bplusplus 1.1.0__py3-none-any.whl → 1.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of bplusplus might be problematic. Click here for more details.
- bplusplus/__init__.py +4 -2
- bplusplus/collect.py +69 -5
- bplusplus/hierarchical/test.py +670 -0
- bplusplus/hierarchical/train.py +676 -0
- bplusplus/prepare.py +228 -64
- bplusplus/resnet/test.py +473 -0
- bplusplus/resnet/train.py +329 -0
- bplusplus-1.2.0.dist-info/METADATA +249 -0
- bplusplus-1.2.0.dist-info/RECORD +12 -0
- bplusplus/yolov5detect/__init__.py +0 -1
- bplusplus/yolov5detect/detect.py +0 -444
- bplusplus/yolov5detect/export.py +0 -1530
- bplusplus/yolov5detect/insect.yaml +0 -8
- bplusplus/yolov5detect/models/__init__.py +0 -0
- bplusplus/yolov5detect/models/common.py +0 -1109
- bplusplus/yolov5detect/models/experimental.py +0 -130
- bplusplus/yolov5detect/models/hub/anchors.yaml +0 -56
- bplusplus/yolov5detect/models/hub/yolov3-spp.yaml +0 -52
- bplusplus/yolov5detect/models/hub/yolov3-tiny.yaml +0 -42
- bplusplus/yolov5detect/models/hub/yolov3.yaml +0 -52
- bplusplus/yolov5detect/models/hub/yolov5-bifpn.yaml +0 -49
- bplusplus/yolov5detect/models/hub/yolov5-fpn.yaml +0 -43
- bplusplus/yolov5detect/models/hub/yolov5-p2.yaml +0 -55
- bplusplus/yolov5detect/models/hub/yolov5-p34.yaml +0 -42
- bplusplus/yolov5detect/models/hub/yolov5-p6.yaml +0 -57
- bplusplus/yolov5detect/models/hub/yolov5-p7.yaml +0 -68
- bplusplus/yolov5detect/models/hub/yolov5-panet.yaml +0 -49
- bplusplus/yolov5detect/models/hub/yolov5l6.yaml +0 -61
- bplusplus/yolov5detect/models/hub/yolov5m6.yaml +0 -61
- bplusplus/yolov5detect/models/hub/yolov5n6.yaml +0 -61
- bplusplus/yolov5detect/models/hub/yolov5s-LeakyReLU.yaml +0 -50
- bplusplus/yolov5detect/models/hub/yolov5s-ghost.yaml +0 -49
- bplusplus/yolov5detect/models/hub/yolov5s-transformer.yaml +0 -49
- bplusplus/yolov5detect/models/hub/yolov5s6.yaml +0 -61
- bplusplus/yolov5detect/models/hub/yolov5x6.yaml +0 -61
- bplusplus/yolov5detect/models/segment/yolov5l-seg.yaml +0 -49
- bplusplus/yolov5detect/models/segment/yolov5m-seg.yaml +0 -49
- bplusplus/yolov5detect/models/segment/yolov5n-seg.yaml +0 -49
- bplusplus/yolov5detect/models/segment/yolov5s-seg.yaml +0 -49
- bplusplus/yolov5detect/models/segment/yolov5x-seg.yaml +0 -49
- bplusplus/yolov5detect/models/tf.py +0 -797
- bplusplus/yolov5detect/models/yolo.py +0 -495
- bplusplus/yolov5detect/models/yolov5l.yaml +0 -49
- bplusplus/yolov5detect/models/yolov5m.yaml +0 -49
- bplusplus/yolov5detect/models/yolov5n.yaml +0 -49
- bplusplus/yolov5detect/models/yolov5s.yaml +0 -49
- bplusplus/yolov5detect/models/yolov5x.yaml +0 -49
- bplusplus/yolov5detect/utils/__init__.py +0 -97
- bplusplus/yolov5detect/utils/activations.py +0 -134
- bplusplus/yolov5detect/utils/augmentations.py +0 -448
- bplusplus/yolov5detect/utils/autoanchor.py +0 -175
- bplusplus/yolov5detect/utils/autobatch.py +0 -70
- bplusplus/yolov5detect/utils/aws/__init__.py +0 -0
- bplusplus/yolov5detect/utils/aws/mime.sh +0 -26
- bplusplus/yolov5detect/utils/aws/resume.py +0 -41
- bplusplus/yolov5detect/utils/aws/userdata.sh +0 -27
- bplusplus/yolov5detect/utils/callbacks.py +0 -72
- bplusplus/yolov5detect/utils/dataloaders.py +0 -1385
- bplusplus/yolov5detect/utils/docker/Dockerfile +0 -73
- bplusplus/yolov5detect/utils/docker/Dockerfile-arm64 +0 -40
- bplusplus/yolov5detect/utils/docker/Dockerfile-cpu +0 -42
- bplusplus/yolov5detect/utils/downloads.py +0 -136
- bplusplus/yolov5detect/utils/flask_rest_api/README.md +0 -70
- bplusplus/yolov5detect/utils/flask_rest_api/example_request.py +0 -17
- bplusplus/yolov5detect/utils/flask_rest_api/restapi.py +0 -49
- bplusplus/yolov5detect/utils/general.py +0 -1294
- bplusplus/yolov5detect/utils/google_app_engine/Dockerfile +0 -25
- bplusplus/yolov5detect/utils/google_app_engine/additional_requirements.txt +0 -6
- bplusplus/yolov5detect/utils/google_app_engine/app.yaml +0 -16
- bplusplus/yolov5detect/utils/loggers/__init__.py +0 -476
- bplusplus/yolov5detect/utils/loggers/clearml/README.md +0 -222
- bplusplus/yolov5detect/utils/loggers/clearml/__init__.py +0 -0
- bplusplus/yolov5detect/utils/loggers/clearml/clearml_utils.py +0 -230
- bplusplus/yolov5detect/utils/loggers/clearml/hpo.py +0 -90
- bplusplus/yolov5detect/utils/loggers/comet/README.md +0 -250
- bplusplus/yolov5detect/utils/loggers/comet/__init__.py +0 -551
- bplusplus/yolov5detect/utils/loggers/comet/comet_utils.py +0 -151
- bplusplus/yolov5detect/utils/loggers/comet/hpo.py +0 -126
- bplusplus/yolov5detect/utils/loggers/comet/optimizer_config.json +0 -135
- bplusplus/yolov5detect/utils/loggers/wandb/__init__.py +0 -0
- bplusplus/yolov5detect/utils/loggers/wandb/wandb_utils.py +0 -210
- bplusplus/yolov5detect/utils/loss.py +0 -259
- bplusplus/yolov5detect/utils/metrics.py +0 -381
- bplusplus/yolov5detect/utils/plots.py +0 -517
- bplusplus/yolov5detect/utils/segment/__init__.py +0 -0
- bplusplus/yolov5detect/utils/segment/augmentations.py +0 -100
- bplusplus/yolov5detect/utils/segment/dataloaders.py +0 -366
- bplusplus/yolov5detect/utils/segment/general.py +0 -160
- bplusplus/yolov5detect/utils/segment/loss.py +0 -198
- bplusplus/yolov5detect/utils/segment/metrics.py +0 -225
- bplusplus/yolov5detect/utils/segment/plots.py +0 -152
- bplusplus/yolov5detect/utils/torch_utils.py +0 -482
- bplusplus/yolov5detect/utils/triton.py +0 -90
- bplusplus-1.1.0.dist-info/METADATA +0 -179
- bplusplus-1.1.0.dist-info/RECORD +0 -92
- {bplusplus-1.1.0.dist-info → bplusplus-1.2.0.dist-info}/LICENSE +0 -0
- {bplusplus-1.1.0.dist-info → bplusplus-1.2.0.dist-info}/WHEEL +0 -0
|
@@ -1,25 +0,0 @@
|
|
|
1
|
-
FROM gcr.io/google-appengine/python
|
|
2
|
-
|
|
3
|
-
# Create a virtualenv for dependencies. This isolates these packages from
|
|
4
|
-
# system-level packages.
|
|
5
|
-
# Use -p python3 or -p python3.7 to select python version. Default is version 2.
|
|
6
|
-
RUN virtualenv /env -p python3
|
|
7
|
-
|
|
8
|
-
# Setting these environment variables are the same as running
|
|
9
|
-
# source /env/bin/activate.
|
|
10
|
-
ENV VIRTUAL_ENV /env
|
|
11
|
-
ENV PATH /env/bin:$PATH
|
|
12
|
-
|
|
13
|
-
RUN apt-get update && apt-get install -y python-opencv
|
|
14
|
-
|
|
15
|
-
# Copy the application's requirements.txt and run pip to install all
|
|
16
|
-
# dependencies into the virtualenv.
|
|
17
|
-
ADD requirements.txt /app/requirements.txt
|
|
18
|
-
RUN pip install -r /app/requirements.txt
|
|
19
|
-
|
|
20
|
-
# Add the application source code.
|
|
21
|
-
ADD . /app
|
|
22
|
-
|
|
23
|
-
# Run a WSGI server to serve the application. gunicorn must be declared as
|
|
24
|
-
# a dependency in requirements.txt.
|
|
25
|
-
CMD gunicorn -b :$PORT main:app
|
|
@@ -1,6 +0,0 @@
|
|
|
1
|
-
# add these requirements in your app on top of the existing ones
|
|
2
|
-
pip==23.3
|
|
3
|
-
Flask==2.3.2
|
|
4
|
-
gunicorn==22.0.0
|
|
5
|
-
werkzeug>=3.0.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
|
6
|
-
zipp>=3.19.1 # not directly required, pinned by Snyk to avoid a vulnerability
|
|
@@ -1,476 +0,0 @@
|
|
|
1
|
-
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
|
|
2
|
-
"""Logging utils."""
|
|
3
|
-
|
|
4
|
-
import json
|
|
5
|
-
import os
|
|
6
|
-
import warnings
|
|
7
|
-
from pathlib import Path
|
|
8
|
-
|
|
9
|
-
import pkg_resources as pkg
|
|
10
|
-
import torch
|
|
11
|
-
|
|
12
|
-
from utils.general import LOGGER, colorstr, cv2
|
|
13
|
-
from utils.loggers.clearml.clearml_utils import ClearmlLogger
|
|
14
|
-
from utils.loggers.wandb.wandb_utils import WandbLogger
|
|
15
|
-
from utils.plots import plot_images, plot_labels, plot_results
|
|
16
|
-
from utils.torch_utils import de_parallel
|
|
17
|
-
|
|
18
|
-
LOGGERS = ("csv", "tb", "wandb", "clearml", "comet") # *.csv, TensorBoard, Weights & Biases, ClearML
|
|
19
|
-
RANK = int(os.getenv("RANK", -1))
|
|
20
|
-
|
|
21
|
-
try:
|
|
22
|
-
from torch.utils.tensorboard import SummaryWriter
|
|
23
|
-
except ImportError:
|
|
24
|
-
|
|
25
|
-
def SummaryWriter(*args):
|
|
26
|
-
"""Fall back to SummaryWriter returning None if TensorBoard is not installed."""
|
|
27
|
-
return None # None = SummaryWriter(str)
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
try:
|
|
31
|
-
import wandb
|
|
32
|
-
|
|
33
|
-
assert hasattr(wandb, "__version__") # verify package import not local dir
|
|
34
|
-
if pkg.parse_version(wandb.__version__) >= pkg.parse_version("0.12.2") and RANK in {0, -1}:
|
|
35
|
-
try:
|
|
36
|
-
wandb_login_success = wandb.login(timeout=30)
|
|
37
|
-
except wandb.errors.UsageError: # known non-TTY terminal issue
|
|
38
|
-
wandb_login_success = False
|
|
39
|
-
if not wandb_login_success:
|
|
40
|
-
wandb = None
|
|
41
|
-
except (ImportError, AssertionError):
|
|
42
|
-
wandb = None
|
|
43
|
-
|
|
44
|
-
try:
|
|
45
|
-
import clearml
|
|
46
|
-
|
|
47
|
-
assert hasattr(clearml, "__version__") # verify package import not local dir
|
|
48
|
-
except (ImportError, AssertionError):
|
|
49
|
-
clearml = None
|
|
50
|
-
|
|
51
|
-
try:
|
|
52
|
-
if RANK in {0, -1}:
|
|
53
|
-
import comet_ml
|
|
54
|
-
|
|
55
|
-
assert hasattr(comet_ml, "__version__") # verify package import not local dir
|
|
56
|
-
from utils.loggers.comet import CometLogger
|
|
57
|
-
|
|
58
|
-
else:
|
|
59
|
-
comet_ml = None
|
|
60
|
-
except (ImportError, AssertionError):
|
|
61
|
-
comet_ml = None
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
def _json_default(value):
|
|
65
|
-
"""
|
|
66
|
-
Format `value` for JSON serialization (e.g. unwrap tensors).
|
|
67
|
-
|
|
68
|
-
Fall back to strings.
|
|
69
|
-
"""
|
|
70
|
-
if isinstance(value, torch.Tensor):
|
|
71
|
-
try:
|
|
72
|
-
value = value.item()
|
|
73
|
-
except ValueError: # "only one element tensors can be converted to Python scalars"
|
|
74
|
-
pass
|
|
75
|
-
return value if isinstance(value, float) else str(value)
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
class Loggers:
|
|
79
|
-
"""Initializes and manages various logging utilities for tracking YOLOv5 training and validation metrics."""
|
|
80
|
-
|
|
81
|
-
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
|
82
|
-
"""Initializes loggers for YOLOv5 training and validation metrics, paths, and options."""
|
|
83
|
-
self.save_dir = save_dir
|
|
84
|
-
self.weights = weights
|
|
85
|
-
self.opt = opt
|
|
86
|
-
self.hyp = hyp
|
|
87
|
-
self.plots = not opt.noplots # plot results
|
|
88
|
-
self.logger = logger # for printing results to console
|
|
89
|
-
self.include = include
|
|
90
|
-
self.keys = [
|
|
91
|
-
"train/box_loss",
|
|
92
|
-
"train/obj_loss",
|
|
93
|
-
"train/cls_loss", # train loss
|
|
94
|
-
"metrics/precision",
|
|
95
|
-
"metrics/recall",
|
|
96
|
-
"metrics/mAP_0.5",
|
|
97
|
-
"metrics/mAP_0.5:0.95", # metrics
|
|
98
|
-
"val/box_loss",
|
|
99
|
-
"val/obj_loss",
|
|
100
|
-
"val/cls_loss", # val loss
|
|
101
|
-
"x/lr0",
|
|
102
|
-
"x/lr1",
|
|
103
|
-
"x/lr2",
|
|
104
|
-
] # params
|
|
105
|
-
self.best_keys = ["best/epoch", "best/precision", "best/recall", "best/mAP_0.5", "best/mAP_0.5:0.95"]
|
|
106
|
-
for k in LOGGERS:
|
|
107
|
-
setattr(self, k, None) # init empty logger dictionary
|
|
108
|
-
self.csv = True # always log to csv
|
|
109
|
-
self.ndjson_console = "ndjson_console" in self.include # log ndjson to console
|
|
110
|
-
self.ndjson_file = "ndjson_file" in self.include # log ndjson to file
|
|
111
|
-
|
|
112
|
-
# Messages
|
|
113
|
-
if not comet_ml:
|
|
114
|
-
prefix = colorstr("Comet: ")
|
|
115
|
-
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
|
|
116
|
-
self.logger.info(s)
|
|
117
|
-
# TensorBoard
|
|
118
|
-
s = self.save_dir
|
|
119
|
-
if "tb" in self.include and not self.opt.evolve:
|
|
120
|
-
prefix = colorstr("TensorBoard: ")
|
|
121
|
-
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
|
122
|
-
self.tb = SummaryWriter(str(s))
|
|
123
|
-
|
|
124
|
-
# W&B
|
|
125
|
-
if wandb and "wandb" in self.include:
|
|
126
|
-
self.opt.hyp = self.hyp # add hyperparameters
|
|
127
|
-
self.wandb = WandbLogger(self.opt)
|
|
128
|
-
else:
|
|
129
|
-
self.wandb = None
|
|
130
|
-
|
|
131
|
-
# ClearML
|
|
132
|
-
if clearml and "clearml" in self.include:
|
|
133
|
-
try:
|
|
134
|
-
self.clearml = ClearmlLogger(self.opt, self.hyp)
|
|
135
|
-
except Exception:
|
|
136
|
-
self.clearml = None
|
|
137
|
-
prefix = colorstr("ClearML: ")
|
|
138
|
-
LOGGER.warning(
|
|
139
|
-
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
|
|
140
|
-
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration#readme"
|
|
141
|
-
)
|
|
142
|
-
|
|
143
|
-
else:
|
|
144
|
-
self.clearml = None
|
|
145
|
-
|
|
146
|
-
# Comet
|
|
147
|
-
if comet_ml and "comet" in self.include:
|
|
148
|
-
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
|
|
149
|
-
run_id = self.opt.resume.split("/")[-1]
|
|
150
|
-
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
|
|
151
|
-
|
|
152
|
-
else:
|
|
153
|
-
self.comet_logger = CometLogger(self.opt, self.hyp)
|
|
154
|
-
|
|
155
|
-
else:
|
|
156
|
-
self.comet_logger = None
|
|
157
|
-
|
|
158
|
-
@property
|
|
159
|
-
def remote_dataset(self):
|
|
160
|
-
"""Fetches dataset dictionary from remote logging services like ClearML, Weights & Biases, or Comet ML."""
|
|
161
|
-
data_dict = None
|
|
162
|
-
if self.clearml:
|
|
163
|
-
data_dict = self.clearml.data_dict
|
|
164
|
-
if self.wandb:
|
|
165
|
-
data_dict = self.wandb.data_dict
|
|
166
|
-
if self.comet_logger:
|
|
167
|
-
data_dict = self.comet_logger.data_dict
|
|
168
|
-
|
|
169
|
-
return data_dict
|
|
170
|
-
|
|
171
|
-
def on_train_start(self):
|
|
172
|
-
"""Initializes the training process for Comet ML logger if it's configured."""
|
|
173
|
-
if self.comet_logger:
|
|
174
|
-
self.comet_logger.on_train_start()
|
|
175
|
-
|
|
176
|
-
def on_pretrain_routine_start(self):
|
|
177
|
-
"""Invokes pre-training routine start hook for Comet ML logger if available."""
|
|
178
|
-
if self.comet_logger:
|
|
179
|
-
self.comet_logger.on_pretrain_routine_start()
|
|
180
|
-
|
|
181
|
-
def on_pretrain_routine_end(self, labels, names):
|
|
182
|
-
"""Callback that runs at the end of pre-training routine, logging label plots if enabled."""
|
|
183
|
-
if self.plots:
|
|
184
|
-
plot_labels(labels, names, self.save_dir)
|
|
185
|
-
paths = self.save_dir.glob("*labels*.jpg") # training labels
|
|
186
|
-
if self.wandb:
|
|
187
|
-
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
|
188
|
-
if self.comet_logger:
|
|
189
|
-
self.comet_logger.on_pretrain_routine_end(paths)
|
|
190
|
-
if self.clearml:
|
|
191
|
-
for path in paths:
|
|
192
|
-
self.clearml.log_plot(title=path.stem, plot_path=path)
|
|
193
|
-
|
|
194
|
-
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
|
|
195
|
-
"""Logs training batch end events, plots images, and updates external loggers with batch-end data."""
|
|
196
|
-
log_dict = dict(zip(self.keys[:3], vals))
|
|
197
|
-
# Callback runs on train batch end
|
|
198
|
-
# ni: number integrated batches (since train start)
|
|
199
|
-
if self.plots:
|
|
200
|
-
if ni < 3:
|
|
201
|
-
f = self.save_dir / f"train_batch{ni}.jpg" # filename
|
|
202
|
-
plot_images(imgs, targets, paths, f)
|
|
203
|
-
if ni == 0 and self.tb and not self.opt.sync_bn:
|
|
204
|
-
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
|
|
205
|
-
if ni == 10 and (self.wandb or self.clearml):
|
|
206
|
-
files = sorted(self.save_dir.glob("train*.jpg"))
|
|
207
|
-
if self.wandb:
|
|
208
|
-
self.wandb.log({"Mosaics": [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
|
209
|
-
if self.clearml:
|
|
210
|
-
self.clearml.log_debug_samples(files, title="Mosaics")
|
|
211
|
-
|
|
212
|
-
if self.comet_logger:
|
|
213
|
-
self.comet_logger.on_train_batch_end(log_dict, step=ni)
|
|
214
|
-
|
|
215
|
-
def on_train_epoch_end(self, epoch):
|
|
216
|
-
"""Callback that updates the current epoch in Weights & Biases at the end of a training epoch."""
|
|
217
|
-
if self.wandb:
|
|
218
|
-
self.wandb.current_epoch = epoch + 1
|
|
219
|
-
|
|
220
|
-
if self.comet_logger:
|
|
221
|
-
self.comet_logger.on_train_epoch_end(epoch)
|
|
222
|
-
|
|
223
|
-
def on_val_start(self):
|
|
224
|
-
"""Callback that signals the start of a validation phase to the Comet logger."""
|
|
225
|
-
if self.comet_logger:
|
|
226
|
-
self.comet_logger.on_val_start()
|
|
227
|
-
|
|
228
|
-
def on_val_image_end(self, pred, predn, path, names, im):
|
|
229
|
-
"""Callback that logs a validation image and its predictions to WandB or ClearML."""
|
|
230
|
-
if self.wandb:
|
|
231
|
-
self.wandb.val_one_image(pred, predn, path, names, im)
|
|
232
|
-
if self.clearml:
|
|
233
|
-
self.clearml.log_image_with_boxes(path, pred, names, im)
|
|
234
|
-
|
|
235
|
-
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
|
|
236
|
-
"""Logs validation batch results to Comet ML during training at the end of each validation batch."""
|
|
237
|
-
if self.comet_logger:
|
|
238
|
-
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
|
|
239
|
-
|
|
240
|
-
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
|
241
|
-
"""Logs validation results to WandB or ClearML at the end of the validation process."""
|
|
242
|
-
if self.wandb or self.clearml:
|
|
243
|
-
files = sorted(self.save_dir.glob("val*.jpg"))
|
|
244
|
-
if self.wandb:
|
|
245
|
-
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
|
246
|
-
if self.clearml:
|
|
247
|
-
self.clearml.log_debug_samples(files, title="Validation")
|
|
248
|
-
|
|
249
|
-
if self.comet_logger:
|
|
250
|
-
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
|
251
|
-
|
|
252
|
-
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
|
253
|
-
"""Callback that logs metrics and saves them to CSV or NDJSON at the end of each fit (train+val) epoch."""
|
|
254
|
-
x = dict(zip(self.keys, vals))
|
|
255
|
-
if self.csv:
|
|
256
|
-
file = self.save_dir / "results.csv"
|
|
257
|
-
n = len(x) + 1 # number of cols
|
|
258
|
-
s = "" if file.exists() else (("%20s," * n % tuple(["epoch"] + self.keys)).rstrip(",") + "\n") # add header
|
|
259
|
-
with open(file, "a") as f:
|
|
260
|
-
f.write(s + ("%20.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
|
|
261
|
-
if self.ndjson_console or self.ndjson_file:
|
|
262
|
-
json_data = json.dumps(dict(epoch=epoch, **x), default=_json_default)
|
|
263
|
-
if self.ndjson_console:
|
|
264
|
-
print(json_data)
|
|
265
|
-
if self.ndjson_file:
|
|
266
|
-
file = self.save_dir / "results.ndjson"
|
|
267
|
-
with open(file, "a") as f:
|
|
268
|
-
print(json_data, file=f)
|
|
269
|
-
|
|
270
|
-
if self.tb:
|
|
271
|
-
for k, v in x.items():
|
|
272
|
-
self.tb.add_scalar(k, v, epoch)
|
|
273
|
-
elif self.clearml: # log to ClearML if TensorBoard not used
|
|
274
|
-
self.clearml.log_scalars(x, epoch)
|
|
275
|
-
|
|
276
|
-
if self.wandb:
|
|
277
|
-
if best_fitness == fi:
|
|
278
|
-
best_results = [epoch] + vals[3:7]
|
|
279
|
-
for i, name in enumerate(self.best_keys):
|
|
280
|
-
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
|
|
281
|
-
self.wandb.log(x)
|
|
282
|
-
self.wandb.end_epoch()
|
|
283
|
-
|
|
284
|
-
if self.clearml:
|
|
285
|
-
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
|
|
286
|
-
self.clearml.current_epoch += 1
|
|
287
|
-
|
|
288
|
-
if self.comet_logger:
|
|
289
|
-
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
|
|
290
|
-
|
|
291
|
-
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
|
292
|
-
"""Callback that handles model saving events, logging to Weights & Biases or ClearML if enabled."""
|
|
293
|
-
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
|
|
294
|
-
if self.wandb:
|
|
295
|
-
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
|
296
|
-
if self.clearml:
|
|
297
|
-
self.clearml.task.update_output_model(
|
|
298
|
-
model_path=str(last), model_name="Latest Model", auto_delete_file=False
|
|
299
|
-
)
|
|
300
|
-
|
|
301
|
-
if self.comet_logger:
|
|
302
|
-
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
|
|
303
|
-
|
|
304
|
-
def on_train_end(self, last, best, epoch, results):
|
|
305
|
-
"""Callback that runs at the end of training to save plots and log results."""
|
|
306
|
-
if self.plots:
|
|
307
|
-
plot_results(file=self.save_dir / "results.csv") # save results.png
|
|
308
|
-
files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))]
|
|
309
|
-
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
|
310
|
-
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
|
311
|
-
|
|
312
|
-
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
|
|
313
|
-
for f in files:
|
|
314
|
-
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
|
|
315
|
-
|
|
316
|
-
if self.wandb:
|
|
317
|
-
self.wandb.log(dict(zip(self.keys[3:10], results)))
|
|
318
|
-
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
|
319
|
-
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
|
320
|
-
if not self.opt.evolve:
|
|
321
|
-
wandb.log_artifact(
|
|
322
|
-
str(best if best.exists() else last),
|
|
323
|
-
type="model",
|
|
324
|
-
name=f"run_{self.wandb.wandb_run.id}_model",
|
|
325
|
-
aliases=["latest", "best", "stripped"],
|
|
326
|
-
)
|
|
327
|
-
self.wandb.finish_run()
|
|
328
|
-
|
|
329
|
-
if self.clearml and not self.opt.evolve:
|
|
330
|
-
self.clearml.log_summary(dict(zip(self.keys[3:10], results)))
|
|
331
|
-
[self.clearml.log_plot(title=f.stem, plot_path=f) for f in files]
|
|
332
|
-
self.clearml.log_model(
|
|
333
|
-
str(best if best.exists() else last), "Best Model" if best.exists() else "Last Model", epoch
|
|
334
|
-
)
|
|
335
|
-
|
|
336
|
-
if self.comet_logger:
|
|
337
|
-
final_results = dict(zip(self.keys[3:10], results))
|
|
338
|
-
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
|
|
339
|
-
|
|
340
|
-
def on_params_update(self, params: dict):
|
|
341
|
-
"""Updates experiment hyperparameters or configurations in WandB, Comet, or ClearML."""
|
|
342
|
-
if self.wandb:
|
|
343
|
-
self.wandb.wandb_run.config.update(params, allow_val_change=True)
|
|
344
|
-
if self.comet_logger:
|
|
345
|
-
self.comet_logger.on_params_update(params)
|
|
346
|
-
if self.clearml:
|
|
347
|
-
self.clearml.task.connect(params)
|
|
348
|
-
|
|
349
|
-
|
|
350
|
-
class GenericLogger:
|
|
351
|
-
"""
|
|
352
|
-
YOLOv5 General purpose logger for non-task specific logging
|
|
353
|
-
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...).
|
|
354
|
-
|
|
355
|
-
Arguments:
|
|
356
|
-
opt: Run arguments
|
|
357
|
-
console_logger: Console logger
|
|
358
|
-
include: loggers to include
|
|
359
|
-
"""
|
|
360
|
-
|
|
361
|
-
def __init__(self, opt, console_logger, include=("tb", "wandb", "clearml")):
|
|
362
|
-
"""Initializes a generic logger with optional TensorBoard, W&B, and ClearML support."""
|
|
363
|
-
self.save_dir = Path(opt.save_dir)
|
|
364
|
-
self.include = include
|
|
365
|
-
self.console_logger = console_logger
|
|
366
|
-
self.csv = self.save_dir / "results.csv" # CSV logger
|
|
367
|
-
if "tb" in self.include:
|
|
368
|
-
prefix = colorstr("TensorBoard: ")
|
|
369
|
-
self.console_logger.info(
|
|
370
|
-
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/"
|
|
371
|
-
)
|
|
372
|
-
self.tb = SummaryWriter(str(self.save_dir))
|
|
373
|
-
|
|
374
|
-
if wandb and "wandb" in self.include:
|
|
375
|
-
self.wandb = wandb.init(
|
|
376
|
-
project=web_project_name(str(opt.project)), name=None if opt.name == "exp" else opt.name, config=opt
|
|
377
|
-
)
|
|
378
|
-
else:
|
|
379
|
-
self.wandb = None
|
|
380
|
-
|
|
381
|
-
if clearml and "clearml" in self.include:
|
|
382
|
-
try:
|
|
383
|
-
# Hyp is not available in classification mode
|
|
384
|
-
hyp = {} if "hyp" not in opt else opt.hyp
|
|
385
|
-
self.clearml = ClearmlLogger(opt, hyp)
|
|
386
|
-
except Exception:
|
|
387
|
-
self.clearml = None
|
|
388
|
-
prefix = colorstr("ClearML: ")
|
|
389
|
-
LOGGER.warning(
|
|
390
|
-
f"{prefix}WARNING ⚠️ ClearML is installed but not configured, skipping ClearML logging."
|
|
391
|
-
f" See https://docs.ultralytics.com/yolov5/tutorials/clearml_logging_integration"
|
|
392
|
-
)
|
|
393
|
-
else:
|
|
394
|
-
self.clearml = None
|
|
395
|
-
|
|
396
|
-
def log_metrics(self, metrics, epoch):
|
|
397
|
-
"""Logs metrics to CSV, TensorBoard, W&B, and ClearML; `metrics` is a dict, `epoch` is an int."""
|
|
398
|
-
if self.csv:
|
|
399
|
-
keys, vals = list(metrics.keys()), list(metrics.values())
|
|
400
|
-
n = len(metrics) + 1 # number of cols
|
|
401
|
-
s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header
|
|
402
|
-
with open(self.csv, "a") as f:
|
|
403
|
-
f.write(s + ("%23.5g," * n % tuple([epoch] + vals)).rstrip(",") + "\n")
|
|
404
|
-
|
|
405
|
-
if self.tb:
|
|
406
|
-
for k, v in metrics.items():
|
|
407
|
-
self.tb.add_scalar(k, v, epoch)
|
|
408
|
-
|
|
409
|
-
if self.wandb:
|
|
410
|
-
self.wandb.log(metrics, step=epoch)
|
|
411
|
-
|
|
412
|
-
if self.clearml:
|
|
413
|
-
self.clearml.log_scalars(metrics, epoch)
|
|
414
|
-
|
|
415
|
-
def log_images(self, files, name="Images", epoch=0):
|
|
416
|
-
"""Logs images to all loggers with optional naming and epoch specification."""
|
|
417
|
-
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
|
|
418
|
-
files = [f for f in files if f.exists()] # filter by exists
|
|
419
|
-
|
|
420
|
-
if self.tb:
|
|
421
|
-
for f in files:
|
|
422
|
-
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats="HWC")
|
|
423
|
-
|
|
424
|
-
if self.wandb:
|
|
425
|
-
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
|
|
426
|
-
|
|
427
|
-
if self.clearml:
|
|
428
|
-
if name == "Results":
|
|
429
|
-
[self.clearml.log_plot(f.stem, f) for f in files]
|
|
430
|
-
else:
|
|
431
|
-
self.clearml.log_debug_samples(files, title=name)
|
|
432
|
-
|
|
433
|
-
def log_graph(self, model, imgsz=(640, 640)):
|
|
434
|
-
"""Logs model graph to all configured loggers with specified input image size."""
|
|
435
|
-
if self.tb:
|
|
436
|
-
log_tensorboard_graph(self.tb, model, imgsz)
|
|
437
|
-
|
|
438
|
-
def log_model(self, model_path, epoch=0, metadata=None):
|
|
439
|
-
"""Logs the model to all configured loggers with optional epoch and metadata."""
|
|
440
|
-
if metadata is None:
|
|
441
|
-
metadata = {}
|
|
442
|
-
# Log model to all loggers
|
|
443
|
-
if self.wandb:
|
|
444
|
-
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
|
|
445
|
-
art.add_file(str(model_path))
|
|
446
|
-
wandb.log_artifact(art)
|
|
447
|
-
if self.clearml:
|
|
448
|
-
self.clearml.log_model(model_path=model_path, model_name=model_path.stem)
|
|
449
|
-
|
|
450
|
-
def update_params(self, params):
|
|
451
|
-
"""Updates logged parameters in WandB and/or ClearML if enabled."""
|
|
452
|
-
if self.wandb:
|
|
453
|
-
wandb.run.config.update(params, allow_val_change=True)
|
|
454
|
-
if self.clearml:
|
|
455
|
-
self.clearml.task.connect(params)
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
|
|
459
|
-
"""Logs the model graph to TensorBoard with specified image size and model."""
|
|
460
|
-
try:
|
|
461
|
-
p = next(model.parameters()) # for device, type
|
|
462
|
-
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
|
|
463
|
-
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
|
|
464
|
-
with warnings.catch_warnings():
|
|
465
|
-
warnings.simplefilter("ignore") # suppress jit trace warning
|
|
466
|
-
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
|
|
467
|
-
except Exception as e:
|
|
468
|
-
LOGGER.warning(f"WARNING ⚠️ TensorBoard graph visualization failure {e}")
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
def web_project_name(project):
|
|
472
|
-
"""Converts a local project name to a standardized web project name with optional suffixes."""
|
|
473
|
-
if not project.startswith("runs/train"):
|
|
474
|
-
return project
|
|
475
|
-
suffix = "-Classify" if project.endswith("-cls") else "-Segment" if project.endswith("-seg") else ""
|
|
476
|
-
return f"YOLOv5{suffix}"
|