autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260117__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (135) hide show
  1. autogluon/tabular/__init__.py +1 -0
  2. autogluon/tabular/configs/config_helper.py +18 -6
  3. autogluon/tabular/configs/feature_generator_presets.py +3 -1
  4. autogluon/tabular/configs/hyperparameter_configs.py +42 -9
  5. autogluon/tabular/configs/presets_configs.py +38 -14
  6. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
  7. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
  8. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
  9. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
  10. autogluon/tabular/experimental/_scikit_mixin.py +6 -2
  11. autogluon/tabular/experimental/_tabular_classifier.py +3 -1
  12. autogluon/tabular/experimental/_tabular_regressor.py +3 -1
  13. autogluon/tabular/experimental/plot_leaderboard.py +73 -19
  14. autogluon/tabular/learner/abstract_learner.py +160 -42
  15. autogluon/tabular/learner/default_learner.py +78 -22
  16. autogluon/tabular/models/__init__.py +2 -2
  17. autogluon/tabular/models/_utils/rapids_utils.py +3 -1
  18. autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
  19. autogluon/tabular/models/automm/automm_model.py +12 -3
  20. autogluon/tabular/models/automm/ft_transformer.py +5 -1
  21. autogluon/tabular/models/catboost/callbacks.py +2 -2
  22. autogluon/tabular/models/catboost/catboost_model.py +93 -29
  23. autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
  24. autogluon/tabular/models/catboost/catboost_utils.py +3 -1
  25. autogluon/tabular/models/ebm/ebm_model.py +8 -13
  26. autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
  27. autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
  28. autogluon/tabular/models/fastainn/callbacks.py +20 -3
  29. autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
  30. autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
  31. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
  32. autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
  33. autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
  34. autogluon/tabular/models/knn/knn_model.py +41 -8
  35. autogluon/tabular/models/lgb/callbacks.py +32 -9
  36. autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
  37. autogluon/tabular/models/lgb/lgb_model.py +150 -34
  38. autogluon/tabular/models/lgb/lgb_utils.py +12 -4
  39. autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
  40. autogluon/tabular/models/lr/lr_model.py +40 -10
  41. autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
  42. autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
  43. autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
  44. autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
  45. autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
  46. autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
  47. autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
  48. autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
  49. autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
  50. autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
  51. autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
  52. autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
  53. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
  54. autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
  55. autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
  56. autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
  57. autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
  58. autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
  59. autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
  60. autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
  61. autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
  62. autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
  63. autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
  64. autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
  65. autogluon/tabular/models/mitra/mitra_model.py +16 -11
  66. autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
  67. autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
  68. autogluon/tabular/models/rf/compilers/onnx.py +1 -1
  69. autogluon/tabular/models/rf/rf_model.py +45 -12
  70. autogluon/tabular/models/rf/rf_quantile.py +4 -2
  71. autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
  72. autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
  73. autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
  74. autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
  75. autogluon/tabular/models/tabm/tabm_model.py +8 -4
  76. autogluon/tabular/models/tabm/tabm_reference.py +53 -85
  77. autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
  78. autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
  79. autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
  80. autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
  81. autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
  82. autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
  83. autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
  84. autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
  85. autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
  86. autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
  87. autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
  88. autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
  89. autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
  90. autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
  91. autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
  92. autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
  93. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
  94. autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
  95. autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
  96. autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
  97. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
  98. autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
  99. autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
  100. autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
  101. autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
  102. autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
  103. autogluon/tabular/models/xgboost/callbacks.py +9 -3
  104. autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
  105. autogluon/tabular/models/xt/xt_model.py +1 -0
  106. autogluon/tabular/predictor/interpretable_predictor.py +3 -1
  107. autogluon/tabular/predictor/predictor.py +409 -128
  108. autogluon/tabular/registry/__init__.py +1 -1
  109. autogluon/tabular/registry/_ag_model_registry.py +4 -5
  110. autogluon/tabular/registry/_model_registry.py +1 -0
  111. autogluon/tabular/testing/fit_helper.py +55 -15
  112. autogluon/tabular/testing/generate_datasets.py +1 -1
  113. autogluon/tabular/testing/model_fit_helper.py +10 -4
  114. autogluon/tabular/trainer/abstract_trainer.py +644 -230
  115. autogluon/tabular/trainer/auto_trainer.py +19 -8
  116. autogluon/tabular/trainer/model_presets/presets.py +33 -9
  117. autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
  118. autogluon/tabular/version.py +1 -1
  119. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/METADATA +27 -27
  120. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/RECORD +127 -135
  121. autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
  122. autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
  123. autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
  124. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
  125. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
  126. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
  127. autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
  128. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
  129. /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260117-py3.11-nspkg.pth +0 -0
  130. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/WHEEL +0 -0
  131. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/LICENSE +0 -0
  132. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/NOTICE +0 -0
  133. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/namespace_packages.txt +0 -0
  134. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/top_level.txt +0 -0
  135. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/zip-safe +0 -0
@@ -1,2 +1,775 @@
1
1
  # On par with `best_quality` while being much faster for smaller datasets. Runs on CPU.
2
- hyperparameter_portfolio_zeroshot_cpu_2025_12_18 = {'CAT': [{'ag_args': {'name_suffix': '_c1', 'priority': -1}}], 'GBM_PREP': [{'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r13', 'priority': -2}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9923026236907, 'bagging_freq': 1, 'cat_l2': 0.014290368488, 'cat_smooth': 1.8662939903973, 'extra_trees': True, 'feature_fraction': 0.5533919718605, 'lambda_l1': 0.914411672958, 'lambda_l2': 1.90439560009, 'learning_rate': 0.0193225778401, 'max_cat_to_onehot': 18, 'min_data_in_leaf': 28, 'min_data_per_group': 54, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r41', 'priority': -7}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7215411996558, 'bagging_freq': 1, 'cat_l2': 1.887369154362, 'cat_smooth': 0.0278693980873, 'extra_trees': True, 'feature_fraction': 0.4247583287144, 'lambda_l1': 0.1129800247772, 'lambda_l2': 0.2623265718536, 'learning_rate': 0.0074201920651, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 15, 'min_data_per_group': 10, 'num_leaves': 8}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r31', 'priority': -10}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9591526242875, 'bagging_freq': 1, 'cat_l2': 1.8962346412823, 'cat_smooth': 0.0215219089995, 'extra_trees': False, 'feature_fraction': 0.5791844062459, 'lambda_l1': 0.938461750637, 'lambda_l2': 0.9899852075056, 'learning_rate': 0.0397613094741, 'max_cat_to_onehot': 27, 'min_data_in_leaf': 1, 'min_data_per_group': 39, 'num_leaves': 16}, {'ag.prep_params': [], 'ag_args': {'name_suffix': '_r21', 'priority': -12}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7111549514262, 'bagging_freq': 1, 'cat_l2': 0.8679131150136, 'cat_smooth': 48.7244965504817, 'extra_trees': False, 'feature_fraction': 0.425140839263, 'lambda_l1': 0.5140528525242, 'lambda_l2': 0.5134051978198, 'learning_rate': 0.0134375321277, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 2, 'min_data_per_group': 32, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r17', 'priority': -17}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9277474245702, 'bagging_freq': 1, 'cat_l2': 0.0731876168104, 'cat_smooth': 0.1369210915339, 'extra_trees': False, 'feature_fraction': 0.6680440910385, 'lambda_l1': 0.0125057410295, 'lambda_l2': 0.7157181359874, 'learning_rate': 0.0351342879995, 'max_cat_to_onehot': 20, 'min_data_in_leaf': 1, 'min_data_per_group': 2, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r47', 'priority': -18}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9918048278435, 'bagging_freq': 1, 'cat_l2': 0.984162386723, 'cat_smooth': 0.0049687445294, 'extra_trees': True, 'feature_fraction': 0.4974006116018, 'lambda_l1': 0.7970644065518, 'lambda_l2': 1.2179933810825, 'learning_rate': 0.0537072755122, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 1, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r1', 'priority': -19}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8836335684032, 'bagging_freq': 1, 'cat_l2': 0.6608043016307, 'cat_smooth': 0.0451936212097, 'extra_trees': True, 'feature_fraction': 0.6189315903408, 'lambda_l1': 0.6514130054123, 'lambda_l2': 1.7382678663835, 'learning_rate': 0.0412716109215, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 9, 'min_data_per_group': 3, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r19', 'priority': -26}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7106002663401, 'bagging_freq': 1, 'cat_l2': 0.1559746777257, 'cat_smooth': 0.0036366126697, 'extra_trees': False, 'feature_fraction': 0.688233104808, 'lambda_l1': 0.8732887427372, 'lambda_l2': 0.446716114323, 'learning_rate': 0.0815946452855, 'max_cat_to_onehot': 78, 'min_data_in_leaf': 12, 'min_data_per_group': 2, 'num_leaves': 16}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r34', 'priority': -32}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8453534561545, 'bagging_freq': 1, 'cat_l2': 0.0321580936847, 'cat_smooth': 0.0011470238114, 'extra_trees': True, 'feature_fraction': 0.8611499511087, 'lambda_l1': 0.910743969343, 'lambda_l2': 1.2750027607225, 'learning_rate': 0.0151455176168, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 60, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r32', 'priority': -37}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.927947070297, 'bagging_freq': 1, 'cat_l2': 0.0082294539727, 'cat_smooth': 0.0671878797989, 'extra_trees': True, 'feature_fraction': 0.9169657691675, 'lambda_l1': 0.9386485912678, 'lambda_l2': 1.619775689786, 'learning_rate': 0.0056864355547, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 10, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r7', 'priority': -38}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8984634022103, 'bagging_freq': 1, 'cat_l2': 0.0053608956358, 'cat_smooth': 89.7168790664636, 'extra_trees': False, 'feature_fraction': 0.847638045482, 'lambda_l1': 0.5684527742857, 'lambda_l2': 1.0738026980295, 'learning_rate': 0.0417108779005, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 2, 'min_data_per_group': 7, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r14', 'priority': -40}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9318953983366, 'bagging_freq': 1, 'cat_l2': 0.065532200068, 'cat_smooth': 0.0696287198368, 'extra_trees': True, 'feature_fraction': 0.4649868965096, 'lambda_l1': 0.6586569196642, 'lambda_l2': 1.7799375779553, 'learning_rate': 0.072046289471, 'max_cat_to_onehot': 72, 'min_data_in_leaf': 26, 'min_data_per_group': 32, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r27', 'priority': -42}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.811983527375, 'bagging_freq': 1, 'cat_l2': 0.0255048028385, 'cat_smooth': 1.5339379274002, 'extra_trees': True, 'feature_fraction': 0.5246746068724, 'lambda_l1': 0.9737915306165, 'lambda_l2': 1.929596568261, 'learning_rate': 0.0172284745143, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 8, 'min_data_per_group': 51, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r37', 'priority': -46}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7853761603489, 'bagging_freq': 1, 'cat_l2': 0.2934796127084, 'cat_smooth': 10.1721684646257, 'extra_trees': False, 'feature_fraction': 0.4813265290277, 'lambda_l1': 0.9744837697365, 'lambda_l2': 0.6058665958153, 'learning_rate': 0.0371000014124, 'max_cat_to_onehot': 85, 'min_data_in_leaf': 22, 'min_data_per_group': 3, 'num_leaves': 32}], 'GBM': [{'ag_args': {'name_suffix': '_r177', 'priority': -3}, 'bagging_fraction': 0.8769107816033, 'bagging_freq': 1, 'cat_l2': 0.3418014393813, 'cat_smooth': 15.4304556649114, 'extra_trees': True, 'feature_fraction': 0.4622189821941, 'lambda_l1': 0.2375070586896, 'lambda_l2': 0.3551561351804, 'learning_rate': 0.0178593900218, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 3, 'min_data_per_group': 9, 'num_leaves': 39}, {'ag_args': {'name_suffix': '_r163', 'priority': -5}, 'bagging_fraction': 0.9783898288461, 'bagging_freq': 1, 'cat_l2': 0.1553395260142, 'cat_smooth': 0.0093122749318, 'extra_trees': False, 'feature_fraction': 0.5279825611461, 'lambda_l1': 0.0269274915833, 'lambda_l2': 0.8375250972309, 'learning_rate': 0.0113913650333, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 3, 'min_data_per_group': 75, 'num_leaves': 84}, {'ag_args': {'name_suffix': '_r72', 'priority': -8}, 'bagging_fraction': 0.950146543918, 'bagging_freq': 1, 'cat_l2': 0.2159137242663, 'cat_smooth': 0.0638204395719, 'extra_trees': True, 'feature_fraction': 0.4044759649281, 'lambda_l1': 0.7661581500422, 'lambda_l2': 1.6041759693902, 'learning_rate': 0.0179845918984, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 12, 'min_data_per_group': 3, 'num_leaves': 180}, {'ag_args': {'name_suffix': '_r120', 'priority': -13}, 'bagging_fraction': 0.8541333332514, 'bagging_freq': 1, 'cat_l2': 0.0110343197541, 'cat_smooth': 5.0905236124522, 'extra_trees': True, 'feature_fraction': 0.7334718346252, 'lambda_l1': 0.241338427726, 'lambda_l2': 0.298107723769, 'learning_rate': 0.0126654490778, 'max_cat_to_onehot': 67, 'min_data_in_leaf': 12, 'min_data_per_group': 93, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r6', 'priority': -16}, 'bagging_fraction': 0.8148132107231, 'bagging_freq': 1, 'cat_l2': 0.0058363329714, 'cat_smooth': 0.0289414318324, 'extra_trees': False, 'feature_fraction': 0.939979116902, 'lambda_l1': 0.4369494828584, 'lambda_l2': 0.2997524486083, 'learning_rate': 0.0078971749764, 'max_cat_to_onehot': 28, 'min_data_in_leaf': 24, 'min_data_per_group': 3, 'num_leaves': 8}, {'ag_args': {'name_suffix': '_r184', 'priority': -21}, 'bagging_fraction': 0.8406256713136, 'bagging_freq': 1, 'cat_l2': 0.9284921901786, 'cat_smooth': 0.0898191451684, 'extra_trees': False, 'feature_fraction': 0.5876132298377, 'lambda_l1': 0.078943697912, 'lambda_l2': 0.7713118402478, 'learning_rate': 0.0090676429159, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 17, 'min_data_per_group': 11, 'num_leaves': 2}, {'ag_args': {'name_suffix': '_r46', 'priority': -23}, 'bagging_fraction': 0.999426150416, 'bagging_freq': 1, 'cat_l2': 0.0076879104679, 'cat_smooth': 89.4599055435924, 'extra_trees': False, 'feature_fraction': 0.8588138897928, 'lambda_l1': 0.0413597548025, 'lambda_l2': 0.2258713386858, 'learning_rate': 0.0074056102479, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 26, 'num_leaves': 14}, {'ag_args': {'name_suffix': '_r68', 'priority': -24}, 'bagging_fraction': 0.7199080522958, 'bagging_freq': 1, 'cat_l2': 0.9369509319667, 'cat_smooth': 11.0984745216942, 'extra_trees': False, 'feature_fraction': 0.9550596478029, 'lambda_l1': 0.1109843723892, 'lambda_l2': 0.5969094177111, 'learning_rate': 0.0079480499426, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 3, 'min_data_per_group': 8, 'num_leaves': 111}, {'ag_args': {'name_suffix': '_r47', 'priority': -29}, 'bagging_fraction': 0.8831228358892, 'bagging_freq': 1, 'cat_l2': 0.1402622388062, 'cat_smooth': 3.3545774392409, 'extra_trees': True, 'feature_fraction': 0.6155890374887, 'lambda_l1': 0.1749502746898, 'lambda_l2': 0.8761391715812, 'learning_rate': 0.00891978331, 'max_cat_to_onehot': 84, 'min_data_in_leaf': 1, 'min_data_per_group': 21, 'num_leaves': 55}, {'ag_args': {'name_suffix': '_r63', 'priority': -31}, 'bagging_fraction': 0.7801003412553, 'bagging_freq': 1, 'cat_l2': 0.0071438335269, 'cat_smooth': 0.1338043459574, 'extra_trees': False, 'feature_fraction': 0.490455360592, 'lambda_l1': 0.6420805635778, 'lambda_l2': 0.5813319300456, 'learning_rate': 0.0308746408751, 'max_cat_to_onehot': 38, 'min_data_in_leaf': 1, 'min_data_per_group': 83, 'num_leaves': 24}, {'ag_args': {'name_suffix': '_r39', 'priority': -36}, 'bagging_fraction': 0.7035743460186, 'bagging_freq': 1, 'cat_l2': 0.0134845084619, 'cat_smooth': 56.4934757686511, 'extra_trees': True, 'feature_fraction': 0.7824899527144, 'lambda_l1': 0.3700115211248, 'lambda_l2': 0.0341499593689, 'learning_rate': 0.094652390088, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 13, 'min_data_per_group': 4, 'num_leaves': 23}, {'ag_args': {'name_suffix': '_r18', 'priority': -43}, 'bagging_fraction': 0.7041134150362, 'bagging_freq': 1, 'cat_l2': 0.1139031650222, 'cat_smooth': 41.8937939300815, 'extra_trees': True, 'feature_fraction': 0.5028791565785, 'lambda_l1': 0.1031941284118, 'lambda_l2': 1.2554010747358, 'learning_rate': 0.0186530122901, 'max_cat_to_onehot': 29, 'min_data_in_leaf': 5, 'min_data_per_group': 74, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r50', 'priority': -45}, 'bagging_fraction': 0.9673434664048, 'bagging_freq': 1, 'cat_l2': 1.7662226703416, 'cat_smooth': 0.0097667848046, 'extra_trees': True, 'feature_fraction': 0.9286299570284, 'lambda_l1': 0.0448644389135, 'lambda_l2': 1.7322446850205, 'learning_rate': 0.0507909494543, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 4, 'min_data_per_group': 2, 'num_leaves': 106}, {'ag_args': {'name_suffix': '_r104', 'priority': -48}, 'bagging_fraction': 0.9327643671568, 'bagging_freq': 1, 'cat_l2': 0.0067636494662, 'cat_smooth': 29.2351010915576, 'extra_trees': False, 'feature_fraction': 0.660864035482, 'lambda_l1': 0.556745328417, 'lambda_l2': 1.2717605868201, 'learning_rate': 0.0433336000175, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 18, 'min_data_per_group': 6, 'num_leaves': 19}], 'NN_TORCH': [{'activation': 'elu', 'ag_args': {'name_suffix': '_r37', 'priority': -4}, 'dropout_prob': 0.0889772897547275, 'hidden_size': 109, 'learning_rate': 0.02184363543226557, 'num_layers': 3, 'use_batchnorm': True, 'weight_decay': 3.1736637236578543e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r31', 'priority': -9}, 'dropout_prob': 0.013288954106470907, 'hidden_size': 81, 'learning_rate': 0.005340914647396153, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 8.76216837077536e-05}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r193', 'priority': -14}, 'dropout_prob': 0.2976404923811552, 'hidden_size': 131, 'learning_rate': 0.0038408014156739775, 'num_layers': 3, 'use_batchnorm': False, 'weight_decay': 0.01745189206113213}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r144', 'priority': -15}, 'dropout_prob': 0.2670859555485912, 'hidden_size': 52, 'learning_rate': 0.015189605588375421, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 2.8013784883244263e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r82', 'priority': -22}, 'dropout_prob': 0.27342918414623907, 'hidden_size': 207, 'learning_rate': 0.0004069380929899853, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.002473667327700422}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r39', 'priority': -27}, 'dropout_prob': 0.21699951000415899, 'hidden_size': 182, 'learning_rate': 0.00014675249427915203, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 9.787353852692089e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r1', 'priority': -30}, 'dropout_prob': 0.23713784729000734, 'hidden_size': 200, 'learning_rate': 0.0031125617090901805, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 4.57301675647447e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r48', 'priority': -34}, 'dropout_prob': 0.14224509513998226, 'hidden_size': 26, 'learning_rate': 0.007085904739869829, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 2.465786211798467e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r135', 'priority': -39}, 'dropout_prob': 0.06134755114373829, 'hidden_size': 144, 'learning_rate': 0.005834535148903802, 'num_layers': 5, 'use_batchnorm': True, 'weight_decay': 2.0826540090463376e-09}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r24', 'priority': -49}, 'dropout_prob': 0.257596079691855, 'hidden_size': 168, 'learning_rate': 0.0034108596383714608, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 1.4840689603685264e-07}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r159', 'priority': -50}, 'dropout_prob': 0.16724368469920037, 'hidden_size': 44, 'learning_rate': 0.011043937174833164, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.007265742373924609}], 'FASTAI': [{'ag_args': {'name_suffix': '_r25', 'priority': -6}, 'bs': 1024, 'emb_drop': 0.6167722379778131, 'epochs': 44, 'layers': [200, 100, 50], 'lr': 0.05344037785562929, 'ps': 0.48477211305443607}, {'ag_args': {'name_suffix': '_r162', 'priority': -11}, 'bs': 2048, 'emb_drop': 0.5474625640581479, 'epochs': 45, 'layers': [400, 200], 'lr': 0.0047438648957706655, 'ps': 0.07533239360470734}, {'ag_args': {'name_suffix': '_r147', 'priority': -20}, 'bs': 128, 'emb_drop': 0.6378380130337095, 'epochs': 48, 'layers': [200], 'lr': 0.058027179860229344, 'ps': 0.23253362133888375}, {'ag_args': {'name_suffix': '_r192', 'priority': -25}, 'bs': 1024, 'emb_drop': 0.0698130630643278, 'epochs': 37, 'layers': [400, 200], 'lr': 0.0018949411343821322, 'ps': 0.6526067160491229}, {'ag_args': {'name_suffix': '_r109', 'priority': -28}, 'bs': 128, 'emb_drop': 0.1978897556618756, 'epochs': 49, 'layers': [400, 200, 100], 'lr': 0.02155144303508465, 'ps': 0.005518872455908264}, {'ag_args': {'name_suffix': '_r78', 'priority': -33}, 'bs': 512, 'emb_drop': 0.4897354379753617, 'epochs': 26, 'layers': [400, 200, 100], 'lr': 0.027563880686468895, 'ps': 0.44524273881299886}, {'ag_args': {'name_suffix': '_r150', 'priority': -35}, 'bs': 2048, 'emb_drop': 0.6148607467659958, 'epochs': 27, 'layers': [400, 200], 'lr': 0.09351668652547614, 'ps': 0.5314977162016676}, {'ag_args': {'name_suffix': '_r133', 'priority': -41}, 'bs': 256, 'emb_drop': 0.6242606757570891, 'epochs': 43, 'layers': [200, 100, 50], 'lr': 0.001533613235987637, 'ps': 0.5354961132962562}, {'ag_args': {'name_suffix': '_r99', 'priority': -44}, 'bs': 512, 'emb_drop': 0.6071025838237253, 'epochs': 49, 'layers': [400, 200], 'lr': 0.02669945959641021, 'ps': 0.4897025421573259}, {'ag_args': {'name_suffix': '_r197', 'priority': -47}, 'bs': 256, 'emb_drop': 0.5277230463737563, 'epochs': 45, 'layers': [400, 200], 'lr': 0.006908743712130657, 'ps': 0.08262909528632323}]}
2
+ hyperparameter_portfolio_zeroshot_cpu_2025_12_18 = {
3
+ "CAT": [{"ag_args": {"name_suffix": "_c1", "priority": -1}}],
4
+ "GBM_PREP": [
5
+ {
6
+ "ag.prep_params": [
7
+ [
8
+ [["ArithmeticFeatureGenerator", {}]],
9
+ [
10
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
11
+ ["OOFTargetEncodingFeatureGenerator", {}],
12
+ ],
13
+ ]
14
+ ],
15
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
16
+ "ag_args": {"name_suffix": "_r13", "priority": -2},
17
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
18
+ "bagging_fraction": 0.9923026236907,
19
+ "bagging_freq": 1,
20
+ "cat_l2": 0.014290368488,
21
+ "cat_smooth": 1.8662939903973,
22
+ "extra_trees": True,
23
+ "feature_fraction": 0.5533919718605,
24
+ "lambda_l1": 0.914411672958,
25
+ "lambda_l2": 1.90439560009,
26
+ "learning_rate": 0.0193225778401,
27
+ "max_cat_to_onehot": 18,
28
+ "min_data_in_leaf": 28,
29
+ "min_data_per_group": 54,
30
+ "num_leaves": 64,
31
+ },
32
+ {
33
+ "ag.prep_params": [
34
+ [
35
+ [["ArithmeticFeatureGenerator", {}]],
36
+ [
37
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
38
+ ["OOFTargetEncodingFeatureGenerator", {}],
39
+ ],
40
+ ]
41
+ ],
42
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
43
+ "ag_args": {"name_suffix": "_r41", "priority": -7},
44
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
45
+ "bagging_fraction": 0.7215411996558,
46
+ "bagging_freq": 1,
47
+ "cat_l2": 1.887369154362,
48
+ "cat_smooth": 0.0278693980873,
49
+ "extra_trees": True,
50
+ "feature_fraction": 0.4247583287144,
51
+ "lambda_l1": 0.1129800247772,
52
+ "lambda_l2": 0.2623265718536,
53
+ "learning_rate": 0.0074201920651,
54
+ "max_cat_to_onehot": 9,
55
+ "min_data_in_leaf": 15,
56
+ "min_data_per_group": 10,
57
+ "num_leaves": 8,
58
+ },
59
+ {
60
+ "ag.prep_params": [
61
+ [
62
+ [["ArithmeticFeatureGenerator", {}]],
63
+ [
64
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
65
+ ["OOFTargetEncodingFeatureGenerator", {}],
66
+ ],
67
+ ]
68
+ ],
69
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
70
+ "ag_args": {"name_suffix": "_r31", "priority": -10},
71
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
72
+ "bagging_fraction": 0.9591526242875,
73
+ "bagging_freq": 1,
74
+ "cat_l2": 1.8962346412823,
75
+ "cat_smooth": 0.0215219089995,
76
+ "extra_trees": False,
77
+ "feature_fraction": 0.5791844062459,
78
+ "lambda_l1": 0.938461750637,
79
+ "lambda_l2": 0.9899852075056,
80
+ "learning_rate": 0.0397613094741,
81
+ "max_cat_to_onehot": 27,
82
+ "min_data_in_leaf": 1,
83
+ "min_data_per_group": 39,
84
+ "num_leaves": 16,
85
+ },
86
+ {
87
+ "ag.prep_params": [],
88
+ "ag_args": {"name_suffix": "_r21", "priority": -12},
89
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
90
+ "bagging_fraction": 0.7111549514262,
91
+ "bagging_freq": 1,
92
+ "cat_l2": 0.8679131150136,
93
+ "cat_smooth": 48.7244965504817,
94
+ "extra_trees": False,
95
+ "feature_fraction": 0.425140839263,
96
+ "lambda_l1": 0.5140528525242,
97
+ "lambda_l2": 0.5134051978198,
98
+ "learning_rate": 0.0134375321277,
99
+ "max_cat_to_onehot": 16,
100
+ "min_data_in_leaf": 2,
101
+ "min_data_per_group": 32,
102
+ "num_leaves": 20,
103
+ },
104
+ {
105
+ "ag.prep_params": [
106
+ [
107
+ [["ArithmeticFeatureGenerator", {}]],
108
+ [
109
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
110
+ ["OOFTargetEncodingFeatureGenerator", {}],
111
+ ],
112
+ ]
113
+ ],
114
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
115
+ "ag_args": {"name_suffix": "_r17", "priority": -17},
116
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
117
+ "bagging_fraction": 0.9277474245702,
118
+ "bagging_freq": 1,
119
+ "cat_l2": 0.0731876168104,
120
+ "cat_smooth": 0.1369210915339,
121
+ "extra_trees": False,
122
+ "feature_fraction": 0.6680440910385,
123
+ "lambda_l1": 0.0125057410295,
124
+ "lambda_l2": 0.7157181359874,
125
+ "learning_rate": 0.0351342879995,
126
+ "max_cat_to_onehot": 20,
127
+ "min_data_in_leaf": 1,
128
+ "min_data_per_group": 2,
129
+ "num_leaves": 64,
130
+ },
131
+ {
132
+ "ag.prep_params": [[[["ArithmeticFeatureGenerator", {}]]]],
133
+ "ag_args": {"name_suffix": "_r47", "priority": -18},
134
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
135
+ "bagging_fraction": 0.9918048278435,
136
+ "bagging_freq": 1,
137
+ "cat_l2": 0.984162386723,
138
+ "cat_smooth": 0.0049687445294,
139
+ "extra_trees": True,
140
+ "feature_fraction": 0.4974006116018,
141
+ "lambda_l1": 0.7970644065518,
142
+ "lambda_l2": 1.2179933810825,
143
+ "learning_rate": 0.0537072755122,
144
+ "max_cat_to_onehot": 13,
145
+ "min_data_in_leaf": 1,
146
+ "min_data_per_group": 4,
147
+ "num_leaves": 32,
148
+ },
149
+ {
150
+ "ag.prep_params": [
151
+ [
152
+ [
153
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
154
+ ["OOFTargetEncodingFeatureGenerator", {}],
155
+ ]
156
+ ]
157
+ ],
158
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
159
+ "ag_args": {"name_suffix": "_r1", "priority": -19},
160
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
161
+ "bagging_fraction": 0.8836335684032,
162
+ "bagging_freq": 1,
163
+ "cat_l2": 0.6608043016307,
164
+ "cat_smooth": 0.0451936212097,
165
+ "extra_trees": True,
166
+ "feature_fraction": 0.6189315903408,
167
+ "lambda_l1": 0.6514130054123,
168
+ "lambda_l2": 1.7382678663835,
169
+ "learning_rate": 0.0412716109215,
170
+ "max_cat_to_onehot": 9,
171
+ "min_data_in_leaf": 9,
172
+ "min_data_per_group": 3,
173
+ "num_leaves": 128,
174
+ },
175
+ {
176
+ "ag.prep_params": [
177
+ [
178
+ [
179
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
180
+ ["OOFTargetEncodingFeatureGenerator", {}],
181
+ ]
182
+ ]
183
+ ],
184
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
185
+ "ag_args": {"name_suffix": "_r19", "priority": -26},
186
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
187
+ "bagging_fraction": 0.7106002663401,
188
+ "bagging_freq": 1,
189
+ "cat_l2": 0.1559746777257,
190
+ "cat_smooth": 0.0036366126697,
191
+ "extra_trees": False,
192
+ "feature_fraction": 0.688233104808,
193
+ "lambda_l1": 0.8732887427372,
194
+ "lambda_l2": 0.446716114323,
195
+ "learning_rate": 0.0815946452855,
196
+ "max_cat_to_onehot": 78,
197
+ "min_data_in_leaf": 12,
198
+ "min_data_per_group": 2,
199
+ "num_leaves": 16,
200
+ },
201
+ {
202
+ "ag.prep_params": [
203
+ [
204
+ [["ArithmeticFeatureGenerator", {}]],
205
+ [
206
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
207
+ ["OOFTargetEncodingFeatureGenerator", {}],
208
+ ],
209
+ ]
210
+ ],
211
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
212
+ "ag_args": {"name_suffix": "_r34", "priority": -32},
213
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
214
+ "bagging_fraction": 0.8453534561545,
215
+ "bagging_freq": 1,
216
+ "cat_l2": 0.0321580936847,
217
+ "cat_smooth": 0.0011470238114,
218
+ "extra_trees": True,
219
+ "feature_fraction": 0.8611499511087,
220
+ "lambda_l1": 0.910743969343,
221
+ "lambda_l2": 1.2750027607225,
222
+ "learning_rate": 0.0151455176168,
223
+ "max_cat_to_onehot": 8,
224
+ "min_data_in_leaf": 60,
225
+ "min_data_per_group": 4,
226
+ "num_leaves": 32,
227
+ },
228
+ {
229
+ "ag.prep_params": [
230
+ [
231
+ [["ArithmeticFeatureGenerator", {}]],
232
+ [
233
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
234
+ ["OOFTargetEncodingFeatureGenerator", {}],
235
+ ],
236
+ ]
237
+ ],
238
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
239
+ "ag_args": {"name_suffix": "_r32", "priority": -37},
240
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
241
+ "bagging_fraction": 0.927947070297,
242
+ "bagging_freq": 1,
243
+ "cat_l2": 0.0082294539727,
244
+ "cat_smooth": 0.0671878797989,
245
+ "extra_trees": True,
246
+ "feature_fraction": 0.9169657691675,
247
+ "lambda_l1": 0.9386485912678,
248
+ "lambda_l2": 1.619775689786,
249
+ "learning_rate": 0.0056864355547,
250
+ "max_cat_to_onehot": 11,
251
+ "min_data_in_leaf": 1,
252
+ "min_data_per_group": 10,
253
+ "num_leaves": 32,
254
+ },
255
+ {
256
+ "ag.prep_params": [
257
+ [
258
+ [["ArithmeticFeatureGenerator", {}]],
259
+ [
260
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
261
+ ["OOFTargetEncodingFeatureGenerator", {}],
262
+ ],
263
+ ]
264
+ ],
265
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
266
+ "ag_args": {"name_suffix": "_r7", "priority": -38},
267
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
268
+ "bagging_fraction": 0.8984634022103,
269
+ "bagging_freq": 1,
270
+ "cat_l2": 0.0053608956358,
271
+ "cat_smooth": 89.7168790664636,
272
+ "extra_trees": False,
273
+ "feature_fraction": 0.847638045482,
274
+ "lambda_l1": 0.5684527742857,
275
+ "lambda_l2": 1.0738026980295,
276
+ "learning_rate": 0.0417108779005,
277
+ "max_cat_to_onehot": 8,
278
+ "min_data_in_leaf": 2,
279
+ "min_data_per_group": 7,
280
+ "num_leaves": 128,
281
+ },
282
+ {
283
+ "ag.prep_params": [
284
+ [
285
+ [
286
+ ["CategoricalInteractionFeatureGenerator", {"passthrough": True}],
287
+ ["OOFTargetEncodingFeatureGenerator", {}],
288
+ ]
289
+ ]
290
+ ],
291
+ "ag.prep_params.passthrough_types": {"invalid_raw_types": ["category", "object"]},
292
+ "ag_args": {"name_suffix": "_r14", "priority": -40},
293
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
294
+ "bagging_fraction": 0.9318953983366,
295
+ "bagging_freq": 1,
296
+ "cat_l2": 0.065532200068,
297
+ "cat_smooth": 0.0696287198368,
298
+ "extra_trees": True,
299
+ "feature_fraction": 0.4649868965096,
300
+ "lambda_l1": 0.6586569196642,
301
+ "lambda_l2": 1.7799375779553,
302
+ "learning_rate": 0.072046289471,
303
+ "max_cat_to_onehot": 72,
304
+ "min_data_in_leaf": 26,
305
+ "min_data_per_group": 32,
306
+ "num_leaves": 32,
307
+ },
308
+ {
309
+ "ag.prep_params": [[[["ArithmeticFeatureGenerator", {}]]]],
310
+ "ag_args": {"name_suffix": "_r27", "priority": -42},
311
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
312
+ "bagging_fraction": 0.811983527375,
313
+ "bagging_freq": 1,
314
+ "cat_l2": 0.0255048028385,
315
+ "cat_smooth": 1.5339379274002,
316
+ "extra_trees": True,
317
+ "feature_fraction": 0.5246746068724,
318
+ "lambda_l1": 0.9737915306165,
319
+ "lambda_l2": 1.929596568261,
320
+ "learning_rate": 0.0172284745143,
321
+ "max_cat_to_onehot": 9,
322
+ "min_data_in_leaf": 8,
323
+ "min_data_per_group": 51,
324
+ "num_leaves": 20,
325
+ },
326
+ {
327
+ "ag.prep_params": [[[["ArithmeticFeatureGenerator", {}]]]],
328
+ "ag_args": {"name_suffix": "_r37", "priority": -46},
329
+ "ag_args_ensemble": {"model_random_seed": 0, "vary_seed_across_folds": True},
330
+ "bagging_fraction": 0.7853761603489,
331
+ "bagging_freq": 1,
332
+ "cat_l2": 0.2934796127084,
333
+ "cat_smooth": 10.1721684646257,
334
+ "extra_trees": False,
335
+ "feature_fraction": 0.4813265290277,
336
+ "lambda_l1": 0.9744837697365,
337
+ "lambda_l2": 0.6058665958153,
338
+ "learning_rate": 0.0371000014124,
339
+ "max_cat_to_onehot": 85,
340
+ "min_data_in_leaf": 22,
341
+ "min_data_per_group": 3,
342
+ "num_leaves": 32,
343
+ },
344
+ ],
345
+ "GBM": [
346
+ {
347
+ "ag_args": {"name_suffix": "_r177", "priority": -3},
348
+ "bagging_fraction": 0.8769107816033,
349
+ "bagging_freq": 1,
350
+ "cat_l2": 0.3418014393813,
351
+ "cat_smooth": 15.4304556649114,
352
+ "extra_trees": True,
353
+ "feature_fraction": 0.4622189821941,
354
+ "lambda_l1": 0.2375070586896,
355
+ "lambda_l2": 0.3551561351804,
356
+ "learning_rate": 0.0178593900218,
357
+ "max_cat_to_onehot": 16,
358
+ "min_data_in_leaf": 3,
359
+ "min_data_per_group": 9,
360
+ "num_leaves": 39,
361
+ },
362
+ {
363
+ "ag_args": {"name_suffix": "_r163", "priority": -5},
364
+ "bagging_fraction": 0.9783898288461,
365
+ "bagging_freq": 1,
366
+ "cat_l2": 0.1553395260142,
367
+ "cat_smooth": 0.0093122749318,
368
+ "extra_trees": False,
369
+ "feature_fraction": 0.5279825611461,
370
+ "lambda_l1": 0.0269274915833,
371
+ "lambda_l2": 0.8375250972309,
372
+ "learning_rate": 0.0113913650333,
373
+ "max_cat_to_onehot": 42,
374
+ "min_data_in_leaf": 3,
375
+ "min_data_per_group": 75,
376
+ "num_leaves": 84,
377
+ },
378
+ {
379
+ "ag_args": {"name_suffix": "_r72", "priority": -8},
380
+ "bagging_fraction": 0.950146543918,
381
+ "bagging_freq": 1,
382
+ "cat_l2": 0.2159137242663,
383
+ "cat_smooth": 0.0638204395719,
384
+ "extra_trees": True,
385
+ "feature_fraction": 0.4044759649281,
386
+ "lambda_l1": 0.7661581500422,
387
+ "lambda_l2": 1.6041759693902,
388
+ "learning_rate": 0.0179845918984,
389
+ "max_cat_to_onehot": 11,
390
+ "min_data_in_leaf": 12,
391
+ "min_data_per_group": 3,
392
+ "num_leaves": 180,
393
+ },
394
+ {
395
+ "ag_args": {"name_suffix": "_r120", "priority": -13},
396
+ "bagging_fraction": 0.8541333332514,
397
+ "bagging_freq": 1,
398
+ "cat_l2": 0.0110343197541,
399
+ "cat_smooth": 5.0905236124522,
400
+ "extra_trees": True,
401
+ "feature_fraction": 0.7334718346252,
402
+ "lambda_l1": 0.241338427726,
403
+ "lambda_l2": 0.298107723769,
404
+ "learning_rate": 0.0126654490778,
405
+ "max_cat_to_onehot": 67,
406
+ "min_data_in_leaf": 12,
407
+ "min_data_per_group": 93,
408
+ "num_leaves": 5,
409
+ },
410
+ {
411
+ "ag_args": {"name_suffix": "_r6", "priority": -16},
412
+ "bagging_fraction": 0.8148132107231,
413
+ "bagging_freq": 1,
414
+ "cat_l2": 0.0058363329714,
415
+ "cat_smooth": 0.0289414318324,
416
+ "extra_trees": False,
417
+ "feature_fraction": 0.939979116902,
418
+ "lambda_l1": 0.4369494828584,
419
+ "lambda_l2": 0.2997524486083,
420
+ "learning_rate": 0.0078971749764,
421
+ "max_cat_to_onehot": 28,
422
+ "min_data_in_leaf": 24,
423
+ "min_data_per_group": 3,
424
+ "num_leaves": 8,
425
+ },
426
+ {
427
+ "ag_args": {"name_suffix": "_r184", "priority": -21},
428
+ "bagging_fraction": 0.8406256713136,
429
+ "bagging_freq": 1,
430
+ "cat_l2": 0.9284921901786,
431
+ "cat_smooth": 0.0898191451684,
432
+ "extra_trees": False,
433
+ "feature_fraction": 0.5876132298377,
434
+ "lambda_l1": 0.078943697912,
435
+ "lambda_l2": 0.7713118402478,
436
+ "learning_rate": 0.0090676429159,
437
+ "max_cat_to_onehot": 16,
438
+ "min_data_in_leaf": 17,
439
+ "min_data_per_group": 11,
440
+ "num_leaves": 2,
441
+ },
442
+ {
443
+ "ag_args": {"name_suffix": "_r46", "priority": -23},
444
+ "bagging_fraction": 0.999426150416,
445
+ "bagging_freq": 1,
446
+ "cat_l2": 0.0076879104679,
447
+ "cat_smooth": 89.4599055435924,
448
+ "extra_trees": False,
449
+ "feature_fraction": 0.8588138897928,
450
+ "lambda_l1": 0.0413597548025,
451
+ "lambda_l2": 0.2258713386858,
452
+ "learning_rate": 0.0074056102479,
453
+ "max_cat_to_onehot": 11,
454
+ "min_data_in_leaf": 1,
455
+ "min_data_per_group": 26,
456
+ "num_leaves": 14,
457
+ },
458
+ {
459
+ "ag_args": {"name_suffix": "_r68", "priority": -24},
460
+ "bagging_fraction": 0.7199080522958,
461
+ "bagging_freq": 1,
462
+ "cat_l2": 0.9369509319667,
463
+ "cat_smooth": 11.0984745216942,
464
+ "extra_trees": False,
465
+ "feature_fraction": 0.9550596478029,
466
+ "lambda_l1": 0.1109843723892,
467
+ "lambda_l2": 0.5969094177111,
468
+ "learning_rate": 0.0079480499426,
469
+ "max_cat_to_onehot": 8,
470
+ "min_data_in_leaf": 3,
471
+ "min_data_per_group": 8,
472
+ "num_leaves": 111,
473
+ },
474
+ {
475
+ "ag_args": {"name_suffix": "_r47", "priority": -29},
476
+ "bagging_fraction": 0.8831228358892,
477
+ "bagging_freq": 1,
478
+ "cat_l2": 0.1402622388062,
479
+ "cat_smooth": 3.3545774392409,
480
+ "extra_trees": True,
481
+ "feature_fraction": 0.6155890374887,
482
+ "lambda_l1": 0.1749502746898,
483
+ "lambda_l2": 0.8761391715812,
484
+ "learning_rate": 0.00891978331,
485
+ "max_cat_to_onehot": 84,
486
+ "min_data_in_leaf": 1,
487
+ "min_data_per_group": 21,
488
+ "num_leaves": 55,
489
+ },
490
+ {
491
+ "ag_args": {"name_suffix": "_r63", "priority": -31},
492
+ "bagging_fraction": 0.7801003412553,
493
+ "bagging_freq": 1,
494
+ "cat_l2": 0.0071438335269,
495
+ "cat_smooth": 0.1338043459574,
496
+ "extra_trees": False,
497
+ "feature_fraction": 0.490455360592,
498
+ "lambda_l1": 0.6420805635778,
499
+ "lambda_l2": 0.5813319300456,
500
+ "learning_rate": 0.0308746408751,
501
+ "max_cat_to_onehot": 38,
502
+ "min_data_in_leaf": 1,
503
+ "min_data_per_group": 83,
504
+ "num_leaves": 24,
505
+ },
506
+ {
507
+ "ag_args": {"name_suffix": "_r39", "priority": -36},
508
+ "bagging_fraction": 0.7035743460186,
509
+ "bagging_freq": 1,
510
+ "cat_l2": 0.0134845084619,
511
+ "cat_smooth": 56.4934757686511,
512
+ "extra_trees": True,
513
+ "feature_fraction": 0.7824899527144,
514
+ "lambda_l1": 0.3700115211248,
515
+ "lambda_l2": 0.0341499593689,
516
+ "learning_rate": 0.094652390088,
517
+ "max_cat_to_onehot": 13,
518
+ "min_data_in_leaf": 13,
519
+ "min_data_per_group": 4,
520
+ "num_leaves": 23,
521
+ },
522
+ {
523
+ "ag_args": {"name_suffix": "_r18", "priority": -43},
524
+ "bagging_fraction": 0.7041134150362,
525
+ "bagging_freq": 1,
526
+ "cat_l2": 0.1139031650222,
527
+ "cat_smooth": 41.8937939300815,
528
+ "extra_trees": True,
529
+ "feature_fraction": 0.5028791565785,
530
+ "lambda_l1": 0.1031941284118,
531
+ "lambda_l2": 1.2554010747358,
532
+ "learning_rate": 0.0186530122901,
533
+ "max_cat_to_onehot": 29,
534
+ "min_data_in_leaf": 5,
535
+ "min_data_per_group": 74,
536
+ "num_leaves": 5,
537
+ },
538
+ {
539
+ "ag_args": {"name_suffix": "_r50", "priority": -45},
540
+ "bagging_fraction": 0.9673434664048,
541
+ "bagging_freq": 1,
542
+ "cat_l2": 1.7662226703416,
543
+ "cat_smooth": 0.0097667848046,
544
+ "extra_trees": True,
545
+ "feature_fraction": 0.9286299570284,
546
+ "lambda_l1": 0.0448644389135,
547
+ "lambda_l2": 1.7322446850205,
548
+ "learning_rate": 0.0507909494543,
549
+ "max_cat_to_onehot": 11,
550
+ "min_data_in_leaf": 4,
551
+ "min_data_per_group": 2,
552
+ "num_leaves": 106,
553
+ },
554
+ {
555
+ "ag_args": {"name_suffix": "_r104", "priority": -48},
556
+ "bagging_fraction": 0.9327643671568,
557
+ "bagging_freq": 1,
558
+ "cat_l2": 0.0067636494662,
559
+ "cat_smooth": 29.2351010915576,
560
+ "extra_trees": False,
561
+ "feature_fraction": 0.660864035482,
562
+ "lambda_l1": 0.556745328417,
563
+ "lambda_l2": 1.2717605868201,
564
+ "learning_rate": 0.0433336000175,
565
+ "max_cat_to_onehot": 42,
566
+ "min_data_in_leaf": 18,
567
+ "min_data_per_group": 6,
568
+ "num_leaves": 19,
569
+ },
570
+ ],
571
+ "NN_TORCH": [
572
+ {
573
+ "activation": "elu",
574
+ "ag_args": {"name_suffix": "_r37", "priority": -4},
575
+ "dropout_prob": 0.0889772897547275,
576
+ "hidden_size": 109,
577
+ "learning_rate": 0.02184363543226557,
578
+ "num_layers": 3,
579
+ "use_batchnorm": True,
580
+ "weight_decay": 3.1736637236578543e-10,
581
+ },
582
+ {
583
+ "activation": "elu",
584
+ "ag_args": {"name_suffix": "_r31", "priority": -9},
585
+ "dropout_prob": 0.013288954106470907,
586
+ "hidden_size": 81,
587
+ "learning_rate": 0.005340914647396153,
588
+ "num_layers": 4,
589
+ "use_batchnorm": False,
590
+ "weight_decay": 8.76216837077536e-05,
591
+ },
592
+ {
593
+ "activation": "elu",
594
+ "ag_args": {"name_suffix": "_r193", "priority": -14},
595
+ "dropout_prob": 0.2976404923811552,
596
+ "hidden_size": 131,
597
+ "learning_rate": 0.0038408014156739775,
598
+ "num_layers": 3,
599
+ "use_batchnorm": False,
600
+ "weight_decay": 0.01745189206113213,
601
+ },
602
+ {
603
+ "activation": "elu",
604
+ "ag_args": {"name_suffix": "_r144", "priority": -15},
605
+ "dropout_prob": 0.2670859555485912,
606
+ "hidden_size": 52,
607
+ "learning_rate": 0.015189605588375421,
608
+ "num_layers": 4,
609
+ "use_batchnorm": True,
610
+ "weight_decay": 2.8013784883244263e-08,
611
+ },
612
+ {
613
+ "activation": "relu",
614
+ "ag_args": {"name_suffix": "_r82", "priority": -22},
615
+ "dropout_prob": 0.27342918414623907,
616
+ "hidden_size": 207,
617
+ "learning_rate": 0.0004069380929899853,
618
+ "num_layers": 4,
619
+ "use_batchnorm": False,
620
+ "weight_decay": 0.002473667327700422,
621
+ },
622
+ {
623
+ "activation": "elu",
624
+ "ag_args": {"name_suffix": "_r39", "priority": -27},
625
+ "dropout_prob": 0.21699951000415899,
626
+ "hidden_size": 182,
627
+ "learning_rate": 0.00014675249427915203,
628
+ "num_layers": 2,
629
+ "use_batchnorm": False,
630
+ "weight_decay": 9.787353852692089e-08,
631
+ },
632
+ {
633
+ "activation": "relu",
634
+ "ag_args": {"name_suffix": "_r1", "priority": -30},
635
+ "dropout_prob": 0.23713784729000734,
636
+ "hidden_size": 200,
637
+ "learning_rate": 0.0031125617090901805,
638
+ "num_layers": 4,
639
+ "use_batchnorm": True,
640
+ "weight_decay": 4.57301675647447e-08,
641
+ },
642
+ {
643
+ "activation": "relu",
644
+ "ag_args": {"name_suffix": "_r48", "priority": -34},
645
+ "dropout_prob": 0.14224509513998226,
646
+ "hidden_size": 26,
647
+ "learning_rate": 0.007085904739869829,
648
+ "num_layers": 2,
649
+ "use_batchnorm": False,
650
+ "weight_decay": 2.465786211798467e-10,
651
+ },
652
+ {
653
+ "activation": "elu",
654
+ "ag_args": {"name_suffix": "_r135", "priority": -39},
655
+ "dropout_prob": 0.06134755114373829,
656
+ "hidden_size": 144,
657
+ "learning_rate": 0.005834535148903802,
658
+ "num_layers": 5,
659
+ "use_batchnorm": True,
660
+ "weight_decay": 2.0826540090463376e-09,
661
+ },
662
+ {
663
+ "activation": "elu",
664
+ "ag_args": {"name_suffix": "_r24", "priority": -49},
665
+ "dropout_prob": 0.257596079691855,
666
+ "hidden_size": 168,
667
+ "learning_rate": 0.0034108596383714608,
668
+ "num_layers": 4,
669
+ "use_batchnorm": True,
670
+ "weight_decay": 1.4840689603685264e-07,
671
+ },
672
+ {
673
+ "activation": "relu",
674
+ "ag_args": {"name_suffix": "_r159", "priority": -50},
675
+ "dropout_prob": 0.16724368469920037,
676
+ "hidden_size": 44,
677
+ "learning_rate": 0.011043937174833164,
678
+ "num_layers": 4,
679
+ "use_batchnorm": False,
680
+ "weight_decay": 0.007265742373924609,
681
+ },
682
+ ],
683
+ "FASTAI": [
684
+ {
685
+ "ag_args": {"name_suffix": "_r25", "priority": -6},
686
+ "bs": 1024,
687
+ "emb_drop": 0.6167722379778131,
688
+ "epochs": 44,
689
+ "layers": [200, 100, 50],
690
+ "lr": 0.05344037785562929,
691
+ "ps": 0.48477211305443607,
692
+ },
693
+ {
694
+ "ag_args": {"name_suffix": "_r162", "priority": -11},
695
+ "bs": 2048,
696
+ "emb_drop": 0.5474625640581479,
697
+ "epochs": 45,
698
+ "layers": [400, 200],
699
+ "lr": 0.0047438648957706655,
700
+ "ps": 0.07533239360470734,
701
+ },
702
+ {
703
+ "ag_args": {"name_suffix": "_r147", "priority": -20},
704
+ "bs": 128,
705
+ "emb_drop": 0.6378380130337095,
706
+ "epochs": 48,
707
+ "layers": [200],
708
+ "lr": 0.058027179860229344,
709
+ "ps": 0.23253362133888375,
710
+ },
711
+ {
712
+ "ag_args": {"name_suffix": "_r192", "priority": -25},
713
+ "bs": 1024,
714
+ "emb_drop": 0.0698130630643278,
715
+ "epochs": 37,
716
+ "layers": [400, 200],
717
+ "lr": 0.0018949411343821322,
718
+ "ps": 0.6526067160491229,
719
+ },
720
+ {
721
+ "ag_args": {"name_suffix": "_r109", "priority": -28},
722
+ "bs": 128,
723
+ "emb_drop": 0.1978897556618756,
724
+ "epochs": 49,
725
+ "layers": [400, 200, 100],
726
+ "lr": 0.02155144303508465,
727
+ "ps": 0.005518872455908264,
728
+ },
729
+ {
730
+ "ag_args": {"name_suffix": "_r78", "priority": -33},
731
+ "bs": 512,
732
+ "emb_drop": 0.4897354379753617,
733
+ "epochs": 26,
734
+ "layers": [400, 200, 100],
735
+ "lr": 0.027563880686468895,
736
+ "ps": 0.44524273881299886,
737
+ },
738
+ {
739
+ "ag_args": {"name_suffix": "_r150", "priority": -35},
740
+ "bs": 2048,
741
+ "emb_drop": 0.6148607467659958,
742
+ "epochs": 27,
743
+ "layers": [400, 200],
744
+ "lr": 0.09351668652547614,
745
+ "ps": 0.5314977162016676,
746
+ },
747
+ {
748
+ "ag_args": {"name_suffix": "_r133", "priority": -41},
749
+ "bs": 256,
750
+ "emb_drop": 0.6242606757570891,
751
+ "epochs": 43,
752
+ "layers": [200, 100, 50],
753
+ "lr": 0.001533613235987637,
754
+ "ps": 0.5354961132962562,
755
+ },
756
+ {
757
+ "ag_args": {"name_suffix": "_r99", "priority": -44},
758
+ "bs": 512,
759
+ "emb_drop": 0.6071025838237253,
760
+ "epochs": 49,
761
+ "layers": [400, 200],
762
+ "lr": 0.02669945959641021,
763
+ "ps": 0.4897025421573259,
764
+ },
765
+ {
766
+ "ag_args": {"name_suffix": "_r197", "priority": -47},
767
+ "bs": 256,
768
+ "emb_drop": 0.5277230463737563,
769
+ "epochs": 45,
770
+ "layers": [400, 200],
771
+ "lr": 0.006908743712130657,
772
+ "ps": 0.08262909528632323,
773
+ },
774
+ ],
775
+ }