autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260117__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/__init__.py +1 -0
- autogluon/tabular/configs/config_helper.py +18 -6
- autogluon/tabular/configs/feature_generator_presets.py +3 -1
- autogluon/tabular/configs/hyperparameter_configs.py +42 -9
- autogluon/tabular/configs/presets_configs.py +38 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
- autogluon/tabular/experimental/_scikit_mixin.py +6 -2
- autogluon/tabular/experimental/_tabular_classifier.py +3 -1
- autogluon/tabular/experimental/_tabular_regressor.py +3 -1
- autogluon/tabular/experimental/plot_leaderboard.py +73 -19
- autogluon/tabular/learner/abstract_learner.py +160 -42
- autogluon/tabular/learner/default_learner.py +78 -22
- autogluon/tabular/models/__init__.py +2 -2
- autogluon/tabular/models/_utils/rapids_utils.py +3 -1
- autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
- autogluon/tabular/models/automm/automm_model.py +12 -3
- autogluon/tabular/models/automm/ft_transformer.py +5 -1
- autogluon/tabular/models/catboost/callbacks.py +2 -2
- autogluon/tabular/models/catboost/catboost_model.py +93 -29
- autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
- autogluon/tabular/models/catboost/catboost_utils.py +3 -1
- autogluon/tabular/models/ebm/ebm_model.py +8 -13
- autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
- autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
- autogluon/tabular/models/fastainn/callbacks.py +20 -3
- autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
- autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
- autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
- autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
- autogluon/tabular/models/knn/knn_model.py +41 -8
- autogluon/tabular/models/lgb/callbacks.py +32 -9
- autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
- autogluon/tabular/models/lgb/lgb_model.py +150 -34
- autogluon/tabular/models/lgb/lgb_utils.py +12 -4
- autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
- autogluon/tabular/models/lr/lr_model.py +40 -10
- autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
- autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
- autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
- autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
- autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
- autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
- autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
- autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
- autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
- autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
- autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
- autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
- autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
- autogluon/tabular/models/mitra/mitra_model.py +16 -11
- autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
- autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
- autogluon/tabular/models/rf/compilers/onnx.py +1 -1
- autogluon/tabular/models/rf/rf_model.py +45 -12
- autogluon/tabular/models/rf/rf_quantile.py +4 -2
- autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
- autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
- autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
- autogluon/tabular/models/tabm/tabm_model.py +8 -4
- autogluon/tabular/models/tabm/tabm_reference.py +53 -85
- autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
- autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
- autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
- autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
- autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
- autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
- autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
- autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
- autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
- autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
- autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
- autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
- autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
- autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
- autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
- autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
- autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
- autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
- autogluon/tabular/models/xgboost/callbacks.py +9 -3
- autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
- autogluon/tabular/models/xt/xt_model.py +1 -0
- autogluon/tabular/predictor/interpretable_predictor.py +3 -1
- autogluon/tabular/predictor/predictor.py +409 -128
- autogluon/tabular/registry/__init__.py +1 -1
- autogluon/tabular/registry/_ag_model_registry.py +4 -5
- autogluon/tabular/registry/_model_registry.py +1 -0
- autogluon/tabular/testing/fit_helper.py +55 -15
- autogluon/tabular/testing/generate_datasets.py +1 -1
- autogluon/tabular/testing/model_fit_helper.py +10 -4
- autogluon/tabular/trainer/abstract_trainer.py +644 -230
- autogluon/tabular/trainer/auto_trainer.py +19 -8
- autogluon/tabular/trainer/model_presets/presets.py +33 -9
- autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
- autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/METADATA +27 -27
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/RECORD +127 -135
- autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
- /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260117-py3.11-nspkg.pth +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/WHEEL +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/LICENSE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/NOTICE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/namespace_packages.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/top_level.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/zip-safe +0 -0
|
@@ -1,2 +1,422 @@
|
|
|
1
1
|
# State-of-the-art for datasets < 100k samples. Requires a GPU with at least 20 GB VRAM.
|
|
2
|
-
hyperparameter_portfolio_zeroshot_gpu_2025_12_18 = {'TABDPT': [{'ag_args': {'name_suffix': '_c1', 'priority': -3}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}}, {'ag_args': {'name_suffix': '_r20', 'priority': -5}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 8, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'quantile-uniform', 'permute_classes': False, 'temperature': 0.5}, {'ag_args': {'name_suffix': '_r1', 'priority': -7}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 16, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'log1p', 'permute_classes': False, 'temperature': 0.5}, {'ag_args': {'name_suffix': '_r15', 'priority': -9}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 16, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'standard', 'permute_classes': True, 'temperature': 0.7}, {'ag_args': {'name_suffix': '_r22', 'priority': -11}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 8, 'feature_reduction': 'pca', 'missing_indicators': True, 'normalizer': 'robust', 'permute_classes': False, 'temperature': 0.5}], 'TABICL': [{'ag_args': {'name_suffix': '_c1', 'priority': -4}, 'ag_args_ensemble': {'refit_folds': True}}], 'MITRA': [{'ag_args': {'name_suffix': '_c1', 'priority': -12}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}}], 'TABM': [{'ag_args': {'name_suffix': '_r99', 'priority': -13}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 880, 'd_embedding': 24, 'dropout': 0.10792355695428629, 'gradient_clipping_norm': 1.0, 'lr': 0.0013641856391615784, 'n_blocks': 5, 'num_emb_n_bins': 16, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r124', 'priority': -17}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 208, 'd_embedding': 16, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.00042152744054701374, 'n_blocks': 2, 'num_emb_n_bins': 109, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.00014007839435474664}, {'ag_args': {'name_suffix': '_r69', 'priority': -21}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 848, 'd_embedding': 28, 'dropout': 0.40215621636031007, 'gradient_clipping_norm': 1.0, 'lr': 0.0010413640454559532, 'n_blocks': 3, 'num_emb_n_bins': 18, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r184', 'priority': -24}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 864, 'd_embedding': 24, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.0019256819924656217, 'n_blocks': 3, 'num_emb_n_bins': 3, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r34', 'priority': -26}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 896, 'd_embedding': 8, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.002459175026451607, 'n_blocks': 4, 'num_emb_n_bins': 104, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0006299584388562901}], 'GBM_PREP': [{'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r13', 'priority': -14}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9923026236907, 'bagging_freq': 1, 'cat_l2': 0.014290368488, 'cat_smooth': 1.8662939903973, 'extra_trees': True, 'feature_fraction': 0.5533919718605, 'lambda_l1': 0.914411672958, 'lambda_l2': 1.90439560009, 'learning_rate': 0.0193225778401, 'max_cat_to_onehot': 18, 'min_data_in_leaf': 28, 'min_data_per_group': 54, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r41', 'priority': -16}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7215411996558, 'bagging_freq': 1, 'cat_l2': 1.887369154362, 'cat_smooth': 0.0278693980873, 'extra_trees': True, 'feature_fraction': 0.4247583287144, 'lambda_l1': 0.1129800247772, 'lambda_l2': 0.2623265718536, 'learning_rate': 0.0074201920651, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 15, 'min_data_per_group': 10, 'num_leaves': 8}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r31', 'priority': -18}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9591526242875, 'bagging_freq': 1, 'cat_l2': 1.8962346412823, 'cat_smooth': 0.0215219089995, 'extra_trees': False, 'feature_fraction': 0.5791844062459, 'lambda_l1': 0.938461750637, 'lambda_l2': 0.9899852075056, 'learning_rate': 0.0397613094741, 'max_cat_to_onehot': 27, 'min_data_in_leaf': 1, 'min_data_per_group': 39, 'num_leaves': 16}, {'ag.prep_params': [], 'ag_args': {'name_suffix': '_r21', 'priority': -20}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7111549514262, 'bagging_freq': 1, 'cat_l2': 0.8679131150136, 'cat_smooth': 48.7244965504817, 'extra_trees': False, 'feature_fraction': 0.425140839263, 'lambda_l1': 0.5140528525242, 'lambda_l2': 0.5134051978198, 'learning_rate': 0.0134375321277, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 2, 'min_data_per_group': 32, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r17', 'priority': -23}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9277474245702, 'bagging_freq': 1, 'cat_l2': 0.0731876168104, 'cat_smooth': 0.1369210915339, 'extra_trees': False, 'feature_fraction': 0.6680440910385, 'lambda_l1': 0.0125057410295, 'lambda_l2': 0.7157181359874, 'learning_rate': 0.0351342879995, 'max_cat_to_onehot': 20, 'min_data_in_leaf': 1, 'min_data_per_group': 2, 'num_leaves': 64}], 'CAT': [{'ag_args': {'name_suffix': '_c1', 'priority': -15}}], 'GBM': [{'ag_args': {'name_suffix': '_r73', 'priority': -19}, 'bagging_fraction': 0.7295548973583, 'bagging_freq': 1, 'cat_l2': 1.8025485263237, 'cat_smooth': 59.6178463268351, 'extra_trees': False, 'feature_fraction': 0.8242607305914, 'lambda_l1': 0.7265522905459, 'lambda_l2': 0.3492160682092, 'learning_rate': 0.0068803786367, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 1, 'min_data_per_group': 10, 'num_leaves': 24}, {'ag_args': {'name_suffix': '_r37', 'priority': -22}, 'bagging_fraction': 0.8096374561947, 'bagging_freq': 1, 'cat_l2': 1.6385754694703, 'cat_smooth': 16.1922506671724, 'extra_trees': True, 'feature_fraction': 0.885927003286, 'lambda_l1': 0.0430386950502, 'lambda_l2': 0.2507506811761, 'learning_rate': 0.0079622660542, 'max_cat_to_onehot': 23, 'min_data_in_leaf': 7, 'min_data_per_group': 49, 'num_leaves': 6}, {'ag_args': {'name_suffix': '_r162', 'priority': -25}, 'bagging_fraction': 0.7552878818396, 'bagging_freq': 1, 'cat_l2': 0.0081083103544, 'cat_smooth': 75.7373446363438, 'extra_trees': False, 'feature_fraction': 0.6171258454584, 'lambda_l1': 0.1071522383181, 'lambda_l2': 1.7882554584069, 'learning_rate': 0.0229328987255, 'max_cat_to_onehot': 24, 'min_data_in_leaf': 23, 'min_data_per_group': 2, 'num_leaves': 125}, {'ag_args': {'name_suffix': '_r57', 'priority': -27}, 'bagging_fraction': 0.8515739264605, 'bagging_freq': 1, 'cat_l2': 0.2263901847144, 'cat_smooth': 1.7397457971767, 'extra_trees': True, 'feature_fraction': 0.6284015946887, 'lambda_l1': 0.6935431676756, 'lambda_l2': 1.7605230133162, 'learning_rate': 0.0294830579218, 'max_cat_to_onehot': 52, 'min_data_in_leaf': 8, 'min_data_per_group': 3, 'num_leaves': 43}, {'ag_args': {'name_suffix': '_r33', 'priority': -28}, 'bagging_fraction': 0.9625293420216, 'bagging_freq': 1, 'cat_l2': 0.1236875455555, 'cat_smooth': 68.8584757332856, 'extra_trees': False, 'feature_fraction': 0.6189215809382, 'lambda_l1': 0.1641757352921, 'lambda_l2': 0.6937755557881, 'learning_rate': 0.0154031028561, 'max_cat_to_onehot': 17, 'min_data_in_leaf': 1, 'min_data_per_group': 30, 'num_leaves': 68}], 'REALTABPFN-V2': [{'ag_args': {'name_suffix': '_r13', 'priority': -1}, 'ag_args_ensemble': {'model_random_seed': 104, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None, 'safepower'], 'preprocessing/append_original': False, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': None, 'preprocessing/scaling': ['squashing_scaler_default', 'quantile_uni_coarse'], 'softmax_temperature': 1.0, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r106', 'priority': -2}, 'ag_args_ensemble': {'model_random_seed': 848, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None], 'preprocessing/append_original': True, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': 'svd_quarter_components', 'preprocessing/scaling': ['quantile_uni_coarse'], 'softmax_temperature': 0.8, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r11', 'priority': -6}, 'ag_args_ensemble': {'model_random_seed': 88, 'vary_seed_across_folds': True}, 'balance_probabilities': True, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 25, 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None], 'preprocessing/append_original': True, 'preprocessing/categoricals': 'onehot', 'preprocessing/global': 'svd_quarter_components', 'preprocessing/scaling': ['safepower', 'quantile_uni'], 'softmax_temperature': 0.7, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_c1', 'priority': -8}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r196', 'priority': -10}, 'ag_args_ensemble': {'model_random_seed': 1568, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 12, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': ['kdi_alpha_1.0'], 'preprocessing/append_original': False, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': None, 'preprocessing/scaling': ['squashing_scaler_default'], 'softmax_temperature': 1.25, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}]}
|
|
2
|
+
hyperparameter_portfolio_zeroshot_gpu_2025_12_18 = {
|
|
3
|
+
"TABDPT": [
|
|
4
|
+
{
|
|
5
|
+
"ag_args": {"name_suffix": "_c1", "priority": -3},
|
|
6
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": False},
|
|
7
|
+
},
|
|
8
|
+
{
|
|
9
|
+
"ag_args": {"name_suffix": "_r20", "priority": -5},
|
|
10
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": False},
|
|
11
|
+
"clip_sigma": 8,
|
|
12
|
+
"feature_reduction": "subsample",
|
|
13
|
+
"missing_indicators": False,
|
|
14
|
+
"normalizer": "quantile-uniform",
|
|
15
|
+
"permute_classes": False,
|
|
16
|
+
"temperature": 0.5,
|
|
17
|
+
},
|
|
18
|
+
{
|
|
19
|
+
"ag_args": {"name_suffix": "_r1", "priority": -7},
|
|
20
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": False},
|
|
21
|
+
"clip_sigma": 16,
|
|
22
|
+
"feature_reduction": "subsample",
|
|
23
|
+
"missing_indicators": False,
|
|
24
|
+
"normalizer": "log1p",
|
|
25
|
+
"permute_classes": False,
|
|
26
|
+
"temperature": 0.5,
|
|
27
|
+
},
|
|
28
|
+
{
|
|
29
|
+
"ag_args": {"name_suffix": "_r15", "priority": -9},
|
|
30
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": False},
|
|
31
|
+
"clip_sigma": 16,
|
|
32
|
+
"feature_reduction": "subsample",
|
|
33
|
+
"missing_indicators": False,
|
|
34
|
+
"normalizer": "standard",
|
|
35
|
+
"permute_classes": True,
|
|
36
|
+
"temperature": 0.7,
|
|
37
|
+
},
|
|
38
|
+
{
|
|
39
|
+
"ag_args": {"name_suffix": "_r22", "priority": -11},
|
|
40
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": False},
|
|
41
|
+
"clip_sigma": 8,
|
|
42
|
+
"feature_reduction": "pca",
|
|
43
|
+
"missing_indicators": True,
|
|
44
|
+
"normalizer": "robust",
|
|
45
|
+
"permute_classes": False,
|
|
46
|
+
"temperature": 0.5,
|
|
47
|
+
},
|
|
48
|
+
],
|
|
49
|
+
"TABICL": [{"ag_args": {"name_suffix": "_c1", "priority": -4}, "ag_args_ensemble": {"refit_folds": True}}],
|
|
50
|
+
"MITRA": [
|
|
51
|
+
{
|
|
52
|
+
"ag_args": {"name_suffix": "_c1", "priority": -12},
|
|
53
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
54
|
+
}
|
|
55
|
+
],
|
|
56
|
+
"TABM": [
|
|
57
|
+
{
|
|
58
|
+
"ag_args": {"name_suffix": "_r99", "priority": -13},
|
|
59
|
+
"amp": False,
|
|
60
|
+
"arch_type": "tabm-mini",
|
|
61
|
+
"batch_size": "auto",
|
|
62
|
+
"d_block": 880,
|
|
63
|
+
"d_embedding": 24,
|
|
64
|
+
"dropout": 0.10792355695428629,
|
|
65
|
+
"gradient_clipping_norm": 1.0,
|
|
66
|
+
"lr": 0.0013641856391615784,
|
|
67
|
+
"n_blocks": 5,
|
|
68
|
+
"num_emb_n_bins": 16,
|
|
69
|
+
"num_emb_type": "pwl",
|
|
70
|
+
"patience": 16,
|
|
71
|
+
"share_training_batches": False,
|
|
72
|
+
"tabm_k": 32,
|
|
73
|
+
"weight_decay": 0.0,
|
|
74
|
+
},
|
|
75
|
+
{
|
|
76
|
+
"ag_args": {"name_suffix": "_r124", "priority": -17},
|
|
77
|
+
"amp": False,
|
|
78
|
+
"arch_type": "tabm-mini",
|
|
79
|
+
"batch_size": "auto",
|
|
80
|
+
"d_block": 208,
|
|
81
|
+
"d_embedding": 16,
|
|
82
|
+
"dropout": 0.0,
|
|
83
|
+
"gradient_clipping_norm": 1.0,
|
|
84
|
+
"lr": 0.00042152744054701374,
|
|
85
|
+
"n_blocks": 2,
|
|
86
|
+
"num_emb_n_bins": 109,
|
|
87
|
+
"num_emb_type": "pwl",
|
|
88
|
+
"patience": 16,
|
|
89
|
+
"share_training_batches": False,
|
|
90
|
+
"tabm_k": 32,
|
|
91
|
+
"weight_decay": 0.00014007839435474664,
|
|
92
|
+
},
|
|
93
|
+
{
|
|
94
|
+
"ag_args": {"name_suffix": "_r69", "priority": -21},
|
|
95
|
+
"amp": False,
|
|
96
|
+
"arch_type": "tabm-mini",
|
|
97
|
+
"batch_size": "auto",
|
|
98
|
+
"d_block": 848,
|
|
99
|
+
"d_embedding": 28,
|
|
100
|
+
"dropout": 0.40215621636031007,
|
|
101
|
+
"gradient_clipping_norm": 1.0,
|
|
102
|
+
"lr": 0.0010413640454559532,
|
|
103
|
+
"n_blocks": 3,
|
|
104
|
+
"num_emb_n_bins": 18,
|
|
105
|
+
"num_emb_type": "pwl",
|
|
106
|
+
"patience": 16,
|
|
107
|
+
"share_training_batches": False,
|
|
108
|
+
"tabm_k": 32,
|
|
109
|
+
"weight_decay": 0.0,
|
|
110
|
+
},
|
|
111
|
+
{
|
|
112
|
+
"ag_args": {"name_suffix": "_r184", "priority": -24},
|
|
113
|
+
"amp": False,
|
|
114
|
+
"arch_type": "tabm-mini",
|
|
115
|
+
"batch_size": "auto",
|
|
116
|
+
"d_block": 864,
|
|
117
|
+
"d_embedding": 24,
|
|
118
|
+
"dropout": 0.0,
|
|
119
|
+
"gradient_clipping_norm": 1.0,
|
|
120
|
+
"lr": 0.0019256819924656217,
|
|
121
|
+
"n_blocks": 3,
|
|
122
|
+
"num_emb_n_bins": 3,
|
|
123
|
+
"num_emb_type": "pwl",
|
|
124
|
+
"patience": 16,
|
|
125
|
+
"share_training_batches": False,
|
|
126
|
+
"tabm_k": 32,
|
|
127
|
+
"weight_decay": 0.0,
|
|
128
|
+
},
|
|
129
|
+
{
|
|
130
|
+
"ag_args": {"name_suffix": "_r34", "priority": -26},
|
|
131
|
+
"amp": False,
|
|
132
|
+
"arch_type": "tabm-mini",
|
|
133
|
+
"batch_size": "auto",
|
|
134
|
+
"d_block": 896,
|
|
135
|
+
"d_embedding": 8,
|
|
136
|
+
"dropout": 0.0,
|
|
137
|
+
"gradient_clipping_norm": 1.0,
|
|
138
|
+
"lr": 0.002459175026451607,
|
|
139
|
+
"n_blocks": 4,
|
|
140
|
+
"num_emb_n_bins": 104,
|
|
141
|
+
"num_emb_type": "pwl",
|
|
142
|
+
"patience": 16,
|
|
143
|
+
"share_training_batches": False,
|
|
144
|
+
"tabm_k": 32,
|
|
145
|
+
"weight_decay": 0.0006299584388562901,
|
|
146
|
+
},
|
|
147
|
+
],
|
|
148
|
+
"GBM_PREP": [
|
|
149
|
+
{
|
|
150
|
+
"ag.prep_params": [
|
|
151
|
+
[
|
|
152
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
153
|
+
[
|
|
154
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
155
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
156
|
+
],
|
|
157
|
+
]
|
|
158
|
+
],
|
|
159
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
160
|
+
"ag_args": {"name_suffix": "_r13", "priority": -14},
|
|
161
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
162
|
+
"bagging_fraction": 0.9923026236907,
|
|
163
|
+
"bagging_freq": 1,
|
|
164
|
+
"cat_l2": 0.014290368488,
|
|
165
|
+
"cat_smooth": 1.8662939903973,
|
|
166
|
+
"extra_trees": True,
|
|
167
|
+
"feature_fraction": 0.5533919718605,
|
|
168
|
+
"lambda_l1": 0.914411672958,
|
|
169
|
+
"lambda_l2": 1.90439560009,
|
|
170
|
+
"learning_rate": 0.0193225778401,
|
|
171
|
+
"max_cat_to_onehot": 18,
|
|
172
|
+
"min_data_in_leaf": 28,
|
|
173
|
+
"min_data_per_group": 54,
|
|
174
|
+
"num_leaves": 64,
|
|
175
|
+
},
|
|
176
|
+
{
|
|
177
|
+
"ag.prep_params": [
|
|
178
|
+
[
|
|
179
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
180
|
+
[
|
|
181
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
182
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
183
|
+
],
|
|
184
|
+
]
|
|
185
|
+
],
|
|
186
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
187
|
+
"ag_args": {"name_suffix": "_r41", "priority": -16},
|
|
188
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
189
|
+
"bagging_fraction": 0.7215411996558,
|
|
190
|
+
"bagging_freq": 1,
|
|
191
|
+
"cat_l2": 1.887369154362,
|
|
192
|
+
"cat_smooth": 0.0278693980873,
|
|
193
|
+
"extra_trees": True,
|
|
194
|
+
"feature_fraction": 0.4247583287144,
|
|
195
|
+
"lambda_l1": 0.1129800247772,
|
|
196
|
+
"lambda_l2": 0.2623265718536,
|
|
197
|
+
"learning_rate": 0.0074201920651,
|
|
198
|
+
"max_cat_to_onehot": 9,
|
|
199
|
+
"min_data_in_leaf": 15,
|
|
200
|
+
"min_data_per_group": 10,
|
|
201
|
+
"num_leaves": 8,
|
|
202
|
+
},
|
|
203
|
+
{
|
|
204
|
+
"ag.prep_params": [
|
|
205
|
+
[
|
|
206
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
207
|
+
[
|
|
208
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
209
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
210
|
+
],
|
|
211
|
+
]
|
|
212
|
+
],
|
|
213
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
214
|
+
"ag_args": {"name_suffix": "_r31", "priority": -18},
|
|
215
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
216
|
+
"bagging_fraction": 0.9591526242875,
|
|
217
|
+
"bagging_freq": 1,
|
|
218
|
+
"cat_l2": 1.8962346412823,
|
|
219
|
+
"cat_smooth": 0.0215219089995,
|
|
220
|
+
"extra_trees": False,
|
|
221
|
+
"feature_fraction": 0.5791844062459,
|
|
222
|
+
"lambda_l1": 0.938461750637,
|
|
223
|
+
"lambda_l2": 0.9899852075056,
|
|
224
|
+
"learning_rate": 0.0397613094741,
|
|
225
|
+
"max_cat_to_onehot": 27,
|
|
226
|
+
"min_data_in_leaf": 1,
|
|
227
|
+
"min_data_per_group": 39,
|
|
228
|
+
"num_leaves": 16,
|
|
229
|
+
},
|
|
230
|
+
{
|
|
231
|
+
"ag.prep_params": [],
|
|
232
|
+
"ag_args": {"name_suffix": "_r21", "priority": -20},
|
|
233
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
234
|
+
"bagging_fraction": 0.7111549514262,
|
|
235
|
+
"bagging_freq": 1,
|
|
236
|
+
"cat_l2": 0.8679131150136,
|
|
237
|
+
"cat_smooth": 48.7244965504817,
|
|
238
|
+
"extra_trees": False,
|
|
239
|
+
"feature_fraction": 0.425140839263,
|
|
240
|
+
"lambda_l1": 0.5140528525242,
|
|
241
|
+
"lambda_l2": 0.5134051978198,
|
|
242
|
+
"learning_rate": 0.0134375321277,
|
|
243
|
+
"max_cat_to_onehot": 16,
|
|
244
|
+
"min_data_in_leaf": 2,
|
|
245
|
+
"min_data_per_group": 32,
|
|
246
|
+
"num_leaves": 20,
|
|
247
|
+
},
|
|
248
|
+
{
|
|
249
|
+
"ag.prep_params": [
|
|
250
|
+
[
|
|
251
|
+
[["ArithmeticFeatureGenerator", {}]],
|
|
252
|
+
[
|
|
253
|
+
["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
|
|
254
|
+
["OOFTargetEncodingFeatureGenerator", {}],
|
|
255
|
+
],
|
|
256
|
+
]
|
|
257
|
+
],
|
|
258
|
+
"ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
|
|
259
|
+
"ag_args": {"name_suffix": "_r17", "priority": -23},
|
|
260
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
261
|
+
"bagging_fraction": 0.9277474245702,
|
|
262
|
+
"bagging_freq": 1,
|
|
263
|
+
"cat_l2": 0.0731876168104,
|
|
264
|
+
"cat_smooth": 0.1369210915339,
|
|
265
|
+
"extra_trees": False,
|
|
266
|
+
"feature_fraction": 0.6680440910385,
|
|
267
|
+
"lambda_l1": 0.0125057410295,
|
|
268
|
+
"lambda_l2": 0.7157181359874,
|
|
269
|
+
"learning_rate": 0.0351342879995,
|
|
270
|
+
"max_cat_to_onehot": 20,
|
|
271
|
+
"min_data_in_leaf": 1,
|
|
272
|
+
"min_data_per_group": 2,
|
|
273
|
+
"num_leaves": 64,
|
|
274
|
+
},
|
|
275
|
+
],
|
|
276
|
+
"CAT": [{"ag_args": {"name_suffix": "_c1", "priority": -15}}],
|
|
277
|
+
"GBM": [
|
|
278
|
+
{
|
|
279
|
+
"ag_args": {"name_suffix": "_r73", "priority": -19},
|
|
280
|
+
"bagging_fraction": 0.7295548973583,
|
|
281
|
+
"bagging_freq": 1,
|
|
282
|
+
"cat_l2": 1.8025485263237,
|
|
283
|
+
"cat_smooth": 59.6178463268351,
|
|
284
|
+
"extra_trees": False,
|
|
285
|
+
"feature_fraction": 0.8242607305914,
|
|
286
|
+
"lambda_l1": 0.7265522905459,
|
|
287
|
+
"lambda_l2": 0.3492160682092,
|
|
288
|
+
"learning_rate": 0.0068803786367,
|
|
289
|
+
"max_cat_to_onehot": 16,
|
|
290
|
+
"min_data_in_leaf": 1,
|
|
291
|
+
"min_data_per_group": 10,
|
|
292
|
+
"num_leaves": 24,
|
|
293
|
+
},
|
|
294
|
+
{
|
|
295
|
+
"ag_args": {"name_suffix": "_r37", "priority": -22},
|
|
296
|
+
"bagging_fraction": 0.8096374561947,
|
|
297
|
+
"bagging_freq": 1,
|
|
298
|
+
"cat_l2": 1.6385754694703,
|
|
299
|
+
"cat_smooth": 16.1922506671724,
|
|
300
|
+
"extra_trees": True,
|
|
301
|
+
"feature_fraction": 0.885927003286,
|
|
302
|
+
"lambda_l1": 0.0430386950502,
|
|
303
|
+
"lambda_l2": 0.2507506811761,
|
|
304
|
+
"learning_rate": 0.0079622660542,
|
|
305
|
+
"max_cat_to_onehot": 23,
|
|
306
|
+
"min_data_in_leaf": 7,
|
|
307
|
+
"min_data_per_group": 49,
|
|
308
|
+
"num_leaves": 6,
|
|
309
|
+
},
|
|
310
|
+
{
|
|
311
|
+
"ag_args": {"name_suffix": "_r162", "priority": -25},
|
|
312
|
+
"bagging_fraction": 0.7552878818396,
|
|
313
|
+
"bagging_freq": 1,
|
|
314
|
+
"cat_l2": 0.0081083103544,
|
|
315
|
+
"cat_smooth": 75.7373446363438,
|
|
316
|
+
"extra_trees": False,
|
|
317
|
+
"feature_fraction": 0.6171258454584,
|
|
318
|
+
"lambda_l1": 0.1071522383181,
|
|
319
|
+
"lambda_l2": 1.7882554584069,
|
|
320
|
+
"learning_rate": 0.0229328987255,
|
|
321
|
+
"max_cat_to_onehot": 24,
|
|
322
|
+
"min_data_in_leaf": 23,
|
|
323
|
+
"min_data_per_group": 2,
|
|
324
|
+
"num_leaves": 125,
|
|
325
|
+
},
|
|
326
|
+
{
|
|
327
|
+
"ag_args": {"name_suffix": "_r57", "priority": -27},
|
|
328
|
+
"bagging_fraction": 0.8515739264605,
|
|
329
|
+
"bagging_freq": 1,
|
|
330
|
+
"cat_l2": 0.2263901847144,
|
|
331
|
+
"cat_smooth": 1.7397457971767,
|
|
332
|
+
"extra_trees": True,
|
|
333
|
+
"feature_fraction": 0.6284015946887,
|
|
334
|
+
"lambda_l1": 0.6935431676756,
|
|
335
|
+
"lambda_l2": 1.7605230133162,
|
|
336
|
+
"learning_rate": 0.0294830579218,
|
|
337
|
+
"max_cat_to_onehot": 52,
|
|
338
|
+
"min_data_in_leaf": 8,
|
|
339
|
+
"min_data_per_group": 3,
|
|
340
|
+
"num_leaves": 43,
|
|
341
|
+
},
|
|
342
|
+
{
|
|
343
|
+
"ag_args": {"name_suffix": "_r33", "priority": -28},
|
|
344
|
+
"bagging_fraction": 0.9625293420216,
|
|
345
|
+
"bagging_freq": 1,
|
|
346
|
+
"cat_l2": 0.1236875455555,
|
|
347
|
+
"cat_smooth": 68.8584757332856,
|
|
348
|
+
"extra_trees": False,
|
|
349
|
+
"feature_fraction": 0.6189215809382,
|
|
350
|
+
"lambda_l1": 0.1641757352921,
|
|
351
|
+
"lambda_l2": 0.6937755557881,
|
|
352
|
+
"learning_rate": 0.0154031028561,
|
|
353
|
+
"max_cat_to_onehot": 17,
|
|
354
|
+
"min_data_in_leaf": 1,
|
|
355
|
+
"min_data_per_group": 30,
|
|
356
|
+
"num_leaves": 68,
|
|
357
|
+
},
|
|
358
|
+
],
|
|
359
|
+
"REALTABPFN-V2": [
|
|
360
|
+
{
|
|
361
|
+
"ag_args": {"name_suffix": "_r13", "priority": -1},
|
|
362
|
+
"ag_args_ensemble": {"model_random_seed": 104, "vary_seed_across_folds": True},
|
|
363
|
+
"balance_probabilities": False,
|
|
364
|
+
"inference_config/OUTLIER_REMOVAL_STD": 6,
|
|
365
|
+
"inference_config/POLYNOMIAL_FEATURES": "no",
|
|
366
|
+
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None, "safepower"],
|
|
367
|
+
"preprocessing/append_original": False,
|
|
368
|
+
"preprocessing/categoricals": "numeric",
|
|
369
|
+
"preprocessing/global": None,
|
|
370
|
+
"preprocessing/scaling": ["squashing_scaler_default", "quantile_uni_coarse"],
|
|
371
|
+
"softmax_temperature": 1.0,
|
|
372
|
+
"zip_model_path": ["tabpfn-v2-classifier-finetuned-zk73skhh.ckpt", "tabpfn-v2-regressor-v2_default.ckpt"],
|
|
373
|
+
},
|
|
374
|
+
{
|
|
375
|
+
"ag_args": {"name_suffix": "_r106", "priority": -2},
|
|
376
|
+
"ag_args_ensemble": {"model_random_seed": 848, "vary_seed_across_folds": True},
|
|
377
|
+
"balance_probabilities": False,
|
|
378
|
+
"inference_config/OUTLIER_REMOVAL_STD": 6,
|
|
379
|
+
"inference_config/POLYNOMIAL_FEATURES": "no",
|
|
380
|
+
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None],
|
|
381
|
+
"preprocessing/append_original": True,
|
|
382
|
+
"preprocessing/categoricals": "numeric",
|
|
383
|
+
"preprocessing/global": "svd_quarter_components",
|
|
384
|
+
"preprocessing/scaling": ["quantile_uni_coarse"],
|
|
385
|
+
"softmax_temperature": 0.8,
|
|
386
|
+
"zip_model_path": ["tabpfn-v2-classifier-finetuned-zk73skhh.ckpt", "tabpfn-v2-regressor-v2_default.ckpt"],
|
|
387
|
+
},
|
|
388
|
+
{
|
|
389
|
+
"ag_args": {"name_suffix": "_r11", "priority": -6},
|
|
390
|
+
"ag_args_ensemble": {"model_random_seed": 88, "vary_seed_across_folds": True},
|
|
391
|
+
"balance_probabilities": True,
|
|
392
|
+
"inference_config/OUTLIER_REMOVAL_STD": 6,
|
|
393
|
+
"inference_config/POLYNOMIAL_FEATURES": 25,
|
|
394
|
+
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None],
|
|
395
|
+
"preprocessing/append_original": True,
|
|
396
|
+
"preprocessing/categoricals": "onehot",
|
|
397
|
+
"preprocessing/global": "svd_quarter_components",
|
|
398
|
+
"preprocessing/scaling": ["safepower", "quantile_uni"],
|
|
399
|
+
"softmax_temperature": 0.7,
|
|
400
|
+
"zip_model_path": ["tabpfn-v2-classifier-finetuned-zk73skhh.ckpt", "tabpfn-v2-regressor-v2_default.ckpt"],
|
|
401
|
+
},
|
|
402
|
+
{
|
|
403
|
+
"ag_args": {"name_suffix": "_c1", "priority": -8},
|
|
404
|
+
"ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
|
|
405
|
+
"zip_model_path": ["tabpfn-v2-classifier-finetuned-zk73skhh.ckpt", "tabpfn-v2-regressor-v2_default.ckpt"],
|
|
406
|
+
},
|
|
407
|
+
{
|
|
408
|
+
"ag_args": {"name_suffix": "_r196", "priority": -10},
|
|
409
|
+
"ag_args_ensemble": {"model_random_seed": 1568, "vary_seed_across_folds": True},
|
|
410
|
+
"balance_probabilities": False,
|
|
411
|
+
"inference_config/OUTLIER_REMOVAL_STD": 12,
|
|
412
|
+
"inference_config/POLYNOMIAL_FEATURES": "no",
|
|
413
|
+
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": ["kdi_alpha_1.0"],
|
|
414
|
+
"preprocessing/append_original": False,
|
|
415
|
+
"preprocessing/categoricals": "numeric",
|
|
416
|
+
"preprocessing/global": None,
|
|
417
|
+
"preprocessing/scaling": ["squashing_scaler_default"],
|
|
418
|
+
"softmax_temperature": 1.25,
|
|
419
|
+
"zip_model_path": ["tabpfn-v2-classifier-finetuned-zk73skhh.ckpt", "tabpfn-v2-regressor-v2_default.ckpt"],
|
|
420
|
+
},
|
|
421
|
+
],
|
|
422
|
+
}
|
|
@@ -44,13 +44,17 @@ class ScikitMixin:
|
|
|
44
44
|
# Input validation
|
|
45
45
|
X = check_array(X)
|
|
46
46
|
if X.shape[1] != self.n_features_in_:
|
|
47
|
-
raise ValueError(
|
|
47
|
+
raise ValueError(
|
|
48
|
+
f"Inconsistent number of features between fit and predict calls: ({self.n_features_in_}, {X.shape[1]})"
|
|
49
|
+
)
|
|
48
50
|
return X
|
|
49
51
|
|
|
50
52
|
def _combine_X_y(self, X, y) -> pd.DataFrame:
|
|
51
53
|
label = self.predictor_.label
|
|
52
54
|
X = pd.DataFrame(X)
|
|
53
|
-
assert label not in list(X.columns),
|
|
55
|
+
assert label not in list(X.columns), (
|
|
56
|
+
f"Cannot have column named {label}. Please rename the column to a different value."
|
|
57
|
+
)
|
|
54
58
|
X[label] = y
|
|
55
59
|
return X
|
|
56
60
|
|
|
@@ -65,7 +65,9 @@ class TabularClassifier(BaseEstimator, ClassifierMixin, ScikitMixin):
|
|
|
65
65
|
# Input validation
|
|
66
66
|
X = check_array(X)
|
|
67
67
|
if X.shape[1] != self.n_features_in_:
|
|
68
|
-
raise ValueError(
|
|
68
|
+
raise ValueError(
|
|
69
|
+
f"Inconsistent number of features between fit and predict calls: ({self.n_features_in_}, {X.shape[1]})"
|
|
70
|
+
)
|
|
69
71
|
|
|
70
72
|
data = pd.DataFrame(X)
|
|
71
73
|
y_pred = self.predictor_.predict(data=data).to_numpy()
|
|
@@ -55,7 +55,9 @@ class TabularRegressor(BaseEstimator, RegressorMixin, ScikitMixin):
|
|
|
55
55
|
# Input validation
|
|
56
56
|
X = check_array(X)
|
|
57
57
|
if X.shape[1] != self.n_features_in_:
|
|
58
|
-
raise ValueError(
|
|
58
|
+
raise ValueError(
|
|
59
|
+
f"Inconsistent number of features between fit and predict calls: ({self.n_features_in_}, {X.shape[1]})"
|
|
60
|
+
)
|
|
59
61
|
|
|
60
62
|
data = pd.DataFrame(X)
|
|
61
63
|
y_pred = self.predictor_.predict(data=data).to_numpy()
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
-
import pandas as pd
|
|
4
3
|
import matplotlib.pyplot as plt
|
|
4
|
+
import pandas as pd
|
|
5
5
|
from matplotlib.figure import Figure
|
|
6
6
|
|
|
7
7
|
from autogluon.tabular import TabularPredictor
|
|
@@ -9,7 +9,7 @@ from autogluon.tabular import TabularPredictor
|
|
|
9
9
|
|
|
10
10
|
def _cumulative_min_idx(series: pd.Series) -> pd.Series:
|
|
11
11
|
"""
|
|
12
|
-
|
|
12
|
+
|
|
13
13
|
Parameters
|
|
14
14
|
----------
|
|
15
15
|
series: pd.Series
|
|
@@ -20,7 +20,7 @@ def _cumulative_min_idx(series: pd.Series) -> pd.Series:
|
|
|
20
20
|
The index of the cumulative min of the series values.
|
|
21
21
|
|
|
22
22
|
"""
|
|
23
|
-
min_val = float(
|
|
23
|
+
min_val = float("inf")
|
|
24
24
|
min_index = -1
|
|
25
25
|
result = []
|
|
26
26
|
for i, val in enumerate(series):
|
|
@@ -54,7 +54,9 @@ def compute_cumulative_leaderboard_stats(leaderboard: pd.DataFrame) -> pd.DataFr
|
|
|
54
54
|
leaderboard["time_so_far"] = leaderboard["fit_time_marginal"].cumsum()
|
|
55
55
|
leaderboard["metric_error_val_so_far"] = leaderboard["best_model_so_far"].map(leaderboard["metric_error_val"])
|
|
56
56
|
if "metric_error_test" in leaderboard:
|
|
57
|
-
leaderboard["metric_error_test_so_far"] = leaderboard["best_model_so_far"].map(
|
|
57
|
+
leaderboard["metric_error_test_so_far"] = leaderboard["best_model_so_far"].map(
|
|
58
|
+
leaderboard["metric_error_test"]
|
|
59
|
+
)
|
|
58
60
|
leaderboard = leaderboard.reset_index(drop=False).set_index("fit_order")
|
|
59
61
|
return leaderboard
|
|
60
62
|
|
|
@@ -88,7 +90,7 @@ def compute_cumulative_leaderboard_stats_ensemble(
|
|
|
88
90
|
model_fit_order = list(leaderboard_stats["model"])
|
|
89
91
|
ens_names = []
|
|
90
92
|
for i in range(len(model_fit_order)):
|
|
91
|
-
models_to_ens = model_fit_order[:i + 1]
|
|
93
|
+
models_to_ens = model_fit_order[: i + 1]
|
|
92
94
|
ens_name = predictor.fit_weighted_ensemble(base_models=models_to_ens, name_suffix=f"_fit_{i + 1}")[0]
|
|
93
95
|
ens_names.append(ens_name)
|
|
94
96
|
|
|
@@ -144,10 +146,14 @@ def plot_leaderboard_from_predictor(
|
|
|
144
146
|
"""
|
|
145
147
|
leaderboard = predictor.leaderboard(test_data, score_format="error", display=False)
|
|
146
148
|
if ensemble:
|
|
147
|
-
leaderboard_order_sorted = compute_cumulative_leaderboard_stats_ensemble(
|
|
149
|
+
leaderboard_order_sorted = compute_cumulative_leaderboard_stats_ensemble(
|
|
150
|
+
leaderboard=leaderboard, test_data=test_data, predictor=predictor
|
|
151
|
+
)
|
|
148
152
|
else:
|
|
149
153
|
leaderboard_order_sorted = compute_cumulative_leaderboard_stats(leaderboard=leaderboard)
|
|
150
|
-
return plot_leaderboard(
|
|
154
|
+
return plot_leaderboard(
|
|
155
|
+
leaderboard=leaderboard_order_sorted, preprocess=False, ensemble=ensemble, include_val=include_val
|
|
156
|
+
)
|
|
151
157
|
|
|
152
158
|
|
|
153
159
|
def plot_leaderboard(
|
|
@@ -198,36 +204,84 @@ def plot_leaderboard(
|
|
|
198
204
|
|
|
199
205
|
# TODO: View on inference time, can take from ensemble model, 3rd dimension, color?
|
|
200
206
|
fig, axes = plt.subplots(1, 2, sharey=True)
|
|
201
|
-
fig.suptitle(
|
|
207
|
+
fig.suptitle("AutoGluon Metric Error Over Time")
|
|
202
208
|
|
|
203
209
|
ax = axes[0]
|
|
204
210
|
|
|
205
211
|
if include_test:
|
|
206
|
-
ax.plot(
|
|
212
|
+
ax.plot(
|
|
213
|
+
leaderboard_order_sorted.index,
|
|
214
|
+
leaderboard_order_sorted["metric_error_test_so_far"].values,
|
|
215
|
+
"-",
|
|
216
|
+
color="b",
|
|
217
|
+
label="test",
|
|
218
|
+
)
|
|
207
219
|
if include_val:
|
|
208
|
-
ax.plot(
|
|
220
|
+
ax.plot(
|
|
221
|
+
leaderboard_order_sorted.index,
|
|
222
|
+
leaderboard_order_sorted["metric_error_val_so_far"].values,
|
|
223
|
+
"-",
|
|
224
|
+
color="orange",
|
|
225
|
+
label="val",
|
|
226
|
+
)
|
|
209
227
|
if ensemble:
|
|
210
228
|
if include_test:
|
|
211
|
-
ax.plot(
|
|
229
|
+
ax.plot(
|
|
230
|
+
leaderboard_order_sorted.index,
|
|
231
|
+
leaderboard_order_sorted["metric_error_test_so_far_ens"].values,
|
|
232
|
+
"--",
|
|
233
|
+
color="b",
|
|
234
|
+
label="test (ens)",
|
|
235
|
+
)
|
|
212
236
|
if include_val:
|
|
213
|
-
ax.plot(
|
|
237
|
+
ax.plot(
|
|
238
|
+
leaderboard_order_sorted.index,
|
|
239
|
+
leaderboard_order_sorted["metric_error_val_so_far_ens"].values,
|
|
240
|
+
"--",
|
|
241
|
+
color="orange",
|
|
242
|
+
label="val (ens)",
|
|
243
|
+
)
|
|
214
244
|
ax.set_xlim(left=1, right=leaderboard_order_sorted.index.max())
|
|
215
|
-
ax.set_xlabel(
|
|
216
|
-
ax.set_ylabel(f
|
|
245
|
+
ax.set_xlabel("# Models Fit")
|
|
246
|
+
ax.set_ylabel(f"Metric Error ({eval_metric})")
|
|
217
247
|
ax.grid()
|
|
218
248
|
|
|
219
249
|
ax = axes[1]
|
|
220
250
|
|
|
221
251
|
if include_test:
|
|
222
|
-
ax.plot(
|
|
252
|
+
ax.plot(
|
|
253
|
+
leaderboard_order_sorted["time_so_far"].values,
|
|
254
|
+
leaderboard_order_sorted["metric_error_test_so_far"].values,
|
|
255
|
+
"-",
|
|
256
|
+
color="b",
|
|
257
|
+
label="test",
|
|
258
|
+
)
|
|
223
259
|
if include_val:
|
|
224
|
-
ax.plot(
|
|
260
|
+
ax.plot(
|
|
261
|
+
leaderboard_order_sorted["time_so_far"].values,
|
|
262
|
+
leaderboard_order_sorted["metric_error_val_so_far"].values,
|
|
263
|
+
"-",
|
|
264
|
+
color="orange",
|
|
265
|
+
label="val",
|
|
266
|
+
)
|
|
225
267
|
if ensemble:
|
|
226
268
|
if include_test:
|
|
227
|
-
ax.plot(
|
|
269
|
+
ax.plot(
|
|
270
|
+
leaderboard_order_sorted["time_so_far"].values,
|
|
271
|
+
leaderboard_order_sorted["metric_error_test_so_far_ens"].values,
|
|
272
|
+
"--",
|
|
273
|
+
color="b",
|
|
274
|
+
label="test (ens)",
|
|
275
|
+
)
|
|
228
276
|
if include_val:
|
|
229
|
-
ax.plot(
|
|
230
|
-
|
|
277
|
+
ax.plot(
|
|
278
|
+
leaderboard_order_sorted["time_so_far"].values,
|
|
279
|
+
leaderboard_order_sorted["metric_error_val_so_far_ens"].values,
|
|
280
|
+
"--",
|
|
281
|
+
color="orange",
|
|
282
|
+
label="val (ens)",
|
|
283
|
+
)
|
|
284
|
+
ax.set_xlabel("Time Elapsed (s)")
|
|
231
285
|
ax.grid()
|
|
232
286
|
ax.legend()
|
|
233
287
|
|