWViZBZx3oWPEIGlgnrkO9Xi+9l65UvH7xi19Msp3uSSQAePz4cbqP93Q6nRw9sMqTcftM+99aQ09OTnJr78LCQo7em/22urqatLK0pCkNPZ+llnrroqrW0Ulc+yxZlBIWWaupWpHU/ZRXS9WsrjvWDbpM3o1jkaraBva9g8Eg5xGhLnWEtT55rt1Nyz5NkmxDAFiOXq+X2lmTOjP8gZZOjq+zs7M013SuA0OLnFqiWAbPm4HXptat89rOko+px5RN9qyeBtZ7okmL4XnQ59k1H8i7/bPcvV4v51qu9bdj8bx310XdPvW8Qzje6No3OzubrJ3WK0DPGE26/4dFKhAIBAKBQCAQCARqYmIuQC/mot1uZ4LhFZ1OJ2eZUf/mskSyTZziVeNlNZnUCu3t7WXiiICh1kSTFgIjrYwmB6N2lr9TX+bLiLnROnr04TYwUclErIbdasUUl2GlUm2ixgBZy5vSnxO8R/32rYbC80VuCnWsKl7bqoZJfaH1mR5pgfruX5RlCshrh71623pUfb5nrZoGtC2tVV1JdDSJNzCMAbBafpV9HoHPNKxtakmrYqXS2DYvforyj5Y3WqT29vbchJocA5Q51BpqgHRVlMUJqPXGxjT0er1kuWXMFq1Ozz33XLLeMHD+nXfeATC09jJGivFfV69eTTEEbBdPDlVFmeeHjj2bbqTVauViGTQ2jHEtVvOs8VBqKbHxlJPE63mWNNsu3vzV9cfGQ6mm3IuRsgREZbHXk1gOy+CNTy/2UfvVprjQ9bbOejFOfdSCbGUb50673U5/c55cu3YtWQLsnk/lAPdFmkrFeiKofPJInsaV7XXaQ9vakkZo+gjbH7p/8Cyc0/ae8GJ69DNbJo1/11hLvbbbbZc4Y9prE3HeXsFarNX7jWsRx6S1rjaN2qx9Ft7g9vKsaKXthkkDwbwA3SIT3DgdqhO16HlKYsDF9vj4OC3AXJjUFYaf8Zk2ULOo3Bd5ACnbPH2en130XM/V5PT0NLN5A7IBlt5hg/eW5fSaljtZlY1tGcrcbYrG2UUfer13l82Buu6HF10fLbtuau1BhONJXd3UfRHI5ri5CJfSOs9V5jTL9tfpdDJ58YCRXOz3+zlGP92gW3l+fHycFr5xUDSnT05OcpvxlZWV5FLETR5zwzx+/DgtxnTfo9vSBx98kNYCJaew+bjUvXYSoqSy9daukZ1OJ3e40vxmlvFS5aO6dAFZt/YmCE/0Gfa53uFQDz/WpU/d9+xnuoeo4oY0SXhAGc5zI/T+BrLMgp7bbRU00U86vuzcn5+fT3Och6der5fut3nC+v1+Ju8cMJpz/X4/l4tS5U3RgaouxmmTon4A8uRH3jialuyuuh8o+9sq+4C8+5vnTnnZ4RyEtrHm+wSy7MyUZxxvaryxRG9NIFz7AoFAIBAIBAKBQKAmarv2VXVFsqdcPQlbTZ2aEj3tbJ1314EN0NWrtWposDQtHBqIZ4P4CHVp8E7ATQa8nQerjZibm8u1Kfut3W5PbAaddt08UgIgS2Wq/59nhfS0ld47i76bBE220SQWz4uwIlZ5z0XOi6oo63OVAbauR0dHOWuJus9Y8oDLtlJ78IK/bYoItc5oTjBei0gM9LlNQC1SlkBjcXExlY3aclqYHjx4kCxLDJxn7qVHjx7l8spcv349l0+M79PUEnVRJnfUqq7rl+0LpSv23J+BrEVKvyuzRNUdmyqLi+SqWiK0Tp5LHzAcX0V5pHTd8lxl7bUsZ1sdjGs1KtP4X4Qlyr5LCRWs69TCwkJKa6N7H2tt5/zW9BvW1VctO56XUFOyUPcIRd8Xwf7uPPe5nwdUad/LsEKNQzph11uOW/Uusp5hk7iIliEsUoFAIBAIBAKBQCBQExMn5C2C1TDp514APL/zTsrT1k57wbsst2rqqE2xCSg1PsLzfa5ixZhW3JQXOK70xrZ/NPmhJjRsulxNoczKR6hWtKgOZf7rRe/9vGmjJi3PRVpFP29tVwfeXNW40KLx50EtMXVJNppG3T6xlhH1LKAsVW21jaHQAPdxrQJl81/TI2iqDfrSU1vJmKkHDx6kpI60WjFG6sMPP0zxXiSb2N7eToQbNmmsl2T2PFTRnHsaVV03razWNiiLC62SbH2ccVdm8dfnauoU1qnIItXtdjPkEnrVmMPzxgb/H3fc143lrGv9bep5VaBz18aua9ydTYWi89paAfr9fvq7KMG6Puu8mJxx5d6k8rLu3mCaZWkKn7fYp3Fg+8KzQNv0PmGRCgQCgUAgEAgEAoHPCSamPz9PK+P5vvPk6Fmapm39KPP7Vp9gq2316C2VhcqWe5L4mmlo61VrqT7QRfFqaq36edVeeDErF8XQ9POESeoxbWvx5yFWqkoZVKtux9h5dLje/Gqy3uNau8tYnzx4VhONx7TWD48au0koBbmWg3EeZNij1nJjYyNZm8hORgvV9evXE7sfY6W2t7dTTJXGlgLNxXxViWHQsUewvzw2Uv3fxkM1ERelUOtXUXyQekuoZcTGP3kWKcvapzFkXjm8a5PWUA9NW6LqPLMqNK7MpjvRNmYZNemrzmMgGxdprVWEZ30qsxZchvxvMvbsMjFJPT4P5S+C5/113j1Avk7eGaau58zEB6mil3nuB/zcCm2915tcTULfXRZ4Z/nz1SXRCl4vl9Z5B6ppbeiLFivAp7m0RBi6AZo04PPzMgk/D5vxaWLcsdRke9R1c6k6B36e+qxIGAPlgcsXWccy+TDO7z3ohsjb7Fs67nFyLhW915bVHtparVaGtAAYHai2t7cTxTldxXjounbtWi5H4M7OTqJLt5vOw8ND142pqboVfUaUpd3Q67QOUPad3js8t1hC3UNtzqhOp+O69PFZ3jgoI5uYlptxnedeKBPbIAAAIABJREFU5qEMyCqwy/JGWiInnbuWdMJTkOieospe76Ll/y/qoeP/D1B5oq7N+t20EK59gUAgEAgEAoFAIFATMz/PQd+BQCAQCAQCgUAgcBkIi1QgEAgEAoFAIBAI1EQcpAKBQCAQCAQCgUCgJuIgFQgEAoFAIBAIBAI1EQepQCAQCAQCgUAgEKiJOEgFAoFAIBAIBAKBQE3EQSoQCAQCgUAgEAgEaiIOUoFAIBAIBAKBQCBQE+2yL7/zne+kJFNF2ae97PEnJycpu7VmlOeVGbOZlZz/a1ZtQjOPF10B4K233qqUuvjb3/52LnGWl0uLGZH1XfyMZWQ28Ha77daFsJm/T09Pc8/3ME6dbP/o/2XZnW27V4XNXK7wstr/2Z/9WaU6/eVf/uUZUD0DelnGdOK877y/yz4j/vAP/7BSnd56662xk7ZddNb0b33rW2PPJ2JaOerGbYsqdaraR1XKoJnWCR2nBNtJZYIn4yyq9pHK8SJ47xwMBkl2eWUsm/t2nrVarZyM8ebsd77znVpzyeuHsjaren9Z/9a9v2o/TSIf6qAJWTKOfBhXHnjyv6wOHJd6tWPbe9a3v/3tRsdelbGm5bBzjPDW5vPGIL+fZF9Uhkll+yRjsMrY+9M//dMzINuW3K91u10AwNLSElZXVwEgXZeWltIe7ujoCADw5MkTAMDHH3+Mu3fvAgDu3bsHAHj8+DEAoN/vY35+HgCwvr4OALh16xZu3rwJALhx4wYAYHl5GcBw78uy/cEf/MFU+ugyMYnMqzs26o7FaewfwiIVCAQCgUAgEAgEAjVRapEi9ARntT1qfeIJXrUA1KbwlN/tdpNGgFYc3qNaTmpC9XmelnYamnrVzmo5rMaIGo7Z2dmcRYp10rbw6lakoaqDqlahsmeXWWgmKdu4oHZHrZRlmskqFqlWq1XJWqWffV5QV8v+eYCnIVVU0STV0epeJKqUQT+jrCizSPEzlQ9F76uDMkuXWpw8y7n1NtD7Pe0+68q/KRdnZ2cz8lIxrjU8MB6qjqWm5xWfV+X9Zfe0Wq3C+eR5yOi+wnqVXAS0bHb+sR5lcu7s7CxX3mlZ+6viPNle9rn3jKahbefJJ2AomzqdDgBkrnaccl/b7/exu7sLAOl6cHAAYDjWbJ92Op20j7HvabVal96HgWqo0k+VDlJqGqdwOj4+BpA9SOlA4oBZWFgAACwuLgIYbpB52CD4zMPDQ/f5ZebwJqGTz3NzIawQb7fbuYmimyI+g+2kZnyvDHXrxTY7zw2yrE4WKrirHlbsBmmSflpaWkq/VbdQWx6vbGUHL1u/MneR88p9kYKw7F12Q6v4vByyPJdg72/+bxezMtfLaStWqqDsoFjWL54s0I1fE2PM21B6cpZ/65V/q4yx5bIHpLm5uXSA4n38H8jPx8FgkJMdgfEwrnJi3GeNA+9A5c0B+5muA3ZTrHsKjlGOXe/50z5Q6ft0rbEHOk/5YOdakStjk3K/7FnnoeiAXOaiXKQEbQre2LVK/U6nk5T6vLbb7YyRABjuSwFgb28vd5Dq9/u5+nAP2O1200FKn8/7+fxp4edR+fp5Q1UZGKrAQCAQCAQCgUAgEKiJUouUak8seQS1PWp25ql7cXERvV4PANJVXbX4LJpFearf29tLp3/VolqLRJk5vA7KrEJWczsYDHJaMA1epOWNbUAcHR2lZ9BEfJ6mpi7YnoPBwC03//e+K7NOeRYgXq1VTjVq1r1xHK0fgzI1SN27etaqonJ7dfKsVVX64CKsUZ7G1vaT50ar9b4Ma1UVy55HVqDWDktSU7WfJtGsToIyt7lWq5XqZq3x3txouuw63ykrrDv28fFxkr387OjoKGeR8qx/1MCq1YnyoSwo3rMsXwTKNOj2njruaJeFsvXEw7gyr2l4batrlK2ThgB4XiG88n67DgGjfYvubca1SpV5j3hjqdVq5dxnWQ711FEPHd5jSazUkt2kzBvHul80V7S+1hLH74Gsh09T3kaeW6S1XqpFijKs3W5nZCIw2qfu7u5iZ2cn8xn7qNPpZFz6gKE3lnXt47vLvIEmRZnMrfv7XzTL1bTqExapQCAQCAQCgUAgEKiJUouUBm1a33hqH+fm5tKpe2VlBcDQmsAYF6tl2dvbw+bmJgDg6dOnAJBO+f1+3w3Y42neWoKKfIfHhWqSreZItU9ad2CoTWJ9qeFQjQM1HGVBp0RZ/NR55faCalUDZ7XRWs+ymAxr2dHAcfav95l+V1frx7Gkv7VaSM8y5sVNlcV2VdXKev11UVpqpaH2qH0Jz2JXheRgWtA+t1ZknQNe+gSCn3mxeGXxbRelVdN+sL71ZaQ7qqG08UFN90uZXOP1+Pi4VD5YrbemsfACtq2md25uLmch8DTR00LZWNG5ZeXURc6XqvDifazF2pNXXtB93bjQaaAoTlDj9xSe1UljUdiH/F3Z2tOUZcBaY7wYr7m5uZx3CrG8vJzmDOvNOJzT09NUP409tKQ0TVvjq3jLlMUwn52d5frOk5e65yuKlRw35kvLZS1G3W43Z01X7wH20d7eHoDhPpV9sr+/n7mn0+lk9oNA1iJlY6SOj4+nIk8mWffqxvleNqp4FFwUwiIVCAQCgUAgEAgEAjVRapHyTvVW+9jr9ZL1gPFQnU4n/Zan+Y2NDQDAgwcPUhKz7e1tACPNUbvdTux+fJbSpdv4AlvGceEx3Fkt+WAwyFGca2I3xvRYrdLp6alLXVrk31zmd10EtdTxb5Zb/2e5y+iNPYp2wrNqKPuRrdMk2r4rV66k8luNkmqyPYuUbW/PglmXucq71q1fXe229y61IABZa7HHnmYtvF77NIWitm232xnrpF5ZB2BUp6Ojo6Tps9admZkZN8m3LYNimpo/7RelyWU9+J21ZjOmcn5+3mV0mkZZFZ7V1qajUDlu40OVmc9qdTudTs4qfV78w7SsPZ4ljXXwLHCepR3wkxNftpbWiyfyrLqEnS9erBEw/Xp5z7fpQgaDQS5Ghf/PzMykfYL1kFlYWMjtUVTWWDnusQJPUifW4+joKNVFmeFsP1FWXLlyJVcnJoI9PDxM8oJXtdg14dVSBUUaf9bZeurMzs6m3zCWSOPivWTfRUx+49ZH13zOaZVTNhWPeu6wrPSY2t7ezsVIaTyYle1qkbKyle9qCuPKpM+Llb0M58Uhet5UZZ5H00DpQUrdUawJna5sS0tLOYKFra2tdHD69NNPM9dHjx6lQUgBpwcxbqB5XVhYyAUueweBuvBctPRQYTesAHIHKQq+lZWVVF7eo8GIVhjookxMQgHKcuhzLHTSajmsi1hZ7o3zDkhFJA/juGByTLTb7dwGQDdnVVz7tHx1iCS8HGAeIcI4qOJG6LkjeXnc7EGE7VMkWKYVnGyh/cB5oZsKe3Bg+fv9fnKdsEG9umn0XOfsu6cBVYSoG4hdeHXR5X2qgAKG45xKGC7AOuabqIe3SdYDkb5b71H3Pe/QZAOoveB+la1Wxniu403Cc6/StcweOg4ODtL6RpnKOuo8+zwGY1tFi0coZBVS3tyd5oGqzubm+Pg41UGD/YFhHTkeKRcIPeBT1szM5GnHdbxNsocoq5MlLeh2u6lsvI9hDqurq7lNN/dMe3t7aX6urq6meyw5zEWSt6hiy1K5q4KZdeG4pGJ9e3s75x43jfKp67S3BtnD9mAwSOVh+fQgxfKz7XVPaGXH4uJi+syuyeMoYstQVzHc5DObQpGbsbd/VLlmla1KMGIVYtNS4oVrXyAQCAQCgUAgEAjURKlFSk21NnEZT/Knp6eJNILalc8++wz37t1Lf+t3wEircv36dQDA7du3AQC3bt3C2tpa5vlnZ2fp9E8zuKflnASeud9q9vQkyzagVvnKlSupTjZYcnt727UmeAHDwGRU4bOzszkNsp7IPVryoiB9L3herzYQWDW2nptg3VM/21bdFT3K9Sr058R52gjPNbFIkzmJNaoMRe6HVrNCrVmr1Up/e3Ti1sXzPEr0caHa/zLtEeuxtLSUcd9VHB4eJi3g1tYWgJEb8P7+fmGSWODiLFOeax8155R1dGHe2trKBCUDI4v79evXc/02Pz/vuoIA49VHXaI9wgHe42ls1QVRr+q+p65iwLBfKLPZV4eHh0l+W026El00CW/cKXmRdeHZ2tpK91+9ejVTX3U3VQ18WSLhujKvqrXcs7hbF16P9MC72nE8LbdfhR17SnqhWmWOF85zWqQoC4CRtUCtMt46YS2qqsUeVyOt7ee5GbP8arG16WAoKxYWFtJv19fXAYzWwHv37qW6c8+kdNtaHl7ryomqLnTeemjnBdu41WqlvQk/Y5ssLCykfSPr1iQBg+4BiqzqaiHk/aenp6mMdrzt7OwkKxXHjz5LvbRYR2vx0nE3rT2EhTfP1T3eI2+6THhrlJVLmizeutIPBoPU7pxnngsz4cmAuuMwLFKBQCAQCAQCgUAgUBOVLFLqs88TNbWKu7u7SfOq8VCMkeJ91K48//zzePXVVwEgXZ977jkAI8sKMPJP3draygWd8uQ5jqVDUUSOoNoC1ejbeALG8Vy5ciVpmPkM1lvpNNXKZf2KJ9ECsDwaPGk1yPPz8zkqTqXs9HxIbQwB2121y3q1Gme91tU4s4zn0Z97CVvrxEHp/562rYh2XOPomoCW36ORt0QrmrTRxhFpuZqMtfFQpvkm1OJCTdFgMEh9TA2sxvrRF51ay0ePHgEYBmBrugSgXA7U1c6OSwiimllb9sePH6c+Yv15b7vdzmg1+VmRlnAceadaUaud5TsXFhZyRD+9Xi/9TS2rxnGwTDZGr9/vpzagVnd3d9e1VPLapHbWxrwCo/ZbWFhIdeH44Xh69OhRLp6CMn53dzfVxSPYuSgtbhFpB/vRI50oSnHhJTRvGmXto6Qm1rqpxAxsd0JjVUjIoN4qti7sbyBPdjM7OzuRV4v9rVo9OB9o0RgMBrh27RqAkcWT9bh7926SEa+99lrmnpOTk2S5otzQ+CP+Tvcq447HMvmnMp5rTL/fz8Wpsb6Hh4epL1hv7Qv7fPU2aMoypR4tVs7quCOOj49dkglgOA6tlVS5A6xFan5+vtAipV5P04Kux2xXJWxhGTWRuv7OmxcXGR+q+yBraT8+Pk5zgXODZwZgtJfg+OMeWdct3ZeXpf+pgtKDFHF6eppx0QBGg2tjYwMPHz4EMHJl6ff76VBEofDFL34RAPDGG2+kz2imZiPt7u7iwYMHAEaN8+jRo+Tew4bThaDMtaIqyjbJGrTIAceJwkV2dXU11Zdl1I73XN2m5Uph3T5042SDIRcWFtzM3nyOXZR1o0SBwsG7v7+f+RvIMvRYYVu1HgpvgnuMRUW/8zb7ZeQaHquhR0hy48aNWnXzoJsjm49C3eCUkAAYCgEN4AWyJAdeTqNpCEBvnOu7OSY4DpQFk3XjgWp5eTktvPoZMBy7PFRRLuzv72fyvTWFsnbyWO/sodUjouAcYt8eHBzkgtI9+TBJnylBBNucMkAXf7on86pEGLyf8sLLt8I+brVamY2W1gPwFVjTYhmzCqvFxcUkt7kJV5d0mw+QbaGHMtatLO9N0/BclZSdzrpy6yHXulLqeJt0A1EVZcQW7XY7d1AHRrKObc/5/vDhwyQD2He6vthD2dWrV1N/Wlf9cdZfVWrYNUkVFHwX5fH+/n4KXWA4A3H37t20j+L4pIK53W5nXJuB4cFE56LWram+LJM5qjC284jluHLlCl566SUASFfu+VQ5yHGs47EoR1bdsivRkWVznJuby7Xd0dFRzqWP1729vYxLvT5rcXExrWO6v7IHtWkpjwgvVEFdpymvuK4+88wz6TO7fzg6Oipt92kpkTxyMfah7jHYTzx3UHEJDOsFjNY31nFhYSFHbqV/jzt3wrUvEAgEAoFAIBAIBGqi1CKlhALqygeMtA9bW1vptEtT9Pr6Ou7cuQMA+PKXvwwAeP311wEAL7zwQjolUpP+8ccfAwA++OAD/OxnPwMwIqnY2dnJmVHVfa2uRsk7sRNqbbDanVarlbRlSl3Mq80Boc+0ZA1Na2DZJ3Nzc0kDTA0423h+ft4NHLfufurqZ4PIqU1Rs6rmyinSbo5Df87x5pEvlLlDnkceURR0qcQS3jiwbo76HV1Um4BqudknKysryULDKy0FMzMzqY+pmaFmc2NjI2mX1O2vyAWvKajbIa+UJSzjkydPkgaMY5Xt//zzzydLADVnSrZhNVatVitn8ZkGnTZR5BLFsUGtsVLl2jGrLh9Tz3HhWKV5pUzo9XpJLit9r5ULam2zlijKoZ2dnWQ94Pjb3d0tpLQfh2yiSvoA1fqynxYXF9Pc4WfUZN6/fx83b94EMGofjkOWGRj180W489lx0263U5+oVZHl5Nqk7jpsZ+uqtL29nQvUPo/Aqa7M8AgQrMVW11ZNe2IJP9juOr4o69iH3W43Zz2dmZnJEDKxnizXJF4h1otBxxnfxb3SxsZGmvcvv/xypr4//OEP8cEHH2TahxapK1eu4P79+wCyboLWLX8aVnktj67F6kZoZTvLOhgM8NOf/hTAyCOJa+X169czhGVF7xzX6uFZMzyLlLVOHBwcFFqk9vf3U1mta/TS0lLOta/b7ebGm+4jmnDtq9LXs7OzSc4///zzAICvfOUrAIZ79rt37wIA3nnnHQDlOVCnCdvH6trHNUz3oJQBmloJyHpePPvsswCy6xzfo/uOSfsiLFKBQCAQCAQCgUAgUBOlFin1rdZ4F2B0elxbW0taMGrzXn31VXzpS18CkNe8HB8f45NPPgEA/PjHPwYA/O///i8A4P33308xUnx3p9NJ2iRagLyknnVxHi0soRpknmqpcdD4AWo5qIVWn1u12uh3QJ4ufRzQR1nhxXDYQFvV1ni06ZZym/Cyc3t06RpbVddCQG2D1sWiyPrkxT/ZMnoWKRtPdF6M1LR9nFWrRi0r5xF9gLvdbpqTVhtd1G7TIsmwUMuU9fEfDAZJE0aLtFrSXnzxRQBIMQXE0tJSaoMy0plpWH+9OBXODU8jyf5YXV1N5DssM7XsKysrmUBYfU9TqBLrcHx8nMaRalEpzzRhpb3fI5bg32qF8mLB+MxpWEd1vrNN5+fnM6QmwEjj/PTp07TuWO+DTqeTs2Z7lP/TjjXSJMlqxaE8oMVa00dw7bbELZ1OJ1lL2IdHR0duXCVR1zJQJnuVwErJQFgPrvOUAZwfR0dHmQTdwGjsHRwcZCxAQDbuin+rVazu2qQyz655hJK3sP0/++yzNPYZI/XCCy8AGM6T//u//wMwWvsYe/vss8/i3XffzXx3eHiYsxYr/fM0YkXVW0I9WdgHGmsIDC1TNpaNc+3VV19NY1VT3TQFJajyLFH8zpJn7O/vuyQTwLDNeb+Nl1diHiXkYTmszLsIsgmdU9ybf/3rXwcwshB++umnyRLFfTjH9MrKSsaqa587jbIC+bhgJdhh+x8eHqa5wDHGs8PCwkKSh5puhXWycqhu/L6HsEgFAoFAIBAIBAKBQE2UmnM0tkc1r8AoduHKlSvptEst8gsvvJC0DTxJvv/++wCAd999F//1X/8FAPif//kfAMCHH34IYKgBoNaAz19ZWUkaKfqB88Q/rjWK8DSM+j8w0sR6FilqnFhmIE8Pr/Eh6sNchRGsKmiR0iRl1gqmcQiett5asDyqZPULttqdubm5DF03n8Fn1q0TrRMKz3Lo9V1REt2iOCh+V+Uz77uqKKMO1fJbxrODg4OkMbYpAJTC1ca9KCujxhCxj5tk7FLadmW65HesE7V8m5ubaaxSNtCf/oMPPkgaM7I9MV5C6YqV9YnjsCyR9iR106smKNe2ZhlYL/qjK8sY68/ydTqdXEyHR38+CTROiOOG0LFGTayXvFkt7LyfY8peDw8Pc/JH56oX49akFc4bz15yR95n4z0B5GSZRws9beuTB41TUap2jkN6SagVh2uRjaU5ODjIMfqpdagJK5sXr2bnqFrNOEbm5+dzcaGso97HMtIKorG6ajG1Sb8n2Tto+1iLBuvU7XaTBw1x//79FEdE+faFL3wh1Zf7IFrouZ+6efNmku1q4VV5oeUaB1VikTSWjTJrbm4uMfHRU4Df/ehHP0r15frFdX1paSm9i+3Ubrcbs+zq3LD7F/XY8MYKZTQtHhybOjeUURcYzrsiZl0gz2SraQnGQVn72L2cpsWhVfp73/teuv7gBz/I1OmNN94AMLJq6zMvA7p26P7WpuBRLzZrOdU9u03EXsYoC1Sre6k0UXcIGwDPSXPt2rU0kXj46ff7yW3vo48+AgC8/fbbAID/+q//SiZsTjIW9OrVq+lQxg3UrVu30rv0wAIMB6NSGE4Kb3AqwYVumoDshPQ2v/zfZv5WTELDSugGhn9bKnKlJ9cB6G14WC6bU0UD1TUgnVel/dT79eBVFQwgrEtZfp77nvcZ//d+V3QoayqHmf2/qIz2gE5hv7q6msaozX9xdHQ09ezpZfm72P/Hx8c5pcPJyUlyveF4pMvvxx9/nNz+uNHgpuLq1auZZwDD9rGbc5t3ook66rPVNQ8Yyj4qelg+1uvJkydpo2cPVEdHR7lUBbqhaALqVmIJIvQ9drFXFyrv0OQRFQDZAH5VRNk8LhoEbnOZNAWPkt4qtnTDYeWUKlDsZnMcEp1JoQcSTUli1x3KYM0hY9cfJTqZVr45lWu23YnT09Nc3i6lZebhkPco0QnBjdLm5maO/vzk5CSTt03LNcm6qwpCm2txdnY2yQP2xdOnT3Hv3r3MM0i+cOvWrbQfomLpG9/4BoAhMQP3QEoipe6betU1sy68DaSuvzYvz7Vr11Lbv/LKKwBG4Rwvv/wy3nvvPQCjQ4nmO7OH+JmZmcbGoRe+YMk59N26dlqXPs6twWCQ5INVXPR6vZxCTJV+qtDm/5O49tUh4zg5OUnrD/fl//zP/wwA+Id/+IdUxl/7tV8DkCV8aXIdrYqyfZjmw9Kcc8BIBqyuriY5Yvcds7OzE1PrewjXvkAgEAgEAoFAIBCoiVKLlJ7irNuQal9ptqXZ8OHDh4nG/Ec/+hEAJM2EBlzS/YDWpy984QtJq0HaQs2EbbWpmih4HJTRdVu3tm63m0teqxovSzfOa7/fd4N3realLGj/PGhyVutWp246tt6qqVN6bCDbJjZxXpFFihoy6/qoNOtVQetEmaueaok9q5Nn2fEIKIq+81wHVZvRpJbGs6iplozum6SWVep9zkmOHfalWiFVKz0N7VIZTT2QTQ4IZK0d1PhRfuzv7+fSLFBbe/v27SQ3OKa8vtNyNZ2gUt1elQSEweHsG753c3Mzafn4HV1cdnZ2chbrpgN7NZG552LCe6w1e29vL0NpDmQt7dbSoRZs61KhZByeZaRJ1z61slhr9uHhYaof685yXb16NfUnv1M5bq0YF2GN8qzx7E8lAtG1CBj11/z8fGpv3q+JrG0Q/LSos/XZakkDhm3LMnKN6fV6aa5Y4o+bN28mS45N+Hz//v2M2zOQJRWwa4MtY9262XZXEgyWl/Lq6dOnyUOH8pweOK+99lqScaRB5/9LS0speJ6eGjr/rKunpriYBHbsaRoctSKxfiTOIJHGrVu30t6O9Vb3YWv9LbOk1e0jlUU2DEGtOWxDzo2dnZ1MAmWtK5Adn8DIIrW8vJxxd+R7rDurWlSa8BapQiSkxAwcP6zvq6++mrw93nzzTQCjpMlnZ2ellPrTSshLWMs7kE2Gzvam2796y9E7jrJDZY+m3eB7JnXXDotUIBAIBAKBQCAQCNREqUVKrTKWmpeaSaW6Jf3gRx99lAIn6ZvJ0/3a2lrSWDDgUgPLqd3ge/r9fi5xp8b6jHuqLzt5avCz+vV7liiWy2puNRmn9YVt0hcYGGlF5ufn0ymbGhPV+nnxWzbOQbXjVnOsMRyWUlStVDYGQoPnq6LMIuUFsFeJa1JrjP1On0V4GrKmNbb2eRpLoNZCmwRUk3JSo07LlLa11YhpG0wzcSPgE5eoddMSNjBm6vDwMM0natCURpZzS9MhWAKBaWnYCVvHdrud05xrndmndr4NBoNcUshJYhw8UAZobImSRgC+9WlrayuTUBfIkpZYS5T1VQdG8qEoxojXaSR+9IKI9/f3c2OE3hU3btxIspTtQ00u2wnIW/v1+ZOgLMDZk1MqD9kvtOCWESHpOmq17pPGflp4iatZbvUwYfsqvbS1WFDL3Gq1koX31q1bmTq12+00ZvkeTbxaluqkLrx1XGU2y0+N+ccff5z2SFzfOFdeffXVRHHOOErKvvn5+YxVCxjOP77LtnFTFgK7VmpcD7/TBNGaQB4A7ty5k6OfpiX+4OCgloW3bj+pZ45HfsX6qPcGMJR9NjZKSVE0sSuQjZGyJGhnZ2c5q4rGSNWl3a8Lb4yzb772ta8BGMoJelKwTrpWlVmi7P+TjruiWHjvs3a7neS2tfb1er0kH9jnSnFuPWHKLLhV6xQWqUAgEAgEAoFAIBCoiUqsfQByWnJed3Z2kiaZ2oZHjx6l73naJYXpyy+/nJi47ty5A2Dkk9npdHLxEk+ePEn+xMpGBmS1uU1ANeiaiBcYarUsvbP6Q1NzSeuZJjiskthwkhgpnswBP/aHV6sd0Rgz+11ZPBGQ1yKpn75Hg16XbpZjSbUFZSx8XoyRR29vtR5e31ShFp0mPMppZWZUdLvdXCJYas2UBvSiEobqu3Q+KXsby6gJa4FRTMD29nYah5ZSfGdnJ5fAcWlpqTCZ7TRiBU5PT3MsXQcHBzlmO8suqOVTq4YmwAXqj8nzoBYAG5+irJ42vrOMmQ/IMpoCyKSHsPGSvV7PZfPkcyZNZaFQmWTlgxcXRG3/7OxsKi/rbSmQeR8wXlqHqijqby/Ord/vJy061031BrBzwrMweOyEjbBZOVZpWx5lm1XLO+9j2Rg3PT8/nz7TpMR8Ft+jsS1F6QTGqaO2bmHQAAAgAElEQVTHbGvZ+w4ODpK1gmVbXl5O+wOykjIm/Pbt2yleimOPFqmbN2/m5pPG99jYn6asu3YdOj09ddmAKS9YN+71tM9pCWGZ2+12JnaTaGo+qeeDtUipTFDPKl41Aa+i0+lk6M71urS0lPNYUrZda5FSz5km4Y3nmZmZNEY4FjVlCsvtxctXkQWT9Jn3W/suz0o+NzeX2p514TjVvQXB8aqpOTRWalJZV7p6eZtwaxbb2dlJE4kD6MaNG8m1gMKPQYcvvvhi+oz3cHA9ffo0mb55ffr0aRrYNg9JUwuwPcTooUAXJMIGKAL5zN0a5G87SZ/fhDmek1s3ZXbDpu6KKmjtBts7kHj5P7z8St7BRa91wA3BOK56kx6WCK9PvDacBLb9W61WhrqVV9uvevC1AddabruITCtDudee6vplKWg1LxsXWbrAbG9vZwhltPxzc3NuTgnCI1cZtx62b3QeqPwDhocC1s0Gux8dHWUC/LXsVck/msgRY/8GsnLCpjkYDAZp/CidNstj85cp8YwlnFlcXEz3WbdgHfNNwsttprmT+BkP8t1uN5WR/WsJXFhevV4EtN+sXNbPCF3TimSAR8TStKJF+1WJm4DsXoJ/cz7dv38/13ecO5qfydKaLywsZALSgWw72XE2zrzSOVCUbqHf7+cIV65evZrKxpAHzcfJkAfeQ8XS4uJiajslbLH0/Vqnuv3oKdrswUzXfT2AULZRoU5ijKWlpUyIhkL3KkWkX5NA11CbZ0uJZ7iH04OUunwB2TRARQcpzSNIqKLappmZNI+UxXltZ/cG6iqvLuXAdPqjDuz+zRvP7XY79YVS6gNZt2A7XpUAxHOlH3edDde+QCAQCAQCgUAgEKiJUnOOBqhbVxb+r0FfNOkuLy8ndz1an6ilUJMbrU5047p//34KtKSW4+TkJEf8oJr6SSxSaoLV/4G8JarVauVc+qjFUNc+axb2tGHqEtKEVcBrD1t+L8O3Z8FSrY2niefVmqpVs2GplVWTVRXUFHnB1R6FrfeZRZHZ28Kz2Hn/T4uy2brBnZ2NEiGy79QFpkjj7FkiPDripmCf540lrYel1aeG6cqVKzlXRi2/0hrzOzuHlUp83DnmEYEAWTpWraMlKFCtGLXp1lVMg46nTYyhrjZ2nrRarVw/eEkjVQNvE+wq8Yz9TC1enuW0Seuo5+KkWmg7P1SzqUmk9Z7j4+P0O6vhvgiUueaqx4iVs61WK2eh0XqUrUNN1m92djanOVa3J6sl3tvbS/sCS+505cqV9Cx1f2aZ7RhXGvymrfCWelzLQ9mlblX0WKHHBa1O7XY7hUEwlEHJX1h+jk8NGagSOlAV3u/UcmTHkJfGgmv38vJyLu1Jmftyk2uT7onsOq1U9V7aGk3Aq89aWFhIFihaRVV2WKukppex+6Wm05CUyQevTydxH79IuQf4VlLtV2sJVO8rj77d7mubcLEMi1QgEAgEAoFAIBAI1ETlGCme4njqVv9faoc0eJxWKhsH9dlnnyVtDK1PvG5ubibthpI9aIA6PwN8bcM4sFoltQqoTzVPtzZ+4/j42CWZALKEGKopLUrIOw6qWHuqaua1XEX363d6LQp2HccqoNqCspinOlodz5rkacW9NvBi2uqOvTKNmxfToO+08StKBFJG8tGk5bMqPF9rq91Tq6ySDgDZoF6r0VN4c7SsPOPCG3/WSnt0dJTmPuWUasqUGADIBrp6iaCbhDdmrdZ+aWnJtYzZGBAvBYK1gmsMqGeVLIvHbBLefPPGkaZrYD1tsmGVsZcxpxRlpAL8zkvubK0y52mvmySb8OSlZ1FRGnTOfa6tSiLBOWY1zx6xi469acFawk9PT3N7maWlpZwcoPWp1WolK4clANnb28tZQz1vDGKcGCkPdpyrPNO1yc4VysHBYJDawItTqkNgULc+Xmy4lW/9fj+TiBcYegrYVCOUc4uLi7nYKE0zwPt1X+iRTOi1aUwS8zet508DGv9att8s8/ZoUiZU8ovTzZ09dHQ6nbS50w0EJ5Blgtrc3EzCwxIz8Hn6rKWlpdwBSheScRdg7zCgHWLrq/l9aA5WBkObe+D/a+/LdiS5qq53TpVZVVlTl7u7enB7xhgbW0YIIcRrcM8rgMQd8mduEBKIN0DiAZB4AbiAG3wBsiVjjG262273UF3zlJVZldN3kf86uWLHjsiIHKqa79/rJnKMOOM+5+xhbXaLTDt0TGNgoq35AJjGDsYbbf37tEBqa2PMgsFigMI1r+DgBVhvvCyXnSxIc+NLGg9JQZo8kcdBWr9bfYFFLG3TrctvbWinjTTGJatvOIA3SZnALkeakcfadE/bVTYJ1vhnGaAZoNiVzWLAEsnOjDQJsrg/W2Q05XI55g7MLsP6wM9tb8kHzfynD6OzBMsQPUY47wtvvrlss2AWGwejlEG6/NZ/02TerGAdpLCuc5nYdVkfkrBPKBQKEfY3BpMTzcqdOY2Qgd3gUEbOs4Y6o4yQFexWis050Gq1Ym6xVg6zafehvl8SM69m3+PDknaRHXc9yvt77e4uEs9fxvk/ObemdoXFvrNer4fDLowGOneUSPQgpRWBLE8ui8wBz8+CZ+XglKR41q9H/S/ps0nhrn0Oh8PhcDgcDofDkROZ80hpzQtrJDjwUCTK1c4Zo0Wi9JI4ucO1guklobmpVquJ9JVpGYnzwCKdsFxTmGaZ/8duPezSp3/H79NO0Xm1AFbwu74HawT5N2kWl7TyWLS5SbTn/F1WcFb7STX2VptYVsIs7cPWnllpayxNoH6d1iZZtTXTRhayCf7MsixpWAQaWcbSrC1Teqwz1a3Whlpjhftv1ppJbkNrHKPM2kWPaWQtohrdX9wWOn8KW3ssd4uL0s5a7W2tc9o17jK1xxqWbM9TTsszYlawSF+0pp/LxO57OpyAyV707/XYYlgWpGn1Z5qmXHthMOEGYNHqJxE0MMb1ysgDLbO5D9O8JZLKqe89y7HHnjbauswWKexPYZHivRTqhb1ovV4PlihYDdGf7B3FlOfaEpWFFGsW+G9035smZu7aO9O7OxwOh8PhcDgcDsf/QaRapNL8sS3to5WwUgdX93q9oHHRJ/75+flI4C+ep+ML2M90kpO9PnmzlkV/xz7++pnn5+cxWni2bunYnmnHdLAmKM1SkaWtLO1smkUn6X3SZ1nB/vN5tQlJZUsbz5a23tLA8fuL0txY7X4Z2vy8SItRYI0krhjH1u+zxoFcFHQ/9Pv9WPwa3jMpzmVo+6yAf8uzQFuk5ubmzDQQuBdgyWcrPYKVFgHXWQVfZ0FeH/tnBePK3MuwUnP/WmMQewKOlbIsOrinjsFjy1ceq9y0+tdaYyzCDx3zqWnf+TdsuU2zfE0DaXFWWeNwLW+JPHNrmnWyLHZoY+xJT09PY/vTbrcbs5hyEl5YpLA/YW8pbYXnGCkt8y4aaeP9/6IF6qLhFimHw+FwOBwOh8PhyInMrH36JMvaR2hO+ESuaWaZ4hhaTnzG32ltMycD1tqnSeML0iwXluVNaxcArq/WOBQKcXa3WWkAuD209cmiH9av+X2attOy3ojYVh7936yAD/Ko/s1y37S4r3HrdJEWqVGMYc+6Rj2p/Ho85tUSW/eaJbjvLW2zVS6ULQ/V70UgrYxanosM5Voam6bF4MnXJDk+7eSU/z/iWdUqc78maeOZbRZWgGKxGLPwsgxOYnIdx3thmmPPkklWvLS1v9C/YeT1vBl3PORlYWXoPsjbrtNkxrRi1XCF9anZbJoeUxiL2KeyRYoT8IpEGT+tGCkt87Ja62aFZ1VOXCamMf8zHaSsjTcLCR1AVygUYlTl7EKS5C4iYlPjziJAjwVompsaCzq9meYNhM6lYN0ry+eTwDoAAEz7a03mtANUGvh/Fj05vss7WHXAbRLScqlY75NcKvkgZd077eB1kZjUzXGSe00DkyzUaZjmvUbdO2v+sKy/m7XbDiPtAGgdpLRrq3UvvRnkPFssI9PIaBzZ+v2/ra2s8loHKj3OLKWq9Xv9nIt2W8zbZ0m/T8o3mYRpHwAtWHIpSfmV9Puk77I+e9z+5H2NdrnjsBO8ZrmoFf1w57NS8TDJCcY1U54npYRxzA6X4j5/4U90OBwOh8PhcDgcjv9yFP7bNFwOh8PhcDgcDofDcdlwi5TD4XA4HA6Hw+Fw5IQfpBwOh8PhcDgcDocjJ/wg5XA4HA6Hw+FwOBw54Qcph8PhcDgcDofD4cgJP0g5HA6Hw+FwOBwOR074QcrhcDgcDofD4XA4csIPUg6Hw+FwOBwOh8ORE36QcjgcDofD4XA4HI6cKKd9+Ytf/GLsbL1JiX4LhULu/436j4jI//zP/4z+kUxWp4tG1jq9//77I+uUpQ0Z3A+6T/heee+btU6///3vw0N7vZ6IiHS7XRERabfbIiJyfn4uZ2dnIiLh2mq1pNVqhdf4Hf6He+CeqFuhUJBicaBXKJVK4VouD6aIdcXvfv3rX0+tnyyktfGsEmq///77mer0m9/8po9yoCydTidybbfbkT7Dd/heo1QqhbZFe1cqlfAen6G/uO800M8iIj//+c9H1imvfJi0/fPOH8Y0ZB6enzSnUT89B7n/9JXbBP1YqVRCH9ZqNRERmZubC9+h/37yk59cuBzP0ocX2U/WeOa5pWVet9sNbbmysiIiIs8991x4j3sdHR2JiMiTJ09EROTx48dyeHgoeCZ+f/XqVRERWV1dFRGRarUqIoMxgGf+7Gc/yyXzWD7girHEwBipVCpSr9dFRGLX+fn5MK5QHtRje3tbnj59KiIiOzs7od6QO7j/wsKCiIgsLS2F+/72t7+dydibxfjKKneyyvH33nuvLzKYk/Pz8yIybCO8r1arQfYCnU4nrLONRkNERJrNZniv12Bed631ll+LRGU82ijLfPrVr341ci71er2Y7Do/P499hnHKbY574srrEpedy5+E9957L1Mf/fnPf+6jXFhPeY3FlV/jmiSrO51ObE/EVz1neT1Nwy9/+cux90TjylqUjfd5aAPe50FWYlzX6/XwGvIBaLfbYQz/9Kc/TSyYW6QcDofD4XA4HA6HIydSLVKTAKdKrTnh99bJ0/ofnyYd6ZhUs5Wm6WLttaXJ1tqLSbT10BoUCoWYBpM1P1rj0+/3Y9pzfp+kfeF7WBqZy0CWvuT2uQxAg1MsFmNzlzVE0Eiy5VB/xtYOQFumyuVyxDqFMmgN5iwwSTtPKrum1ce6HNY8Bnq9XugTyxqM11pjWygUIpYFkYH2D1o/WKTwXalUutAxfJnzJQusvkCZeS6h/bm9FxcXRSRqvcHvoFmF9ebw8FBOT09FZGh9qFarMUsEW38sK1JWpK0L2jpRrVbDOEF5uIxafqNuJycncnBwICJDC1yj0QjPxP3RxixPpolRY2xWFqhx7w8Z3O/3I1ZkkaFFslgshnUZv+HvtVxmoJ8wdvv9fkxupFk78sp11J+tXNZeQa85pVIp0hYi0XUpyTunUqmEe7Bcs7wn+JoHy8vLoRyW14dIVC5bn2nZkeZZ0Ov1YvOM9xtZrVNZMQ1LlEjUYoe+w73Z4or2rNfrQdYAaKdutxtep2FmBykg6UDFnz2LB6o0dzbrN5d5yBtXKI9y39PmazynWCzGJpE16SYpIwQ2C1DtOpa0gdYTHVfLnYyFJe7B7gdZDpbTRt77ps2xWcMymWPxsBYsPkjBBQSbObw/OzsL/aTdmNiFgl3D9CLO42Lcfhq3PdOeN0qO4P0s+pIVIFZ59LzhBQmLCS/E+A5A29dqtbDp5Y09FjA9t/v9fuxes8K47drv92cu49M2WXyg1S5HvDlYWloSkeEmoVKphHmFg8Xe3p6IDA5SaA/8fmFhIfQZNhcsD5PccZPAa03aBkxv3nkMWQc7HJwgF05OTkRE5ODgIHaQOj8/j23uWQmD8TgNTPsAleWe03gG2pMPypif7AqFfkJflMvl8B/tslsqlWJrE67n5+exg9SoeuY5TPG6ZCnjcD+9p6hWq6EtrHWMN9iMbrcbnoPxXalUwv31gWqcdQnzkvdalmuiJbO1/OarPnhZbn981fvwaRysRrWF/p4V5mkHRwBjc3FxMbgs47qwsBD6RSt1z87OwnhIg7v2ORwOh8PhcDgcDkdOTGyRykoOMallin83a8vUKM1IHg3RZVutLKtTmmsFXy2NjEhUU6G1owwr6DIrWGut/8vP1hYIq7yWa5++8mv+/0VbeS5CYzlNQNtdrVZDP2mXECYTYBclHaQMrXKj0Qif6WBltipC68QWKX1lUpAsmIb2N0sf8lzUxCeWzLDcavOWMe2/7MbHGj5tEWSNLLtLiEjEKgLSA1g6FhcXw3jA/9jqOG03kVlg1utOknuliK1tRXnm5uaCKx+0rNBedzqdMJd2d3dFZEjCcHx8HH7HfYd7oV8xB9MIYpJgjXONYrEY5iiPJW3VhFaZrXKoG6xQu7u74fXx8XF4hiYxwHPm5uam4tp3mYQS496fgT7mQH0Aayy7faIda7VaeI3v2HU3ieih2+3GXPCnuY5Z7vm679m7AbDIM3iPgTbm9kIdrLABXTfci8k2sgLta1l32YpkWWi0/Ga5bnkb4H0ecgrLU2kUsoYvAFxvbXlDndgahTUHMu3KlSuBiAdrU7lcDv9Fn8NLptFohD1OGtwi5XA4HA6Hw+FwOBw5MZMYqTR/cut0ab3PYtW6SL/1vLgsK0FSm1pty5pA7T9cKBSCdsHSZmgf1FKpZFoD+Hl5YFkULMuYFRuD31vUnRbFp0jU9zfNcjeJZSANoyjlk8bTZQfO7+/vi8hA8wOtNsYGx8dAM8SBy+wvLzLUAh0fH4f4BmiVYa1qNpsxP3X2t8ezOX7KCn4eB6Ninyw/blyt8Yb32tLB81JfxxlzaePJiofiODY99/H7UqkUNM+s7cN1bW0t8h3HoeCe7NefRev3rGBWlikrBlVrnDl+kAkmYImCJRB9s7+/H+YoaMFhmWq32+F/iK1aXV0N81YH2zPRRV6kxTqXSqWYVXNxcTFCmCEylPGdTieMFxBnIO5rf38/fIZxxpYRtkSJDOTRJBapaVqi0vZD1r2mOf6YYCEpDqhcLscIQOr1eniNNsb7ubm5RBKgfr8ftP/W+jwpeJzi2drjhAlNeAxADmKMYRweHh6GsYV1CWsWr0HsYaDrw9axvOuS5X0D8LOtuCltteH32uuDrW3aWmWRU7B3z6z2RHq94rLp8vf7/bDPgNXp2rVrIiKysbER1ibIgLOzs9g+A/uPk5OTTDLPLVIOh8PhcDgcDofDkRMTq2qT6JeTWO+yatuzxk3lRZrVaxYsXReBNPY9gNlrWDunrUbQMjSbzXA6Z60LgBM/MyvhM20RYr/arGAWJ20tA9hPlv2ek5LgsYYojY1Gx6wwJqEvtaDvk8Tmk6VslwFou5kalxPdiQy05Fpjzixu+IypjKGthGaImbjwGbP8aQ0+W1DGoWzOyrw3ivUOVysmT2TQbtCGshXNohmepD78f76yX7xOZN1qtWJJdlGuer0e+hTaPvier6+vBwsH6tbtdoMcwZyFfDk8PIzEs8wSo9IFpFmlrbk/6zhd1irjPb6DNn15eTlYA6GBRf8eHx/L5uamiEi4Yi6x1Qf/X11dDffV/TUO/TnPCd3unMxUryeLi4sRunOuE2uQYV3b2toSkUH8F+QDYCWDxnUSi9Q0GV0tqzXfy4qVnCbYCqUZETEGC4VCrB3r9XqMyY9j2jRDZ1rMO56HcvDv81o7mH2NqbtFosyQ2FPwWMPvtKfE8vJyqBssoByPpy157XY70co4zpjjFAFJHgrWHqfT6SSy9rFFij0R8F5bsNi6lcbyNwmyMPS1Wq3EZM/VajXIwevXr4uIyO3bt0VksFZhnOJ/bGnU/ZqFsU9kSq59aQcS60ClzbxptNmzImu4yKD+LIfHWW7MRaKBlXwgwWDSG9ejo6MwiXAPLLpra2sx1x2mQdUbMg5azAp2OcRCqilERaIUwPhNmjuBlVsK761NlBbCLOAnyVmUREPNixXTsesA88smMQFwmGm32xG3L5HhBohdj3izvb6+LiLDgxRvovTvsXE6PDwMQo7dLPhQJRINYM4j3PMqbviAlJRtvtfrxYg4eNOhN4zs2qXd7cZxr+Ixo10gefHU85ZTAuhD73PPPSc3btwQkeFidfXq1VAnzFXc/+joKLb5xZXzGV0EkoiP2C3GWpO0G/Qk1PoWeL6z2ypf2Z0ZmzqWx+zSJyKyvb0tjx49EpGhax/698qVK+EAhb7DBkREYvLccukehTRlFAf/60344uJizKUPa1Sj0Qgbnu3t7cj14OAgQoCD/+NemlKdlYmT1EnXLSt4nuu1iWWGlQspzQU9716F3ay1axtvVPVhZH5+PtJn+AxXnRKDlayWclBvinm9zdO2GLOFQiEyd7iurPyz8qihrGiP4+PjIP9QV/x2b28vpuDrdDoxOT4JUH7L9TvtoMpEGBY1uj5Icb/rNYHJKfQhaxwymjRYxBJcHrxGG6MvV1ZW5ObNmyIi8uKLL4qIhPdLS0uRNUlkICuhiMGaxG6nWQ697trncDgcDofD4XA4HDmRWRWT5jJmfaYDVfk0zWZ1vjebBvO6+80aXCdtpbCSwV4G2EqiNUcc3A/tL2eBh3Yfp/xKpRK0ldA841S/trYW7ovfHx4exggCOPgvDwU1l5+DMjWZBWvuOYhYa7+yEpzo/mUrlXbXKhaLY2tf0qweTPfOCf60RgawsqePeuY0xyjK2Gq1Yi6gmMulUilm0VhfXw+WjI2NDREZasXX1taCpRNXaABXVlbCuMSYPTg4iI29SayhgEVuI2IH9Lbb7dhz0C+Li4uh3poWnDOqMwUrNGKoj6XlzIpRhBK44jNOKIl2h/UQfXXr1q0gD2A15ISRGAu4bm9vy+PHj0Vk6IYFq0mj0ZiKS0heoH+5fSy6fZGo9poD1GflaqVd+ixKX7YO4jXKgbnx8OFDefDggYgM3Vb4/5iD6MOFhYXQZ2gL1lCPO/ZY5mjrrJXAmenydTLvg4ODMIbgrsiU7ngWZI6V3JeTx07iWQBkpXHWLps8D/GZdjdjinbtgi+SjaQia/l7vV7MpQ/jgV07OTxAW/vYtU97k6S59jE0kUFeixR7JuB/GMdMpqBpyefn52NrD75bXV0NnhKQ35zIGmMQe6rT09OYJwlb2vLKDJQ/zd24VCqZ1inL3Q9tgLkAWYN+tLwU+DMrNQa7Z+aFXm/TiCV4vkAuo29u374tL7/8soiI3LlzJ/Jdr9cLshEy5PHjx8Faj30E7yuzWKzdIuVwOBwOh8PhcDgcOTGVhLxZAuZZwwrtCrRgOjBZJD1J20VYpixrk9ZSsi8wygutgY4XmSU4ia7WRnC5OLhbZHD6hsYEmqMXXnhBRAa+pS+99JKIDIPJcTI/PDwM2mVoO3d2dmJxDrjn/Pz82AG9bGXTQfmsKeBYKW2hSdOC8VWPNSs5ITAOVWvaeLWCslkjiBgAaEw4bg3zh2Ns0p6ZFCMyDmAdYu289rFvNpsRzT7KjbgOaMXZ8onXsIRAO8jB4UxqwbF9IlF62qwBowwr+JutUDqWplQqhX6AlhJts76+HiwG6CO00dHRUdCMsZ82yq/brVarRaxYWcBWDSugGN+h/6CRXFlZCTL6+eefj1xv3rwZ+gblQVkPDg6Cdvbrr78WkYGcePLkiYgMLSOQF71eb2oU9aOQptnu9XqhXTCO0Hblcjlo2i15y/cfF6w11rEMbK3QBBFra2uhD1BuWGq++uqr8BrzEdrZ69evh3mGuVipVMKz0T8cBzkJrNgoETvOplarhbbF81G3nZ2doEHm2Cj8FnMM92dSDW2RKpfLY/fZOPFQmsAAdWq320GuYV6hn+r1eixVBFvFgUnkOXt56Ng4JqCyvA20pZavaO+0+GZr7UOf82/yrLdWAmsA44OTrfJvONmwyHBMLi0tBdkOWc8eE2wBFRmMSchxK8Y57/6B76UtS7wm6BjrNLr0brcbs0hhTajVaqkWKSt+itNc5IEV88dxXfpZnU4nYikUGRJKvPLKK/LKK6+IyPCMgXtubW2FdQh710ePHgXvCG3lYuKnNGRevdI2XxZxghV4KDLYhN+/f19EhoFd2Lyvra2Fzk9j++HnTuMwlRYQy7krMJAx0Nj1DXXBJgGYn5+P1Wna7n/cBjrQHYLi5OQkCG/8ZmlpKSykr776qohIGIAbGxvhvtjgffLJJyIi8umnn8pXX30lIsOFoFwuxzaQ7L6Ud6OU5hLCrn5aSPBGOy0Hj+WuZQk2fSDl/0+zH7k8evO0vb0t9+7dExEJgeNog9u3b4fNrd6gjJob0zhQwb2r0WiExQWLJzY5e3t7QVDhMP/06dOI65vIUOjduHEj1OnWrVvhM5HBJgOLFwfd4158eMfzoMTJAisrvQ4C5/ujrpwxXSuIisVikB3oP8yfL7/8Mmx0mblOu0Jyvp9xD1IcPKyDuiuVSqgLNtUbGxuhH+Aiwe69aHPIGPTxgwcPwniFrOfFCr/nfC7jLsBZ1wBWjGlGRD4oo68xZlBWVtCgb1gG6Lk0ybrELph6s1ytViMufSKDMYLncR+IDMYZ1ibIT/zv1q1bwVUTc5AZMzFX2RUqr0IszaWPmfr0fqFcLod+wbqFtXVzczPm0oey9nq92KFpaWkp9hmPgWkqxCww26BmIUXb1mq1MLegwMSBqt/vRw5cuOc09xN8+ET/aBdPVkrxuNQ5uiCfmGwC/couhGm5HAEmvhmnnsxCiLZD2+/v70dY90Sih0VN+nHlypUYMRAfGq3PktpynLqgrAsLC6EuaFdeq3S4g0iclIJJP/BfrahmpV3aQYpdJsd17WNZqt2a+ZmsUNIHqNdeey1cIddQX+xFHj16FNYmrMFbW1vhWehDllFZ1iZ37XM4HA6Hw+FwOBdqWrsAACAASURBVByOnMjtT2FRnVtB+jgpQ8vyne98R0QG2pY//elPIiLyn//8J9xDZHCahrYtzT0pjV49b/mToLVnp6enwSQIzSSoFd944w3561//KiKD4F6RoTWmXq9HrFpZypy3TqxRTcr2LDLUROK0/tJLL4WgPHyHe3399dfy4YcfiojI3//+dxER+fzzz0VkoBmBZgaWAtZuou6od7fbzU3ZzMGm2jrF1kKLKlyTTVhkIGnEEgxoWCyN8yyIRSz3hoODgzCuPvvss0h5Op1OsCBAQ2NRzM4KcMvjQH1oT+ES+vTp06BBxhza3d0Nv4PGHO6i9+/fD8QTkB+wTN2+fTuMM2hsFxcXY0Qk0HCXSqVcWnTL+qQ16IuLi6HN2Q1Hu+2hz+7fvx/67Ysvvoi0w+npadD6sUUO9eY6oix5+5QtUtpVkPNCwZKMZ9+5cydYpPTcLhQKof9gZbt7926oI17ju/39/TCXtCVybm4uyJOssNaANDdWtlhq6wR+U6vVYtY1K8A7a/nyWi6svC/oL8zpxcXFiEsfyg0rEs8hkUH7QxuOPkT/3r59O+KaKzLwGIF1R1ukuBx5USgUQh9oK8XCwoKZAoDln4hECCZ0Tiy27OC+sAizRYpd+lCuWclItkSJDOQixhX6BHPg9ddfl7fffltEhu6zKNfm5mawxjERxDRTqHBuHbQ72ohJqph4AuUAOPcjrriHJtdZXV2NUXKn5dvjXIFZgDKcnZ2F8msLSrfbjaVi2N/fD6EPevyfn5/HiHVQL6YkZ48ZlEN7ZIyTkw1joNVqRQghcD+RQT9qF0O2qlhEXPozq/z4f7VaDXNUX09PTyeySCWl5uC0CyjbyspKsETBmwoWqVu3boXywmINC/3nn38e1iaswa1WK1ZPtGHWPHNukXI4HA6Hw+FwOByOnEi1SGVJ+smfs385Ts84zX3rW98SEZHvfe974QT5xz/+UUSGmsxGoxE75c46WN5CoVCIad5OTk5CgCt8mL/73e+KyECz94c//EFEBvFDIiJvvfWWiAxOthZlKT9rUrB2CM9Au0Njsr6+HjSRuK6urgbNJ6xO//jHP0RE5IMPPpB//etfIjK0MEAD+tprr4X6oS/X19dDm6E8rNHJq6mwsmVbcVNai8KfJSXm5XvwPS2fc53lnINfZ0F2YpWDyVu0X3mxWIwFn3MyVO3vPW1AM8ZkE5o2lxPewULx8OHD8BrfQRP49OnToCHEb+DXzLTbuF67di2MTbbciGRPqAewJZqD1UUkQiahrRlPnz4N1gBYnyAL7t69G+qIPkVfvfDCC0GTBrmysbERIzZAPzabzbHnUr/fj6QJEBkGS1+9ejW0JzTit2/fDpZBaOhwr729veBjjvrievfu3dBvkB2dTicSO8HPXl5ejiSCnSa0Z8HS0lKwlOKK73Z3d8M8gaaXiSUsa8Y0ZQBrZPVawckmdQyqyFBbzbF3qBPqgL5EvNutW7fCPTC+Tk5OYolFWdZMI42FjmNcWFgIbYv7c0wytMps1UZ9OXEm7o15Cgv9yspKLDaK45ZnHesKOcg0/xh7b775poiIfP/735dvfOMbIjJsb1gVDw4OIpTauD+PzUmB9rGopjnGVFOIW5Yi9HO5XI7FJ2POz8/PB+8jy2JuWWvykJ0wAQ7kJdoJzzg5OQnfYYzt7u7G4t05RQy8kOCJwfG6mEvWHkHHJjUajdxeOihPs9kM/YA5hPds3WViFZ1yCDLP6iMmBtH7K/YC0mvJ3NxcbmIn9kbTBDu8r0U50MY3b94Me0/MG1ioarVasABCHmIt/uyzz4KnCMZ1pVIJ7YM2Q7vOzc1lknlukXI4HA6Hw+FwOByOnMidkNfSwGmtX7/fDxoxWDVw4v/xj38s7777rogMT+5/+ctfRGSgcdKWAotKHbiIxLxMBYuTKTR6OBEfHx/LP//5TxEZxkWgjsvLyzE/+1lZM+bm5oKGBFo59qfHKRun9Y8++kg++ugjERlaoqBVbjabQWv2wx/+UEQG1kSRgbUNGhlOAMksbSJDi9Q4CVFZS4U+0ExWHE/EGp+khLxMOWoxslkWLw1+dl4rT15GL9RjaWkpWAk0k9Dbb78t77zzjogM44igydna2gpWHk6OPE1wAmftm416Pv/880G7jLHx5MmTQI0NrRHmzubmZoSiX2SoiT04OAiaaVg9NjY2wnhETBEnSszDGMmxGro+GE9HR0fB5xp1uHv3boghRD0w/mu1Wui/N954Q0SGmujXXnstzDM8r91uh/ZCO+B9o9HIPZ+Y7RIaSbQPrBQ3btwIGj205ZUrV4JMx/Nhlb937578+9//FpGhtg9Ww83NzVB3jAGmoGZaeJGoxWAS6PnFqRM4CS3HgIkM+3xrayvMHYw39Hm73Y55S5RKpUwpDbKCGVd1+gy03erqarC+cmyCjo3C+1arFdoZYxAsuVevXo2ktMBVJ7VmFrBxY6QsmmzWmGurcbPZDOsUxhxiGra3t0N5dfqOer0eLFFMH85sgCLRGNNpJIO2qJv1ulWpVEJfYP7/4Ac/EJGhXBAZxiIzuxgzeooM2jOtL/LuL9An3W43Rn/OaSw0Jb6VpJk9QnQKEsiW+fn50GfYq7DniuUBgmfmqQ+v+TqpfaPRCM/DeNrb24vFTbGFCtYpWKYQd7i0tBSTNUtLS+GZeowVi8VYuphR4LhNbZHCvSyL1MLCQow9mxNSs3UKZROJemaxTNUeP5a1Kit4P2ZZolAeyD/E5L/88sshvh/yHHU6Pj4O5w9mmhYZxEqhrzmNCtPYiwz7MGt6hNxkE9ZmEK9ZWGED9MEHH4iIyO9+9zsRGQj6H/3oRyIyNG9jAe92u+bgmlXeqLSFTruTFYvFMGmwYYVw+/DDD8OGCh2BDUq1Wg0mRN6oT7MuPDk0LTOe8+TJk7ABZdcjlBuDFovsu+++G4Q8gmAhBLvdbljcsAl+/PhxmOiYEHzAzrsA86TSJmQ+UFlEFNqlzzpIWdSraS6EgPXsvLD633In5IMUNn3YhGLiv/POO+GAizGHAy0TQFguE9M4VOFgxLkt0O5Mh465jvH16quvBuWKpgT/6quvIocqkWi+FSxsTG6BciAYmA9UKEcW8CaZg8RFhi4em5ubYd6gnPv7+6H+kBNIJfDWW2+FjROEPzbDhUIh5sK0vb0dc13ig/C4m6RarRajzuYcXvgMY6vdbodyYGMOgqBPP/00yBFs3lH+s7Mz07UY41PnyVlYWAjtPg1Y45rzcGE8oC0gM1utVigT5hm7Oek8SNNwqWJYc1RvNtfW1sIaA/mzv78fU0pgjpRKpdDHcB3Feluv18OzsLnY39+PKcB4w5Q3jQX/V7v08cFUu7AeHR3FXPqw5uzt7cUo9Dn3GeYW+rderydS3o+Tz4ehxxofpHBfJpOB8hXkW5ARnU4nzC1N7nR4eBjbpFuH+En2FDz/9MGDDyCa3OD09DSWU4/nibUGiwxkgHYzq9froc84v51Ifvpzzl+l24XJuZjaXWQgb7W8hwzc398PrzG/+ECFOcpzhAmKdH3yAuVqtVph/OvcXUkHKe2yxledd40PRrr/isViTAbwd3n3eaw80vIP95qfn4/tH15++eWwD0ddsI7eu3dPPv74YxGRcMXB6uDgIHZeYTIafKZJzEbBXfscDofD4XA4HA6HIydS1UtZk/Bqi9Ha2lpwN8LJ7m9/+5uIDCxUOHlCK4PTILtlWSf2adJ9joJ2AZufn48FG8Mt7sMPP4wlFYVW7Pz8POZWNU13EJEopSsncRUZmoPZlYqTBoMw49vf/nbk/Ztvvhk0x9Da4P9ffPFFOOGzFlq7brCmI6+mgqmStemZ6VWt5Ls6CBe/qdVqMZe+NI2IRYnOVKiTuIRk6WfWoqPumur81q1bMQ0/xluSW9s03ftAonBychI02bCiMEU4NI2wUKytrQWNEqw03/zmN0VkYKGC6xxnHxeJuvWgv5rNZhiHqDvKsLq6Gp6dBWwBQn0wh5giF+MAlovXX389aPxRD2ifb968GTRdGNeYn5ubm8FliV1iUTdtBeHg4KxAmy8vL4fywjqE6/LycsRNV2SgvWPXRRGJ0LizNU4kKivR99AkXr9+PZJAViRdazwJeHxry3O73Q7aXO3Cdnh4GF6jPJBpFinBtNcf1uxj7mPcoA+XlpZCmVCPJ0+eBHmMsYRxtry8HKzZ0J6jHyqVSug7DqjXSUNZjua1SDHluZWwVGQwtjF2mKAGFihcOfmutvZwMnhOXo3f6HJbngh5Ye2BeI3X5Co3btwIGnXseWBte/DgQXBDwlzD+GS3SO1+hWdNCqyRTAfPlhuR6F4G13a7HcYL5FfaWgy02+3QT7yGayIaTqabp5/Q9jxmtZWhUCiY8kHTnmOenZ6exlyuMX/u3LkTZB3kW7lcjnlp8B4p77jD2nR2dhYrG7v5atfZJCuVSDJdOsqalkoGGNfdVyS6D9OpOVCe9fX1YEXH/NnY2Ii48okM9woff/xxCLWBXEQ/iQzHFu9JmDRL1zPTXi1jfR0Oh8PhcDgcDofD8f+QSb3EGg/rdIbTPLQUlUolaBsQvwGt+eeffx60ZfDnhoasXC6bVpukE+G0Y43Snlmr1SLUlSLDALadnZ2g9cMpF789OTmJ0XZOmzaXCTGgoWCtMr5Dn0BT/sorr4QgV2jTodlrNBrB4qaDX7e3t4P2AFqBer0eNIA6sHccYCyxlRLaAiY40BoT9h3XWhT202dLFK5MuS5iJwMGCoVCLjrWSVAsFmO0vWiLZrMZNLY6cLbZbIYysuZtmmMP4+v4+DjmU465sL+/H+Y4W2x1gCe+u337dogdgIYd1o9Hjx6ZFhxdT461zEPOwPMF98B4w7i+cuVKKCusanfu3ImkFRAZypPj4+OgZUasEfqMrVsYYxbFLGvK8sbmsBVTx4/g/mdnZ0GzB8vbw4cPI0l2RYYaPotQAv353HPPhaBgJgHBMzV5h8h4MQMa2irQ7/dD37PVCVYAHcvJhDm6Ty6C2IhjdTT1PpOn4HcYqw8fPgyWQ3yG8XL9+vVgicJYxb3a7XYkyF5kMFYxl7RVji0MWcFJWjVZBwem63jEra2t0E/oE9Tt7OwsyH2MOYzrtbW1CMkEys8J20WiZEPjkgZZQJuxtwTau16vh/GoPTq+/PLLYHWH3EEda7VaJDYKz5nmmNSkAiLxFCGdTidG+MQ09doyxXJMkxD0er1wL+wbOMZGW1VarVYuunDeM+gYa5atFtECxgrqhf54+vRpjLACMvDo6CjML7byJ1lCORFuVnBKBk5xwt+1Wq0wVrAXbDQasRipLEQUPO7S6NIZeeUDz0NttcM8ZiIkWP2q1Wpoe6ypILb75JNPQtwuxiLG8uLiYliH2DNC76+ArOkR3CLlcDgcDofD4XA4HDmR22RgxU3hNU7rx8fH4TNoG9g3mGN0RCSiabiMBLxpYA0TTquaArTf7wfNKyeCExloDHDqnpVWEyfz8/PzmCYVmroXX3wxxjp47dq1UF5oxmCFunfvXrAYwr8U2pSFhQUz3sHSOuGaV+vHSfQsqxOuVvJdPV7YJ1pbt5hJSvt/swbOYgecNmtXGvTYQRm3t7fD+GLtncigT2E9ZeuZZuKZBNxW0OBBcwzLxtbWVhiHGDdXr14Nmjt8x77L2koFaw9rqnHd2dkJz8Sc5BijPBYpZiqDRgxzBGN9fX09Nv45GSHiiKBJf/r0aWJKgFKpFKFhFRmMSR37N0lfoYxLS0vhGRjPKE+z2YxYokQGWnJo9vAZ6sGaT9wf/bmxsRE0h4jJ4tgePT+73e5YKRKSwBYp1BPj4uDgIHyPMQO0Wq1Ie6BsQN51KG+fsbxiOm+RaKJplA3xiQ8fPgxjDfMRVpA7d+5E6M5Fhtr34+PjWNLRVqsV2kxro3kNzAornlXHIXQ6nVAnlGdnZyeSJFVEIkx91pwUGYw31J1jh3ms6es0xh7TQ4tE45pQz2azGaxOkMuo497eXug7HUtWrVZnxhSpYbEBWkyEfMX32Bdh7d7f348xwnE90O4Yl5wCQVtDmZE4C7gf9LjDPavVaiyum2Ph0TdY1zgtBdYeTqKN+uM36+vrkYS9jHGYInmcakZNi+WY46dQNou1T1up+DsrbsqKSxeJxtdlBbNiQy7p9eT69ethfqNujUYjyD94TCHG8P79+0FmsCVKZGDl0hbrWq2WOK+yWqRSD1Jpbg28qOjvO51OMNGjg3nwYnHF5i6NuMJ65mWAn41BjLKWSqUwCNEhltvXrMrPOUc4wFZkuKCurq6GgYMyPnjwICzAMI9CQBwfH8dcdthFSAfnsRuNpkMdR2ig/djcr7ODsxnecknQ7hAMnQOhWq3GgoM5h9UkdZkUVt1YacHEHCLD9mdXTx6r03RXwjP7/X6EKlpEImQNGGdwy1tbW4sRHrDbnx5f+M3i4mKMyGBnZycITmwIOWA4j9sY5s/c3FwYBxDCnGMK7Y95w66N7O4oMtxYcH1YiFvuexrabS0P2JUO5ebcMCKDzSr6hqndsVjBBQzgBQl9g/64evVq+I4PAIDezLJb7TTBc5XnBJ6rc/Nw7h/OX6OR5UA1ydzinGxoP87zg00R+mtzczOst+zSJzJQYEIJoSmYDw4OwrzhzSJkox6X4wSVs8JKy2N2GUP5cZDa2tqKkEvgd7gn08GLDA/s1trEpAKaZGha8lwfpHhTybmRICPRh+yCzLl9uPyj8pVZyCsnrPQhOiUBbyotl3fOcyQyqC+njBCJUmxrMovV1dXwTE2lzq6hWcAkD/pQxgcqTXwyPz8f5glkNI9D7dqoD1aot0g0nYKWgzwms4J/r8czHxw5xAblYMIMri8fUNMOWfx77SrJiu5xD/qVSiW0EeY01pUrV66EZ6H8e3t7wT0W+Qy14l8keoDCFbID48kqc5acogx37XM4HA6Hw+FwOByOnMjk2mclC016LzI44eE/TF+pv8NJcBS9+qwtUdb9006iFvGA1kiNqxEaB5yFWZuqOZgcWj/W/rFLB5f/2rVrMcpqaPpKpZJJjaq1uJP0IQc8W0nhcLUsUtp6xJp+XTa2TLHVFFdoZDQ1et4EgeMgrc2YrlVTZeuEivpeaffN20/Q2p2dncXc0KCJbTabwZUFlo2dnZ2gUYe2iAkpWMMsEiUwgZaJE+thjGI8Y4yfnJwEbVye+rArkrZg7O7uxjTKp6enQROoKW/r9XrMTYpdXSxXmjQL1LjuE81mM9QB/QHt3dbWVrCuwQq1v78f+hDyhDV82qKIPlteXo4RSvR6vYgFiq+dTmcqZBMAa2d1O3Y6nfDaCl7Po4m0XFkmWas42Fq72eC7s7OzYEUCYcnu7m6QAZgHcN9+/vnnQ7+gLzAGWP6z5Vq7QlmU21nB99IWLQ7cRzmg/d/f3w/lZOIhtIl2Fcb7paWl2Njr9/sxSxS/n8QqldTf/X4/Ns6tz5iMw3KVSntGEsZZl9iyoT0/2BKUZpFi0haRqEcH5DE8E9hdETg/Pw/WAowb7ps8FlHLIqW9UCwiioWFhZhFikmTUA9N1d1ut8N3TCKhXW054Wve+cSEKUnrQ6/Xi3kGsSVUk1NUq9WwFlikE9ZnmjSGLX15rdacmoZTo4gM26xcLsdSVnz99deB/Ay05xyCAvnJHll4b5EdAePu6dwi5XA4HA6Hw+FwOBw5kTshb9YYJv3fNE3fKKrzWVHQTnq/cU+vo56bt1ysOdTWAGgbWq1WTIve7XbD6VwH4C0sLMR8SNGHZ2dnMV9h1qKPq0ljQINiWfvSyBI4wBxX9uXVVhvLN5z9+lFPJlUQmQ5d8zRgBUOmEWKkacHG6S9o7zjhJtqbkwZiPKI9z87OYglvoa1cWVkJ41EnG67X6zGNUqlUisX/oSwLCwuROISsaLfbocyaKp81fKwx1Qm7ORlpGmmERdutv5sEqD8HRENrDOvGzs5OiE+BzCgWi7Hkudwv6Bv8hseCnmdM3KKvVuLrcZA1rjav/3veZ44LtgDosYQyHx8fB6sN5kuj0QgyC9pcWKSuX78ei42C5nx3dzcWf8SpFnQMxDjguaDXEY7zhAxg8gsd34k5vbS0FKE7F7FJj9A3TCih4/OyBpNbGOXJouczj3NtHbE8L7Ji1J4qCzjmRq+zPC71fo6fxWlGRAbeANoSiPG2u7sbI6DgOFv2ftHPy4K0mEvLgyctcTRbpiA3UQ+dKkBkuPc6PT2NzR20R7VazT2v2IKStK/msWDJXk2bzuQUWK85jkrHkFmf8bqPe2UFtzGnCeCycowXrPAPHjwIxC3oEyZDg2WTk9HjeWmWqHHX4LEl5KgDVdL3o9y9LpOhLw3jLph56zHJwtxut2Mud7wJ5IEmEhUa2vWoUCiESa83wUlubUkHqHHqlOaelnY/Pkih/JzlXP/XIpHgBYEFLJdnUpeQLMirQLDcjCyhMY3+AdisrxcgjJv5+fkYuQEfxnW+JmYT48MVrprJjPPEoA0wjhcWFnK5UKDM7IqGKy9ampGLGSTZ9VRj1ocmC5xXDK4ROs8cb3rY/QSyAu3PQbtMmCES3XBr0oZ2ux37bBqbWQtZXVdnpaAbF+z2qTeZ2GAeHR2Fwy8ORL1eL/QFSCaQx2t1dTWMQxyQMbeOjo5Sc5hN4tIH8D00UQ7njsJBijeqevPH+WUsBQt+ow9snU5nqgepLOMl6b66LbO6XCc9Y9zyaVjslADLOD7MJj2X+0uzX+J6enoaZA8rbPW6z/Mgj/LSUvBaCkdNpMIbbc2muri4GDbkOscU71NY+aEJmNCW3W43F3kG35eJKizFsHXY1fsc3h9qcgp2ydeHJVbyWN/lPUhZDIFof5SD9wM4PD1+/DjIP9SXc2PpQ5m1RgGjxkgWuGufw+FwOBwOh8PhcOREJotUmutdkoUpzRKlP3vWqM7Hef6k5Z3k/6x9SaLFZE2L5W4BcMC81sRrLQi/Zhe8acDSPo1rkUL7sIuVtmBYFiamXtfuWpVKZSaUzRb6/XiKAf29hWm7kFpIy9EF7RRTykJDyeZ6bfFk4hK2UokMLCi4F1+1RZX7N089LU2mdnFhN5xRbqZ8TfosL/L2G7T8p6enwSVFu6YUi8WIhU8k6iKhr/Pz8zFtLs877frLhBJp7ihZMWsK8ssAzxvMJU3QcXBwEPoTc6NSqQSLISxSsNjUarWICx3uITIYAzpo3soTw8jbVzw/kty8Dg8PYy5T5+fnETIZkaHG+cqVK5HgcdQTZbZc6ixL1Dj1yYq87naX4c7HSLNIAbweQt5a5WCLDsYcxirQ6/XCZ+h7JmDQuREtb5I0sIxJkjcs49lyitfavdBKicHeFDrlDRMJaUvbOFZeyyJlXa36aisVXy3vJTxPpy+yvJiY4CyvlY1p51E/naLj6OgoeKbArbnRaIQ6aAtZvV6PpY1IskTp9hkXbpFyOBwOh8PhcDgcjpzIHSOVpgnMYmG6SDKJZw2zqh+frPEMHXDLVOFAmtXJiv+xtO/jxu+MAlu/tFZ21HO09hFalVqtFrNYsMZIJ2nk9tRWCY6fughY8U/W51kwzXHImcl1sDH7iutkx2dnZzEqVg6A1X2N37AmE9rAk5MTM/BVJH+SQMvqqT/LGmSe9H0eTKOvEBvTbDZjMTFMrGLFBFjJiEWi1gqLUtpKzp2VcCgPLAryvHhW1h+26KIsaD/WzqI/OeYVFihcYTksFAoxghGmFcc9+NlZEkNnBRM+AJjbsD4dHx+H16hnr9eLxWoxwYQmQeGYRfYywPWiLFKziometeUV92eyibRnsWXK8uTAb3QiVSZnwDOxPp+cnESsLiLDMZ6XnMHynmFyG1x1ihT20mErra6blpXNZjNGSMXP13NpHIIdnpfa68aqE1+Txrv1HcpfLpcjFOr4zKI9F4km3c4KtgTq2EmMmf39/RgRUq/Xi1nGOGWEtU4BaXHK+jdZ4RYph8PhcDgcDofD4ciJsVXqoyxMSVqNUfFWl60VzIMsZb2I+lhxShYzW5qPcJLFQ98/DybR9lnMM1n/pzUysFZ0Op1YHA/H0mg/ZktrxNqqvMnnpolnhdWSNb2a5ctitGNGJ/QLNEmcNBCvNVW2yFBjButKt9s1fblFBv2cR5OZNQ4vDZdpfbLAcY9oCx0ryMkp0R/s864t3Kz51LEv7XY7Nn/T/NCfFZl/2esPzx9ONSEy1MQ2Go2Idlhk0E+aDhx92el0YnGGsPp0Op0YQxnHqWSJc84KjlPC8zlej8skMhifOgk0J4jXMRAsi7X1iT0vLtsSNc74uoh5w54FabG/emwwk5/1W824yPGwev3ksaplNlso82BUjJQeK2yR0mXgumpLU6VSCfOSU2Noaze3X94xyDJbJ31nWczWRXyX1gaAtuJZLNBspUJfom/Pz89jsXBZ68QU7czWJzKwpMM6xZ4UHIMtMpQFHGNqybBpWqKAiX2Tkg5GaRvztM8c+THK1QjvsxKFpH2Whlls7rMepHhypJFN6LwRTCCgBRATUFjjeRJa4MvCtOcck5roBZg3hnoBLpfLkSBekaEgZKpsfaDiPuGxwSQRXC7eLGbBRY35SfphbGFP7qjaRYXp69MOobw4WxtWfJclV9O0xuIkbq7PElgWaXdmDmrXCqJ6vR7IF7CpQP+2Wq2wIcHBBRsVEYkpliwCImCcoGyLglznMzw9PY2UCeVBXXROmHq9Hr6zNtxa7ne73akQnGjMyo0v7f6z3jP1er3Q/1qm9vv9mAKmUCjE5DiXWx9KsNFmt1LOI6VdyXhOjJtuJOnwYCldu91ueKY+rHDba9INVqxiLqXtH4rFYu6+ZFd5LfO4LTXRWFI9gaQ5wQdNroc1v0QGfZaX/pzXDk0yYckrJsLR+wb+LmlNSJJhTjbhcDgcDofD4XA4HBeMwn+7Fs/hcDgcDofD4XA4LhpukXI4HA6Hw+FwOByO3qWXRwAAAE9JREFUnPCDlMPhcDgcDofD4XDkhB+kHA6Hw+FwOBwOhyMn/CDlcDgcDofD4XA4HDnhBymHw+FwOBwOh8PhyAk/SDkcDofD4XA4HA5HTvwvlvYc7V6NMJQAAAAASUVORK5CYII=\n",
|
272
|
+
"text/plain": [
|
273
|
+
"<Figure size 1080x1080 with 256 Axes>"
|
274
|
+
]
|
275
|
+
},
|
276
|
+
"metadata": {
|
277
|
+
"needs_background": "light"
|
278
|
+
},
|
279
|
+
"output_type": "display_data"
|
280
|
+
}
|
281
|
+
],
|
282
|
+
"source": [
|
283
|
+
"num_channels=256\n",
|
284
|
+
"max_columns = 16\n",
|
285
|
+
"\n",
|
286
|
+
"fig, ax = plt.subplots(nrows=num_channels//max_columns, ncols=max_columns)\n",
|
287
|
+
"\n",
|
288
|
+
"fig.set_size_inches(15,15)\n",
|
289
|
+
"for i in range(num_channels):\n",
|
290
|
+
" v1_k = v1_model.simple_conv_q0.weight[i,:,:,:].numpy().mean(axis=0)\n",
|
291
|
+
" v1_k = v1_k / np.amax(np.abs(v1_k))/2+0.5\n",
|
292
|
+
" im_h=ax[i//max_columns, np.mod(i,max_columns)].imshow(v1_k, cmap='gray')\n",
|
293
|
+
"# ax[i//num_channels, np.mod(i,num_channels)].set_xlim([0, 223])\n",
|
294
|
+
" im_h.set_clim([0, 1])\n",
|
295
|
+
" ax[i//max_columns, np.mod(i,max_columns)].set_axis_off()\n",
|
296
|
+
"plt.show()"
|
297
|
+
]
|
298
|
+
},
|
299
|
+
{
|
300
|
+
"cell_type": "code",
|
301
|
+
"execution_count": 91,
|
302
|
+
"metadata": {},
|
303
|
+
"outputs": [
|
304
|
+
{
|
305
|
+
"name": "stdout",
|
306
|
+
"output_type": "stream",
|
307
|
+
"text": [
|
308
|
+
"9.899494936611665\n"
|
309
|
+
]
|
310
|
+
}
|
311
|
+
],
|
312
|
+
"source": [
|
313
|
+
"# Nyquist\n",
|
314
|
+
"\n",
|
315
|
+
"visual_degrees = 8\n",
|
316
|
+
"image_size = 224\n",
|
317
|
+
"\n",
|
318
|
+
"nyquist_f = 1/(visual_degrees/image_size)/2 / np.sqrt(2)\n",
|
319
|
+
"\n",
|
320
|
+
"print(nyquist_f)"
|
321
|
+
]
|
322
|
+
},
|
323
|
+
{
|
324
|
+
"cell_type": "code",
|
325
|
+
"execution_count": null,
|
326
|
+
"metadata": {},
|
327
|
+
"outputs": [],
|
328
|
+
"source": []
|
329
|
+
}
|
330
|
+
],
|
331
|
+
"metadata": {
|
332
|
+
"kernelspec": {
|
333
|
+
"display_name": "Python 3",
|
334
|
+
"language": "python",
|
335
|
+
"name": "python3"
|
336
|
+
},
|
337
|
+
"language_info": {
|
338
|
+
"codemirror_mode": {
|
339
|
+
"name": "ipython",
|
340
|
+
"version": 3
|
341
|
+
},
|
342
|
+
"file_extension": ".py",
|
343
|
+
"mimetype": "text/x-python",
|
344
|
+
"name": "python",
|
345
|
+
"nbconvert_exporter": "python",
|
346
|
+
"pygments_lexer": "ipython3",
|
347
|
+
"version": "3.6.8"
|
348
|
+
}
|
349
|
+
},
|
350
|
+
"nbformat": 4,
|
351
|
+
"nbformat_minor": 2
|
352
|
+
}
|